JP6979800B2 - Wind lock mechanism - Google Patents

Wind lock mechanism Download PDF

Info

Publication number
JP6979800B2
JP6979800B2 JP2017115292A JP2017115292A JP6979800B2 JP 6979800 B2 JP6979800 B2 JP 6979800B2 JP 2017115292 A JP2017115292 A JP 2017115292A JP 2017115292 A JP2017115292 A JP 2017115292A JP 6979800 B2 JP6979800 B2 JP 6979800B2
Authority
JP
Japan
Prior art keywords
wind
resistance
superstructure
seismic isolation
magnitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017115292A
Other languages
Japanese (ja)
Other versions
JP2019002421A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2017115292A priority Critical patent/JP6979800B2/en
Publication of JP2019002421A publication Critical patent/JP2019002421A/en
Application granted granted Critical
Publication of JP6979800B2 publication Critical patent/JP6979800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、建物の免震層に免震装置とともに設けられ、強風時に免震装置の変位を拘束制御するための風ロック機構に関する。 The present invention relates to a wind lock mechanism provided in the seismic isolation layer of a building together with a seismic isolation device and for restraining and controlling the displacement of the seismic isolation device in a strong wind.

例えば中高層建物が巨大地震を受けると、建物の最弱層に損傷が生じて耐力が低下し始め、この層に地震エネルギー(振動エネルギー)が集中して層崩壊が生じ、他の層は健全性が確保されているにもかかわらず、層崩壊モードによって建物が崩壊に至るという現象が発生する。また、崩壊に至らない場合においても、最弱層の被害が甚大となり、補修による復旧が困難になる。 For example, when a medium-to-high-rise building receives a huge earthquake, the weakest layer of the building is damaged and its bearing capacity begins to decrease, seismic energy (vibration energy) concentrates on this layer, causing layer collapse, and the other layers are sound. Even though the energy is secured, the phenomenon that the building collapses due to the layer collapse mode occurs. In addition, even if the collapse does not occur, the damage to the weakest layer will be enormous, and it will be difficult to recover by repair.

これに対し、周知の通り、オフィスビルや公共施設、集合住宅などの建物には、建物本体と基礎の間など、上部構造体と下部構造体の間の免震層に積層ゴムなどの免震装置を介設することにより、地震時に、上部構造体の固有周期を地震動の卓越周期帯域から長周期側にずらし、応答加速度を小さくして揺れを抑えるようにしたものがある。 On the other hand, as is well known, in buildings such as office buildings, public facilities, and apartment buildings, seismic isolation such as laminated rubber is used for the seismic isolation layer between the upper structure and the lower structure, such as between the building body and the foundation. In the event of an earthquake, the natural period of the superstructure is shifted from the predominant period band of the seismic isolation to the long period side by interposing a device, and the response acceleration is reduced to suppress the shaking.

一方、免震層を備えた免震建物は、免震層の剛性を限りなく小さくして長周期化するほど大きな地震時応答低減効果を得られるが、免震層の剛性が小さすぎると(免震層が柔らかすぎると)、強風時など、風荷重によって建物が揺れ易くなってしまう。 On the other hand, in a seismic isolated building equipped with a seismic isolation layer, the effect of reducing the response during an earthquake can be obtained as the rigidity of the seismic isolation layer is made as small as possible and the period is lengthened. If the seismic isolation layer is too soft), the building will easily shake due to the wind load, such as during strong winds.

このため、通常の免震建物/免震設計では、鉛プラグ入り積層ゴムの免震装置を用いたり、鉛ダンパーや鋼材系ダンパーなどを天然ゴム系積層ゴムの免震装置と併用するなどし、その降伏耐力を免震層に作用する風荷重よりも大きくすることによって強風時の揺れを回避するようにしている。 For this reason, in normal seismic isolation buildings / seismic isolation designs, seismic isolation devices made of laminated rubber with lead plugs are used, and lead dampers and steel dampers are used in combination with seismic isolation devices made of natural rubber laminated rubber. By making the yield strength larger than the wind load acting on the seismic isolation layer, shaking during strong winds is avoided.

しかしながら、鉛プラグ入り積層ゴムを用いたり、ダンパーを免震装置と併用することにより免震層の降伏耐力を大きくする対策は、当然、その等価剛性を大きくすることを意味し、免震建物の長周期化に相反するため、地震時応答低減効果の低下を招く。 However, measures to increase the yield strength of the seismic isolation layer by using laminated rubber with lead plugs or by using a damper together with the seismic isolation device naturally means increasing the equivalent rigidity of the seismic isolated building. Since it contradicts the lengthening of the period, the effect of reducing the response during an earthquake is reduced.

このような背景から、強風(または中小地震)時に免震層を変形させないようにし、且つ、等価剛性を大きくし過ぎず、長周期化による大地震時の応答低減効果を阻害しないようにするための風ロック機構が提案、実用化されている。 Against this background, in order to prevent the seismic isolation layer from being deformed during strong winds (or small and medium-sized earthquakes), to prevent the equivalent rigidity from becoming too large, and to prevent the effect of reducing the response during large earthquakes due to the long period from being impaired. The wind lock mechanism has been proposed and put into practical use.

具体的に、風荷重よりも大きな設定荷重が作用すると、せん断力で破断するシアピンによって免震建物の下部構造と上部構造を締結し、風荷重作用時に上部構造の移動を拘束する機構(シアピンによる風ロック機構)や、風や地震などの外力をセンサーで検知し、外力の大きさに応じてオイルダンパーの減衰係数をアクティブ制御するもの(アクティブ制御型風ロック機構付きオイルダンパー)、台風の接近/通過等に応じて手動で抜き差しするシアピン(ロックピン)をオイルダンパーに設けたもの(パッシブ型風ロック機構付き
オイルダンパー)などが提案、実用化されている(例えば、特許文献1参照)。
Specifically, when a set load larger than the wind load acts, a mechanism that concludes the substructure and the superstructure of the seismic isolated building with a shear pin that breaks due to shearing force and restrains the movement of the superstructure when the wind load acts (by the shear pin). Wind lock mechanism), a sensor that detects external forces such as wind and earthquakes, and actively controls the damping coefficient of the oil damper according to the magnitude of the external force (active control type oil damper with wind lock mechanism), approaching a typhoon / A shear pin (lock pin) that is manually inserted and removed according to passage or the like is provided in the oil damper (an oil damper with a passive wind lock mechanism) and the like has been proposed and put into practical use (see, for example, Patent Document 1).

また、建物上に設置した風車で発電した電力により、電磁石で鋼製吸着板を引き上げて吸着一体化し、下部構造体に設けられた係止孔の環状補強鋼板と鋼製吸着板とが接触することで、免震対象の上部構造体を風荷重時にロック(移動拘束)するように構成したものもある(例えば、特許文献2参照)。 In addition, the electric power generated by the wind turbine installed on the building pulls up the steel suction plate with an electromagnet to attract and integrate it, and the annular reinforcing steel plate of the locking hole provided in the lower structure comes into contact with the steel suction plate. Therefore, there is also a structure in which the superstructure to be seismically isolated is locked (moving restraint) when a wind load is applied (see, for example, Patent Document 2).

さらに、MR流体(磁気粘性流体)を利用して抵抗力を可変にしたダンパーが実用化されている(例えば、非特許文献1参照)。これは、流体に外部から磁界をかけると粘性抵抗が変化するMR流体の特性を利用した装置であり、コイルに流す電流を増せば、摩擦抵抗力と同様、変位によらない減衰力を付与できる特徴がある。 Further, a damper having a variable resistance using an MR fluid (ferrofluid fluid) has been put into practical use (see, for example, Non-Patent Document 1). This is a device that utilizes the characteristics of MR fluid whose viscous resistance changes when a magnetic field is applied to the fluid from the outside. By increasing the current flowing through the coil, it is possible to apply damping force that does not depend on displacement, similar to frictional resistance. There is a feature.

特開2004−176525号公報Japanese Unexamined Patent Publication No. 2004-176525 特開2006−233701号公報Japanese Unexamined Patent Publication No. 2006-23701

佐藤英児、藤田隆史:MR流体ダンパを用いたセミアクティブ免震構造、生産研究67、2005年Hideko Sato, Takashi Fujita: Semi-active seismic isolation structure using MR fluid damper, Production Research 67, 2005

しかしながら、シアピンによる風ロック機構(及びパッシブ型風ロック機構付きオイルダンパー)においては、ロック荷重に達するまでは極めて剛に近い初期剛性を有している。 However, the wind locking mechanism using shear pins (and the oil damper with a passive wind locking mechanism) has an initial rigidity that is extremely close to rigidity until the lock load is reached.

このため、ロック荷重以下、すなわちロックが解除されない範囲で作用する中小地震などの地動入力加速度については、機構を介して上部建物側へ加速度が直接伝わってしまい、風ロック機構が無い場合と比べて応答を増加させてしまうケースがあった。また、大地震においてもロックが解除されるまでの間は同様に加速度を直接伝えてしまうため、特に装置を設置した直上階及びその上部数層では応答が増加する傾向にあった。 For this reason, for ground motion input accelerations such as small and medium-sized earthquakes that act below the lock load, that is, within the range where the lock is not released, the acceleration is directly transmitted to the upper building side via the mechanism, compared to the case without the wind lock mechanism. There were cases where the response was increased. In addition, even in the case of a large earthquake, the acceleration is directly transmitted until the lock is released, so that the response tends to increase especially on the floor directly above where the device is installed and on several layers above it.

さらに、シアピンによる風ロック機構においては、シアピンのせん断破壊によるロック解除時に、瞬間的に荷重が解放されることから、その荷重が建物の上部構造側に衝撃荷重として伝わり、応答加速度が瞬間的に大きくなるという問題がある。また、シアピンが非常に高価であるという問題がある。 Furthermore, in the wind lock mechanism using shear pins, the load is momentarily released when the lock is released due to shear failure of the shear pins, so that load is transmitted to the superstructure side of the building as an impact load, and the response acceleration is instantaneous. There is a problem of getting bigger. There is also the problem that sheapin is very expensive.

パッシブ型風ロック機構付きオイルダンパーにおいては、風が問題になる前にシアピン(ロックピン)を設置したり、解除したりする作業が必要で、この作業を必ず行えるかという点で疑問が残る。 In the oil damper with a passive wind lock mechanism, it is necessary to install and release the shear pin (lock pin) before the wind becomes a problem, and there remains a question as to whether this work can be done without fail.

アクティブ制御型風ロック機構付きオイルダンパーにおいては、万が一故障した場合に風ロック機能が全く発揮されない。このため、電気部品の長期耐久性や信頼性等の観点から万が一故障した場合を想定し、それが作動しないフェールセーフ状態で設計することが必要になる。 In the oil damper with an active control type wind lock mechanism, the wind lock function is not exhibited at all in the unlikely event of failure. Therefore, from the viewpoint of long-term durability and reliability of electrical parts, it is necessary to design in a fail-safe state in which it does not operate in case of failure.

風車で発電した電力によって移動拘束制御するように構成したロック機構においても、免震対象の上部構造体が風で変位し始めるときの風力発電量では電磁石の吸着力が小さく、この仕組みで建物を移動拘束することは難しい。また、建物が移動してから吸着したのでは電磁石と鋼製吸着板の位置がずれてしまう問題もある。 Even in the lock mechanism configured to control the movement restraint by the electric power generated by the wind turbine, the attractive force of the electromagnet is small in the amount of wind power generation when the superstructure to be seismically isolated starts to be displaced by the wind, and the building is constructed by this mechanism. It is difficult to move and restrain. In addition, there is a problem that the positions of the electromagnet and the steel suction plate are displaced if the building is moved and then sucked.

また、非特許文献1に開示されたMR流体(磁気粘性流体)を利用して抵抗力を可変にしたダンパーにおいては、単純な構造ではあるがダンパーの寸法に対して反力が小さく、建築用として実用化することは難しい。 Further, in the damper whose resistance is variable by using the MR fluid (ferrofluid fluid) disclosed in Non-Patent Document 1, although it has a simple structure, the reaction force is small with respect to the dimensions of the damper, and it is used for construction. It is difficult to put it to practical use.

上記事情に鑑み、本発明は、風荷重時には下部構造と上部構造とを移動を好適に制御し、地震時には移動制御状態を解除して免震効果を、従来より確実且つ効果的に発揮させることを可能にする風ロック機構を提供することを目的とする。 In view of the above circumstances, the present invention preferably controls the movement of the lower structure and the upper structure at the time of wind load, and cancels the movement control state at the time of an earthquake to exert the seismic isolation effect more reliably and effectively than before. It is intended to provide a wind locking mechanism that enables.

上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.

本発明の風ロック機構は、上部構造と下部構造の間の免震層に免震装置と並列に設けられ、一端を前記上部構造と接続し他端を前記下部構造と接続して水平配置され、前記上部構造と前記下部構造に相対変位が生じると、軸方向力が入力されるMRダンパー装置と、前記上部構造に作用する風の大きさに応じて発電し、前記風の大きさに応じた電力を前記MRダンパー装置に備えられるMR抵抗部のコイルに供給する風力発電部と、を備え、前記MR抵抗部は、前記コイルに通電する直流電流値の大小に応じて磁場が大小変化し、抵抗力が大小変化するように構成され、前記MRダンパー装置は、前記MR抵抗部と、前記MR抵抗部に接続され、前記軸方向力による軸方向変位を回転に変換して前記MR抵抗部に伝達し、前記MR抵抗部の前記回転に対する抵抗トルクを軸方向力に変換した反力が作用するボールねじ機構と、を備えることを特徴とする。
また、本発明の風ロック機構において、前記MR抵抗部の抵抗力は前記MR抵抗部に所定のせん断変形を生じるまでは弾性変形によって増大し、前記所定のせん断変形を超えた後は一定の履歴特性となり、前記風が吹かないときはほぼ0となってもよい。
The wind lock mechanism of the present invention is provided in parallel with the seismic isolation device in the seismic isolation layer between the upper structure and the lower structure, and one end is connected to the upper structure and the other end is connected to the lower structure to be horizontally arranged. When a relative displacement occurs between the upper structure and the lower structure, electric current is generated according to the magnitude of the wind acting on the MR damper device to which the axial force is input and the upper structure, and according to the magnitude of the wind. The MR resistance unit is provided with a wind power generation unit that supplies the generated power to the coil of the MR resistance unit provided in the MR damper device, and the magnetic field of the MR resistance unit changes depending on the magnitude of the DC current value energized in the coil. The MR damper device is connected to the MR resistance section and the MR resistance section, and converts the axial displacement due to the axial force into rotation to convert the MR resistance section into rotation. It is characterized by comprising a ball screw mechanism in which a reaction force is applied by converting the resistance torque of the MR resistance portion with respect to the rotation into an axial force .
Further, in the wind locking mechanism of the present invention, the resistance force of the MR resistance portion is increased by elastic deformation until a predetermined shear deformation occurs in the MR resistance portion, and after the predetermined shear deformation is exceeded, a constant history is reached. It becomes a characteristic and may be almost 0 when the wind does not blow.

本発明の風ロック機構によれば、上部構造と下部構造の間の免震層に設けることにより、外部電力を使わずに上部構造の拘束や解除を自動的に行うことができ、風荷重時には上部構造と下部構造を移動を制御し、地震時には移動制御状態を解除して上部構造に対する免震効果を従来より確実且つ効果的に発揮させることが可能になる。 According to the wind lock mechanism of the present invention, by providing the seismic isolation layer between the superstructure and the substructure, the superstructure can be automatically restrained or released without using external power, and when the wind load is applied, the superstructure can be automatically restrained or released. It is possible to control the movement of the superstructure and the substructure, release the movement control state in the event of an earthquake, and exert the seismic isolation effect on the superstructure more reliably and effectively than before.

本発明の一実施形態に係る風ロック機構を示す図である。It is a figure which shows the wind lock mechanism which concerns on one Embodiment of this invention. 本発明の一実施形態に係る風ロック機構のMR抵抗部を備えたMRダンパー装置を示す図である。It is a figure which shows the MR damper apparatus provided with the MR resistance part of the wind lock mechanism which concerns on one Embodiment of this invention. 図2のS1部、S2部を示す図である。It is a figure which shows the S1 part and S2 part of FIG. 本発明の一実施形態に係るMRダンパー装置のモデル図である。It is a model diagram of the MR damper apparatus which concerns on one Embodiment of this invention. (a)は本発明の一実施形態に係る風ロック機構のMR抵抗部を備えたMRダンパー装置を示す図であり、(b)は(a)のX1−X1線矢視図である。(A) is a figure which shows the MR damper apparatus provided with the MR resistance part of the wind lock mechanism which concerns on one Embodiment of this invention, (b) is the X1-X1 line arrow view of (a).

以下、図1から図5を参照し、本発明の一実施形態に係る風ロック機構について説明する。 Hereinafter, the wind locking mechanism according to the embodiment of the present invention will be described with reference to FIGS. 1 to 5.

本実施形態の風ロック機構Aは、磁場形成手段であるMR抵抗部1と風力発電部2とを備え、図1に示すように、建物本体と基礎の間など、上部構造T1と下部構造T2の間の免震層3に積層ゴムなどの免震装置4と並列にMR抵抗部1を設け、上部構造T1の頂部に風力発電部2を設けて構成されている。なお、風力発電部2の設置位置を限定する必要はない。 The wind locking mechanism A of the present embodiment includes an MR resistance unit 1 and a wind power generation unit 2 which are magnetic field forming means, and as shown in FIG. 1, a superstructure T1 and a substructure T2 such as between a building body and a foundation. An MR resistance unit 1 is provided in parallel with a seismic isolation device 4 such as laminated rubber on the seismic isolation layer 3 between the two, and a wind power generation unit 2 is provided on the top of the superstructure T1. It is not necessary to limit the installation position of the wind power generation unit 2.

このように構成した本実施形態の風ロック機構Aは、風荷重によって免震層3を変形させないように、すなわち、強風時に下部構造T2に対して上部構造T1を相対変位させないように移動拘束しつつ、大地震時に免震装置による上部構造T1の免震性能を発揮するものである。すなわち、大地震時には長周期化したまま上部構造T1の応答低減効果を発揮する。 The wind lock mechanism A of the present embodiment configured in this way moves and restrains the seismic isolation layer 3 so as not to be deformed by a wind load, that is, to prevent the superstructure T1 from being displaced relative to the substructure T2 in a strong wind. At the same time, the seismic isolation performance of the superstructure T1 by the seismic isolation device is exhibited in the event of a large earthquake. That is, in the event of a large earthquake, the response of the superstructure T1 is reduced while the period is long.

一方、本実施形態では、図2から図4に示すように、従来の粘性ダンパー(例えばボールねじ機構を利用した「減衰こま」のような粘性ダンパー装置)に風ロック機構AのMR抵抗部1を組み込み、MR抵抗(R)が粘性減衰(C)と並列に設けられてMRダンパー装置5を構成している。 On the other hand, in the present embodiment, as shown in FIGS. 2 to 4, the MR resistance portion 1 of the wind lock mechanism A is used in a conventional viscous damper (for example, a viscous damper device such as a “damping frame” using a ball screw mechanism). The MR resistor (R) is provided in parallel with the viscous damping (C) to form the MR damper device 5.

本実施形態のMRダンパー装置5は、図2及び図3に示すように、外殻を形成するケーシング(支持フレーム/シリンダ)6の内側にボールねじ軸7とボールナット8からなるボールねじ機構9を組み込み、ボールねじ軸7をケーシング6にリニアスライダー機構を介して軸方向O1に変位可能に且つ回転不能に支持させ、さらに、ボールナット8をケーシング6に軸方向O1に変位不能に且つ回転可能に支持させて構成されている。 As shown in FIGS. 2 and 3, the MR damper device 5 of the present embodiment has a ball screw mechanism 9 including a ball screw shaft 7 and a ball nut 8 inside a casing (support frame / cylinder) 6 forming an outer shell. Is incorporated, the ball screw shaft 7 is supported on the casing 6 in the axial direction O1 via a linear slider mechanism so as to be rotatable and non-rotatable, and the ball nut 8 is supported in the casing 6 in the axial direction O1 so as to be non-displaceable and rotatable. It is configured to be supported by.

また、ケーシング6の一端(上端)とその他端側のボールねじ軸7の一端(下端)を建物の免震層3を挟んで上方の上部構造T1と下方の下部構造T2にそれぞれ接続し、MRダンパー装置5は免震層3に設置される。 Further, one end (upper end) of the casing 6 and one end (lower end) of the ball screw shaft 7 on the other end side are connected to the upper upper structure T1 and the lower lower structure T2 with the seismic isolation layer 3 of the building interposed therebetween. The damper device 5 is installed in the seismic isolation layer 3.

これにより、ケーシング6の一端とボールねじ軸7の一端を接続した上部構造T1と下部構造T2に相対変位が生じると、MRダンパー装置5に軸力が入力され、ボールねじ軸7がケーシング6に対して軸方向O1に変位しボールナット8が回転する。 As a result, when a relative displacement occurs between the upper structure T1 and the lower structure T2 connecting one end of the casing 6 and one end of the ball screw shaft 7, an axial force is input to the MR damper device 5 and the ball screw shaft 7 is moved to the casing 6. On the other hand, the ball nut 8 is displaced in the axial direction O1 and rotates.

本実施形態においては、このように軸方向O1変位がボールナット8の回転に変換されて風ロック機構AのMR抵抗部1に伝達される。 In the present embodiment, the axial O1 displacement is thus converted into the rotation of the ball nut 8 and transmitted to the MR resistance portion 1 of the wind lock mechanism A.

風ロック機構Aの本体部であるMR抵抗部1は、ボールナット8に内側円筒体10を介して接続され、ボールナット8とともに回転する回転円盤11と、ケーシング6に外側円筒体12を介して接続されて回転不能に設置され、且つ回転円盤11に対して同軸上に積層配置される固定円盤13と、回転円盤11と固定円盤13との間に挟持されたMR流体コンポジット14と、MR流体コンポジット14に可変磁場を印加するためのコイル12aとを備えて構成されている。 The MR resistance portion 1 which is the main body of the wind lock mechanism A is connected to the ball nut 8 via the inner cylinder 10 and rotates with the ball nut 8 via the rotating disk 11 and the casing 6 via the outer cylinder 12. A fixed disk 13 that is connected and installed non-rotatably and is laminated coaxially with the rotating disk 11, an MR fluid composite 14 sandwiched between the rotating disk 11 and the fixed disk 13, and an MR fluid. The composite 14 is provided with a coil 12a for applying a variable magnetic field.

MR流体コンポジット14は、MR流体をスポンジや不織布等の多孔質材に含浸させて構成され、MR流体を作動油等として単独で用いる場合に懸念される強磁性体粒子の沈降を有効に防止できるように構成されている。 The MR fluid composite 14 is configured by impregnating a porous material such as a sponge or a non-woven fabric with an MR fluid, and can effectively prevent sedimentation of ferromagnetic particles, which is a concern when the MR fluid is used alone as a hydraulic oil or the like. It is configured as follows.

MR流体コンポジット14は、磁場印加によって形成される強磁性体粒子によるクラスターが多孔質材の繊維に支えられ、MR流体単体の場合よりも高いMR効果を発揮する。また、コイル12aに通電する直流電流値の大小に応じてMR流体コンポジットに印加する磁場が大小変化する。すなわち、印加磁束密度が増加するにつれてMR流体コンポジットに生じるせん断抵抗力が増加するように構成されている。 In the MR fluid composite 14, clusters of ferromagnetic particles formed by applying a magnetic field are supported by fibers of a porous material, and exhibit a higher MR effect than in the case of a single MR fluid. Further, the magnetic field applied to the MR fluid composite changes in magnitude according to the magnitude of the DC current value energized in the coil 12a. That is, the shear resistance generated in the MR fluid composite increases as the applied magnetic flux density increases.

本実施形態では、このようなMR流体コンポジット14を回転円盤11及び固定円盤13と同様に環状の円盤状に形成し、軸方向O1に交互に積層配置された複数の回転円盤11と固定円盤13の間にそれぞれ挟み込んで、MR抵抗部1が構成されている。 In the present embodiment, such an MR fluid composite 14 is formed in the shape of an annular disk like the rotating disk 11 and the fixed disk 13, and the plurality of rotating disks 11 and the fixed disk 13 are alternately stacked and arranged in the axial direction O1. The MR resistance unit 1 is configured by sandwiching them between the two.

なお、このようなMR流体コンポジット14によるせん断抵抗力は、摩擦ダンパーの場合とほぼ同じような特性を示し、MR流体コンポジット14が所定のせん断変形を生じるまでは弾性変形によって歪みとともに増大していき、それを超えた後は固定円盤13や回転円盤11との界面で滑りが生じ、ほぼ一定の履歴特性となる。 The shear resistance force of the MR fluid composite 14 exhibits almost the same characteristics as that of the friction damper, and increases with strain due to elastic deformation until the MR fluid composite 14 undergoes a predetermined shear deformation. After that, slippage occurs at the interface with the fixed disk 13 and the rotating disk 11, and the history characteristics are almost constant.

ここで、本実施形態の風ロック機構AのMR抵抗部1で生じる荷重Fは、MR流体のせん断抵抗力Q、回転中心からの距離r、ボールナット部の抵抗トルクT、ボールねじ軸のリードL、増速ギアの増速比nとすると、次の式(1)及び式(2)で表される。 Here, the load F generated in the MR resistance portion 1 of the wind lock mechanism A of the present embodiment is the shear resistance force Q of the MR fluid, the distance r from the center of rotation r, the resistance torque T of the ball nut portion, and the lead of the ball screw shaft. Assuming that L d and the speed increasing ratio n of the speed increasing gear are set, they are expressed by the following equations (1) and (2).

Figure 0006979800
Figure 0006979800

Figure 0006979800
Figure 0006979800

本実施形態の風ロック機構AのMR抵抗部1は、単なるダンパーとして機能させるのではなく、免震建物の風に対するロック機能が適切に働くように風速に応じた荷重(ロック荷重)を調整する必要がある。 The MR resistance portion 1 of the wind lock mechanism A of the present embodiment does not function as a mere damper, but adjusts a load (lock load) according to the wind speed so that the lock function for the wind of the seismic isolated building works properly. There is a need.

本実施形態でロック荷重を増大させたい場合、従来のMRダンパーよりもMR流体の抵抗力合力の作用位置と回転中心(ボールねじ軸7の中心)との距離rを大きくする。これにより、回転円盤11の径が増加し、抵抗トルクTを増大させることができる。 When it is desired to increase the lock load in the present embodiment, the distance r between the action position of the resistance resultant force of the MR fluid and the center of rotation (center of the ball screw shaft 7) is made larger than that of the conventional MR damper. As a result, the diameter of the rotating disk 11 can be increased, and the resistance torque T can be increased.

また、抵抗トルクTを軸力に変換する際、リードLに反比例するため、ボールねじ軸7のリード (ねじ山間隔)Lを小さくする。 Further, when the resistance torque T is converted into the axial force, the lead (thread spacing) L d of the ball screw shaft 7 is reduced because it is inversely proportional to the lead L d.

さらに、図5に示すように、MR流体を回転させるボールねじ機構9に増速機構15を接続してもよい。例えば、遊星ギアなどの増速機構15を用いてMR流体をボールナット8の5倍で回転させるようにすれば、抵抗トルクTを5倍にすることができる。増速機構15としては遊星ギアを用いることができ、外周リングギア16をケーシング6に固定し、3つのピニオンギア17をリングギア16に内接、中央のサンギア18に外接するように配置し、増速比を例えば5倍にする。 Further, as shown in FIG. 5, the speed increasing mechanism 15 may be connected to the ball screw mechanism 9 that rotates the MR fluid. For example, if the MR fluid is rotated five times as large as the ball nut 8 by using a speed increasing mechanism 15 such as a planetary gear, the resistance torque T can be increased five times. A planetary gear can be used as the speed increasing mechanism 15, and the outer peripheral ring gear 16 is fixed to the casing 6, and three pinion gears 17 are arranged so as to be inscribed in the ring gear 16 and circumscribed in the central sun gear 18. For example, increase the speed increase ratio by 5 times.

さらに、MR流体コンポジット14の材質を選択したり、コイル12aの巻数や電流を増加させるなどし、MR流体に作用する磁界(磁束密度)を増大させる。 Further, the material of the MR fluid composite 14 is selected, the number of turns of the coil 12a and the current are increased, and the magnetic field (magnetic flux density) acting on the MR fluid is increased.

このような構成を採用した場合、本実施形態のMRダンパー装置5(風ロック機構AのMR抵抗部1)は、軸方向O1に変位xが生じると、ボールナット8が回転し、内側円筒体10が従動回転する。 When such a configuration is adopted, in the MR damper device 5 (MR resistance portion 1 of the wind lock mechanism A) of the present embodiment, when a displacement x occurs in the axial direction O1, the ball nut 8 rotates and the inner cylindrical body is formed. 10 is driven and rotated.

増速機構15のサンギア18が内側円筒体10に一体に接続され、外側円筒体12ひいては固定円盤13がケーシング6に一体に接続されているため、内側円筒体10がθ回転すると、増速機構15によりサンギア18は5θだけ回転し、MR抵抗部1の内側円筒体10と外側円筒体12及び固定円盤13との相対回転量も5θとなる。 Since the sun gear 18 of the speed-increasing mechanism 15 is integrally connected to the inner cylinder 10 and the outer cylinder 12 and thus the fixed disk 13 are integrally connected to the casing 6, when the inner cylinder 10 rotates θ, the speed-increasing mechanism The sun gear 18 is rotated by 5θ by 15, and the relative rotation amount between the inner cylinder 10 of the MR resistance portion 1 and the outer cylinder 12 and the fixed disk 13 is also 5θ.

ここで、非特許文献1の小型試験体を製作してMRダンパー装置5の反力について検討した結果から、製品化する風ロックダンパーについて説明する。 Here, the wind lock damper to be commercialized will be described from the result of manufacturing a small test piece of Non-Patent Document 1 and examining the reaction force of the MR damper device 5.

小型試験体はコイル12aに通電する電流0.5Aで反力(せん断抵抗力)20kN程度が得られるものである。 In the small test piece, a reaction force (shear resistance force) of about 20 kN can be obtained with a current of 0.5 A energizing the coil 12a.

これに基づき、磁界(磁束密度)を同じにしてMR抵抗部1の径を2倍にすると、せん断抵抗合力Qは4倍、回転中心からの距離は2倍になることから、抵抗トルクは8倍となる。 Based on this, if the magnetic field (magnetic flux density) is the same and the diameter of the MR resistance unit 1 is doubled, the shear resistance resultant force Q is quadrupled and the distance from the center of rotation is doubled, so the resistance torque is 8. Double.

試験体はボールねじ軸7の定格荷重が20kNだったので反力30kN以下しか実験していないが、ダンパー耐力を増せば磁界を上げて反力を増やすことが可能なので、ここでは磁界を2倍として計算する。ただし、ボールねじ機構9も大型化するので、実験時のリード30を50とする。 Since the rated load of the ball screw shaft 7 was 20 kN, the test piece was tested only with a reaction force of 30 kN or less, but if the damper strength is increased, the magnetic field can be increased to increase the reaction force, so the magnetic field is doubled here. Calculate as. However, since the ball screw mechanism 9 is also increased in size, the lead 30 at the time of the experiment is set to 50.

増速比5倍の増速機構15を用いることで、ボールねじ機構9に作用するトルクはMR抵抗部1で生じるトルクの5倍となる。 By using the speed-increasing mechanism 15 having a speed-increasing ratio of 5 times, the torque acting on the ball screw mechanism 9 becomes 5 times the torque generated in the MR resistance unit 1.

したがって、小型試験体の2倍のサイズで製品化したときのダンパー反力は、MR抵抗部1で生じるトルクが試験体の8倍となる。また、磁界を2倍にすることで2倍となる。さらに、リードを30から50にすることで、3/5=0.6倍となる。また、増速機構15を用いることで5倍となる。よって、これら合計により(8×2×0.6×5)48倍にできることが分かる。なお、MR流体面積は2=4倍、磁界2倍にする電流と電圧を2倍、消費電力は4×2×2=16倍となる。 Therefore, when the product is commercialized with a size twice that of the small test piece, the torque generated by the MR resistance portion 1 is eight times that of the test piece. Also, doubling the magnetic field doubles it. Further, by changing the lead from 30 to 50, 3/5 = 0.6 times. Further, by using the speed increasing mechanism 15, it becomes 5 times. Therefore, it can be seen that the total can be increased by (8 × 2 × 0.6 × 5) 48 times. Incidentally, MR fluid area 2 2 = 4 times, 2 times the current and voltage to double the magnetic field, the power consumption becomes a factor 4 × 2 × 2 = 16.

試験体の反力20kNなので、製品化したときのダンパー反力は960kN(約100tonf)程度となる。これは一般的な免震用オイルダンパーと同程度であることから、実用上で十分な性能が得られると言える。 Since the reaction force of the test piece is 20 kN, the damper reaction force when commercialized is about 960 kN (about 100 tonf). Since this is about the same as a general seismic isolation oil damper, it can be said that sufficient performance can be obtained in practical use.

一方、本実施形態の風ロック機構Aにおいては、図1(及び図2から図5)に示すように、建物上部に設置した風力発電部2(風車2aなどを備えた風力発電機)によって発電した電力をMR抵抗部1のコイル12aに供給する。 On the other hand, in the wind lock mechanism A of the present embodiment, as shown in FIG. 1 (and FIGS. 2 to 5), power is generated by a wind power generation unit 2 (a wind power generator equipped with a wind turbine 2a or the like) installed in the upper part of the building. The generated power is supplied to the coil 12a of the MR resistance unit 1.

これにより、本実施形態のMRダンパー装置5は、両端の変位が生じるとボールねじ軸7が回転し、これと一体化されている内側円筒体10が回転する。そして、強風などによって風力発電部2が駆動し、MR抵抗部1に風力発電部2から電力が供給されると磁場が形成され、MR流体の粘性抵抗が増して抵抗トルクとなり、ボールねじ機構9に大きな軸抵抗力(反力)が作用する。 As a result, in the MR damper device 5 of the present embodiment, when the displacements at both ends occur, the ball screw shaft 7 rotates, and the inner cylindrical body 10 integrated with the ball screw shaft 7 rotates. Then, when the wind power generation unit 2 is driven by a strong wind or the like and power is supplied from the wind power generation unit 2 to the MR resistance unit 1, a magnetic field is formed, the viscous resistance of the MR fluid increases and becomes a resistance torque, and the ball screw mechanism 9 A large axial resistance force (reaction force) acts on the wind power.

なお、発電電力を直接MR抵抗部1に供給するほか、制御回路を介して下記機能を追加してもよい。 In addition to supplying the generated power directly to the MR resistance unit 1, the following functions may be added via the control circuit.

電流(電圧)保護回路を設け、強風で発電量が大きい場合にはMR抵抗部1への供給電力を頭打ちする。このようにすると、所定以上の電力が供給されないため、MR抵抗部1の反力も頭打ちとなる。 A current (voltage) protection circuit is provided, and when the amount of power generation is large due to strong wind, the power supplied to the MR resistance unit 1 is leveled off. In this way, since the power of a predetermined value or more is not supplied, the reaction force of the MR resistance unit 1 also reaches a plateau.

また、風が小さいときでも、建物の上部構造T1の振動により免震層3に変位が生じる場合がある。これに対し、発電量の一部を蓄電し、風が止んでも例えば10分程度の間、MR抵抗部1に電力を供給し続けるように構成すれば、小さな風(風荷重)で上部構造T1の振動により免震層3が変位することを防止できる。 Further, even when the wind is small, the seismic isolation layer 3 may be displaced due to the vibration of the superstructure T1 of the building. On the other hand, if a part of the power generation amount is stored and the power is continuously supplied to the MR resistance unit 1 for about 10 minutes even if the wind stops, the superstructure T1 can be generated with a small wind (wind load). It is possible to prevent the seismic isolation layer 3 from being displaced due to the vibration of.

なお、小型試験体で供給した電力が電流0.5A、電圧30Vより15W/台であることから、製品化したダンパーの定格電力は16倍として15W/台×16倍=240W/台となる。定格出力2kWの風力発電機を設置したとすると、2000W÷240W/台=8.3台となり、MRダンパー8台分の電力供給が行えることになる。これにより、免震層3における風ロック荷重は8台×960kN=7680kNであるから、平面30m×30mで20階建の建物にも十分に適用可能であると言える。 Since the power supplied by the small test piece is 15 W / unit from a current of 0.5 A and a voltage of 30 V, the rated power of the commercialized damper is 16 times, which is 15 W / unit x 16 times = 240 W / unit. If a wind power generator with a rated output of 2 kW is installed, 2000 W ÷ 240 W / unit = 8.3 units, which means that power for eight MR dampers can be supplied. As a result, since the wind lock load in the seismic isolation layer 3 is 8 units × 960 kN = 7680 kN, it can be said that the plane is 30 m × 30 m and can be sufficiently applied to a 20-story building.

よって、本実施形態の風ロック機構Aにおいては、免震建物の風揺れを防止する風ロック機構Aを外部電源の供給がないパッシブシステムとして構成できる。このため停電時にも全く問題ない信頼性の高い機構を実現することができる。 Therefore, in the wind lock mechanism A of the present embodiment, the wind lock mechanism A for preventing the wind sway of the seismic isolated building can be configured as a passive system without supply of an external power source. Therefore, it is possible to realize a highly reliable mechanism that does not cause any problem even in the event of a power failure.

また、風が吹かないときは風力発電部2からMR抵抗部1に電力供給されず、MR抵抗部1の反力、すなわちロック荷重がほぼ0となるため、ロック機構による残留変位は生じない。また、シアピン(せん断キー)のように破断しないので地震後に取り付けに行く必要がなく、基本的にメンテナンスフリーとなる。 Further, when the wind does not blow, power is not supplied from the wind power generation unit 2 to the MR resistance unit 1, and the reaction force of the MR resistance unit 1, that is, the lock load becomes almost 0, so that residual displacement due to the lock mechanism does not occur. Also, unlike the shear pin, it does not break, so there is no need to go to install it after an earthquake, and it is basically maintenance-free.

さらに、MR抵抗部1のコイル電流を制御することにより、風ロック荷重を任意に設定できる。これにより、風力発電部2からMR抵抗部1に電流制御回路を介して電力供給することによってロック荷重(係止荷重)の上限を容易に設定することが可能になる。 Further, the wind lock load can be arbitrarily set by controlling the coil current of the MR resistance unit 1. This makes it possible to easily set the upper limit of the lock load (locking load) by supplying electric power from the wind power generation unit 2 to the MR resistance unit 1 via the current control circuit.

また、MR抵抗部1は摩擦ダンパーと類似した履歴特性をもち、変位拘束時の初期剛性が高いため、風荷重時における免震層3の揺れを極めて小さくできる。 Further, since the MR resistance portion 1 has a history characteristic similar to that of the friction damper and has high initial rigidity at the time of displacement restraint, the shaking of the seismic isolation layer 3 at the time of wind load can be made extremely small.

さらに、風力発電部2は、風速が大きいほど発電量も大きくなる。この電力をMR抵抗部1に供給することから、ロック荷重は建物に作用する風荷重が大きいほど増大する。これにより、合理的なシステムを構築することが可能になる。 Further, the wind power generation unit 2 generates a large amount of power as the wind speed increases. Since this electric power is supplied to the MR resistance unit 1, the lock load increases as the wind load acting on the building increases. This makes it possible to build a rational system.

また、風ロック時に地震が生じた場合には、風ロック荷重を摩擦抵抗力とみなした摩擦ダンパーとして機能する。通常の設計では風と地震が同時に作用することを想定しないのに対し、本発明に係る風ロック機構Aによって風ロック荷重をもつ摩擦ダンパーが付加されたように扱うことができる。
なお、一般的に設計用の風荷重は地震荷重よりかなり小さいため、風ロックが付加されても耐震性に問題は生じない。また、風ロック荷重が加算されるので上部構造の応答加速度が増加し免震性能はやや劣化するが、通常の設計で考慮しない「風+地震同時作用時」であるため、特に問題とはならない。
In addition, when an earthquake occurs during wind locking, it functions as a friction damper that regards the wind locking load as frictional resistance. In the normal design, it is not assumed that the wind and the earthquake act at the same time, but it can be treated as if a friction damper having a wind lock load is added by the wind lock mechanism A according to the present invention.
Since the wind load for design is generally much smaller than the seismic load, there is no problem in seismic resistance even if a wind lock is added. In addition, since the wind lock load is added, the response acceleration of the superstructure increases and the seismic isolation performance deteriorates a little. ..

さらに、経年劣化の少ない単純な構成であり、量産化すれば安価に供給できる。 Furthermore, it has a simple structure with little deterioration over time, and can be supplied at low cost if it is mass-produced.

また、MR抵抗部1の両端接合部は従来のオイルダンパーと同様の構成を採用でき、設置工事に際して特別な技量を要しない。電気工事はコイル12aに配線を接続するだけなので容易に施工することも可能である。 Further, the joints at both ends of the MR resistance portion 1 can adopt the same configuration as the conventional oil damper, and no special skill is required for the installation work. Electrical work can be done easily because only the wiring is connected to the coil 12a.

さらに、従来の粘性ダンパー装置とMRダンパー部(MR抵抗部1)を一体に組み込んで構成すれば、粘性減衰(C)とMR抵抗(R)が並列した装置となり、コンパクトな構成で安価に製造できる。 Further, if the conventional viscous damper device and the MR damper section (MR resistance section 1) are integrally integrated to form a device, the viscous damping (C) and the MR resistance (R) are arranged in parallel, and the device is compact and inexpensive to manufacture. can.

したがって、本実施形態の風ロック機構Aを上部構造T1と下部構造T2の間の免震層に設けることにより、外部電力を使わずに上部構造T1の拘束や解除を自動的に行うことができ、強風時には上部構造T1と下部構造T2との移動を制御し、無風時は移動制御状態を解除することで、上部構造T1に対する免震効果を従来よりも確実且つ効果的に発揮させることが可能になる。 Therefore, by providing the wind lock mechanism A of the present embodiment in the seismic isolation layer between the superstructure T1 and the substructure T2, the superstructure T1 can be automatically restrained or released without using external power. By controlling the movement of the superstructure T1 and the lower structure T2 when there is a strong wind and canceling the movement control state when there is no wind, it is possible to exert the seismic isolation effect on the superstructure T1 more reliably and effectively than before. become.

以上、本発明に係る風ロック機構の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiment of the wind locking mechanism according to the present invention has been described above, the present invention is not limited to the above embodiment and can be appropriately modified without departing from the spirit of the present invention.

1 MR抵抗部
2 風力発電部
3 免震層
4 免震装置
5 MRダンパー装置
6 ケーシング
7 ボールねじ軸
8 ボールナット
9 ボールねじ機構
10 内側円筒体
11 回転円盤
12 外側円筒体
12a コイル
13 固定円盤
14 MR流体コンポジット
15 増速機構
16 リングギア
17 ピニオンギア
18 サンギア
A 風ロック機構
O1 軸方向(軸線)
T1 上部構造
T2 下部構造
1 MR resistance part 2 Wind power generation part 3 Seismic isolation layer 4 Seismic isolation device 5 MR damper device 6 Casing 7 Ball screw shaft 8 Ball nut 9 Ball screw mechanism 10 Inner cylindrical body 11 Rotating disk 12 Outer cylindrical body 12a Coil 13 Fixed disk 14 MR Fluid Composite 15 Speed Acceleration Mechanism 16 Ring Gear 17 Pinion Gear 18 Sun Gear A Wind Lock Mechanism O1 Axial Direction (Axis Line)
T1 superstructure T2 substructure

Claims (2)

上部構造と下部構造の間の免震層に免震装置と並列に設けられ、一端を前記上部構造と接続し他端を前記下部構造と接続して水平配置され、前記上部構造と前記下部構造に相対変位が生じると、軸方向力が入力されるMRダンパー装置と、
前記上部構造に作用する風の大きさに応じて発電し、前記風の大きさに応じた電力を前記MRダンパー装置に備えられるMR抵抗部のコイルに供給する風力発電部と
を備え、
前記MR抵抗部は、前記コイルに通電する直流電流値の大小に応じて磁場が大小変化し、抵抗力が大小変化するように構成され、
前記MRダンパー装置は、
前記MR抵抗部と、
前記MR抵抗部に接続され、前記軸方向力による軸方向変位を回転に変換して前記MR抵抗部に伝達し、前記MR抵抗部の前記回転に対する抵抗トルクを軸方向力に変換した反力が作用するボールねじ機構と、
を備えることを特徴とする風ロック機構。
The seismic isolation layer between the superstructure and the substructure is provided in parallel with the seismic isolation device, one end is connected to the superstructure and the other end is connected to the substructure to be horizontally arranged, and the superstructure and the substructure are arranged horizontally. When a relative displacement occurs in the MR damper device, an axial force is input, and
A wind power generation unit that generates electric power according to the magnitude of the wind acting on the superstructure and supplies electric power according to the magnitude of the wind to the coil of the MR resistance portion provided in the MR damper device .
Equipped with
The MR resistance unit is configured such that the magnetic field changes in magnitude according to the magnitude of the DC current value energized in the coil, and the resistance force changes in magnitude.
The MR damper device is
With the MR resistance sensor
The reaction force connected to the MR resistance section, converting the axial displacement due to the axial force into rotation and transmitting it to the MR resistance section, and converting the resistance torque of the MR resistance section with respect to the rotation into axial force is generated. The ball screw mechanism that works,
A wind lock mechanism characterized by being equipped with.
前記MR抵抗部の抵抗力は、
前記MR抵抗部に所定のせん断変形を生じるまでは弾性変形によって増大し、前記所定のせん断変形を超えた後は一定の履歴特性となり、
前記風が吹かないときはほぼ0となる、
請求項1に記載の風ロック機構。
The resistance of the MR resistance section is
It increases due to elastic deformation until a predetermined shear deformation occurs in the MR resistance portion, and after exceeding the predetermined shear deformation, it becomes a constant historical characteristic.
When the wind does not blow, it becomes almost 0.
The wind locking mechanism according to claim 1.
JP2017115292A 2017-06-12 2017-06-12 Wind lock mechanism Active JP6979800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115292A JP6979800B2 (en) 2017-06-12 2017-06-12 Wind lock mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115292A JP6979800B2 (en) 2017-06-12 2017-06-12 Wind lock mechanism

Publications (2)

Publication Number Publication Date
JP2019002421A JP2019002421A (en) 2019-01-10
JP6979800B2 true JP6979800B2 (en) 2021-12-15

Family

ID=65007774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115292A Active JP6979800B2 (en) 2017-06-12 2017-06-12 Wind lock mechanism

Country Status (1)

Country Link
JP (1) JP6979800B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272896B2 (en) * 2019-08-05 2023-05-12 清水建設株式会社 Seismic isolation device
JP7452181B2 (en) 2020-03-30 2024-03-19 株式会社ダイフク floating unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263414A (en) * 2000-03-16 2001-09-26 Nok Corp Base isolation device
JP2003239566A (en) * 2002-02-12 2003-08-27 Bando Chem Ind Ltd Damping device with wind resistant lock for base isolated building
JP2006233701A (en) * 2005-02-28 2006-09-07 Takenaka Komuten Co Ltd Locking device for base-isolated building
JP2014052044A (en) * 2012-09-07 2014-03-20 Tohoku Univ Mr damper

Also Published As

Publication number Publication date
JP2019002421A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
ES2558585T3 (en) Structure with improved damping by means of shock absorbers with fork configuration
JP6979800B2 (en) Wind lock mechanism
JP2014052044A (en) Mr damper
ES2819889T3 (en) Control procedure of an electromagnetic brake with a controllable armature plate movement
JP5079661B2 (en) Damping device and its built-in structure
CN108506250B (en) Building fan damping system
JP5601825B2 (en) Damper and seismic isolation mechanism
CN111255105B (en) Multidimensional electromagnetic intelligent vibration damper
CN105672515B (en) Magnetic shape memory alloy constraint frcition damper with runback bit function
JP5437444B2 (en) Actuator device and robot device using the same
JP3871393B2 (en) Insulating support device and seismic isolation structure using this support device
JP2011099541A (en) Quake-absorbing mechanism
JP3736285B2 (en) Isolation device
JP5555393B2 (en) Seismic isolation mechanism
JP6910111B2 (en) Vibration control device and vibration control system
JP2011236632A (en) Seismic control structure
TWM610053U (en) Electric push rod with double-brake mechanism
JP4268894B2 (en) Electromagnetic shock absorber
JP2003021193A (en) Base isolation device
JP6853713B2 (en) Wind lock mechanism
JP7300894B2 (en) locking mechanism
JP5080207B2 (en) Actuator device and robot device using the same
JP2016169578A (en) Vibration control structure
JP3800339B2 (en) Seismic isolation structure of building
CN117403532B (en) Self-adaptive damping limiting device and bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210917

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R150 Certificate of patent or registration of utility model

Ref document number: 6979800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150