JP6973910B2 - 脳磁計 - Google Patents

脳磁計 Download PDF

Info

Publication number
JP6973910B2
JP6973910B2 JP2017126659A JP2017126659A JP6973910B2 JP 6973910 B2 JP6973910 B2 JP 6973910B2 JP 2017126659 A JP2017126659 A JP 2017126659A JP 2017126659 A JP2017126659 A JP 2017126659A JP 6973910 B2 JP6973910 B2 JP 6973910B2
Authority
JP
Japan
Prior art keywords
heat exchanger
unit
cryogen
helium
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017126659A
Other languages
English (en)
Other versions
JP2019005492A (ja
Inventor
正二 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2017126659A priority Critical patent/JP6973910B2/ja
Publication of JP2019005492A publication Critical patent/JP2019005492A/ja
Application granted granted Critical
Publication of JP6973910B2 publication Critical patent/JP6973910B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は脳磁計に関するものである。
従来、このような分野の技術として、下記特許文献1に記載の脳磁計が知られている。この脳磁計では、デュワー内に液化ヘリウムが溜められ、この液化ヘリウムにSQUIDセンサーが浸漬される。液化ヘリウムで冷却されたSQUIDセンサーが超伝導転移し、このSQUIDセンサーによって被験者の脳から発生する微弱な磁場が検出される。
特開2010-46344号公報
この種の脳磁計では、液化ヘリウムは徐々に蒸発し減少するため、液化ヘリウムがある程度減少したときには、デュワー内に液化ヘリウムを補充することが必要である。液化ヘリウムを補充する方法としては、蒸発したヘリウムを回収し凝縮させるか、または、液化ヘリウムをデュワー内に追加注液する。このような補充処理の際には、磁場の測定を停止する必要があり、補充処理が脳磁計の稼働効率低下の一因となっている。この課題に鑑み、本発明は、稼働効率を向上させる脳磁計を提供することを目的とする。
本発明の脳磁計は、被験者の脳の活動に伴って発生する磁場を測定するセンサー部と、センサー部を冷却する液体の寒剤が収容される容器部と、容器部内に設けられた熱交換器と、熱交換器を冷却する冷却部と、センサー部と冷却部とを制御する制御部と、を備え、制御部は、センサー部による磁場測定中に、容器部内の気化した寒剤を熱交換器で冷却して凝縮させるように、センサー部及び冷却部を動作させる。
この脳磁計によれば、センサー部による磁場測定と、凝縮による寒剤の補充とを並行して実行することが可能になる。従って、寒剤の補充処理で脳磁計の稼働時間が侵食されることが避けられ、稼働効率が向上する。
本発明の脳磁計は、熱交換器の下方に設けられ、熱交換器によって凝縮した寒剤の液滴が容器部内の寒剤の液面に直接滴下することを抑制する滴下抑制部を更に備えるようにしてもよい。この場合、凝縮した寒剤が、容器部内の寒剤の液面に直接滴下することが抑制されるので、液面への滴下に起因して発生する磁気ノイズが低減され、センサー部による磁場測定への悪影響が低減する。
滴下抑制部の下端は、寒剤の液面下に位置するようにしてもよい。この構成によれば、熱交換器で凝縮された寒剤を、滴下抑制部を通じて液面まで案内することが可能になる。よって、寒剤が液面に直接滴下することが避けられ、上記の磁気ノイズが低減される。
液化緩衝部は、液体の寒剤を浸潤させる材料からなるものであってもよい。この場合、熱交換器で凝縮された寒剤が、液化緩衝部に浸潤して液面に向けて降下する。
本発明によれば、稼働効率を向上させる脳磁計を提供することができる。
実施形態に係る脳磁計を示す断面図である。 図1の脳磁計のデュワーを示す断面図である。 (a)〜(c)はそれぞれ滴下抑制部の変形例を示す図である。
以下、図面を参照しながら本発明に係る脳磁計の好適な実施形態について詳細に説明する。
図1に示す脳磁計1は、計測ユニット1Aと、制御ユニット1B(制御部)と、冷凍機ユニット1C(冷却部)と、を備えている。脳磁計1は、計測ユニット1A内の計測位置Hに頭が位置するように被験者Pを着座させ、当該被験者Pの脳の神経活動に伴って発生する微弱な磁場を非接触で計測、解析する装置である。冷凍機ユニット1Cは、計測ユニット1Aに冷媒を供給する。制御ユニット1Bは、脳磁計1の動作全体を統括的に制御する。
計測ユニット1Aは、計測位置Hの周囲に配置され、被験者の脳から発生する磁場を検出するセンサー部3を複数備えている。センサー部3としては、例えばSQUID(Superconducting Quantum Interference Device)センサーが採用される。この脳磁計1では、被験者Pの脳の様々な位置から発生する磁場を検出するため、数十個〜数百個(64個,128個,256個など)といった多数の上記センサー部3が、被験者Pの頭の表面に沿うように3次元的に配置されている。
計測ユニット1Aは、断熱容器であるデュワー7(容器部)を備えている。デュワー7は、有底の円筒容器状をなし、デュワー7の底面中央には、計測位置Hを囲む半球状の凹部7aが設けられている。デュワー7内には、上記のセンサー部3と、センサー部3を浸漬させて超伝導転移温度まで冷却する液体の寒剤と、が収納される。上記の寒剤としては、例えば液化ヘリウムなどの冷却流体が用いられる。本実施形態では液化ヘリウム5が寒剤として使用されるものとする。
更に、計測ユニット1Aは、計測位置Hを包囲し被験者Pを覆う筐体15を備えている。筐体15は、外殻部15aと、外殻部15aで囲まれた中空部9と、を有し、上下方向に延びる中空の円柱状をなしている。筐体15の下半部には、被験者Pが下方から入り込むための凹部空間16が形成されている。凹部空間16は、筐体15と同軸の円柱面をなす内側面を有している。凹部空間16は、筐体15の下端面から筐体15の上下方向の略中央の位置まで亘って配置されている。
一方、筐体15の上端面からは、当該筐体15の中空部9内にデュワー7が挿入されている。デュワー7は、筐体15と同軸に配置され、筐体15の上端面から凹部空間16の近傍の位置まで亘って配置されている。また、凹部空間16の上面中央には、被験者Pの頭部を収納するための頭部収納凹部16aが形成されている。頭部収納凹部16aは、計測位置Hを囲むようにデュワー7の凹部7aに沿って凹状に形成されている。
更に、筐体15の中空部9内には、当該筐体15と同軸の円筒形をなす磁気シールド体17が収納されている。磁気シールド体17は、デュワー7と凹部空間16とを包囲するように、筐体15の上下方向のほぼ全長に亘って延在している。磁気シールド体17は、外殻部15aに直接的に接触しないように中空部9内に支持されている。
中空部9は、外殻部15aとデュワー7の外壁面とで画成される閉鎖空間をなしている。この閉鎖空間が真空状態とされることで、中空部9が真空断熱槽として機能する。すなわち、真空断熱槽9は、デュワー7を包囲して配置され、デュワー7と外殻部15aとの間に介在することで、デュワー7と筐体15外との間の断熱を図っている。また、真空断熱槽9は、磁気シールド体17の内側及び外側に亘って存在し、磁気シールド体17と外殻部15aとの間に介在することで、磁気シールド体17と筐体15外との間の断熱を図っている。
また、デュワー7の内部において、液化ヘリウム5の液面の上方には、寒剤凝縮部10が設けられている。寒剤凝縮部10は、デュワー7内の気体のヘリウムを冷却し再凝縮させる。すなわち、デュワー7内では液化ヘリウム5が徐々に蒸発することで気体のヘリウムがデュワー7内に溜っていく。このデュワー7内に溜った気体のヘリウムが、寒剤凝縮部10によって冷却され再凝縮する。寒剤凝縮部10には、冷凍機ユニット1Cから凝縮用冷媒(例えばヘリウム)が供給される。
脳磁計1の使用時においては、制御ユニット1Bによる制御下で、センサー部3が駆動され、各センサー部3が計測位置Hに位置する被験者Pの脳で発生する磁場を検出する。このとき、デュワー7内においてセンサー部3が液化ヘリウム5に浸漬されることで、センサー部3の超伝導回路が冷却され超伝導転移する。センサー部3に磁場が作用すると、センサー部3は磁場に応じた電気信号を発生し、当該電気信号がセンサー部3から制御ユニット1Bに送信される。
前述の通り、筐体15には、筒型の磁気シールド体17が内蔵されている。磁気シールド体17は、例えばニッケルからなる円筒状の基板17aと、当該基板17aの内壁面全体に成膜されたシールド膜17bとを備えている。シールド膜17bは、例えば、ビスマス系酸化物超伝導体からなる。また、筐体15には、磁気シールド体17の外壁面に沿って冷媒を流通させる冷媒管(図示せず)が内蔵されている。そして、この冷媒管に、冷凍機ユニット1Cから送出される冷媒(例えばヘリウム)が循環することで、シールド膜17bが超伝導転移温度まで冷却され完全反磁性を発揮する。このような磁気シールド体17により、計測位置Hの近傍から外部磁場の影響が除去され、被験者Pの脳で発生する極めて微弱な磁場の検出が可能になる。
制御ユニット1Bは、計測ユニット1A及び冷凍機ユニット1Cとの間で制御信号を授受し、脳磁計1の動作全体を制御する。制御ユニット1Bとしては、例えばパーソナルコンピュータが用いられる。また、制御ユニット1Bの情報処理部13は、センサー部3から受信した電気信号に基づいて、被験者Pの脳から発生した磁場を解析する。
続いて、図2を参照しながらデュワー7の内部の構成について説明する。図2は、デュワー7を拡大して詳細に示す断面図である。脳磁計1の使用時には、デュワー7の下部に、液面位置Aの高さまで貯留された液化ヘリウム5が存在する。以下、脳磁計1の使用時に液化ヘリウム5の液面が形成される予定の位置を液面位置Aと呼び、貯留された液化ヘリウム5の実際の液面を液面Bと呼ぶ場合がある。
デュワー7の底部には、多数のセンサー部3を取付けるためのセンサホルダー23が設置される。センサホルダー23は半球状をなし凹部7aに沿って設置される。センサー部3は、センサホルダー23に取付けられることで、計測位置Hの周囲に規則的に配置される。更に、センサホルダー23を支持するための円板状の支持プレート27が、センサホルダー23の上方に設けられている。支持プレート27は、超伝導体シート等を含み磁気シールドとして機能するものであってもよい。センサホルダー23は、少なくともその一部が液面位置Aよりも下方に位置し、脳磁計1の使用時には液化ヘリウム5の液面Bの下に没する。
支持プレート27の上方には、前述の寒剤凝縮部10が設置されている。寒剤凝縮部10は、熱交換器29を有している。熱交換器29は、寒剤凝縮部10の下部に設けられ支持プレート27よりも上方に位置する。熱交換器29は、液面位置Aよりも上方に位置しており、脳磁計1の使用時には液面Bの上方に位置する。熱交換器29は、液面Bに平行な姿勢とすることが好ましい。すなわち、熱交換器29は、脳磁計1の使用時において液面Bの上方の仮想の水平面に沿って広がる構造体をなすことが好ましい。この構成によれば、再凝縮したヘリウムが熱交換器29の位置の端部に集まり、集まったヘリウムが勢いよく熱交換器29の下側へ落ちていくことを抑制することができる。
寒剤凝縮部10では、制御ユニット1Bによる制御下において、冷凍機ユニット1Cから供給される凝縮用冷媒が、ジュール・トムソン弁で断熱膨張されて温度低下することで、熱交換器29が冷却される。デュワー7内の気体のヘリウムが、低温の熱交換器29に接触することで冷却され凝縮する。
脳磁計1の運転方法について説明する。脳磁計1の運転では、センサー部3による磁場測定処理と、熱交換器29によるヘリウム再凝縮処理と、が並行して実行される。具体的には、磁場測定処理の実行中に常に継続的にヘリウム再凝縮処理が実行されてもよい。この場合、液面Bの高さを安定させることができる。また、磁場測定処理の実行中に、断続的に(例えば所定の時間間隔で)ヘリウム再凝縮処理が実行されてもよい。この場合、ヘリウム再凝縮処理を効率的に実行することができる。また、磁場測定処理の実行中に、液面Bの高さ等が監視され液化ヘリウム5が所定量よりも少なくなったときにヘリウム再凝縮処理が実行されるようにしてもよい。この場合、液面Bの高さが安定し、かつ、ヘリウム再凝縮処理を効率的に実行することができる。
磁場測定処理では、制御ユニット1Bによる制御下でセンサー部3が動作し、各センサー部3は、計測位置Hの被験者Pの脳で発生する磁場を検出し、磁場に対応する電気信号を制御ユニット1Bに送信する。更に、制御ユニット1Bの情報処理部13が、上記電気信号に基づいて、被験者Pの脳から発生した磁場を解析する。
ヘリウム再凝縮処理では、制御ユニット1Bによる制御下で冷凍機ユニット1Cと寒剤凝縮部10とが動作し、熱交換器29が冷却される。デュワー7内で気化したヘリウムは、液面Bの上方で低温の熱交換器29に接触し、冷却されて再凝縮し、デュワー7の下部に戻される。よって、蒸発によって減少するデュワー7内の液化ヘリウム5が、再凝縮によって補充されることになる。
上記のように、脳磁計1の制御ユニット1Bは、センサー部3による磁場測定中に、デュワー7内の気化したヘリウムを熱交換器29で冷却して凝縮させるように、センサー部3及び冷凍機ユニット1C等を動作させる。このような制御ユニット1Bを備える脳磁計1及び上記運転方法による作用効果について説明する。
従来の脳磁計の場合、蒸発で失われた液化ヘリウムを補充する際には、磁場測定処理を停止する必要があるので、液化ヘリウムの補充処理が脳磁計の稼働効率を低下させる一因となっていた。これに対し、上記の脳磁計1及び上記運転方法によれば、センサー部3による磁場測定処理に並行して、ヘリウム再凝縮処理によって液化ヘリウム5が補充される。従って、液化ヘリウム5の補充処理によって脳磁計1の稼働時間が侵食されることが避けられ、稼働効率が向上する。
次に、熱交換器29で再凝縮したヘリウムをデュワー7の下部に戻すための構造について説明する。
デュワー7内で蒸発したヘリウムが、液面Bの上方の熱交換器29に接触すると、冷却されて再凝縮し液滴として熱交換器29に付着する。ここで、液滴が熱交換器29から落下し液面Bに衝突すると、液面Bの振動によって磁気ノイズが励起され、磁場測定処理に悪影響を与えてしまう。そこで、脳磁計1は、熱交換器29で凝縮したヘリウムの液滴が下方の液面Bに直接滴下することを抑制するための滴下抑制部を備えている。ここで、「液面Bに直接滴下することを抑制する」とは、液滴が液面Bに直接滴下されないようにすること、液滴の落下距離を短くして滴下の衝撃を軽減すること、などを含む。
以下、滴下抑制部の一例について説明する。熱交換器29には、滴下抑制部の一例としての液滴案内部材31が取付けられており、液滴案内部材31によって上記の滴下抑制部が構成される。液滴案内部材31は熱交換器29の近傍から下方に延びており、液滴案内部材31の下端は液面位置Aよりも下方に位置する。脳磁計1の使用時には、液滴案内部材31の下部は液化ヘリウム5の液面Bの下に進入した状態となる。
脳磁計1の使用時において、平面視したときに液滴案内部材31が熱交換器29全体を包含する形状をなしている。また、液滴案内部材31は、脳磁計1の使用時において、熱交換器29全体を包含する平面視形状を有し上下方向の柱軸をもつ柱体の形状(例えば、円柱形状)をなしている。液滴案内部材31の上端は熱交換器29に接触していてもよく、接触していなくてもよい。
液面Bの高さは脳磁計1の使用時に変動し得るが、脳磁計1の使用時に想定される液面Bの最低位置よりも下方に液滴案内部材31の下端が位置するように、液滴案内部材31の上下幅が設定されている。この構成によれば、脳磁計1の使用時において常に、液滴案内部材31の下端が液面Bの下方に位置する。
また、熱交換器29は、脳磁計1の使用時において液面Bに水平な姿勢の構造体であり、液滴案内部材31の上端面全体が熱交換器29に沿うように設置されており、かつ液滴案内部材31が上下幅一定の形状とされている。従って、液滴案内部材31の底面が、脳磁計1の使用時に水平面をなす。
この液滴案内部材31の構造によれば、ヘリウム再凝縮処理において、熱交換器29で発生したヘリウムの液滴は、液面Bに直接滴下せずに液滴案内部材31上に落下し、その後、液滴案内部材31を伝わって比較的低速で液面Bに流れ込む。よって、液滴が液面Bに到達したときに発生する液面Bの振動が低減され、磁気ノイズの発生を抑制することができる。また、液滴案内部材31の底面が脳磁計1の使用時に水平面をなす構成によれば、液面Bが低下した場合に液滴案内部材31の底面の一部が液面B上に露出する状態が避けられ、この露出部分から液滴が液面Bに滴下されることが避けられる。
液滴案内部材31は、液化ヘリウムを浸潤させる材料からなることが好ましい。この場合、ヘリウムの液滴は、液滴案内部材31に浸潤した状態で液面Bに向けて低速で降下するので、液滴が液面Bに到達したときに発生する液面Bの振動をより低減することができる。液化ヘリウムを浸潤させる材料としては、例えば布材等の吸液性を有する材料が採用されてもよい。布材としては、織布であっても不織布であってもよい。例えば、液滴案内部材31を構成する布材として、ポリエステル繊維の織布が採用されてもよい。
液滴案内部材31を備える脳磁計1による作用効果について説明する。液滴案内部材31を備えない場合には、前述のように、ヘリウム再凝縮処理において熱交換器29から落下した液滴が液面Bに衝突し、液面Bの振動によって磁気ノイズが励起される。この磁気ノイズが大きい場合には、正確な磁場測定処理が不可能になる場合がある。従って、磁場測定処理をヘリウム再凝縮処理と並行して実行することは困難と考えられ、ヘリウム再凝縮処理の実行時には磁場測定処理を停止せざるを得ない場合もある。これに対し脳磁計1では、ヘリウム再凝縮処理において、熱交換器29で発生したヘリウムの液滴は、液面Bに直接滴下せずに液滴案内部材31上に落下し、その後、液滴案内部材31を伝わって比較的低速で液面Bに流れ込む。よって、液滴が液面Bに到達したときに発生する液面Bの振動が低減される。その結果、ヘリウム再凝縮処理で発生する磁気ノイズが抑制される。従って、磁場測定処理への磁気ノイズによる悪影響が抑えられるので、磁場測定処理とヘリウム再凝縮処理とを並行して実行することが容易になる。
本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、実施例の変形例を構成することも可能である。各実施形態の構成を適宜組み合わせて使用してもよい。
例えば、滴下抑制部としては、図2に示される液滴案内部材31に代えて、図3(a)〜(c)に示されるような構造体を採用してもよい。なお、図3(a)〜(c)では、液面Bと熱交換器29と各変形例に係る構造体91,92,93を拡大して図示する。図3(a)に示されるように、下方に向かって水平断面形状が拡大される液滴案内部材91を液滴案内部材31に代えて採用してもよい。また、図3(b)に示されるように、熱交換器29からの液滴を受ける漏斗状構造体92を採用してもよい。この場合、液滴は漏斗状構造体92の内壁面を伝わって液面Bまで案内される。また、図3(b)に示されるように、熱交換器29からの液滴を受ける螺旋傾斜面94を備える構造体93を採用してもよい。この場合、液滴は螺旋傾斜面94を伝わって液面Bまで案内される。
例えば、実施形態及び図3の変形例では、滴下抑制部の下端が液面位置Aよりも下方に位置する例を説明したが、これには限定されない。すなわち、滴下抑制部の下端が液面位置Aよりもやや上方に位置し、液滴が滴下抑制部の下端から液面Bに滴下されるようにしてもよい。この場合であっても、熱交換器29から液滴が直接滴下される場合に比較すると、液滴の落下距離が短くなり、液面Bの振動が低減され、磁気ノイズの発生が抑制される。
1…脳磁計、1B…制御ユニット(制御部)、1C…冷凍機ユニット(冷却部)、3…センサー部、5…液化ヘリウム(寒剤)、7…デュワー(容器部)、29…熱交換器、31…液滴案内部材(滴下抑制部)、91…液滴案内部材(滴下抑制部)、92…漏斗状構造体(滴下抑制部)、93…構造体(滴下抑制部)、B…液面、P…被験者。

Claims (2)

  1. 被験者の脳の活動に伴って発生する磁場を測定するセンサー部と、
    前記センサー部を冷却する液体の寒剤が収容される容器部と、
    前記容器部内に設けられた熱交換器と、
    前記熱交換器を冷却する冷却部と、
    前記センサー部と冷却部とを制御する制御部と、
    前記熱交換器の下方に設けられた滴下抑制部と、を備え、
    前記制御部は、
    前記センサー部による磁場測定中に、前記容器部内の気化した前記寒剤を前記熱交換器
    で冷却して凝縮させるように、前記センサー部及び前記冷却部を動作させ、
    前記滴下抑制部は、液体の前記寒剤を浸潤することで、前記熱交換器によって凝縮した
    寒剤の液滴が前記容器部内の前記寒剤の液面に直接滴下することを抑制する、脳磁計。
  2. 前記滴下抑制部の下端は、前記寒剤の液面下に位置する、請求項1に記載の脳磁計。
JP2017126659A 2017-06-28 2017-06-28 脳磁計 Active JP6973910B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017126659A JP6973910B2 (ja) 2017-06-28 2017-06-28 脳磁計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017126659A JP6973910B2 (ja) 2017-06-28 2017-06-28 脳磁計

Publications (2)

Publication Number Publication Date
JP2019005492A JP2019005492A (ja) 2019-01-17
JP6973910B2 true JP6973910B2 (ja) 2021-12-01

Family

ID=65026386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017126659A Active JP6973910B2 (ja) 2017-06-28 2017-06-28 脳磁計

Country Status (1)

Country Link
JP (1) JP6973910B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109821A (ja) * 1992-09-30 1994-04-22 Toyo Sanso Kk Squid磁束計の測定プローブ冷却装置
JP2001042016A (ja) * 1999-08-03 2001-02-16 Hitachi Ltd 磁場計測装置
WO2006067828A1 (ja) * 2004-12-20 2006-06-29 National Institute Of Information And Communications Technology 超伝導磁気シールド脳磁界計測装置の計測構造体
JP4932466B2 (ja) * 2006-12-15 2012-05-16 住友重機械工業株式会社 冷媒再凝縮装置
JP2010046344A (ja) * 2008-08-22 2010-03-04 Sumitomo Heavy Ind Ltd 生体磁場計測装置

Also Published As

Publication number Publication date
JP2019005492A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP5778907B2 (ja) 超伝導マグネットのための冷媒システム及び方法
US20130008187A1 (en) Cryostat configuration
JP4606059B2 (ja) 極低温装置
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
US9640308B2 (en) High temperature superconducting magnet
EP2324307B1 (en) Horizontal finned heat exchanger for cryogenic recondensing refrigeration
JP2017537296A (ja) 少なくとも下層部分において互いに液密に分割された第1のヘリウム槽と第2のヘリウム槽とを有するクライオスタット
JP4595102B2 (ja) 超伝導磁気シールド脳磁界計測装置の計測構造体
US6804968B2 (en) Cryostat configuration with improved properties
JP6973910B2 (ja) 脳磁計
JP2010016081A (ja) 極低温格納容器及び極低温装置
JP4184280B2 (ja) Mri装置の冷却
US8316651B2 (en) Superconducting magnet system with radiation shield disposed between the cryogenic fluid tank and a refrigerator
JP4932466B2 (ja) 冷媒再凝縮装置
JP5138494B2 (ja) 生体磁場計測装置
JP5145552B2 (ja) 超伝導磁気センサ用冷却装置
EP2332153A1 (en) Neck deicer for liquid helium recondensor of magnetic resonance system
JP2010046344A (ja) 生体磁場計測装置
US20230010217A1 (en) Superconducting electromagnet device
JP4291101B2 (ja) 核磁気共鳴イメージング装置用超電導磁石
JP4369774B2 (ja) 超電導磁石装置を用いた磁気共鳴イメージング装置
JP6937610B2 (ja) 極低温装置
JP2003179277A (ja) 超電導量子干渉デバイス格納用極低温容器
JP2018186187A (ja) 冷却装置及び超電導マグネットシステム
JP4906703B2 (ja) 超電導マグネット装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210906

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6973910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150