JP3800339B2 - Seismic isolation structure of building - Google Patents

Seismic isolation structure of building Download PDF

Info

Publication number
JP3800339B2
JP3800339B2 JP2003413923A JP2003413923A JP3800339B2 JP 3800339 B2 JP3800339 B2 JP 3800339B2 JP 2003413923 A JP2003413923 A JP 2003413923A JP 2003413923 A JP2003413923 A JP 2003413923A JP 3800339 B2 JP3800339 B2 JP 3800339B2
Authority
JP
Japan
Prior art keywords
building
seismic isolation
damper
base
gravel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413923A
Other languages
Japanese (ja)
Other versions
JP2005139876A (en
Inventor
春三 音瀬
Original Assignee
春三 音瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 春三 音瀬 filed Critical 春三 音瀬
Priority to JP2003413923A priority Critical patent/JP3800339B2/en
Publication of JP2005139876A publication Critical patent/JP2005139876A/en
Application granted granted Critical
Publication of JP3800339B2 publication Critical patent/JP3800339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、玉砂利の転がり支承によって、地震時における建築物の振動を緩和する建築物の免震構造に関する。  The present invention relates to a seismic isolation structure for a building that reduces vibrations of the building during an earthquake by rolling support of boulder gravel.

従来の免震技術では、地震に対する建築物の不動化(免震化)を図るためのアイソレーター(振動遮断装置)として、建築物の基礎とその下部に設けた支持部(基盤)の間に、鋼板とゴム板を交互に積層した構成の積層ゴム支承、ポリフィルム等のすべり部材を用いたすべり支承、鋼球等の転がり機能を用いる転がり支承、ゴム等の弾性部材による弾性物支承等の手段(技術)を用いているが、更に、減衰と復元装置としてのダンパーを併用するものもある。  In conventional seismic isolation technology, as an isolator (vibration isolation device) for immobilizing the building against earthquakes (vibration isolation device), between the foundation of the building and the support part (base) provided at the bottom, Laminated rubber bearings constructed by alternately laminating steel plates and rubber plates, sliding bearings using sliding members such as polyfilm, rolling bearings using rolling functions such as steel balls, elastic material bearings using elastic members such as rubber (Technology) is used, but there is also one that uses a damper as a damping and restoring device.

本発明に関連する転がり支承には、玉砂利や鋼球(スチールボール)を用いて実施する下記の文献がある。  The rolling bearings related to the present invention include the following documents that are implemented using ball gravel and steel balls (steel balls).

実用新案登録第3036572号公報    Utility Model Registration No. 3036572 特開平11−303456号公報    Japanese Patent Laid-Open No. 11-303456 特公平5−14062号公報    Japanese Patent Publication No. 5-14062 特許第3172765号公報    Japanese Patent No. 3172765

前述の従来技術のうち、特許文献1においては、明細書及び図から玉砂利は多量且つ多層に敷設されていると解釈ができる。しかし、多量且つ多層の玉砂利では、地震に際し、転動が不能となるので、免震性は殆ど成立しない。  Among the above-mentioned prior arts, Patent Document 1 can be interpreted from the specification and drawings that the gravel is laid in a large amount and in multiple layers. However, with a large amount of multi-layered gravel, rolling is impossible in the event of an earthquake, so seismic isolation is hardly established.

また、免震性を鋼球による転がり支承に求める特許文献2,3及び4の免震構造は、転がり機能が高く、免震性にも優れるが、反面、減衰や復元のためのダンパーを必要とし、また、強風時、建築物が風圧により揺動する欠点がある。そのため、風の日は居住者を不安にすることとなる。また、前記文献の中には、電力を用いて免震性を獲得しているものもあるが、これは停電や故障があれば、機能しないものとなる。  In addition, the seismic isolation structures in Patent Documents 2, 3 and 4 that require seismic isolation for rolling bearings with steel balls have a high rolling function and excellent seismic isolation, but on the other hand, a damper for damping and restoration is required. In addition, there is a drawback that the building swings due to wind pressure in strong winds. For this reason, the windy day makes the residents uneasy. In addition, some of the above documents have acquired seismic isolation using electric power, but this does not function if there is a power outage or failure.

前述の転がり支承により免震性の獲得を試みる本発明は、その素材として、転がり機能の高い鋼球(スチールボール)やすべり機能の高いポリフィルム等を支承とはせず、敢て転がり機能の劣る玉砂利に活路を求めることとした。即ち、略等粒の玉砂利を一層(重なりのない状態)にして、ベタ基礎(建物を載置する立ち上がりの下部が一枚板となっている基礎)と基盤(ベタ基礎を載せ支える一枚盤)の間に敷設・介在させ、免震性の確立と風圧による建築物の揺動防止を図ることとした。これにより、弱震には対応せず、中・強震の場合にのみ玉砂利が転動し、免震性が成立する。また、本発明では、玉砂利の転がり機能の劣ることが長所となり、強風時の風圧にも耐え、建築物の揺動には至らない。  The present invention, which attempts to acquire seismic isolation by the rolling bearing described above, does not use a steel ball (steel ball) with a high rolling function or a poly film with a high sliding function as a material, and has a rolling function. We decided to seek a way to inferior jade gravel. In other words, with a roughly equal grain of gravel (with no overlap), a solid foundation (a foundation on which the lower part of the building on which the building is placed is a single plate) and a base (a single board that supports the solid foundation) ) And laid between them to establish seismic isolation and prevent the building from swinging due to wind pressure. As a result, seismic gravel rolls only in the case of medium and strong earthquakes and does not deal with weak earthquakes, and seismic isolation is established. Moreover, in this invention, it is an advantage that the rolling function of the gravel is inferior, it can endure the wind pressure at the time of a strong wind, and does not lead to rocking | fluctuation of a building.

しかし、一層に敷設・介在させた玉砂利の機能だけでは復元能力が劣り、地震後建築物の位置にずれが生じる場合もある。この防止のために、本発明では、ベタ基礎と基盤とに係わらせてダンパーを所要数設置する。そして、復元力は,ダンパーに配備した弾性部材の弾力(伸縮力)に求め、地震による建築物のずれを軽微なものにする。  However, the function of the shingle gravel laid and interposed in one layer is inferior in restoring ability, and the position of the building may be shifted after the earthquake. In order to prevent this, in the present invention, a required number of dampers are installed in relation to the solid foundation and the base. The restoring force is obtained from the elasticity (stretching force) of the elastic member provided in the damper, and the displacement of the building due to the earthquake is minimized.

本発明は、その免震機能を、前述のように一層に敷きつめた玉砂利の転がり支承とダンパーの機能に委ね、意図的に転がり機能が劣る方式のものとしているので、低震度の地震には免震機能は働かないものの、中・強震度の地震の免震や強風による建築物の揺動には有効に機能する利点がある。  In the present invention, the seismic isolation function is entrusted to the rolling support of the gravel layer and the damper function that are further spread as described above, and the rolling function is intentionally inferior. Although the seismic function does not work, it has the advantage of functioning effectively for seismic isolation of medium and strong earthquakes and for rocking buildings due to strong winds.

また、本発明における復元力は、中・強震度の地震動とダンパーの弾力(伸縮力)の相乗効果によって形成されるので、地震に際し、建築物が大きくずれることはない。
また、ダンパーの内枠と外枠の間には、放射状に弾性部材(コイルばね)を配設しているので、あらゆる方向の震動(揺動)に対応した復元力が得られる利点がある。
In addition, since the restoring force in the present invention is formed by a synergistic effect of medium and strong seismic intensity and the elasticity (stretching force) of the damper, the building will not be greatly displaced in the event of an earthquake.
Further, since elastic members (coil springs) are arranged radially between the inner frame and the outer frame of the damper, there is an advantage that a restoring force corresponding to vibrations (swings) in all directions can be obtained.

本発明は、その構成が簡易であり、また作業工程もシンプルである。その上、材料も安価なので、建設は低コストとなる利点がある。また、本発明が電力を必要としない機構であることも、大きな利点である。従って、本発明では故障や停電等による機能不能等の問題は生じない。  The configuration of the present invention is simple, and the work process is also simple. In addition, since the materials are inexpensive, construction has the advantage of low cost. Moreover, it is a big advantage that this invention is a mechanism which does not require electric power. Therefore, the present invention does not cause problems such as malfunction due to failure or power failure.

図1と図2は、本発明の構成の概要を示す図である。
建築物の建設箇所を掘削して成る凹部の底にクラッシャー9を形成し、その上部に、コンクリートによる基盤6を形設する。基盤6には鉄筋が内蔵されているが、図に記載はしていない。基盤6の厚さは、200mm程度とし、その上面は水平且つ平滑に構成する。また、基盤6の所要箇所には、後述のダンパー2a設置の軸となる支軸7を立設するが、その下部は、基盤6,クラッシャー9及び地中に埋め込まれている。支軸7はその外径を略200mm(コイルばね6個を用いた場合)とする鋼材の円柱とし、一般木造建築物では基盤6の10m当り1個程度の割合で立設する。また、支軸7の突出部分(高さ)は、ベタ基礎1のペース部分の厚さより若干大きくする。
1 and 2 are diagrams showing an outline of the configuration of the present invention.
A crusher 9 is formed on the bottom of a recess formed by excavating a construction site of a building, and a concrete base 6 is formed on the crusher 9. The base 6 has a built-in reinforcing bar, which is not shown in the figure. The thickness of the base 6 is about 200 mm, and its upper surface is configured to be horizontal and smooth. In addition, a support shaft 7 that serves as a shaft for installing a damper 2a, which will be described later, is erected at a required portion of the base 6, but the lower part is embedded in the base 6, the crusher 9, and the ground. The support shaft 7 is a steel cylinder having an outer diameter of approximately 200 mm (when six coil springs are used), and is erected at a rate of about one per 10 m 2 of the base 6 in a general wooden building. Further, the protruding portion (height) of the support shaft 7 is slightly larger than the thickness of the pace portion of the solid base 1.

ダンパー2aは、地震に際し建築物の振動の減衰と復元に関与するものであるが、その中心部には、前述の支軸7に嵌着される内枠3aを設け、その外側に外枠4aを配し、その間に弾性部材として6個のコイルばね5を均等角度で放射状に配設し、図示は省略しているが、その端部は、内枠3aと外枠4aに溶接又はねじ止め等で固着する。しかし、コイルばね5の個数は、上記に限らず、他の個数でもよい。  The damper 2a is involved in the attenuation and restoration of the vibration of the building in the event of an earthquake. The inner frame 3a fitted on the support shaft 7 is provided at the center thereof, and the outer frame 4a is provided outside thereof. The six coil springs 5 are arranged radially at equal angles as elastic members in the meantime and are not shown in the figure, but their ends are welded or screwed to the inner frame 3a and the outer frame 4a. It sticks with etc. However, the number of coil springs 5 is not limited to the above, and other numbers may be used.

内枠3は、前記の支軸7に嵌着ができる内径のものとし、また、外枠4aの径は概ね800〜900mmとする。内枠3aと外枠4aは、共に中空の円柱状の形状とし、外枠4aは、その高さをベタ基礎1のベース部分の厚さより若干大きなものにする。  The inner frame 3 has an inner diameter that can be fitted to the support shaft 7, and the outer frame 4a has a diameter of approximately 800 to 900 mm. Both the inner frame 3a and the outer frame 4a have a hollow cylindrical shape, and the height of the outer frame 4a is slightly larger than the thickness of the base portion of the solid base 1.

次に、建築物を載置するベタ基礎1の形成について説明する。
基盤6の上面に、略等粒の玉砂利8を重なりのない一層にして敷設する。玉砂利8は、その機能性から、20〜30mmの範囲の径を適当とし、その範囲から略等粒状のものを選び用いる。
Next, formation of the solid foundation 1 on which the building is placed will be described.
On the upper surface of the base 6, approximately equal grains of gravel 8 are laid in a non-overlapping layer. The gravel 8 has an appropriate diameter in the range of 20 to 30 mm in view of its functionality, and selects and uses a substantially equiparticulate one from that range.

玉砂利8の敷設後、ダンパー2aの内枠3aを支軸7に嵌着してダンパー2aを所要位置に設置する。この際、ねじやピン等の回動防止部材13や溶接等により、内枠3aと支軸7を固着する。次に、ダンパー2a部分を刳り貫いた鉄板12を玉砂利8上に溶接等により間隙なく敷きつめる。鉄板12は1mm以内の厚さでよいが、敷設後、ベタ基礎1と一体化するため、その上面に突起を取りつけることがのぞましい。なお、前記鉄板12に代えて、ベニア板(厚さ3mm程度)等を用いることも可能である。  After laying the ball gravel 8, the inner frame 3a of the damper 2a is fitted to the support shaft 7, and the damper 2a is installed at a required position. At this time, the inner frame 3a and the support shaft 7 are fixed by a rotation preventing member 13 such as a screw or a pin, welding or the like. Next, the iron plate 12 that has pierced the damper 2a portion is laid on the gravel 8 without any gaps by welding or the like. The iron plate 12 may have a thickness of 1 mm or less, but it is preferable to attach a protrusion on the upper surface of the iron plate 12 so as to be integrated with the solid base 1 after laying. Instead of the iron plate 12, a veneer plate (thickness of about 3 mm) or the like can be used.

鉄板12の敷設後(図では示していないが)この上にベタ基礎1を形成する型枠と2段となる鉄筋等を組み、ここにコンクリートを打設してベタ基礎1のベース部分を形成すると共に、その上部には、建築物の土台を載置する立ち上がり11を、鉄筋コンクリートで形成する。  After laying the iron plate 12 (not shown in the figure), the formwork that forms the solid foundation 1 and the two-level reinforcing bars are assembled on this, and concrete is placed here to form the base portion of the solid foundation 1 At the same time, a rising portion 11 on which the foundation of the building is placed is formed of reinforced concrete.

次に、本発明の機能(作用)について説明する。
本発明は、免震構造を転がり支承に求め、その転がり部材として、敢て転がり機能の低い玉砂利を用いて、激しく速い地震動を揺れ幅の小さなゆっくりした揺れに代え、建築物の免震化を図っている。従って、本発明は、揺れの小さな弱震等には対応せず、中震以上の地震に対応するよう意図している。
Next, the function (action) of the present invention will be described.
The present invention seeks a seismic isolation structure for rolling bearings, and uses gravel with a low rolling function as its rolling member, replacing intense and rapid seismic motion with slow swinging with a small swing width, and seismic isolation of the building. I am trying. Accordingly, the present invention is not intended to deal with weak earthquakes or the like with small shaking, but is intended to deal with earthquakes that are greater than the middle earthquake.

また、本発明は、転がり機能の低い玉砂利を用いることによって、免震のみならず、免震構造がもたらす強風による建築物の揺動に対しても配慮している。即ち、本発明は、玉砂利の静止まさつ力の範囲で強風に対蒔するので、風速40m/秒の強風にも耐えることが可能である。  In addition, the present invention takes into consideration not only seismic isolation but also swinging of the building due to strong winds caused by the seismic isolation structure by using gravel with a low rolling function. In other words, the present invention is able to withstand strong winds with a wind speed of 40 m / sec because it faces strong winds within the range of static grazing force of the gravel.

しかし、玉砂利による免震構造だけでは、大きな地震や強風によっては、建築物の位置にずれが生じることもある。その対策として、玉砂利の転がりまさつ力に見合う(対蒔する)弾力(伸縮力)をもつコイルばね5を備えたダンパー2aを、図2で示すようにベタ基礎1と基盤6両者に係わらせて設置する。  However, with the seismic isolation structure using boulders, the position of the building may be shifted due to a large earthquake or strong wind. As a countermeasure, a damper 2a provided with a coil spring 5 having elasticity (stretching force) commensurate with (confronting) the rolling grazing force of the gravel is engaged with both the solid base 1 and the base 6 as shown in FIG. Install.

最後に、本発明の確立に係わる基礎数値を示す。
本発明では、玉砂利8の静止まさつ力(平均値)が、ベタ基礎1も含む建築物重量の略4分の1であることを実験から得、これを本に免震構造を構築している。また、強風による建築物の揺動についても、風速と風圧の関係から、本発明の免震構造が風速40m/秒以上の強風にも揺動せず、耐え得ることを確認している。更に、ダンパーの機能をも考慮すれば、風速50m/秒にも耐えることが可能と考える。
また、50m/秒以上の強風であっても、建築物の動く範囲は、コイルばね5の縮小限度内であるので、大きな動きにはならない。なお、本発明におけるダンパー2aのコイルばね5の必要最大伸縮力は、一般木造建築の場合1個当り300kg程度でもよい。
Finally, basic numerical values related to the establishment of the present invention are shown.
In the present invention, it is obtained from an experiment that the static glazing force (average value) of the gravel 8 is about one-fourth of the building weight including the solid foundation 1, and the seismic isolation structure is constructed based on this. Yes. In addition, it has been confirmed that the seismic isolation structure of the present invention can withstand strong winds of 40 m / sec or more without swinging due to strong winds because of the relationship between wind speed and wind pressure. Furthermore, if the function of the damper is also taken into consideration, it is possible to withstand wind speeds of 50 m / sec.
Even if the wind is 50 m / sec or higher, the range of movement of the building is within the reduction limit of the coil spring 5, so that it does not move greatly. In addition, about 300 kg per piece may be sufficient as the required maximum expansion-contraction force of the coil spring 5 of the damper 2a in this invention in the case of a general wooden building.

以上の説明におけるダンパーは、円柱状のダンパー2aである。しかし、これに限らず図4で示すように、内枠と外枠を共に角柱状にしたものであってもよい。図4では、その例として、6角柱状のものを示している。これにより、内枠3bと外枠4bにコイルばね5を有効に固着することが可能となる。固着は、溶接又はねじ止め等で行う。また、内枠3b内に嵌入となる支軸7には、図5で示すように、等間隔に帯状突起を設け、ダンパーの回動防止を図る。また、図3と図4で示すように、外枠4aと4bの外側には、該外枠をベタ基礎1に固定するための鉤突起15を設ける。しかし、鉤突起15に限らず、先端部を球などとした突起であってもよい。  The damper in the above description is the cylindrical damper 2a. However, the present invention is not limited to this, and as shown in FIG. 4, both the inner frame and the outer frame may be prismatic. FIG. 4 shows a hexagonal prism shape as an example. Thereby, the coil spring 5 can be effectively fixed to the inner frame 3b and the outer frame 4b. Fixing is performed by welding or screwing. Further, as shown in FIG. 5, the support shaft 7 fitted in the inner frame 3 b is provided with strip-like projections at equal intervals to prevent the damper from rotating. Further, as shown in FIGS. 3 and 4, hook projections 15 for fixing the outer frame to the solid base 1 are provided outside the outer frames 4 a and 4 b. However, the projection is not limited to the hook projection 15 but may be a projection having a sphere at the tip.

本発明は、建築物の免震構造のみならず、構造物(例えば陳列棚や重要構造物等)独自の免震構造としても適用が可能である。  The present invention can be applied not only to a seismic isolation structure of a building but also to a seismic isolation structure unique to a structure (such as a display shelf or an important structure).

本発明の概要を示す一部破断斜視図である。  It is a partially broken perspective view showing an outline of the present invention. 本発明の要部側面を示す一部破断断面図である。  It is a partially broken sectional view which shows the principal part side surface of this invention. 本発明のダンパーを示す平面図である。  It is a top view which shows the damper of this invention. 本発明のダンパーの他例を示す平面図である。(実施例)  It is a top view which shows the other example of the damper of this invention. (Example) 図4のダンパーと組する支軸の平面図である。(実施例)  FIG. 5 is a plan view of a support shaft assembled with the damper of FIG. 4. (Example)

符号の説明Explanation of symbols

1 ベタ基礎
2a,2b ダンパー
3a,3b 内枠
4a,4b 外枠
5 コイルばね
6 基盤
7 支軸
8 玉砂利
9 クラッシャー
10 地表
11 立ち上がり
12 鉄板
13 回動防止部材
14 帯状突起
15 鉤突起
DESCRIPTION OF SYMBOLS 1 Solid foundation 2a, 2b Damper 3a, 3b Inner frame 4a, 4b Outer frame 5 Coil spring 6 Base 7 Support shaft 8 Gravel 9 Crusher 10 Ground surface 11 Stand-up 12 Iron plate 13 Anti-rotation member 14 Band-shaped projection 15 鉤 projection

Claims (1)

下面が平面であるベタ基礎の所要箇所に、内枠と外枠の間に弾性部材を放射状に配備したダンパーを内蔵させ、また、前記ベタ基礎の下方には、その上面を平面とし、且つ前記ダンパーの内枠に嵌入する支軸を立設した基盤を形成し、該基盤と前記ベタ基礎の間には略等粒の玉砂利を一層にして敷きつめた構成の建築物の免震構造。  A damper having a radially arranged elastic member between the inner frame and the outer frame is incorporated in a required portion of the solid base having a flat lower surface, and the upper surface is a flat surface below the solid base, and A base-isolated structure for a building having a structure in which a support shaft to be fitted into an inner frame of a damper is formed, and substantially equal grain gravel is further laid between the base and the solid base.
JP2003413923A 2003-11-07 2003-11-07 Seismic isolation structure of building Expired - Fee Related JP3800339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413923A JP3800339B2 (en) 2003-11-07 2003-11-07 Seismic isolation structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413923A JP3800339B2 (en) 2003-11-07 2003-11-07 Seismic isolation structure of building

Publications (2)

Publication Number Publication Date
JP2005139876A JP2005139876A (en) 2005-06-02
JP3800339B2 true JP3800339B2 (en) 2006-07-26

Family

ID=34696939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413923A Expired - Fee Related JP3800339B2 (en) 2003-11-07 2003-11-07 Seismic isolation structure of building

Country Status (1)

Country Link
JP (1) JP3800339B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721333B2 (en) * 2010-03-09 2015-05-20 Jpホーム株式会社 Sliding foundation structure
JP7350502B2 (en) * 2019-04-15 2023-09-26 数臣 和久田 Detached houses and their construction methods

Also Published As

Publication number Publication date
JP2005139876A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
Megget Analysis and design of a base-isolated reinforced concrete frame building
JP3800339B2 (en) Seismic isolation structure of building
JP2007327239A (en) Base isolation structure on pilotis story
JP3871393B2 (en) Insulating support device and seismic isolation structure using this support device
JP2007247167A (en) Base isolation supporting device
JP3892451B2 (en) Isolation device for building structure
JP2002070943A (en) Slip support device for base isolation
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
JPH11200659A (en) Base isolation structure
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP5000392B2 (en) Crane seismic isolation device
JP2002188319A (en) Base isolation device for dwelling house
JPH09250255A (en) Vibration-absorption potbellied foundation
JP2000291733A (en) Compound base isolation unit and base isolation structure
JP2004162410A (en) Base isolation system
JP2017043988A (en) Vibration control building
JP3418318B2 (en) Seismic reducer
JP3180897B2 (en) Seismic isolation device and seismic isolation structure for light-weight structures
JP4519689B2 (en) Foundation structure
JP5270739B2 (en) Seismic isolation structure for floor slabs
JP3102548B2 (en) Seismic isolation structure of pile
JP2002206245A (en) Footing structure for reducing vibration of house
JP2000038857A (en) Vibration isolating device and construction of vibration isolation of lightweight structure equipped with the device
JP2000055119A (en) Stopper device for base isolated structure and base isolation of lightweight structure equipped therewith
JP2004316178A (en) Base isolated foundation structure for lightweight structure, and its base isolating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees