JP2001263414A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JP2001263414A
JP2001263414A JP2000079369A JP2000079369A JP2001263414A JP 2001263414 A JP2001263414 A JP 2001263414A JP 2000079369 A JP2000079369 A JP 2000079369A JP 2000079369 A JP2000079369 A JP 2000079369A JP 2001263414 A JP2001263414 A JP 2001263414A
Authority
JP
Japan
Prior art keywords
vibration
base
opposing
braking
external force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000079369A
Other languages
Japanese (ja)
Inventor
Yuzuru Tamura
譲 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2000079369A priority Critical patent/JP2001263414A/en
Publication of JP2001263414A publication Critical patent/JP2001263414A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)
  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation device which simplifies the structure thereof, reduces the cost, and has a braking device of high responsiveness. SOLUTION: This base isolation device comprises a support mechanism portion 6 which is provided between a base side member 4 and a structure side member 2 to permit the relative motion along a predetermined plane, a braking portion 11 as a braking means to brake the relative motion of the base side member 4 to the structure side member 2 by the viscous force applied to the base side member 4 and the structure side member 2, and a control circuit to operate the braking portion 11 by controlling the viscous force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家屋、小型のビル
等の構造体に好適な免振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration isolator suitable for structures such as houses and small buildings.

【0002】[0002]

【従来の技術】従来、ビル等の大型構造物の地振等に対
する免振装置としては、基盤とビルとの間に免振体を介
在させて、免振効果を得るものが知られている。上記の
免振体としては、たとえば、金属板等の硬質板とゴム等
の軟質板とを交互に積層したものが知られており、中低
層のビルや橋梁等の大型構造物に適用されている。とこ
ろで、上記のような硬質板と軟質板とを積層した積層構
造の免振体に使用される軟質板を形成するゴム等の弾性
体の剛性は、大型構造物に適用するために比較的大き
い。このため、個人住宅、小型のビル等の構造物に上記
の積層構造の免振体を適用して効果的な免振作用を得る
ためには、ゴム等の弾性体の剛性を構造物の質量に合わ
せて小さくする必要がある。しかしながら、弾性体の剛
性を小さくすると、構造物に作用する風力等の外力によ
って容易に揺れが発生しやすくなり、構造物の安定性が
低下しやすいという問題があった。
2. Description of the Related Art Heretofore, as a vibration isolating device for ground vibration of a large structure such as a building, there is known a vibration isolating device which obtains a vibration isolating effect by interposing a vibration isolating body between a base and a building. . As the above-mentioned vibration isolator, for example, a structure in which a hard plate such as a metal plate and a soft plate such as rubber are alternately laminated is known, and is applied to a large-scale structure such as a low-rise building or a bridge. I have. By the way, the rigidity of an elastic body such as rubber forming a soft plate used for a vibration isolator having a laminated structure in which a hard plate and a soft plate are stacked as described above is relatively large to be applied to a large structure. . For this reason, in order to obtain an effective vibration isolating effect by applying the above-described laminated vibration isolator to a structure such as a private house or a small building, the rigidity of the elastic body such as rubber must be reduced by the mass of the structure. It is necessary to make it small according to. However, when the rigidity of the elastic body is reduced, there is a problem that the vibration is easily generated by an external force such as wind force acting on the structure, and the stability of the structure is easily deteriorated.

【0003】[0003]

【発明が解決しようとする課題】上記のような積層構造
の免振体に代えて、構造体と当該構造体が設置される基
盤との間に、球体やローラ等の転動体を介在させて、構
造体と基盤との間の水平方向の相対運動を許容して構造
体を地震等の振動から保護する免振装置が知られてお
り、地震等の振動によって基盤が横揺れしても構造体を
横揺れさせないことで構造体の破壊や損傷を防止する。
上記のような免振装置では、基本的に構造体と基盤とを
拘束していないので、風等の外力が構造体に作用する
と、構造体は基盤に対して運動するので構造体が破壊、
損傷する恐れがあるため、構造体と基盤とを拘束するブ
レーキ装置が必要である。
Instead of the vibration isolator having a laminated structure as described above, a rolling element such as a sphere or a roller is interposed between the structure and a base on which the structure is installed. There are known vibration isolation devices that allow horizontal relative movement between a structure and a base to protect the structure from vibrations such as earthquakes. By preventing the body from rolling, the structure is prevented from being destroyed or damaged.
In the above-described vibration isolator, since the structure and the base are not basically restrained, when an external force such as wind acts on the structure, the structure moves with respect to the base, and the structure is destroyed.
A brake device is required to restrain the structure and the base because it may be damaged.

【0004】従来、上記の免振装置のブレーキ装置とし
ては、たとえば、地震等の振動が発生していない通常時
には構造体と基盤とを拘束し、地震等の振動の発生に応
じて拘束を解除するタイプのものと、地震等の振動が発
生していないときには構造体と基盤とを拘束せず、風等
の外力が構造体に作用する場合にのみ構造体と基盤とを
拘束するタイプのものとが知られている。これらのブレ
ーキ装置は、住宅等に適用するため、低コストであり構
造が簡易であること等が要求されるが、これらの要求に
加えて、突発的に発生する地震等の振動や突風に対して
即座に応答できる高い応答性が要求される。
Conventionally, as a brake device of the above-mentioned vibration isolation device, for example, in normal times when vibration such as an earthquake does not occur, the structure and the base are restrained, and the restraint is released in response to the occurrence of the vibration such as an earthquake. Type that does not restrain the structure and the base when vibration such as an earthquake does not occur, and that restrains the structure and the base only when external force such as wind acts on the structure And is known. These brake devices are required to be low-cost and have a simple structure in order to be applied to houses, etc., but in addition to these requirements, in addition to vibrations such as sudden earthquakes and gusts, And high responsiveness that can respond immediately.

【0005】本発明は、上述の問題に鑑みて成されたも
のであって、構造が比較的簡素化され、低コスト化が可
能で、応答性が高いブレーキ装置を備えた免振装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a vibration isolator having a brake device having a relatively simple structure, a low cost, and a high responsiveness. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明の免振装置は、基
盤と構造体との間に設けられ、当該基盤と構造体との間
の所定の平面に沿った相対運動を許容する支持手段と、
前記基盤と構造体との間に粘性力を作用させて当該基盤
と構造体との相対運動を制動可能な制動手段と、前記粘
性力を制御して前記制動手段を作動させる制御手段とを
有する。
SUMMARY OF THE INVENTION A vibration isolator according to the present invention is provided between a base and a structure, and supports the relative movement between the base and the structure along a predetermined plane. When,
A braking unit that applies a viscous force between the base and the structure to brake the relative movement between the base and the structure; and a control unit that controls the viscous force to operate the braking unit. .

【0007】また、本発明の免振装置は、前記基盤側に
作用する振動を検出する基盤側振動検出手段を有し、前
記制動手段は、前記基盤側に前記振動が作用しない状態
において前記相対運動を前記粘性力によって制動し、前
記制御手段は、前記基盤側振動検出手段による前記基盤
側への振動の検出に応じて、前記粘性力を低下させて前
記制動手段による制動を解除させる。
Further, the vibration isolator of the present invention has a base-side vibration detecting means for detecting a vibration acting on the base side, and the braking means is configured to control the relative vibration in a state where the vibration does not act on the base side. The movement is braked by the viscous force, and the control means reduces the viscous force and releases the braking by the braking means in response to the detection of the vibration toward the base by the base-side vibration detecting means.

【0008】前記制動手段は、前記構造体側に設けら
れ、前記基盤側に対向する第1の対向面を備えた第1の
対向部と、前記基盤側に設けられ、前記第1の対向面に
所定の隙間をもって対向する第2の対向面を備えた第2
の対向部と、前記第1の対向面と前記第2の対向面との
隙間に介在する磁性粘性流体と、前記磁性粘性流体に一
定の磁界を印加する永久磁石と、前記永久磁石の磁界を
打ち消す向きに磁界を発生可能な電磁石と、前記電磁石
に電流を供給する電源とを有する。
[0008] The braking means is provided on the structure side and has a first opposing portion provided with a first opposing surface opposing the base side, and is provided on the base side and is provided on the first opposing surface. A second surface having a second opposing surface opposing at a predetermined gap;
An opposing portion, a magnetic viscous fluid interposed in a gap between the first opposing surface and the second opposing surface, a permanent magnet for applying a constant magnetic field to the magnetic viscous fluid, and a magnetic field of the permanent magnet. It has an electromagnet capable of generating a magnetic field in a direction to cancel, and a power supply for supplying a current to the electromagnet.

【0009】好適には、前記第2の対向部は、底面が前
記第2の対向面を構成する前記磁性粘性流体を収容する
収容凹部を備え、前記第1の対向部は、頂面が前記第1
の対向面を構成する前記収容凹部に対して突出する突出
部を備え、前記永久磁石および電磁石は、前記突出部に
設けられている。
[0009] Preferably, the second opposing portion has an accommodating recess for accommodating the magnetic viscous fluid whose bottom surface constitutes the second opposing surface, and the first opposing portion has a top surface having the top surface. First
And a protruding portion protruding with respect to the housing recess forming the opposing surface, and the permanent magnet and the electromagnet are provided on the protruding portion.

【0010】さらに好適には、前記構造体側の振動を検
出する構造体側振動検出手段をさらに有し、前記制御手
段は、前記構造体側振動検出手段および前記基盤側振動
検出手段の検出信号に基づいて、前記制動手段の作動を
制御する。
[0010] More preferably, the apparatus further comprises structure-side vibration detecting means for detecting the vibration on the structure side, wherein the control means is provided on the basis of detection signals from the structure-side vibration detecting means and the base-side vibration detecting means. , Controlling the operation of the braking means.

【0011】また、本発明の免振装置は、前記構造体側
に作用する外力を検出する外力検出手段を有し、前記制
動手段は、前記構造体側に前記外力が作用しない状態に
おいて前記相対運動の制動を解除しており、前記制御手
段は、前記外力検出手段による外力の検出に応じて、前
記制動手段の粘性力を上昇させて前記相対運動を制動さ
せる。
Further, the vibration isolator of the present invention has an external force detecting means for detecting an external force acting on the structure side, and the braking means has a function of detecting the relative movement of the relative movement when the external force does not act on the structure side. The braking is released, and the control means raises the viscous force of the braking means to brake the relative movement in response to the detection of the external force by the external force detecting means.

【0012】前記制動手段は、前記構造体側に設けら
れ、前記基盤側に対向する第1の対向面を備えた第1の
対向部と、前記基盤側に設けられ、前記第1の対向面に
所定の隙間をもって対向する第2の対向面を備えた第2
の対向部と、前記第1の対向面と前記第2の対向面との
隙間に介在する磁性粘性流体と、前記磁性粘性流体に磁
界を印加可能な電磁石と、前記電磁石に電流を供給する
電源とを有する。
[0012] The braking means is provided on the structure side and has a first opposing portion provided with a first opposing surface opposing the base side, and is provided on the base side and is provided on the first opposing surface. A second surface having a second opposing surface opposing at a predetermined gap;
, A magnetic viscous fluid interposed in a gap between the first opposing surface and the second opposing surface, an electromagnet capable of applying a magnetic field to the magnetic viscous fluid, and a power supply for supplying a current to the electromagnet And

【0013】本発明の免振装置では、基本的に、基盤側
が地震等により振動すると、構造体は基盤上に支持手段
を介して設置されているので、基盤側が振動しても構造
体は振動せず免振作用が得られる。また、基盤と構造体
との相対運動は粘性力によって制動され、制御手段によ
り粘性力を変化させることで、基盤と構造体との相対運
動の制動およびその解除が行われる。
In the vibration isolator according to the present invention, basically, when the base side vibrates due to an earthquake or the like, the structure is installed on the base via the support means. A vibration isolating effect can be obtained without doing so. In addition, the relative movement between the base and the structure is damped by viscous force, and the control means changes the viscous force, whereby the relative movement between the base and the structure is braked and released.

【0014】また、本発明の第1の観点に係る制動手段
では、基盤側に地震等の振動が作用しない状態で粘性力
によって構造体を制動している。構造体が制動された状
態で、地震等の振動が発生すると、たとえば、地震計を
含む基盤側振動検出手段はこの振動を検出する。制御手
段は、基盤側振動検出手段による振動の検出に応じて、
粘性力を低下させて制動を解除する。これにより、地震
等の振動によって相対運動を開始し、構造体は免振され
る。具体的には、磁性粘性流体を用いることで構造体と
基盤とに粘性力を作用させ、永久磁石により磁界を磁性
粘性流体に常時印加しておくことで、粘性力は高い状態
に維持され、基盤と構造体との相対運動が制動される。
基盤側振動検出手段による振動の検出に応じて、磁性粘
性流体に電磁石から永久磁石の磁界を打ち消す向きに磁
界が印加されると、即座に磁性粘性流体の粘性が低下
し、基盤と構造体との制動が解除される。
In the braking means according to the first aspect of the present invention, the structure is braked by viscous force in a state where vibration such as an earthquake does not act on the base side. When a vibration such as an earthquake occurs in a state where the structure is braked, for example, a base-side vibration detection unit including a seismometer detects the vibration. The control means responds to the detection of the vibration by the base-side vibration detection means,
Release the braking force by reducing the viscous force. Thereby, relative motion is started by vibration such as an earthquake, and the structure is isolated. Specifically, the viscous force is applied to the structure and the base by using the magnetic viscous fluid, and the viscous force is maintained in a high state by constantly applying a magnetic field to the magnetic viscous fluid by the permanent magnet. The relative movement between the base and the structure is damped.
When a magnetic field is applied from the electromagnet to the magnetic viscous fluid in a direction to cancel the magnetic field of the permanent magnet in response to the detection of the vibration by the base-side vibration detecting means, the viscosity of the magnetic viscous fluid immediately decreases, and the base and the structure Is released.

【0015】また、本発明の第2の観点に係る制動手段
では、基盤側に地震等の振動が作用しない状態で構造体
を制動しておらず、地震等の振動が発生すると相対運度
して免振される。構造体に風力等の外力が作用すると、
外力検出手段によって外力が検出され、この検出に応じ
て、制御手段は、粘性力を上昇させて構造体を制動す
る。これにより、構造体に風力等の外力が作用しても、
構造体は運動しない。具体的には、磁性粘性流体を用い
ることで構造体と基盤とに粘性力を作用させるが、基盤
側に地震等の振動が作用しない状態では磁性粘性流体に
は磁界が印加されておらず、粘性力は小さい。外力検出
手段が外力を検出して電磁石から磁性粘性流体に磁界が
印加されると、即座に磁性粘性流体の粘性が上昇し、基
盤と構造体とが制動される。
Further, in the braking means according to the second aspect of the present invention, the structure is not braked in a state where vibration such as an earthquake does not act on the base, and the relative mobility is increased when the vibration such as an earthquake occurs. To be isolated. When an external force such as wind acts on the structure,
The external force is detected by the external force detecting means, and in response to the detection, the control means increases the viscous force to brake the structure. As a result, even when an external force such as wind acts on the structure,
The structure does not move. Specifically, a viscous force is applied to the structure and the base by using a magnetic viscous fluid, but in a state where vibration such as an earthquake does not act on the base, no magnetic field is applied to the magnetic viscous fluid, Viscous force is small. When the external force detecting means detects the external force and a magnetic field is applied from the electromagnet to the magnetic viscous fluid, the viscosity of the magnetic viscous fluid immediately increases, and the base and the structure are braked.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。第1実施形態 図1は、本発明の一実施形態に係る免振装置の概略構成
を示す構成図であり、(a)は側面図であり、(b)は
平面図である。図1において、本実施形態に係る免振装
置は、たとえば、住宅や小型のビル等の構造体の底面を
構成する構造体側部材2と構造体側部材2に対向して設
けられ、地面GR上に設置される基盤側部材4との間に
設けられた支持機構部6およびブレーキ部11とを備え
る。なお、支持機構部6は本発明の支持手段を構成して
おり、ブレーキ部11は本発明の制動手段を構成してい
る。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a configuration diagram showing a schematic configuration of a vibration isolation device according to an embodiment of the present invention, where (a) is a side view and (b) is a plan view. In FIG. 1, for example, a vibration isolation device according to the present embodiment is provided to face a structure side member 2 and a structure side member 2 constituting a bottom surface of a structure such as a house or a small building, and is provided on the ground GR. It includes a support mechanism 6 and a brake 11 provided between the base member 4 and the base member 4. Note that the support mechanism 6 constitutes the support means of the present invention, and the brake section 11 constitutes the brake means of the present invention.

【0017】図1において、支持機構部6は、構造体側
部材2を支持するとともに、構造体側部材2と基盤側部
材4との水平面に沿った相対運動を許容している。ここ
で、図2は支持機構部6の概略的な構造を示す断面図で
ある。図2に示すように、支持機構部6は、構造体側部
材2および基盤側部材4に対して転動可能な複数の転動
体RL、たとえば、球体、円柱体等を備えている。この
ように、転動体RLが構造体側部材2および基盤側部材
4に対していずれにも転動可能であることにより、たと
えば、基盤側部材4が地震等により矢印B1およびB2
の向きに横揺れすると、基盤側部材4と構造体側部材2
との相対運動が発生し、構造体側部材2に基盤側部材4
の横揺れが伝達されることがない、あるいは、伝達され
てもその力は非常に小さくなる。
In FIG. 1, the support mechanism 6 supports the structure-side member 2 and allows relative movement of the structure-side member 2 and the base-side member 4 along a horizontal plane. Here, FIG. 2 is a sectional view showing a schematic structure of the support mechanism 6. As shown in FIG. 2, the support mechanism unit 6 includes a plurality of rolling elements RL that can roll with respect to the structure-side member 2 and the base-side member 4, for example, a sphere, a column, and the like. As described above, since the rolling element RL is capable of rolling with respect to both the structure-side member 2 and the base-side member 4, for example, the base-side member 4 is moved by arrows B <b> 1 and B <b> 2 due to an earthquake or the like.
When the base member 4 and the structural body member 2
Relative to the base member 4
Is not transmitted, or even if transmitted, the force is very small.

【0018】また、風力等の外力が構造体側部材2に設
けられた住宅等の構造体に作用すると、構造体側部材2
は基盤側部材4に対して、矢印A1およびA2の向きに
移動する。基盤側部材4が停止した状態で構造体側部材
2が矢印A1およびA2の向きに移動すると、構造体側
部材2に設けられた住宅等の構造体が破壊、損傷するお
それがある。
Further, when an external force such as wind power acts on a structure such as a house provided on the structure-side member 2, the structure-side member 2
Moves in the directions of arrows A1 and A2 with respect to the base member 4. If the structure-side member 2 moves in the directions of the arrows A1 and A2 with the base-side member 4 stopped, the structure such as a house provided on the structure-side member 2 may be broken or damaged.

【0019】ブレーキ部11は、上記の基盤側部材4が
停止した状態での構造体側部材2の移動を制動する。こ
のブレーキ部11は、構造体側部材2とこれに対向する
基盤側部材4の四隅に設けられており、基盤側部材4に
振動が作用しない状態において構造体側部材2の基盤側
部材4に対する相対運動を粘性力によって制動してい
る。
The brake section 11 brakes the movement of the structure-side member 2 in a state where the base member 4 is stopped. The brake portions 11 are provided at four corners of the structure-side member 2 and the opposing base-side member 4, and the relative movement of the structure-side member 2 with respect to the base-side member 4 when no vibration is applied to the base-side member 4. Is braked by viscous force.

【0020】図3は、ブレーキ部11の構造を示す図で
あって、(a)は断面図であり、(b)は(a)の矢印
D方向から見た平面図である。図3に示すように、ブレ
ーキ部11は、構造体側部材2の基盤側部材4に対向す
る面に設けられた突出部材16と、基盤側部材4の突出
部材16に対向する位置に設けられた対向部材13とを
備えている。
FIGS. 3A and 3B are views showing the structure of the brake unit 11, wherein FIG. 3A is a sectional view, and FIG. 3B is a plan view as viewed from the direction of arrow D in FIG. As shown in FIG. 3, the brake portion 11 is provided on a surface of the structural member 2 facing the base member 4, and at a position facing the protrusion member 16 of the base member 4. And an opposing member 13.

【0021】突出部材16は、たとえば、強磁性体材料
から形成された円盤状の部材である。この突出部材16
の対向部材13に対向する対向面16a側には、中央部
に永久磁石18が設けられており、この永久磁石18の
周囲にはコイル17が設けられている。突出部材16の
頂面である対向面16aおよび永久磁石18の表面18
aは、対向部材13の対向面13aとの間に所定の隙間
dを形成している。
The projecting member 16 is, for example, a disk-shaped member formed of a ferromagnetic material. This protruding member 16
A permanent magnet 18 is provided at the center on the side of the facing surface 16a facing the facing member 13, and a coil 17 is provided around the permanent magnet 18. The opposing surface 16a, which is the top surface of the protruding member 16, and the surface 18 of the permanent magnet 18
“a” forms a predetermined gap “d” with the opposing surface 13 a of the opposing member 13.

【0022】対向部材13は、たとえば、強磁性体材料
から形成されており、外周の壁部13cによって形成さ
れた収容凹部13bを備えている。この対向部材13の
収容凹部13b内には、磁性粘性流体MRが所定量収容
されている。この磁性粘性流体MRは、突出部材16の
対向面16aと対向部材13の収容凹部13bの底面で
ある対向面13aとの間の隙間dに介在している。
The facing member 13 is made of, for example, a ferromagnetic material, and has a housing recess 13b formed by an outer peripheral wall 13c. A predetermined amount of the magnetic viscous fluid MR is accommodated in the accommodation recess 13b of the facing member 13. This magnetic viscous fluid MR is interposed in a gap d between the facing surface 16a of the protruding member 16 and the facing surface 13a which is the bottom surface of the housing recess 13b of the facing member 13.

【0023】磁性粘性流体MRは、たとえば、ミクロン
オーダの鉄または鉄系合金の微粒子に界面活性剤を被覆
し、水、シリコンオイルあるいは炭化水素系オイルに分
散させた流体である。この磁性粘性流体MRは、磁場下
においては、上記の微粒子が鎖状に連なり、外力に抗す
る構造をとるため、見かけ上の粘性が変化する。
The magnetic viscous fluid MR is, for example, a fluid in which microparticles of iron or an iron-based alloy are coated with a surfactant and dispersed in water, silicon oil or hydrocarbon-based oil. This magnetic viscous fluid MR has a structure in which the above-mentioned fine particles are connected in a chain shape under a magnetic field and have a structure against external force, so that the apparent viscosity changes.

【0024】突出部材16の側面と対向部材13の壁部
13cの上面との間には、ダイアフラム15が設けられ
ており、このダイアフラム15は収容凹部13bに収容
された磁性粘性流体MRが収容凹部13b外へ漏れない
ように、突出部材16と壁部13cとの間をシーリング
している。また、ダイアフラム15は、突出部材16と
対向部材13とが相対運動したときに、これに応じて弾
性変形し、突出部材16と対向部材13との相対運動を
許容している。
A diaphragm 15 is provided between the side surface of the protruding member 16 and the upper surface of the wall portion 13c of the opposing member 13. The diaphragm 15 is provided with a magnetic viscous fluid MR accommodated in the accommodating recess 13b. The space between the protruding member 16 and the wall 13c is sealed so as not to leak out of the outside 13b. Further, when the protruding member 16 and the opposing member 13 move relative to each other, the diaphragm 15 is elastically deformed in response to the relative movement, and allows the relative movement between the protruding member 16 and the opposing member 13.

【0025】永久磁石18は、表面18aが磁性粘性流
体MRに接触しており、磁性粘性流体MRに一定の磁界
を印加する。これにより、磁性粘性流体MRは粘性が高
い状態となる。
The surface 18a of the permanent magnet 18 is in contact with the magnetorheological fluid MR, and applies a constant magnetic field to the magnetorheological fluid MR. As a result, the magnetic viscous fluid MR enters a high viscosity state.

【0026】コイル17は、突出部材16とによって電
磁石を構成しており、このコイル17に所定の向きの電
流を供給すると、永久磁石18の磁界を打ち消す向きに
磁界を発生する。
The coil 17 forms an electromagnet with the projecting member 16. When a current in a predetermined direction is supplied to the coil 17, a magnetic field is generated in a direction to cancel the magnetic field of the permanent magnet 18.

【0027】上記のコイル17、永久磁石18、磁性粘
性流体MR、強磁性体材料からなる対向部材13、およ
び、強磁性体材料からなる突出部材16とによって磁気
回路を構成している。すなわち、コイル17に電流を供
給しない状態では、上記の磁気回路には、永久磁石18
の磁界が発生しており、隙間dに介在する磁性粘性流体
MRは高粘性状態となっており、突出部材16と対向部
材13との相対運動を妨げるように作用し、すなわち、
ブレーキとして作用する。
The coil 17, the permanent magnet 18, the magnetic viscous fluid MR, the opposing member 13 made of a ferromagnetic material, and the projecting member 16 made of a ferromagnetic material constitute a magnetic circuit. That is, in a state where no current is supplied to the coil 17, the permanent magnet 18
Is generated, the magnetic viscous fluid MR interposed in the gap d is in a high viscous state, and acts so as to hinder the relative movement between the projecting member 16 and the opposing member 13, ie,
Acts as a brake.

【0028】コイル17に電流を供給すると、コイル1
7および突出部材16で構成される電磁石は、永久磁石
18の磁界をキャンセルするように磁界を発生する。こ
れにより、隙間dに介在する磁性粘性流体MRは低粘性
状態となり、突出部材16と対向部材13との相対運動
が制動された状態が解除される。
When a current is supplied to the coil 17, the coil 1
The electromagnet constituted by 7 and the projecting member 16 generates a magnetic field so as to cancel the magnetic field of the permanent magnet 18. As a result, the magnetic viscous fluid MR interposed in the gap d becomes in a low viscosity state, and the state in which the relative movement between the projecting member 16 and the opposing member 13 is braked is released.

【0029】図4は、本実施形態に係る免振装置の制御
系の構成を示す構成図である。図4において、本実施形
態に係る免振装置の制御系は、コイル17に電流を供給
する電源32と、電源32からのコイル17への電流の
供給/遮断を制御する制御回路31と、地震計33と、
加速度計34とを備える。
FIG. 4 is a configuration diagram showing a configuration of a control system of the vibration isolator according to the present embodiment. In FIG. 4, the control system of the vibration isolation device according to the present embodiment includes a power supply 32 that supplies a current to the coil 17, a control circuit 31 that controls supply / cutoff of a current from the power supply 32 to the coil 17, 33 in total,
An accelerometer 34 is provided.

【0030】地震計33は、たとえば、基盤側部材4に
設置され、基盤側部材4に作用する地震等の振動を検出
し、その検出信号33sを制御回路31に出力する。な
お、地震計33は本発明の基盤側振動検出手段の一具体
例に対応している。
The seismometer 33 is installed, for example, on the base member 4, detects vibration such as an earthquake acting on the base member 4, and outputs a detection signal 33 s to the control circuit 31. The seismometer 33 corresponds to a specific example of the base-side vibration detection means of the present invention.

【0031】加速度計34は、たとえば、構造体側部材
2に設けられる住宅等の構造体に設けられ、構造体側部
材2の加速度(振動)を検出し、その検出信号34sを
制御回路31に出力する。なお、加速度計34は本発明
の構造体側振動検出手段の一具体例に対応している。
The accelerometer 34 is provided, for example, on a structure such as a house provided on the structural member 2, detects acceleration (vibration) of the structural member 2, and outputs a detection signal 34 s to the control circuit 31. . The accelerometer 34 corresponds to a specific example of the structure-side vibration detecting means of the present invention.

【0032】制御回路31は、地震計33の検出信号3
3sに基づいて、あるいは、地震計33の検出信号33
sおよび加速度計34の検出信号34sに基づいて、電
源32からのコイル17への電流の供給/遮断を制御
し、磁性粘性流体MRの粘性を制御する。すなわち、制
御回路31は、コイル17への電流の供給によって、磁
性粘性流体MRの見かけ上の粘性を低下させ、コイル1
7への電流の遮断によって、磁性粘性流体MRの見かけ
上の粘性を上昇させる。
The control circuit 31 detects the detection signal 3 of the seismometer 33
3s or the detection signal 33 of the seismometer 33
Based on s and the detection signal 34s of the accelerometer 34, the supply / cutoff of the current from the power supply 32 to the coil 17 is controlled, and the viscosity of the magnetic viscous fluid MR is controlled. That is, the control circuit 31 reduces the apparent viscosity of the magnetic viscous fluid MR by supplying a current to the coil 17, and the coil 1
The interruption of the current to 7 increases the apparent viscosity of the magnetic viscous fluid MR.

【0033】次に、上記構成の免振装置の動作の一例に
ついて説明する。地震等の振動が発生していない通常状
態においては、ブレーキ部11の突出部材16と対向部
材13との隙間dに介在する磁性粘性流体MRは永久磁
石18の磁界によって高粘性状態にあり、ブレーキ部1
1は構造体側部材2と基盤側部材4との相対運動を制動
している。
Next, an example of the operation of the vibration isolator having the above configuration will be described. In a normal state in which vibration such as an earthquake does not occur, the magnetic viscous fluid MR interposed in the gap d between the protruding member 16 of the brake unit 11 and the opposing member 13 is in a high viscous state due to the magnetic field of the permanent magnet 18, Part 1
Numeral 1 brakes the relative movement between the structural member 2 and the base member 4.

【0034】上記のような状態では、たとえば、風等の
外力が構造体側部材2に設けられた住宅等に作用しても
構造体側部材2は、ブレーキ部11によってブレーキさ
れているので、基盤側部材4に対して運動せず、したが
って、風等の外力によって住宅が横滑りして破壊、損傷
することがない。
In the above-described state, for example, even when an external force such as wind acts on a house or the like provided on the structural member 2, the structural member 2 is braked by the brake portion 11. The house does not move with respect to the member 4, so that the house does not slide or break or be damaged by external force such as wind.

【0035】たとえば、地震が発生すると、地震計33
はこれを検出し、検出信号33sを制御回路31に出力
する。制御回路では、地震計33からの検出信号33s
を受けて、電源32からのコイル17への電流の供給を
開始させる。コイル17に電流が供給されると、永久磁
石18の磁界は、コイル17と突出部材16とで構成さ
れる電磁石の磁界によって打ち消される。これにより、
磁性粘性流体MRの見かけ上の粘性は、瞬時に低下し、
ブレーキ部11による制動が解除される。地震計33に
よる振動の検出からブレーキ部11の制動が解除される
までに要する時間は、たとえば、msのオーダであり、
制動が解除されるまでの応答性は非常に速い。
For example, when an earthquake occurs, the seismometer 33
Detects this, and outputs a detection signal 33s to the control circuit 31. In the control circuit, the detection signal 33s from the seismometer 33
In response, the supply of the current from the power supply 32 to the coil 17 is started. When a current is supplied to the coil 17, the magnetic field of the permanent magnet 18 is canceled by the magnetic field of the electromagnet constituted by the coil 17 and the projecting member 16. This allows
The apparent viscosity of the magnetic viscous fluid MR decreases instantaneously,
The braking by the brake unit 11 is released. The time required from the detection of vibration by the seismometer 33 to the release of the braking of the brake unit 11 is, for example, on the order of ms.
The response until braking is released is very fast.

【0036】ブレーキ部11の制動が解除されると、構
造体側部材2と基盤側部材4とは相対運動が可能とな
り、地震によって横揺れする基盤側部材4に対して構造
体側部材2は、略定位置に位置し、地震による横揺れが
構造体側部材2に設けられた住宅に直接に作用せず、免
振される。
When the braking of the brake portion 11 is released, the structure side member 2 and the base side member 4 can move relative to each other, and the structure side member 2 is substantially moved with respect to the base side member 4 which rolls due to the earthquake. It is located at a fixed position, and the roll due to the earthquake does not directly act on the house provided on the structural member 2, and is isolated.

【0037】制御回路31は、地震計33が振動を検出
している間は、電源32からコイルへの電流の供給を続
ける。地震が収束し、地震計33が振動を検出しなくな
ると、制御回路31は電源32からコイル17への電流
の供給を遮断する。コイル17への電流の供給が遮断さ
れると、ブレーキ部11による制動が再び行われる。
The control circuit 31 continues to supply current from the power supply 32 to the coil while the seismometer 33 detects vibration. When the earthquake converges and the seismometer 33 no longer detects vibration, the control circuit 31 cuts off the supply of current from the power supply 32 to the coil 17. When the supply of current to the coil 17 is interrupted, braking by the brake unit 11 is performed again.

【0038】一方、構造体側部材2に設けられた住宅は
免振されているが、地震によって住宅にも多少の揺れは
発生する。この揺れは、住宅に設けられた加速度計34
によって検出される。加速度計34によって検出された
住宅の加速度の検出信号34sは、制御回路31に入力
される。
On the other hand, the house provided on the structural member 2 is vibration-isolated, but the earthquake causes some shaking in the house. This shake is caused by the accelerometer 34 provided in the house.
Is detected by The detection signal 34 s of the acceleration of the house detected by the accelerometer 34 is input to the control circuit 31.

【0039】制御回路31では、地震計33が振動を検
出しなくなっても、単に、コイル17への電流の供給を
遮断してブレーキ部11による制動を行うだけでなく、
加速度計34の検出信号34sに基づいて、住宅の揺れ
を速やかに収束させるべく、ブレーキ部11の作動を制
御する。たとえば、加速度計34の検出信号34sから
検出される住宅の揺れの周期に合わせてブレーキ部11
をオン/オフ制御したり、あるいは、住宅の揺れが収束
するまでは、コイル17に供給する電流を調整して、ブ
レーキ部11の制動力を小さくし、ブレーキ部11のダ
ンピング効果を積極的に活用して住宅の揺れを速やかに
収束させる。
In the control circuit 31, even if the seismometer 33 stops detecting the vibration, the control circuit 31 does not merely cut off the supply of the current to the coil 17 to perform the braking by the brake unit 11, but also
Based on the detection signal 34s of the accelerometer 34, the operation of the brake unit 11 is controlled in order to quickly converge the shaking of the house. For example, the brake unit 11 is adjusted in accordance with the period of the shaking of the house detected from the detection signal 34 s of the accelerometer 34.
Until the swing of the house converges, the current supplied to the coil 17 is adjusted to reduce the braking force of the brake unit 11 and the damping effect of the brake unit 11 is positively increased. Utilize it to quickly converge the shaking of the house.

【0040】以上のように、本実施形態に係る免振装置
によれば、構造体側部材2と基盤側部材4との相対運動
を制動するブレーキ部11に磁性粘性流体MRを用い、
この磁性粘性流体MRの粘性を制御することで、ブレー
キ部11の応答性を非常に高いものとすることができ、
突発的に発生する地震に即座に対応できる。また、通常
時には、永久磁石18の磁界によって磁性粘性流体MR
を高い粘性状態にし、構造体側部材2と基盤側部材4と
の相対運動を制動しているため、風等の外力が住宅に作
用しても、住宅が横滑りして破壊、損傷するのを防ぐこ
とができる。また、通常時には、ブレーキ部11の制動
に電力を必要としないため、ランニングコストを抑制す
ることができる。
As described above, according to the vibration isolator according to the present embodiment, the magnetic viscous fluid MR is used for the brake portion 11 that brakes the relative movement between the structural member 2 and the base member 4.
By controlling the viscosity of the magnetic viscous fluid MR, the response of the brake unit 11 can be made extremely high,
Immediate response to sudden earthquakes. At normal times, the magnetic viscous fluid MR
Is in a highly viscous state, and the relative movement between the structure-side member 2 and the base-side member 4 is braked, so that even if external force such as wind acts on the house, the house is prevented from sliding and breaking or being damaged. be able to. In addition, at normal times, since no electric power is required for braking the brake unit 11, running costs can be suppressed.

【0041】また、本実施形態に係る免振装置によれ
ば、構造体側部材2と基盤側部材4との相対運動を拘束
するのに、油圧シリンダ等の駆動手段を必要としないた
め、構造を簡素化でき、低コスト化を実現できる。ま
た、本実施形態に係る免振装置によれば、構造体側部材
2と基盤側部材4とが相対運動することによってブレー
キ部11の突出部材16と対向部材13との位置関係が
変化しても、任意の位置でブレーキを作動させることが
でき、たとえば、ピン等の係合により機械的に制動する
ブレーキと比べて自由度が大きい。なお、上述した実施
形態では、地震計33と加速度計34とを備える構成と
したが、地震計33のみを備える構成とすることも可能
である。
Further, according to the vibration isolator according to the present embodiment, a driving means such as a hydraulic cylinder or the like is not required to restrain the relative movement between the structural member 2 and the base member 4, so that the structure is reduced. It can be simplified and cost can be reduced. Further, according to the vibration isolator according to the present embodiment, even if the relative position of the structure-side member 2 and the base-side member 4 causes the positional relationship between the protruding member 16 of the brake portion 11 and the facing member 13 to change. The brake can be operated at an arbitrary position, and has a greater degree of freedom than a brake mechanically braked by engagement of a pin or the like, for example. Note that, in the above-described embodiment, the configuration including the seismometer 33 and the accelerometer 34 is employed, but a configuration including only the seismometer 33 may be employed.

【0042】第2の実施形態 図5は、本発明の第2の実施形態に係る免振装置のブレ
ーキ部の構造を示す図であり、図6は本発明の第2の実
施形態に係る免振装置の制御系の構成図である。なお、
図5および図6では、第1の実施形態と同一の構成部分
については同一の符号で示している。また、ブレーキ部
の構造体側部材2と基盤側部材4に対する配置は第1の
実施形態と同様である。
Second Embodiment FIG. 5 is a view showing the structure of a brake unit of a vibration isolator according to a second embodiment of the present invention, and FIG. 6 is a diagram showing the structure of a brake according to a second embodiment of the present invention. FIG. 3 is a configuration diagram of a control system of the vibration device. In addition,
5 and 6, the same components as those in the first embodiment are denoted by the same reference numerals. The arrangement of the brake unit with respect to the structural member 2 and the base member 4 is the same as in the first embodiment.

【0043】本実施形態に係るブレーキ部101と第1
の実施形態に係るブレーキ部11との異なる点は、図5
に示すように、本実施形態に係るブレーキ部101は永
久磁石18を備えていない点である。ブレーキ部101
は、永久磁石18を備えていないため、コイル17に電
流を供給しない状態では、隙間dに介在する磁性粘性流
体MRは低粘性状態となっており、突出部材16と対向
部材13との相対運動を妨げるように作用しない。
The brake unit 101 according to the present embodiment and the first
5 is different from the brake unit 11 according to the embodiment of FIG.
As shown in FIG. 5, the brake unit 101 according to the present embodiment is not provided with the permanent magnet 18. Brake section 101
Does not include the permanent magnet 18, the magnetic viscous fluid MR interposed in the gap d is in a low viscosity state when no current is supplied to the coil 17, and the relative movement between the protruding member 16 and the opposing member 13 Do not act to hinder.

【0044】したがって、本実施形態に係る免振装置で
は、地震が発生していない通常時には、構造体側部材2
と基盤側部材4との相対運動が可能となっており、たと
えば、構造体側部材2に設置された住宅に風が作用する
と、構造体側部材2は基盤側部材4に対して移動する可
能性がある。
Therefore, in the vibration isolator according to this embodiment, the structure side member 2 is normally used when no earthquake occurs.
And the base member 4 can move relative to each other. For example, when wind acts on a house installed on the structure member 2, the structure member 2 may move with respect to the base member 4. is there.

【0045】図6に示すように、本実施形態に係る免振
装置の制御系は、コイル17に電流を供給する電源32
と、電源32からのコイル17への電流の供給/遮断を
制御する制御回路131と、風力計40と、操作スイッ
チ41とを備える。
As shown in FIG. 6, the control system of the vibration isolator according to this embodiment includes a power supply 32 for supplying a current to the coil 17.
And a control circuit 131 for controlling supply / interruption of a current from the power supply 32 to the coil 17, an anemometer 40, and an operation switch 41.

【0046】風力計40は、構造体側部材2に設置され
た住宅に作用する外力としての風力を検出し、この検出
信号40sを制御回路131に出力する。この風力計4
0は、たとえば、住宅の一部に設置される。
The anemometer 40 detects the wind force acting as an external force acting on the house installed on the structural member 2 and outputs a detection signal 40 s to the control circuit 131. This anemometer 4
0 is installed in a part of a house, for example.

【0047】操作スイッチ41は、たとえば、住宅の居
住者が操作可能なスイッチであり、操作スイッチ41を
居住者が操作することで操作信号41sが制御回路13
1に出力される。操作スイッチ41は、住宅内に設置さ
れる。
The operation switch 41 is, for example, a switch that can be operated by a resident of the house. When the occupant operates the operation switch 41, the operation signal 41 s is transmitted to the control circuit 13.
1 is output. The operation switch 41 is installed in the house.

【0048】制御回路131は、風力計40の検出信号
40sまたは操作スイッチ41の操作信号41sに基づ
いて、電源32からのコイル17への電流の供給/遮断
を制御し、磁性粘性流体MRの粘性を制御する。すなわ
ち、制御回路131は、コイル17への電流の供給によ
って、磁性粘性流体MRの見かけ上の粘性を上昇させ、
コイル17への電流の遮断によって、磁性粘性流体MR
の見かけ上の粘性を低下させる。
The control circuit 131 controls the supply / interruption of the current from the power supply 32 to the coil 17 based on the detection signal 40 s of the anemometer 40 or the operation signal 41 s of the operation switch 41, and controls the viscosity of the magnetic viscous fluid MR. Control. That is, the control circuit 131 increases the apparent viscosity of the magnetic viscous fluid MR by supplying a current to the coil 17,
By interrupting the current to the coil 17, the magnetic viscous fluid MR
Reduces the apparent viscosity of

【0049】具体的には、制御回路131は、風力計4
0によって検出された風力が一定の大きさ以上の場合に
は、コイル17への電流の供給を行い、風力が一定の値
以下になった場合には、コイル17への電流の供給を遮
断する。また、制御回路131は、操作スイッチ41の
操作信号41sが入力されるとコイル17への電流の供
給を行い、操作信号41sの入力が停止すると、コイル
17への電流の供給を遮断する。
Specifically, the control circuit 131 controls the anemometer 4
When the wind power detected by 0 is equal to or greater than a certain magnitude, the current is supplied to the coil 17, and when the wind power becomes equal to or less than a certain value, the current supply to the coil 17 is cut off. . The control circuit 131 supplies a current to the coil 17 when the operation signal 41s of the operation switch 41 is input, and shuts off the current supply to the coil 17 when the input of the operation signal 41s stops.

【0050】次に、本実施形態に係る免振装置の動作の
一例について説明する。地震等の振動が発生していない
通常状態においては、ブレーキ部101の突出部材16
と対向部材13との隙間dに介在する磁性粘性流体MR
は低粘性状態にあり、ブレーキ部101は構造体側部材
2と基盤側部材4との相対運動を制動していない。
Next, an example of the operation of the vibration isolator according to this embodiment will be described. In a normal state in which vibration such as an earthquake does not occur, the protruding member 16
Magnetic viscous fluid MR interposed in the gap d between
Is in a low-viscosity state, and the brake unit 101 does not brake the relative movement between the structural member 2 and the base member 4.

【0051】上記のような状態では、たとえば、風等の
外力が構造体側部材2に設けられた住宅に作用すると構
造体側部材2は、ブレーキ部101によってブレーキさ
れていないので、基盤側部材4に対して運動可能となっ
ており、ブレーキ部101を作動させないと、風等の外
力によって住宅が横滑りして破壊、損傷する可能性があ
る。
In the state described above, for example, when an external force such as wind acts on the house provided on the structural member 2, the structural member 2 is not braked by the brake portion 101, so If the brake unit 101 is not actuated, the house may slide and be destroyed or damaged by an external force such as wind.

【0052】たとえば、地震が発生すると、磁性粘性流
体MRの粘性は低い状態にあるので、構造体側部材2と
基盤側部材4とは相対運動し、地震によって横揺れする
基盤側部材4に対して構造体側部材2は、略定位置に位
置し、地震による横揺れが構造体側部材2に設けられた
住宅に直接に作用せず、免振される。
For example, when an earthquake occurs, the viscosity of the magnetic viscous fluid MR is in a low state, so that the structure-side member 2 and the base-side member 4 move relative to each other, and the base-side member 4 that rolls due to the earthquake. The structure-side member 2 is located at a substantially fixed position, and the roll due to the earthquake does not directly act on the house provided on the structure-side member 2, and the vibration is isolated.

【0053】たとえば、地震が発生していない状態で、
強風が吹くと、風力計40はその風力を検出し、制御回
路131に出力する。制御回路131は、一定の値以上
であれば、電源32からコイル17へ電流を供給する。
コイル17に電流が供給されると、磁性粘性流体MRに
磁界が印加され、磁性粘性流体MRの見かけ上の粘性
は、瞬時に上昇し、ブレーキ部101による制動が行わ
れる。風力計40による強風の検出からブレーキ部10
1の制動が開始されるまでに要する時間は、たとえば、
msのオーダであり、応答性は非常に速い。
For example, when no earthquake has occurred,
When a strong wind blows, the anemometer 40 detects the wind force and outputs the wind force to the control circuit 131. The control circuit 131 supplies a current from the power supply 32 to the coil 17 if the value is equal to or more than a certain value.
When a current is supplied to the coil 17, a magnetic field is applied to the magnetic viscous fluid MR, and the apparent viscosity of the magnetic viscous fluid MR instantaneously increases, and braking by the brake unit 101 is performed. Detection of strong wind by anemometer 40
The time required until the braking of No. 1 starts is, for example,
ms, and the response is very fast.

【0054】ブレーキ部101の制動が開始されると、
構造体側部材2と基盤側部材4の運動は制動され、住宅
の風による揺れは瞬時に抑制される。
When the braking of the brake unit 101 is started,
The movement of the structure-side member 2 and the base-side member 4 is damped, and the sway of the house due to the wind is instantaneously suppressed.

【0055】また、たとえば、住宅の居住者は、住宅の
強風による揺れを感知すると、操作スイッチ41を操作
する。これにより、制御回路131は、電源32からコ
イル17へ電流を供給し、ブレーキ部101の制動によ
って住宅の風による揺れは瞬時に抑制される。
For example, when the resident of the house senses the shaking of the house due to the strong wind, he operates the operation switch 41. As a result, the control circuit 131 supplies a current from the power supply 32 to the coil 17, and the swing of the house due to the wind is instantaneously suppressed by the braking of the brake unit 101.

【0056】以上のように、本実施形態によれば、構造
体側部材2と基盤側部材4との相対運動を制動するブレ
ーキ部101に磁性粘性流体MRを用い、この磁性粘性
流体MRの粘性を制御することで、ブレーキ部101の
応答性を非常に高いものとすることができ、突然発生す
る風等の外力に即座に対応でき、強風等の外力による住
宅が横滑りして破壊、損傷するのを防ぐことができる。
さらに、本実施形態に係る免振装置によれば、構造体側
部材2と基盤側部材4との相対運動を拘束するのに、油
圧シリンダ等の駆動手段を必要としないため、構造を簡
素化でき、低コスト化を実現できる。
As described above, according to the present embodiment, the magnetic viscous fluid MR is used for the brake unit 101 that brakes the relative movement between the structural member 2 and the base member 4, and the viscosity of the magnetic viscous fluid MR is reduced. By controlling, the responsiveness of the brake unit 101 can be made very high, and it is possible to immediately respond to external force such as a suddenly generated wind. Can be prevented.
Furthermore, according to the vibration isolator according to the present embodiment, since a driving means such as a hydraulic cylinder is not required to restrict the relative movement between the structure-side member 2 and the base-side member 4, the structure can be simplified. And cost reduction can be realized.

【0057】以上、種々の実施形態を挙げて本発明の免
振装置を説明したが、本発明は上述した実施形態に限定
されない。上述した実施形態では、構造体側部材2と基
盤側部材4との間に作用させる粘性力として磁性粘性流
体MRの粘性を用いる場合について説明したが、磁性粘
性流体MR以外にも、たとえば、電気粘性流体等の粘性
を制御可能な流体あれば使用することができる。
Although the vibration isolator of the present invention has been described with reference to various embodiments, the present invention is not limited to the above embodiments. In the above-described embodiment, the case where the viscosity of the magnetic viscous fluid MR is used as the viscous force acting between the structure-side member 2 and the base-side member 4 has been described. Any fluid such as a fluid whose viscosity can be controlled can be used.

【0058】[0058]

【発明の効果】本発明によれば、免振装置のブレーキ装
置の構造を比較的簡素化でき、低コスト化が可能とな
り、応答性を向上させることができる。
According to the present invention, the structure of the brake device of the vibration isolator can be relatively simplified, the cost can be reduced, and the responsiveness can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る免振装置の概略構成
を示す構成図であり、(a)は側面図であり、(b)は
平面図である。
FIG. 1 is a configuration diagram illustrating a schematic configuration of a vibration isolation device according to an embodiment of the present invention, where (a) is a side view and (b) is a plan view.

【図2】支持機構部6の概略的な構造を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a schematic structure of a support mechanism 6;

【図3】ブレーキ部11の構造を示す図であって、
(a)は断面図であり、(b)は(a)の矢印D方向か
ら見た平面図である。
FIG. 3 is a view showing a structure of a brake unit 11,
(A) is a cross-sectional view, and (b) is a plan view seen from the direction of arrow D in (a).

【図4】免振装置の制御系の構成を示す構成図である。FIG. 4 is a configuration diagram illustrating a configuration of a control system of the vibration isolation device.

【図5】本発明の第2の実施形態に係る免振装置のブレ
ーキ部の構造を示す図である。
FIG. 5 is a diagram illustrating a structure of a brake unit of a vibration isolation device according to a second embodiment of the present invention.

【図6】本発明の第2の実施形態に係る免振装置の制御
系の構成を示す構成図である。
FIG. 6 is a configuration diagram illustrating a configuration of a control system of a vibration isolation device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2…構造体側部材 4…基盤側部材 6…支持機構部 11…ブレーキ部 13…対向部材 15…ダイアフラム 16…突出部材 17…コイル 18…永久磁石 31…制御回路 32…電源 33…地震計 34…加速度計 40…風力計 41…操作スイッチ MR…磁性粘性流体 DESCRIPTION OF SYMBOLS 2 ... Structure side member 4 ... Base member 6 ... Support mechanism part 11 ... Brake part 13 ... Opposing member 15 ... Diaphragm 16 ... Projection member 17 ... Coil 18 ... Permanent magnet 31 ... Control circuit 32 ... Power supply 33 ... Seismograph 34 ... Accelerometer 40 ... Anemometer 41 ... Operation switch MR ... Magnetic viscous fluid

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) E04B 1/36 E04B 1/36 L E04H 9/02 331 E04H 9/02 331Z F16F 9/53 F16F 9/53 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) E04B 1/36 E04B 1/36 L E04H 9/02 331 E04H 9/02 331Z F16F 9/53 F16F 9/53

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基盤と構造体との間に設けられ、当該基盤
と構造体との間の所定の平面に沿った相対運動を許容す
る支持手段と、 前記基盤と構造体との間に粘性力を作用させて当該基盤
と構造体との相対運動を制動可能な制動手段と、 前記粘性力を制御して前記制動手段を作動させる制御手
段とを有する免振装置。
A supporting means provided between the base and the structure to allow relative movement along a predetermined plane between the base and the structure; and a viscous material between the base and the structure. An anti-vibration device comprising: a braking unit capable of applying a force to brake the relative movement between the base and the structure; and a control unit configured to control the viscous force to operate the braking unit.
【請求項2】前記基盤側に作用する振動を検出する基盤
側振動検出手段を有し、 前記制動手段は、前記基盤側に前記振動が作用しない状
態において前記相対運動を前記粘性力によって制動し、 前記制御手段は、前記基盤側振動検出手段による前記基
盤側への振動の検出に応じて、前記粘性力を低下させて
前記制動手段による制動を解除させる請求項1に記載の
免振装置。
2. A base-side vibration detecting means for detecting vibration acting on the base side, wherein the braking means brakes the relative movement by the viscous force in a state where the vibration does not act on the base side. 2. The vibration isolator according to claim 1, wherein the control unit reduces the viscous force and releases the braking by the braking unit in response to the detection of the vibration toward the substrate by the substrate-side vibration detecting unit.
【請求項3】前記制動手段は、 前記構造体側に設けられ、前記基盤側に対向する第1の
対向面を備えた第1の対向部と、 前記基盤側に設けられ、前記第1の対向面に所定の隙間
をもって対向する第2の対向面を備えた第2の対向部
と、 前記第1の対向面と前記第2の対向面との隙間に介在す
る磁性粘性流体と、 前記磁性粘性流体に一定の磁界を印加する永久磁石と、 前記永久磁石の磁界を打ち消す向きに磁界を発生可能な
電磁石と、 前記電磁石に電流を供給する電源とを有する請求項2に
記載の免振装置。
3. A first opposing portion provided on the structure side and having a first opposing surface opposing the base side, the braking means being provided on the base side, the first opposing portion being provided on the base side. A second opposing portion having a second opposing surface opposing the surface with a predetermined gap; a magnetic viscous fluid interposed in a gap between the first opposing surface and the second opposing surface; The vibration isolator according to claim 2, comprising: a permanent magnet that applies a constant magnetic field to the fluid; an electromagnet that can generate a magnetic field in a direction to cancel the magnetic field of the permanent magnet; and a power supply that supplies a current to the electromagnet.
【請求項4】前記第2の対向部は、底面が前記第2の対
向面を構成する前記磁性粘性流体を収容する収容凹部を
備え、 前記第1の対向部は、頂面が前記第1の対向面を構成す
る前記収容凹部に対して突出する突出部を備え、 前記永久磁石および電磁石は、前記突出部に設けられて
いる請求項3に記載の免振装置
4. The second opposing portion includes an accommodation recess for accommodating the magnetic viscous fluid whose bottom surface constitutes the second opposing surface, and a top surface of the first opposing portion has the first surface. 4. The vibration isolator according to claim 3, further comprising: a protruding portion that protrudes with respect to the housing recess that forms the facing surface of the electromagnet;
【請求項5】前記構造体側の振動を検出する構造体側振
動検出手段をさらに有し、 前記制御手段は、前記構造体側振動検出手段および前記
基盤側振動検出手段の検出信号に基づいて、前記制動手
段の作動を制御する請求項2〜4のいずれかに記載の免
振装置。
5. A structure-side vibration detecting means for detecting vibration on the structure side, wherein the control means controls the braking based on detection signals from the structure-side vibration detecting means and the base-side vibration detecting means. The vibration isolator according to any one of claims 2 to 4, which controls an operation of the means.
【請求項6】前記構造体側に作用する外力を検出する外
力検出手段を有し、 前記制動手段は、前記構造体側に前記外力が作用しない
状態において前記相対運動の制動を解除しており、 前記制御手段は、前記外力検出手段による外力の検出に
応じて、前記制動手段の粘性力を上昇させて前記相対運
動を制動させる請求項1に記載の免振装置。
6. An external force detecting means for detecting an external force acting on the structure side, wherein the braking means releases the braking of the relative motion in a state where the external force does not act on the structure side. 2. The vibration isolation device according to claim 1, wherein the control unit increases the viscous force of the braking unit to brake the relative movement in accordance with the detection of the external force by the external force detection unit. 3.
【請求項7】前記制動手段は、 前記構造体側に設けられ、前記基盤側に対向する第1の
対向面を備えた第1の対向部と、 前記基盤側に設けられ、前記第1の対向面に所定の隙間
をもって対向する第2の対向面を備えた第2の対向部
と、 前記第1の対向面と前記第2の対向面との隙間に介在す
る磁性粘性流体と、 前記磁性粘性流体に磁界を印加可能な電磁石と、 前記電磁石に電流を供給する電源とを有する請求項6に
記載の免振装置。
7. A first opposing portion provided on the structure side and having a first opposing surface opposing the base side, the braking means being provided on the base side, the first opposing portion being provided on the base side. A second opposing portion having a second opposing surface opposing the surface with a predetermined gap; a magnetic viscous fluid interposed in a gap between the first opposing surface and the second opposing surface; The vibration isolator according to claim 6, further comprising: an electromagnet capable of applying a magnetic field to the fluid; and a power supply configured to supply a current to the electromagnet.
【請求項8】前記第2の対向部は、底面が前記第2の対
向面を構成する前記磁性粘性流体を収容する収容凹部を
備え、 前記第1の対向部は、頂面が前記第1の対向面を構成す
る前記収容凹部に対して突出する突出部を備え、 前記電磁石は、前記突出部に設けられている請求項7に
記載の免振装置
8. The second opposing portion includes an accommodation recess for accommodating the magnetic viscous fluid whose bottom surface constitutes the second opposing surface, and a top surface of the first opposing portion has the first surface. The vibration isolator according to claim 7, further comprising: a protruding portion that protrudes with respect to the housing concave portion that forms the facing surface of the electromagnet;
【請求項9】前記相対運動を許容しつつ前記第2の対向
部の収容凹部と前記第1の対向部の突出部との間をシー
ルするシーリング手段を有する請求項4または8に記載
の免振装置。
9. The seal according to claim 4, further comprising sealing means for sealing between the housing recess of the second facing portion and the projecting portion of the first facing portion while allowing the relative movement. Shaking device.
【請求項10】前記シーリング手段は、ダイアフラムで
ある請求項9に記載の免振装置。
10. The vibration isolator according to claim 9, wherein said sealing means is a diaphragm.
【請求項11】前記制御手段は、前記基盤側振動検出手
段による振動の検出または前記外力検出手段による外力
の検出に応じて前記電源による前記電磁石への電流の供
給および遮断を制御する請求項3または7に記載の免振
装置。
11. The control unit controls supply and cutoff of current to the electromagnet by the power supply in accordance with detection of vibration by the base-side vibration detection unit or detection of an external force by the external force detection unit. Or the vibration isolator according to 7.
JP2000079369A 2000-03-16 2000-03-16 Base isolation device Withdrawn JP2001263414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079369A JP2001263414A (en) 2000-03-16 2000-03-16 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079369A JP2001263414A (en) 2000-03-16 2000-03-16 Base isolation device

Publications (1)

Publication Number Publication Date
JP2001263414A true JP2001263414A (en) 2001-09-26

Family

ID=18596624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079369A Withdrawn JP2001263414A (en) 2000-03-16 2000-03-16 Base isolation device

Country Status (1)

Country Link
JP (1) JP2001263414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002421A (en) * 2017-06-12 2019-01-10 清水建設株式会社 Wind lock mechanism
CN112343196A (en) * 2020-10-10 2021-02-09 广东省建筑设计研究院有限公司 Multistage variable damping damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019002421A (en) * 2017-06-12 2019-01-10 清水建設株式会社 Wind lock mechanism
CN112343196A (en) * 2020-10-10 2021-02-09 广东省建筑设计研究院有限公司 Multistage variable damping damper

Similar Documents

Publication Publication Date Title
US5285995A (en) Optical table active leveling and vibration cancellation system
KR101860922B1 (en) Power Distribution Board With Seismic Isolation
JP2000249185A (en) Active type vibration resistant device
JPS5997341A (en) Device for restraining vibration of structural body
JP2001263414A (en) Base isolation device
JP2001329508A (en) Mechanism for taking measure to sag change for diagonal cable damping device
JPH11280841A (en) Damping actuator
JPH01207574A (en) Vibrationproof device for construction
JP2006077395A (en) Supporting device for bridge
JP2711298B2 (en) Vibration suppression device for structures
JP3042763B2 (en) Anti-vibration device
JPH06241276A (en) Damping device of tower
JPH10252820A (en) Vibration isolator
JPS60123675A (en) Vibration controller of structure
KR100335072B1 (en) Restrained Stroke Active Tuned Mass Damper Device in Structures
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JP3254919B2 (en) Three-dimensional seismic isolation device
JP2966146B2 (en) Vibration suppressor with automatic control mechanism
JPH06294444A (en) Vibration resisting device
JP2002235795A (en) Vibration suppressing device
JP2626909B2 (en) Seismic isolation, anti-vibration method
JP3250054B2 (en) Damping device
JPH0444062B2 (en)
JPH0777240A (en) Vibration eliminator
JPH09177881A (en) Aseismic base isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090226