JP6981492B2 - Manufacturing method of semiconductor laser device - Google Patents

Manufacturing method of semiconductor laser device Download PDF

Info

Publication number
JP6981492B2
JP6981492B2 JP2020036620A JP2020036620A JP6981492B2 JP 6981492 B2 JP6981492 B2 JP 6981492B2 JP 2020036620 A JP2020036620 A JP 2020036620A JP 2020036620 A JP2020036620 A JP 2020036620A JP 6981492 B2 JP6981492 B2 JP 6981492B2
Authority
JP
Japan
Prior art keywords
insulating film
film
semiconductor laser
layer
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020036620A
Other languages
Japanese (ja)
Other versions
JP2020107900A (en
Inventor
仁 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019506748A external-priority patent/JP6705554B1/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020036620A priority Critical patent/JP6981492B2/en
Publication of JP2020107900A publication Critical patent/JP2020107900A/en
Application granted granted Critical
Publication of JP6981492B2 publication Critical patent/JP6981492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この開示は、半導体レーザ装置の製造方法に関する。 This disclosure relates to a method of manufacturing a semiconductor laser device.

半導体レーザ装置は、大容量データを通信するための超高速かつ高効率な光ネットワークのキーデバイスとなっており、その信頼性はますます重要になってきている。例えば通信用のリッジ型半導体レーザ装置では、活性層の近傍に絶縁膜が配置されている。これはリッジとその両側との屈折率差を利用して光を導波路に閉じ込めるためである。活性層で発生した光は絶縁膜まで染み出し、一部が絶縁膜上の電極にまで漏れて、吸収され、効率が低下する。これを防ぐには絶縁膜を厚くすればよいが、そうすると活性層に印加されるストレスが増大し、特性の変化又は結晶欠陥が発生する。また、絶縁膜をプラズマで形成すると、活性層にダメージを与えるため信頼性を確保できない問題があった。 Semiconductor laser devices have become key devices for ultra-high-speed and highly efficient optical networks for communicating large volumes of data, and their reliability is becoming more and more important. For example, in a ridge type semiconductor laser device for communication, an insulating film is arranged in the vicinity of the active layer. This is because the light is confined in the waveguide by utilizing the difference in refractive index between the ridge and both sides thereof. The light generated in the active layer seeps out to the insulating film, and a part of the light leaks to the electrodes on the insulating film and is absorbed, resulting in a decrease in efficiency. To prevent this, the insulating film may be thickened, but this increases the stress applied to the active layer, resulting in changes in characteristics or crystal defects. Further, when the insulating film is formed by plasma, there is a problem that reliability cannot be ensured because the active layer is damaged.

特許文献1では、上記のような問題を解決するために絶縁膜を2層構造とし、第1層目として成膜温度600℃前後の熱CVD法により膜厚50nmのSiN膜を形成し、第2層目として成膜温度300℃前後のプラズマCVD法により、膜厚100nmのSiN膜を形成している。特許文献1には、第2層目のSiN膜の成膜温度を第1層目のSiN膜の成膜温度よりも低くすることで、第2層目のSiN膜を厚くしても半導体層に印加されるストレスが低くなるため信頼性を確保できることが記載されている。さらに、特許文献1には、第2層目のSiN膜のプラズマCVD法による成膜時に、第1層目のSiN膜が有るため、プラズマが半導体層に直接に当たらず、プラズマダメージによる信頼性の低下を防ぐこともできることも記載されている。 In Patent Document 1, in order to solve the above problems, the insulating film has a two-layer structure, and a SiN film having a film thickness of 50 nm is formed as the first layer by a thermal CVD method having a film thickness of around 600 ° C. As the second layer, a SiN film having a film thickness of 100 nm is formed by a plasma CVD method having a film formation temperature of about 300 ° C. According to Patent Document 1, the film formation temperature of the SiN film of the second layer is lower than the film formation temperature of the SiN film of the first layer, so that even if the SiN film of the second layer is thickened, the semiconductor layer is formed. It is described that reliability can be ensured because the stress applied to the film is reduced. Further, in Patent Document 1, since the first layer SiN film is present at the time of film formation of the second layer SiN film by the plasma CVD method, the plasma does not directly hit the semiconductor layer, and the reliability due to plasma damage is obtained. It is also stated that it is possible to prevent the decrease in plasma.

特開2010−16281号公報Japanese Unexamined Patent Publication No. 2010-16281

例えばInP系の通信用半導体レーザでは、熱CVDのような600℃前後の高温成膜によって絶縁膜を形成すると、半導体材料が熱分解してしまう問題があった。 For example, in an InP-based communication semiconductor laser, there is a problem that the semiconductor material is thermally decomposed when an insulating film is formed by high-temperature film formation at around 600 ° C. such as thermal CVD.

本開示は上述の問題を解決するためになされたものであり、活性層へのストレス及びダメージを低減させて信頼性を向上させることができる半導体レーザ装置の製造方法を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to provide a method for manufacturing a semiconductor laser device capable of reducing stress and damage to an active layer and improving reliability. ..

本願の開示にかかる半導体レーザ装置の製造方法は、InP基板の上に、下部クラッド層、活性層及び上部クラッド層が積層した積層構造に対しドライエッチングを施すことで左右に該積層構造のいずれかの層の表面が露出したメサストライプ構造を形成することと、該メサストライプ構造の側面と、該メサストライプ構造の左右の該メサストライプ構造より低い低地部分とに、ALD法で第1絶縁膜を形成することと、スパッタ法で該第1絶縁膜の上に該第1絶縁膜より厚い第2絶縁膜を形成することと、該メサストライプ構造の上面に第1電極を形成し、該InP基板の裏面に第2電極を形成することと、を備え、前記メサストライプ構造は垂直メサであることを特徴とする。 The method for manufacturing a semiconductor laser apparatus according to the present disclosure is one of the laminated structures on the left and right by performing dry etching on a laminated structure in which a lower clad layer, an active layer and an upper clad layer are laminated on an InP substrate. The first insulating film is formed by the ALD method on the side surface of the mesa stripe structure and the low-lying portion lower than the mesa stripe structure on the left and right of the mesa stripe structure to form the mesa stripe structure in which the surface of the layer is exposed. The InP substrate is formed by forming a second insulating film thicker than the first insulating film on the first insulating film by a sputtering method, and forming a first electrode on the upper surface of the mesa stripe structure. The mesa stripe structure is characterized by forming a second electrode on the back surface of the above, and the mesa stripe structure is a vertical mesa.

本開示のその他の特徴は以下に明らかにする。 Other features of this disclosure are clarified below.

この開示によれば、例えば、最初にスパッタ法で第1絶縁膜を形成し、その後、第1絶縁膜を形成したときよりも高い成膜温度のプラズマCVD法で第1絶縁膜の上に第1絶縁膜より薄い第2絶縁膜を形成することで、活性層へのストレス及びダメージを低減させて半導体レーザ装置の信頼性を向上させることができる。 According to this disclosure, for example, a first insulating film is first formed by a sputtering method, and then a plasma CVD method having a higher film formation temperature than when the first insulating film is formed is used on the first insulating film. By forming the second insulating film thinner than the first insulating film, the stress and damage to the active layer can be reduced and the reliability of the semiconductor laser apparatus can be improved.

実施の形態1、2に係る半導体レーザ装置の断面図である。It is sectional drawing of the semiconductor laser apparatus which concerns on Embodiments 1 and 2. 製造途中の半導体レーザ装置の断面図である。It is sectional drawing of the semiconductor laser apparatus in the middle of manufacturing. 製造途中の半導体レーザ装置の断面図である。It is sectional drawing of the semiconductor laser apparatus in the middle of manufacturing. 製造途中の半導体レーザ装置の断面図である。It is sectional drawing of the semiconductor laser apparatus in the middle of manufacturing. 実施の形態3に係る製造途中の半導体レーザ装置の断面図である。It is sectional drawing of the semiconductor laser apparatus in the process of manufacturing which concerns on Embodiment 3. FIG. 実施の形態3に係る半導体レーザ装置の断面図である。It is sectional drawing of the semiconductor laser apparatus which concerns on Embodiment 3. FIG.

実施の形態に係る半導体レーザ装置の製造方法と半導体レーザ装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 A method for manufacturing a semiconductor laser device and a semiconductor laser device according to an embodiment will be described with reference to the drawings. The same or corresponding components may be designated by the same reference numerals and the description may be omitted.

実施の形態1.
図1は、実施の形態1に係る半導体レーザ装置の断面図である。この半導体レーザ装置はn型のInPで形成されたInP基板11を備えている。InP基板11の上にはn型の下部クラッド層12が形成されている。下部クラッド層12の上には活性層13が形成されている。活性層13の上にはp型の第1上部クラッド層14とp型の第2上部クラッド層15がこの順に形成されている。第1上部クラッド層14と第2上部クラッド層15は、別々に形成された2つの層である。しかし、形状を維持しつつこれらの層を1つの層に集約してもよい。第2上部クラッド層15の上には、p型のコンタクト層16が形成されている。
Embodiment 1.
FIG. 1 is a cross-sectional view of the semiconductor laser device according to the first embodiment. This semiconductor laser device includes an InP substrate 11 formed of n-type InP. An n-type lower clad layer 12 is formed on the InP substrate 11. An active layer 13 is formed on the lower clad layer 12. A p-type first upper clad layer 14 and a p-type second upper clad layer 15 are formed on the active layer 13 in this order. The first upper clad layer 14 and the second upper clad layer 15 are two layers formed separately. However, these layers may be combined into one layer while maintaining the shape. A p-type contact layer 16 is formed on the second upper clad layer 15.

このように、InP基板11の上に、下部クラッド層12、活性層13、第1第2上部クラッド層14、15及びコンタクト層16が積層した積層構造が形成されている。この積層構造は、メサストライプ構造を有する形状で形成されている。図1の例では、第1上部クラッド層14の上に、第2上部クラッド層15とコンタクト層16を有するメサストライプ構造が形成されている。積層構造の中でどの層をメサストライプ構造にするかは任意である。例えば、積層構造を構成する全ての層でメサストライプ構造を形成してもよい。この積層構造は、例えばGaInAsP系の半導体材料で形成することができる。 As described above, a laminated structure in which the lower clad layer 12, the active layer 13, the first and second upper clad layers 14, 15 and the contact layer 16 are laminated is formed on the InP substrate 11. This laminated structure is formed in a shape having a mesa stripe structure. In the example of FIG. 1, a mesa stripe structure having a second upper clad layer 15 and a contact layer 16 is formed on the first upper clad layer 14. Which layer of the laminated structure has the mesa stripe structure is arbitrary. For example, a mesa stripe structure may be formed by all the layers constituting the laminated structure. This laminated structure can be formed of, for example, a GaInAsP-based semiconductor material.

積層構造の上に第1絶縁膜17と第2絶縁膜18の2層の絶縁膜が形成されている。第1絶縁膜17と第2絶縁膜18は、コンタクト層16の上面を露出させつつ、メサストライプ構造を覆う。第1絶縁膜17と第2絶縁膜18から露出したコンタクト層16には第1電極19が形成されている。第1電極19はp側電極として機能する。InP基板11の裏面には第2電極20が形成されている。第2電極20はn側電極として機能する。半導体レーザ装置の動作時には、第1電極19と第2電極20の間に電圧を印加し、図1の紙面手前方向又は紙面奥行き方向にレーザ光を放出させる。 Two layers of an insulating film, a first insulating film 17 and a second insulating film 18, are formed on the laminated structure. The first insulating film 17 and the second insulating film 18 cover the mesa stripe structure while exposing the upper surface of the contact layer 16. A first electrode 19 is formed on the contact layer 16 exposed from the first insulating film 17 and the second insulating film 18. The first electrode 19 functions as a p-side electrode. A second electrode 20 is formed on the back surface of the InP substrate 11. The second electrode 20 functions as an n-side electrode. During operation of the semiconductor laser device, a voltage is applied between the first electrode 19 and the second electrode 20, and the laser beam is emitted in the front direction of the paper surface or the depth direction of the paper surface in FIG.

次に、実施の形態1に係る半導体レーザ装置の製造方法を説明する。まず、InP基板11の上に、下部クラッド層12、活性層13、第1第2上部クラッド層14、15及びコンタクト層16が積層した積層構造を形成する。この積層構造に対しフォトリソグラフィ及びドライエッチングを施すことで、積層構造をメサストライプ構造を有する形状とする。図2は、InP基板11の上にメサストライプ構造を有する積層構造が形成されたことを示す半導体レーザ装置の断面図である。 Next, a method of manufacturing the semiconductor laser device according to the first embodiment will be described. First, a laminated structure is formed in which the lower clad layer 12, the active layer 13, the first and second upper clad layers 14, 15 and the contact layer 16 are laminated on the InP substrate 11. By performing photolithography and dry etching on this laminated structure, the laminated structure has a shape having a mesa stripe structure. FIG. 2 is a cross-sectional view of a semiconductor laser device showing that a laminated structure having a mesa stripe structure is formed on the InP substrate 11.

次いで、第1絶縁膜17と第2絶縁膜18を形成する。図3は、第1絶縁膜17と第2絶縁膜18が形成された半導体レーザ装置の断面図である。第1絶縁膜17は、積層構造の上にスパッタ法で形成する。第1絶縁膜17の成膜温度は150℃前後とすることができる。第1絶縁膜17の成膜温度は例えば140−160℃の範囲である。第1絶縁膜17の膜厚は例えば300−700nmである。第1絶縁膜17の材料は、絶縁膜であれば特に限定されないが、例えば、SiO膜などの酸化膜である。 Next, the first insulating film 17 and the second insulating film 18 are formed. FIG. 3 is a cross-sectional view of a semiconductor laser device in which the first insulating film 17 and the second insulating film 18 are formed. The first insulating film 17 is formed on the laminated structure by a sputtering method. The film formation temperature of the first insulating film 17 can be around 150 ° C. The film formation temperature of the first insulating film 17 is, for example, in the range of 140-160 ° C. The film thickness of the first insulating film 17 is, for example, 300-700 nm. The material of the first insulating film 17 is not particularly limited as long as it is an insulating film, but is, for example, an oxide film such as a SiO film.

第2絶縁膜18は、第1絶縁膜17を形成したときよりも高い成膜温度のプラズマCVD法で第1絶縁膜17の上に形成する。第2絶縁膜18の成膜温度は300℃前後とすることができる。第2絶縁膜18の成膜温度は例えば290−310℃の範囲である。第2絶縁膜18は第1絶縁膜17より薄い。第2絶縁膜18の膜厚は例えば100nm以下である。第2絶縁膜18の材料は、絶縁膜であれば特に限定されないが、例えば、SiO膜などの酸化膜である。 The second insulating film 18 is formed on the first insulating film 17 by a plasma CVD method having a higher film forming temperature than when the first insulating film 17 is formed. The film formation temperature of the second insulating film 18 can be around 300 ° C. The film formation temperature of the second insulating film 18 is, for example, in the range of 290-310 ° C. The second insulating film 18 is thinner than the first insulating film 17. The film thickness of the second insulating film 18 is, for example, 100 nm or less. The material of the second insulating film 18 is not particularly limited as long as it is an insulating film, but is, for example, an oxide film such as a SiO film.

次いで、コンタクト層16を露出させる。図4は、コンタクト層16の上面が露出した半導体レーザ装置の断面図である。この工程では、第1絶縁膜17と第2絶縁膜18のうち、メサストライプ構造の上に形成された部分を除去して、コンタクト層16の上面を露出させる。 The contact layer 16 is then exposed. FIG. 4 is a cross-sectional view of a semiconductor laser device in which the upper surface of the contact layer 16 is exposed. In this step, the portion of the first insulating film 17 and the second insulating film 18 formed on the mesa stripe structure is removed to expose the upper surface of the contact layer 16.

次いで、第1電極19と第2電極20を形成する。図1は、第1電極19と第2電極20が形成された半導体レーザ装置の断面図である。p側電極として機能する第1電極19は第2上部クラッド層15の上にコンタクト層16と接して形成されるとともに、第2絶縁膜18の全体を覆う。第1電極19の膜厚は例えば400nm−500nmの範囲とすることができる。第1電極19の表面にAuメッキを形成してもよい。その後、InP基板11を薄板化し、InP基板11の裏面に直接又は導電層を介して第2電極20を形成する。こうして、リッジが形成された半導体層が絶縁膜で覆われたInP系の半導体レーザ装置が製造される。この半導体レーザ装置は例えば通信用途に用いることができる。 Next, the first electrode 19 and the second electrode 20 are formed. FIG. 1 is a cross-sectional view of a semiconductor laser device in which a first electrode 19 and a second electrode 20 are formed. The first electrode 19 that functions as the p-side electrode is formed on the second upper clad layer 15 in contact with the contact layer 16 and covers the entire second insulating film 18. The film thickness of the first electrode 19 can be, for example, in the range of 400 nm-500 nm. Au plating may be formed on the surface of the first electrode 19. After that, the InP substrate 11 is thinned, and the second electrode 20 is formed on the back surface of the InP substrate 11 directly or via a conductive layer. In this way, an InP-based semiconductor laser device in which the semiconductor layer on which the ridge is formed is covered with an insulating film is manufactured. This semiconductor laser device can be used, for example, for communication applications.

実施の形態1に係る半導体レーザ装置の製造方法では、第1絶縁膜17をスパッタ法で形成し、第1絶縁膜17より薄い第2絶縁膜18をプラズマCVD法で形成した。スパッタ法を採用することで、低い成膜温度でストレスの小さい第1絶縁膜17を形成することができる。他方、成膜温度が高くストレスの大きいプラズマCVD法で形成される第2絶縁膜18を第1絶縁膜17より薄くする。上述の例では、第1絶縁膜17の膜厚を300−700nmとし、第2絶縁膜18の膜厚を100nm以下とした。これにより、第1絶縁膜17と第2絶縁膜18を形成することによる活性層13へのストレスを低減できる。 In the method for manufacturing a semiconductor laser device according to the first embodiment, the first insulating film 17 is formed by a sputtering method, and the second insulating film 18 thinner than the first insulating film 17 is formed by a plasma CVD method. By adopting the sputtering method, the first insulating film 17 with low stress can be formed at a low film formation temperature. On the other hand, the second insulating film 18 formed by the plasma CVD method, which has a high film forming temperature and a large stress, is made thinner than the first insulating film 17. In the above example, the film thickness of the first insulating film 17 is 300-700 nm, and the film thickness of the second insulating film 18 is 100 nm or less. As a result, the stress on the active layer 13 due to the formation of the first insulating film 17 and the second insulating film 18 can be reduced.

また、半導体層である積層構造に接する絶縁膜としてスパッタ法で第1絶縁膜17を形成することで、第1絶縁膜をプラズマCVD法で形成する場合と比べて、半導体層へのダメージを低減できる。一方で、スパッタ法ではカバレッジが悪いため、絶縁層を第1絶縁膜だけとしてしまうと、電極と半導体層の接触による特性劣化が起こりえる。そこで、カバレッジのよい成膜方法であるプラズマCVD法で第2絶縁膜18を形成することで電極と半導体層の接触を抑制している。そのため、半導体レーザ装置の信頼性を高めることができる。 Further, by forming the first insulating film 17 by the sputtering method as the insulating film in contact with the laminated structure which is the semiconductor layer, the damage to the semiconductor layer is reduced as compared with the case where the first insulating film is formed by the plasma CVD method. can. On the other hand, since the coverage is poor in the sputtering method, if the insulating layer is only the first insulating film, the characteristics may be deteriorated due to the contact between the electrode and the semiconductor layer. Therefore, the contact between the electrode and the semiconductor layer is suppressed by forming the second insulating film 18 by the plasma CVD method, which is a film forming method having good coverage. Therefore, the reliability of the semiconductor laser device can be improved.

実施の形態1に係る半導体レーザ装置の製造方法と半導体レーザ装置は様々な変形が可能である。例えば、半導体レーザ装置の各層の導電型を反転させることができる。コンタクト層16を省略した積層構造を採用してもよい。実施の形態1で言及した変形は以下の実施の形態に係る半導体レーザ装置の製造方法と半導体レーザ装置にも応用できる。なお、以下の実施の形態に係る半導体レーザ装置の製造方法と半導体レーザ装置は、実施の形態1との共通点が多いので実施の形態1との相違点を中心に説明する。 The method for manufacturing a semiconductor laser device and the semiconductor laser device according to the first embodiment can be variously modified. For example, the conductive type of each layer of the semiconductor laser device can be inverted. A laminated structure in which the contact layer 16 is omitted may be adopted. The modifications mentioned in the first embodiment can be applied to the method for manufacturing a semiconductor laser device and the semiconductor laser device according to the following embodiments. Since the method for manufacturing the semiconductor laser device and the semiconductor laser device according to the following embodiments have much in common with the first embodiment, the differences from the first embodiment will be mainly described.

実施の形態2.
実施の形態2に係る半導体レーザ装置の製造方法では、メサストライプ構造を有する形状で積層構造を形成し、図2の構成を得る点は実施の形態1と同じである。しかしながら、実施の形態2の第1絶縁膜17は、積層構造の上にALD(Atomic Layer Deposition)法で形成する。第1絶縁膜17の成膜温度は150℃前後とすることができる。第1絶縁膜17の成膜温度は例えば140−160℃の範囲である。第1絶縁膜17の膜厚は例えば100nm以下である。第1絶縁膜17の材料は、絶縁膜であれば特に限定されないが、例えば、SiO膜などの酸化膜である。
Embodiment 2.
The method for manufacturing a semiconductor laser device according to the second embodiment is the same as the first embodiment in that a laminated structure is formed in a shape having a mesa stripe structure and the configuration shown in FIG. 2 is obtained. However, the first insulating film 17 of the second embodiment is formed on the laminated structure by the ALD (Atomic Layer Deposition) method. The film formation temperature of the first insulating film 17 can be around 150 ° C. The film formation temperature of the first insulating film 17 is, for example, in the range of 140-160 ° C. The film thickness of the first insulating film 17 is, for example, 100 nm or less. The material of the first insulating film 17 is not particularly limited as long as it is an insulating film, but is, for example, an oxide film such as a SiO film.

実施の形態2では、スパッタ法で第1絶縁膜17の上に第1絶縁膜17より厚い第2絶縁膜18を形成する。第2絶縁膜18の成膜温度は150℃前後とすることができる。第2絶縁膜18の成膜温度は例えば140−160℃の範囲である。第2絶縁膜18の膜厚は例えば300−700nmである。第2絶縁膜18の材料は、絶縁膜であれば特に限定されないが、例えば、SiO膜などの酸化膜である。 In the second embodiment, a second insulating film 18 thicker than the first insulating film 17 is formed on the first insulating film 17 by a sputtering method. The film formation temperature of the second insulating film 18 can be around 150 ° C. The film formation temperature of the second insulating film 18 is, for example, in the range of 140-160 ° C. The film thickness of the second insulating film 18 is, for example, 300-700 nm. The material of the second insulating film 18 is not particularly limited as long as it is an insulating film, but is, for example, an oxide film such as a SiO film.

次いで、図4に示されるように、コンタクト層16の上の第1絶縁膜17と第2絶縁膜18を除去してコンタクト層16の上面を露出させる。その後、第1電極19と第2電極20を形成し、図1の構成を得る点は実施の形態1と同じである。すなわち、第2上部クラッド層15の上にコンタクト層16と接するように第1電極19を形成し、InP基板11の裏面に直接又は導電層を介して第2電極20を形成する。 Next, as shown in FIG. 4, the first insulating film 17 and the second insulating film 18 on the contact layer 16 are removed to expose the upper surface of the contact layer 16. After that, the first electrode 19 and the second electrode 20 are formed, and the point of obtaining the configuration of FIG. 1 is the same as that of the first embodiment. That is, the first electrode 19 is formed on the second upper clad layer 15 so as to be in contact with the contact layer 16, and the second electrode 20 is formed directly on the back surface of the InP substrate 11 or via the conductive layer.

実施の形態2に係る半導体レーザ装置の製造方法では、第1絶縁膜17をALD法で形成し、第1絶縁膜17より厚い第2絶縁膜18をスパッタ法で形成した。ALD法を採用することで、カバレッジ性に優れ、成膜温度が低く、ストレスの小さい第1絶縁膜17を形成することができる。さらに、スパッタ法を採用することで、成膜温度が低く、ストレスの小さい第2絶縁膜18を形成することができる。実施の形態2の第1絶縁膜17と第2絶縁膜18は、これらが両方ともプラズマCVD法で形成された膜より低ストレスであるため、活性層13へのストレス及びダメージを低減させて半導体レーザ装置の信頼性を向上させることができる。また、成膜レートが小さいALD法で形成する第1絶縁膜17を薄くし、成膜レートが大きいスパッタ法で形成する第2絶縁膜18を第1絶縁膜17より厚くすることで、成膜に要する時間を短くすることができる。 In the method for manufacturing a semiconductor laser device according to the second embodiment, the first insulating film 17 is formed by the ALD method, and the second insulating film 18 thicker than the first insulating film 17 is formed by the sputtering method. By adopting the ALD method, it is possible to form the first insulating film 17 having excellent coverage, a low film formation temperature, and low stress. Further, by adopting the sputtering method, it is possible to form the second insulating film 18 having a low film forming temperature and low stress. Since both the first insulating film 17 and the second insulating film 18 of the second embodiment have lower stress than the film formed by the plasma CVD method, the stress and damage to the active layer 13 are reduced to reduce the stress and damage to the semiconductor. The reliability of the laser device can be improved. Further, the first insulating film 17 formed by the ALD method having a low film forming rate is thinned, and the second insulating film 18 formed by the sputtering method having a high film forming rate is made thicker than the first insulating film 17 to form a film. The time required for this can be shortened.

実施の形態3.
実施の形態3に係る半導体レーザ装置の製造方法では、メサストライプ構造を有する形状で積層構造を形成し、図2の構成を得る点は実施の形態1と同じである。図2の構成を形成した後に第1絶縁膜17を形成する。例えば図3の第1絶縁膜17と同じ形状の第1絶縁膜が形成される。第1絶縁膜17の成膜方法、成膜温度、膜厚は例えば実施の形態1の第1絶縁膜17と同じである。
Embodiment 3.
The method for manufacturing a semiconductor laser device according to the third embodiment is the same as the first embodiment in that a laminated structure is formed in a shape having a mesa stripe structure and the configuration shown in FIG. 2 is obtained. After forming the configuration of FIG. 2, the first insulating film 17 is formed. For example, a first insulating film having the same shape as the first insulating film 17 in FIG. 3 is formed. The film forming method, film forming temperature, and film thickness of the first insulating film 17 are, for example, the same as those of the first insulating film 17 of the first embodiment.

この第1絶縁膜17を形成した後、第2絶縁膜18を形成する前に、第1絶縁膜の一部をエッチングして第1絶縁膜17をメサストライプ構造の根元部分に残す。具体的には、第1絶縁膜17にレジストを形成し、フォトリソグラフィおよびドライエッチング処理により、メサスストライプ構造のボトム近傍のみに第1絶縁膜17Aを残す。図5には、エッチングによりメサストライプ構造の根元部分に残った第1絶縁膜17Aが示されている。図5の例では、第1絶縁膜17Aは、メサストライプ構造の側面下部と、第1上部クラッド層14の上に残っている。第1絶縁膜17Aは、例えばメサストライプ構造の側面上部を避けて、メサストライプ構造の根元部分に形成されている。 After forming the first insulating film 17 and before forming the second insulating film 18, a part of the first insulating film is etched to leave the first insulating film 17 at the root portion of the mesa stripe structure. Specifically, a resist is formed on the first insulating film 17, and the first insulating film 17A is left only in the vicinity of the bottom of the mesas stripe structure by photolithography and dry etching treatment. FIG. 5 shows the first insulating film 17A remaining at the root portion of the mesa stripe structure by etching. In the example of FIG. 5, the first insulating film 17A remains on the lower side surface of the mesa stripe structure and on the first upper clad layer 14. The first insulating film 17A is formed at the root portion of the mesa stripe structure, for example, avoiding the upper side surface of the mesa stripe structure.

こうして、第1絶縁膜17の一部をエッチングで除去した後に、第2絶縁膜18を形成する。図5には第2絶縁膜18が示されている。第2絶縁膜18は、実施の形態1の第2絶縁膜18と同じ成膜方法、成膜温度、膜厚で形成することができる。 In this way, after removing a part of the first insulating film 17 by etching, the second insulating film 18 is formed. The second insulating film 18 is shown in FIG. The second insulating film 18 can be formed by the same film forming method, film forming temperature, and film thickness as the second insulating film 18 of the first embodiment.

次いで、メサストライプ構造の上面の第2絶縁膜18を除去してコンタクト層16を露出させる。これにより、第2絶縁膜18は、第1絶縁膜17と積層構造を、第2上部クラッド層15の上方を露出させつつ覆う。次いで、p側電極として機能し第2上部クラッド層15と電気的に接続された第1電極19をコンタクト層16と接するように形成する。次いで、InP基板11を薄板化し、InP基板11の裏面側に第2電極20を形成し、図6に示す半導体レーザ装置が製造される。 Next, the second insulating film 18 on the upper surface of the mesa stripe structure is removed to expose the contact layer 16. As a result, the second insulating film 18 covers the first insulating film 17 and the laminated structure while exposing the upper side of the second upper clad layer 15. Next, the first electrode 19 which functions as the p-side electrode and is electrically connected to the second upper clad layer 15 is formed so as to be in contact with the contact layer 16. Next, the InP substrate 11 is thinned to form a second electrode 20 on the back surface side of the InP substrate 11, and the semiconductor laser device shown in FIG. 6 is manufactured.

第1絶縁膜17Aはスパッタ膜であるのでカバレッジが不十分となり得る。実施の形態3では、第1絶縁膜17Aをメサストライプ構造の根元部分のみに配置している。これにより、カバレッジ性が不十分な第1絶縁膜17Aが原因で、電極と半導体層が接触する可能性を低減し、特性劣化を防ぐことができる。また、第2絶縁膜18はプラズマCVD法で形成される成膜温度が高くストレスの大きい膜である。そこで、この第2絶縁膜18を例えば100nm以下とすることで第1絶縁膜17Aより薄くして、活性層13へのストレスの印加を低減した。他方、絶縁膜全体で十分な厚さを確保するために、成膜温度が低くストレスの小さいスパッタ膜である第1絶縁膜17Aは第2絶縁膜18より厚くした。スパッタ膜を第1絶縁膜17Aとすることで活性層13へのダメージを低減できる。 Since the first insulating film 17A is a sputtered film, the coverage may be insufficient. In the third embodiment, the first insulating film 17A is arranged only at the root portion of the mesa stripe structure. As a result, the possibility that the electrode and the semiconductor layer come into contact with each other due to the first insulating film 17A having insufficient coverage can be reduced, and deterioration of the characteristics can be prevented. Further, the second insulating film 18 is a film formed by the plasma CVD method and having a high film forming temperature and a large stress. Therefore, the second insulating film 18 was made thinner than the first insulating film 17A by, for example, 100 nm or less, and the application of stress to the active layer 13 was reduced. On the other hand, in order to secure a sufficient thickness in the entire insulating film, the first insulating film 17A, which is a sputter film having a low film formation temperature and low stress, is made thicker than the second insulating film 18. By using the first insulating film 17A as the sputtered film, damage to the active layer 13 can be reduced.

11 InP基板、 12 下部クラッド層、 13 活性層、 14 第1上部クラッド層、 15 第2上部クラッド層、 16 コンタクト層、 17 第1絶縁膜、 18 第2絶縁膜、 19 第1電極、 20 第2電極 11 InP substrate, 12 lower clad layer, 13 active layer, 14 first upper clad layer, 15 second upper clad layer, 16 contact layer, 17 first insulating film, 18 second insulating film, 19 first electrode, 20th. 2 electrodes

Claims (3)

InP基板の上に、下部クラッド層、活性層及び上部クラッド層が積層した積層構造に対しドライエッチングを施すことで左右に前記積層構造のいずれかの層の表面が露出したメサストライプ構造を形成することと、
前記メサストライプ構造の側面と、前記メサストライプ構造の左右の前記メサストライプ構造より低い低地部分とに、ALD法で第1絶縁膜を形成することと、
スパッタ法で前記第1絶縁膜の上に前記第1絶縁膜より厚い第2絶縁膜を形成することと、
前記メサストライプ構造の上面に第1電極を形成し、前記InP基板の裏面に第2電極を形成することと、を備え
前記メサストライプ構造は垂直メサであることを特徴とする半導体レーザ装置の製造方法。
By performing dry etching on the laminated structure in which the lower clad layer, the active layer and the upper clad layer are laminated on the InP substrate, a mesa stripe structure in which the surface of any of the layers of the laminated structure is exposed is formed on the left and right. That and
The first insulating film is formed by the ALD method on the side surface of the mesa stripe structure and the lowland portion lower than the mesa stripe structure on the left and right sides of the mesa stripe structure.
By forming a second insulating film thicker than the first insulating film on the first insulating film by a sputtering method,
A first electrode is formed on the upper surface of the mesa stripe structure, and a second electrode is formed on the back surface of the InP substrate .
A method for manufacturing a semiconductor laser device, wherein the mesa stripe structure is a vertical mesa.
前記第1絶縁膜と前記第2絶縁膜の成膜温度は140−160℃であることを特徴とする請求項1に記載の半導体レーザ装置の製造方法。 The method for manufacturing a semiconductor laser device according to claim 1, wherein the film forming temperature of the first insulating film and the second insulating film is 140-160 ° C. 前記第1絶縁膜の膜厚は100nm以下であり、前記第2絶縁膜の膜厚は300−700nmであることを特徴とする請求項1又は2に記載の半導体レーザ装置の製造方法。 The method for manufacturing a semiconductor laser device according to claim 1 or 2, wherein the film thickness of the first insulating film is 100 nm or less, and the film thickness of the second insulating film is 300 to 700 nm.
JP2020036620A 2018-08-20 2020-03-04 Manufacturing method of semiconductor laser device Active JP6981492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036620A JP6981492B2 (en) 2018-08-20 2020-03-04 Manufacturing method of semiconductor laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019506748A JP6705554B1 (en) 2018-08-20 2018-08-20 Method for manufacturing semiconductor laser device
JP2020036620A JP6981492B2 (en) 2018-08-20 2020-03-04 Manufacturing method of semiconductor laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019506748A Division JP6705554B1 (en) 2018-08-20 2018-08-20 Method for manufacturing semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2020107900A JP2020107900A (en) 2020-07-09
JP6981492B2 true JP6981492B2 (en) 2021-12-15

Family

ID=71449496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036620A Active JP6981492B2 (en) 2018-08-20 2020-03-04 Manufacturing method of semiconductor laser device

Country Status (1)

Country Link
JP (1) JP6981492B2 (en)

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303179A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Manufacture of semiconductor optical element, semiconductor optical element manufactured by the same, and light applied system
JPH11186219A (en) * 1997-12-17 1999-07-09 Oki Electric Ind Co Ltd Dry etching
JPH11330610A (en) * 1998-05-11 1999-11-30 Nichia Chem Ind Ltd Nitride semiconductor laser
WO2001026193A1 (en) * 1999-10-01 2001-04-12 Corning Lasertron, Inc. Method for making a ridge waveguide semiconductor device
JP4090768B2 (en) * 2002-03-20 2008-05-28 株式会社日立製作所 Semiconductor laser element
JP2003347674A (en) * 2002-05-30 2003-12-05 Mitsubishi Electric Corp Semiconductor laser device and manufacturing method therefor
JP2005085977A (en) * 2003-09-09 2005-03-31 Sharp Corp Semiconductor laser device and manufacturing method of semiconductor laser device
JP4622225B2 (en) * 2003-10-06 2011-02-02 ソニー株式会社 Semiconductor laser device and manufacturing method thereof
JP4640752B2 (en) * 2003-12-05 2011-03-02 シャープ株式会社 Gallium nitride semiconductor laser and manufacturing method thereof
JP4814538B2 (en) * 2004-03-15 2011-11-16 パナソニック株式会社 Semiconductor laser device and manufacturing method thereof
JP2006012899A (en) * 2004-06-22 2006-01-12 Sharp Corp Semiconductor laser device and its manufacturing method
JP2006086218A (en) * 2004-09-14 2006-03-30 Sharp Corp Ridge type semiconductor laser device and its manufacturing method
JP2006324427A (en) * 2005-05-18 2006-11-30 Mitsubishi Electric Corp Semiconductor laser
US7567601B1 (en) * 2006-05-15 2009-07-28 Finisar Corporation Semiconductor laser having low stress passivation layer
JP4973258B2 (en) * 2007-03-16 2012-07-11 日亜化学工業株式会社 Semiconductor laser device and manufacturing method thereof
JP2008277492A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and method of manufacturing the same
US8073031B2 (en) * 2008-03-03 2011-12-06 Sharp Kabushiki Kaisha Laser diode with improved heat dissipation
JP2010016281A (en) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp Method for manufacturing semiconductor laser
JP2010245378A (en) * 2009-04-08 2010-10-28 Panasonic Corp Nitride semiconductor laser device
DE102009058796A1 (en) * 2009-12-18 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Optoelectronic component and method for producing an optoelectronic component
JP5872790B2 (en) * 2011-04-28 2016-03-01 ウシオオプトセミコンダクター株式会社 Semiconductor laser device
CN103392275B (en) * 2011-06-14 2016-08-17 古河电气工业株式会社 Light device, the manufacture method of light device and laser module
DE102014105191B4 (en) * 2014-04-11 2019-09-19 Osram Opto Semiconductors Gmbh Semiconductor strip laser and semiconductor device
JP6388838B2 (en) * 2015-03-09 2018-09-12 Nttエレクトロニクス株式会社 Optical functional element
US9865520B2 (en) * 2015-08-07 2018-01-09 International Business Machines Corporation Tunable semiconductor band gap reduction by strained sidewall passivation
WO2018109857A1 (en) * 2016-12-14 2018-06-21 三菱電機株式会社 Method for manufacturing optical semiconductor device
US11616342B2 (en) * 2018-04-02 2023-03-28 Mitsubishi Electric Corporation Semiconductor optical element, semiconductor optical integrated element, and method for manufacturing semiconductor optical element
US11791610B2 (en) * 2018-08-20 2023-10-17 Mitsubishi Electric Corporation Semiconductor laser device manufacturing method and semiconductor laser device

Also Published As

Publication number Publication date
JP2020107900A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP2595457B2 (en) RWG type semiconductor laser device and manufacturing method
JP2007095758A (en) Semiconductor laser
JP6705554B1 (en) Method for manufacturing semiconductor laser device
JP2010186791A (en) Semiconductor light-emitting element, and method for manufacturing the same
US20030231684A1 (en) Semiconductor laser device
JP2006059881A (en) Semiconductor laser device and its manufacturing method
US6282009B1 (en) Light modulator and method of manufacturing the light modulator
JP2008277492A (en) Semiconductor light-emitting device and method of manufacturing the same
JP6981492B2 (en) Manufacturing method of semiconductor laser device
JP2002208753A (en) Semiconductor light emitting element and manufacturing method thereof
JP2010016281A (en) Method for manufacturing semiconductor laser
JP4640752B2 (en) Gallium nitride semiconductor laser and manufacturing method thereof
JP5872790B2 (en) Semiconductor laser device
JP4090337B2 (en) Semiconductor laser device and method for manufacturing semiconductor laser device
JP2010205829A (en) Semiconductor light-emitting element, and method for manufacturing the same
JPH0997946A (en) Semiconductor laser and manufacture thereof
KR100631876B1 (en) Manufacturing Method of Semiconductor Laser Device
JP5310089B2 (en) Semiconductor laser
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
JP5204170B2 (en) Gallium nitride semiconductor laser and manufacturing method thereof
JP2005158953A (en) Semiconductor laser element, and method for manufacturing the same
JP2563994B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6036118B2 (en) semiconductor laser equipment
JP2005260020A (en) Semiconductor element and its manufacturing method
JP2014220440A (en) Semiconductor laser element and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6981492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150