JP6965793B2 - 非接触給電装置 - Google Patents

非接触給電装置 Download PDF

Info

Publication number
JP6965793B2
JP6965793B2 JP2018038546A JP2018038546A JP6965793B2 JP 6965793 B2 JP6965793 B2 JP 6965793B2 JP 2018038546 A JP2018038546 A JP 2018038546A JP 2018038546 A JP2018038546 A JP 2018038546A JP 6965793 B2 JP6965793 B2 JP 6965793B2
Authority
JP
Japan
Prior art keywords
switching element
power
circuit
transmission coil
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018038546A
Other languages
English (en)
Other versions
JP2019154173A (ja
Inventor
悟朗 中尾
篤司 野村
佑介 河合
俊行 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2018038546A priority Critical patent/JP6965793B2/ja
Priority to DE112019001154.5T priority patent/DE112019001154T5/de
Priority to CN201980012613.8A priority patent/CN111699610A/zh
Priority to PCT/JP2019/001537 priority patent/WO2019171784A1/ja
Priority to US16/971,709 priority patent/US11108273B2/en
Publication of JP2019154173A publication Critical patent/JP2019154173A/ja
Application granted granted Critical
Publication of JP6965793B2 publication Critical patent/JP6965793B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、非接触給電装置に関する。
従来より、金属の接点などを介さずに、空間を通じて電力を伝送する、いわゆる非接触給電(ワイヤレス給電とも呼ばれる)技術が研究されている。
非接触給電技術の一つとして、電磁誘導により給電する方式が知られている。電磁誘導により給電する方式では、一次直列二次並列コンデンサ方式(以下、SP方式と呼ぶ)が利用される(例えば、非特許文献1を参照)。SP方式では、一次側(送電側)に、トランスの一部として動作するコイルと直列にコンデンサが接続され、二次側(受電側)に、トランスの他の一部として動作するコイルと並列にコンデンサが接続される。
SP方式では、受電側のコイル及びコンデンサにより構成される共振回路が並列共振するために、共振回路からの出力は定電流出力となる。そのため、受電側で定電圧出力となる、一次直列二次直列コンデンサ方式(以下、SS方式と呼ぶ)と比較して、SP方式の方が、一般的に制御が難しい。これは、一般的な電子機器は定電圧で制御されるためである。
また、SP方式において、受電側の共振回路のコイルに対して直列に接続されるリアクトルを設けることで、高調波成分を低減させる技術が提案されている(例えば、特許文献1を参照)。なお、この技術による方式は、SPL方式と呼ばれることもある。本明細書でも、この方式をSPL方式と呼ぶ。
さらに、このSPL方式を利用して、双方向に給電を可能とする技術が提案されている(例えば、非特許文献1を参照)。
特開2015−42051号公報
渡辺他、「一方向非接触給電から拡張容易な双方向非接触給電システム」、電気学会論文誌D、IEEJ Transactions on Industry Applications、Vol.133、No.7、pp.707-713、2013年
非接触給電装置が双方向の給電に用いられる場合、何れの方向への給電においても、非接触給電装置は安定的に動作することが求められる。
そこで、本発明は、何れの方向への給電においても安定的に動作することが可能な非接触給電装置を提供することを目的とする。
本発明の一つの形態として、一次装置と、一次装置との間で電力伝送する二次装置とを有する非接触給電装置が提供される。この非接触給電装置において、一次装置は、二次装置との間で電力を伝送する第1の伝送コイルと、第1の伝送コイルと直列に接続されるコンデンサと、第1の伝送コイルとコンデンサを介して接続され、直流電力と、第1の伝送コイルを流れる交流電力との変換を行う第1の変換回路とを有する。また、二次装置は、一次装置との間で電力を伝送する第2の伝送コイルと、第2の伝送コイルと並列に接続される共振コンデンサとを有する共振回路と、共振回路と接続され、共振回路を流れる交流電力と直流電力との変換を行う第2の変換回路と、共振回路と第2の変換回路の間に、第2の伝送コイルと直列に接続されるコイルと、第2の伝送コイルと第2の変換回路の間に、第2の伝送コイルと直列に接続されるコンデンサとを有する。
係る構成を有することにより、この非接触給電装置は、何れの方向への給電においても安定的に動作することができる。
この非接触給電装置において、第2の伝送コイルと直列に接続されるコンデンサの静電容量は、共振コンデンサの静電容量の10倍以上であることが好ましい。
これにより、この非接触給電装置は、一次装置から二次装置へ電力伝送される場合の共振回路の共振を抑制することなく、二次装置から一次装置へ電力伝送される場合の偏励磁現象の発生を抑制できる。
本発明の一つの実施形態に係る非接触給電装置の概略構成図である。 (a)は、SPL方式の非接触給電装置において、偏励磁現象が生じたときの二次側の伝送コイルに流れる電流の時間変化を表す図である。(b)は、本実施形態による非接触給電装置において、二次装置から一次装置へ電力伝送される場合における、二次装置の伝送コイルに流れる電流の時間変化を表す図である。 二次装置の変形例における、偏励磁現象抑制用のコンデンサの接続位置を示す図である。 二次装置の他の変形例における、偏励磁現象抑制用のコンデンサの接続位置を示す図である。
以下、本発明の一つの実施形態による非接触給電装置を、図を参照しつつ説明する。この非接触給電装置は、SPL方式と同様の構成を有することで、双方向の給電を可能とする。
本願の発明者は、SPL方式の非接触給電装置において、二次側から一次側へ給電する際、偏励磁現象が生じて二次側(この場合は、給電側)の回路に流れる電流が過剰となってMOSFETといったスイッチング素子などが破壊される場合があることに着目した。
そこで、この非接触給電装置は、電力伝送用のコイル(以下、伝送コイルと呼ぶ)と共振コンデンサとが並列共振し、かつ、伝送コイルと直列に接続されるコイルを有する二次側の装置において、伝送コイルと直列に接続される、直流遮断用のコンデンサを有する。これにより、この非接触給電装置は、二次側から一次側へ給電する際にも、偏励磁現象が生じることを防止して、何れの方向への給電においても安定的に動作することを可能とする。
図1は、本発明の一つの実施形態に係る非接触給電装置の概略構成図である。図1に示されるように、非接触給電装置1は、一次装置2と、一次装置2から、あるいは、一次装置2へ、空間を介して非接触で電力伝送可能な二次装置3とを有する。一次装置2は、供給整流回路10と、伝送コイル13と、コンデンサ14と、2個の電圧検出回路15−1、15−2と、ゲートドライバ16と、制御回路17とを有する。一方、二次装置3は、伝送コイル21及び共振コンデンサ22を有する共振回路20と、コンデンサ23と、コイル24と、供給整流回路25と、2個の電圧検出回路28−1、28−2と、ゲートドライバ29と、制御回路30とを有する。
最初に、一次装置2について説明する。
供給整流回路10は、第1の変換回路の一例であり、一次装置2から二次装置3へ電力伝送する場合、直流電力を供給する電源と接続され、その電源から供給される直流電力を交流電力に変換して伝送コイル13へ供給する。その際、供給整流回路10の正極側入出力端子T+に、電源の正極が接続され、供給整流回路10の負極側入出力端子T-に、電源の負極が接続される。一方、供給整流回路10は、二次装置3から一次装置2へ電力伝送する場合、負荷回路あるいはバッテリと接続され、伝送コイル13を介して受電した交流電力を整流して、負荷回路あるいはバッテリへ供給する。この場合も、供給整流回路10の正極側入出力端子T+に、負荷回路あるいはバッテリの正極が接続され、供給整流回路10の負極側入出力端子T-に、負荷回路あるいはバッテリの負極が接続される。
供給整流回路10は、フルブリッジ状に接続される4個のスイッチング素子11−1〜11−4と、平滑コンデンサ12とを有する。そしてスイッチング素子11−1〜11−4は、それぞれ、例えば、nチャネル型のMOSFETとすることができる。4個のスイッチング素子11−1〜11−4のうち、スイッチング素子11−1とスイッチング素子11−2は、供給整流回路10の正極側入出力端子T+と負極側入出力端子T-との間に直列に接続される。本実施形態では、スイッチング素子11−1のドレイン端子は、正極側入出力端子T+と接続され、スイッチング素子11−1のソース端子は、スイッチング素子11−2のドレイン端子と接続される。また、スイッチング素子11−2のソース端子は、負極側入出力端子T-と接続される。さらに、スイッチング素子11−1のソース端子、及び、スイッチング素子11−2のドレイン端子は、伝送コイル13の一端に接続される。
同様に、4個のスイッチング素子11−1〜11−4のうち、スイッチング素子11−3とスイッチング素子11−4は、スイッチング素子11−1及びスイッチング素子11−2と並列に、かつ、正極側入出力端子T+と負極側入出力端子T-との間に直列に接続される。また、スイッチング素子11−3のドレイン端子は、正極側入出力端子T+と接続され、スイッチング素子11−3のソース端子は、スイッチング素子11−4のドレイン端子と接続される。また、スイッチング素子11−4のソース端子は、負極側入出力端子T-と接続される。さらに、スイッチング素子11−3のソース端子、及び、スイッチング素子11−4のドレイン端子は、コンデンサ14を介して伝送コイル13の他端に接続される。
また、各スイッチング素子11−1〜11−4のゲート端子は、ゲートドライバ16と接続される。さらに、各スイッチング素子11−1〜11−4のゲート端子は、オンとなる電圧が印加されたときにそのスイッチング素子がオンとなることを保証するために、それぞれ、抵抗を介して自素子のソース端子と接続されてもよい。そして各スイッチング素子11−1〜11−4は、制御回路17からの制御信号にしたがってゲートドライバ16から印加される電圧に応じて、調整可能なスイッチング周波数にてオン/オフが切り替えられる。
一次装置2から二次装置3へ電力伝送される場合、スイッチング素子11−1とスイッチング素子11−4とがオンとなっている間、スイッチング素子11−2とスイッチング素子11−3とがオフとなり、逆に、スイッチング素子11−2とスイッチング素子11−3とがオンとなっている間、スイッチング素子11−1とスイッチング素子11−4とがオフとなるように、スイッチング素子11−1とスイッチング素子11−4の組と、スイッチング素子11−2とスイッチング素子11−3との組について交互にオン/オフが切り替えられる。これにより、電源から供給された直流電力は、各スイッチング素子のスイッチング周波数を持つ交流電力に変換されて、伝送コイル13に供給される。
逆に、二次装置3から一次装置2へ電力伝送される場合も、同様に、スイッチング素子11−1とスイッチング素子11−4とがオンとなっている間、スイッチング素子11−2とスイッチング素子11−3とがオフとなり、逆に、スイッチング素子11−2とスイッチング素子11−3とがオンとなっている間、スイッチング素子11−1とスイッチング素子11−4とがオフとなるように、スイッチング素子11−1とスイッチング素子11−4の組と、スイッチング素子11−2とスイッチング素子11−3との組について交互にオン/オフが切り替えられる。ただしこの場合には、同期整流されるよう、スイッチング素子11−3及びスイッチング素子11−4と接続される側の伝送コイル13の一端の電位が、スイッチング素子11−1及びスイッチング素子11−2と接続される側の伝送コイル13の他端の電位よりも高く、かつ後述する条件が満たされる場合に、スイッチング素子11−2とスイッチング素子11−3の組がオンとなる。また、スイッチング素子11−3及びスイッチング素子11−4と接続される側の伝送コイル13の一端の電位が、スイッチング素子11−1及びスイッチング素子11−2と接続される側の伝送コイル13の他端の電位よりも低く、かつ後述する条件が満たされる場合に、スイッチング素子11−1とスイッチング素子11−4の組がオンとなる。
平滑コンデンサ12は、スイッチング素子11−1〜11−4よりも正極側入出力端子T+及び負極側入出力端子T-側において、スイッチング素子11−1及びスイッチング素子11−2と並列に、かつ、正極側入出力端子T+と負極側入出力端子T-との間に接続される。そして平滑コンデンサ12は、二次装置3から一次装置2へ電力伝送される場合に、伝送コイル13を介して受電し、かつ、スイッチング素子11−1〜11−4により整流された電力を平滑化する。平滑化された直流電力は、正極側入出力端子T+及び負極側入出力端子T-に接続される負荷回路などへ出力される。
伝送コイル13は、一次装置2から二次装置3へ電力伝送される場合、電源から供給され、供給整流回路10により交流に変換された電力を、空間を介して二次装置3の共振回路20へ伝送する。また伝送コイル13は、二次装置3から一次装置2へ電力伝送される場合、二次装置3の共振回路20から空間を介して電力を受電して、その受電した電力を供給整流回路10へ出力する。
コンデンサ14は、伝送コイル13と供給整流回路10の間に、伝送コイル13と直列に接続される。そしてコンデンサ14は、一次装置2から二次装置3へ電力伝送される場合、スイッチング素子11−1〜11−4のスイッチング周波数でのオン/オフの切り替えに応じて充電と放電とを繰り返すことで、伝送コイル13に、スイッチング周波数を持つ交流電力を供給する。
また、二次装置3から一次装置2へ電力伝送される場合、コンデンサ14は、伝送コイル13とともに直列共振して、二次装置3から伝送される電力を伝送コイル13にて受電することを可能とする。
電圧検出回路15−1は、スイッチング素子11−4のソース−ドレイン間の電圧を測定し、その測定値を制御回路17へ出力する。同様に、電圧検出回路15−2は、スイッチング素子11−2のソース−ドレイン間の電圧を測定し、その測定値を制御回路17へ出力する。なお、電圧検出回路15−1及び電圧検出回路15−2は、それぞれ、対応するスイッチング素子のソース−ドレイン間の電圧の測定値を求めることができるどのような回路であってもよい。
ゲートドライバ16は、制御回路17から、スイッチング素子11−1〜11−4のそれぞれのオン/オフを切り替える制御信号を受信し、その制御信号に応じて、スイッチング素子11−1〜11−4のそれぞれのゲート端子に印加する電圧を変化させる。すなわち、ゲートドライバ16は、スイッチング素子11−1をオンにする制御信号を受け取ると、スイッチング素子11−1のゲート端子に、スイッチング素子11−1がオンとなる相対的に高い電圧を印加する。一方、ゲートドライバ16は、スイッチング素子11−1をオフにする制御信号を受け取ると、スイッチング素子11−1のゲート端子に、スイッチング素子11−1がオフとなる、相対的に低い電圧を印加する。これにより、ゲートドライバ16は、制御回路17により指示されたタイミングでスイッチング素子11−1のオン/オフを切り替える。ゲートドライバ16は、スイッチング素子11−2〜11−4のそれぞれについても同様に、ゲート端子に印加する電圧を変化させることでスイッチング素子11−2〜11−4のオン/オフを切り替える。
制御回路17は、例えば、不揮発性のメモリ回路及び揮発性のメモリ回路と、演算回路と、他の回路と接続するためのインターフェース回路とを有する。そして制御回路17は、外部の装置(図示せず)から、一次装置2から二次装置3へ電力伝送するか、あるいは、二次装置3から一次装置2へ電力伝送するかを表す信号を受信し、その信号に従って供給整流回路10を制御する。すなわち、制御回路17は、一次装置2から二次装置3へ電力伝送される場合、供給整流回路10から伝送コイル13に供給される交流電力が所定のスイッチング周波数となるように、供給整流回路10の各スイッチング素子のオン/オフを制御する。
一次装置2と二次装置3間の電力伝送効率の周波数特性は、一次装置2の伝送コイル13と二次装置3の伝送コイル21間の結合度に応じて変化する。そこで、電力伝送時における、伝送コイル13と伝送コイル21間の結合度が略一定となる場合、例えば、電力伝送時において、一次装置2と二次装置3の相対的な位置関係が予め固定される場合、制御回路17は、その結合度において最も電力伝送効率が良いスイッチング周波数にて、スイッチング素子11−1とスイッチング素子11−4の組とスイッチング素子11−2とスイッチング素子11−3の組のオン/オフを交互に切り替えるよう、ゲートドライバ16へ制御信号を出力すればよい。なお、制御回路17は、そのスイッチング周波数に応じた周期で制御信号をゲートドライバ16へ出力できるよう、例えば、発振回路及び分周回路などを有していてもよい。
また、制御回路17は、二次装置3から一次装置2へ電力伝送される場合、伝送コイル13を介して受電した交流電力を同期整流するよう、供給整流回路10の各スイッチング素子のオン/オフを制御する。例えば、制御回路17は、LLC共振コンバータの2次側における同期整流方式と同様の方式に従って、スイッチング素子11−1〜11−4のオン/オフを制御すればよい。例えば、制御回路17は、スイッチング素子11−4のボディダイオードに電流が流れ始めることで、電圧検出回路15−1により検出されたスイッチング素子11−4のソース−ドレイン間電圧が所定の基準値以下となると、ゲートドライバ16に、スイッチング素子11−1及びスイッチング素子11−4をオンにする制御信号を出力する。ゲートドライバ16は、その制御信号を受信すると、スイッチング素子11−1及びスイッチング素子11−4をオンにする。一方、電圧検出回路15−1により検出されたスイッチング素子11−4のソース−ドレイン間電圧が所定の基準値を超えると、制御回路17は、ゲートドライバ16に、スイッチング素子11−1及びスイッチング素子11−4をオフにする制御信号を出力する。ゲートドライバ16は、その制御信号を受信すると、スイッチング素子11−1及びスイッチング素子11−4をオフにする。同様に、制御回路17は、スイッチング素子11−2のボディダイオードに電流が流れ始めることで、電圧検出回路15−2により検出されたスイッチング素子11−2のソース−ドレイン間電圧が所定の基準値以下となると、ゲートドライバ16に、スイッチング素子11−2及びスイッチング素子11−3をオンにする制御信号を出力する。ゲートドライバ16は、その制御信号を受信すると、スイッチング素子11−2及びスイッチング素子11−3をオンにする。一方、電圧検出回路15−2により検出されたスイッチング素子11−2のソース−ドレイン間電圧が所定の基準値を超えると、制御回路17は、ゲートドライバ16に、スイッチング素子11−2及びスイッチング素子11−3をオフにする制御信号を出力する。ゲートドライバ16は、その制御信号を受信すると、スイッチング素子11−2及びスイッチング素子11−3をオフにする。これにより、供給整流回路10は、同期整流動作して、供給整流回路10を流れる電流による損失を軽減できる。
次に、二次装置3について説明する。
共振回路20は、互いに並列に接続される伝送コイル21と共振コンデンサ22とからなるLC共振回路である。そして共振回路20が有する伝送コイル21の一端が共振コンデンサ22の一端に接続されるとともに、コンデンサ23及びコイル24を介して供給整流回路25に接続される。また、伝送コイル21の他端が共振コンデンサ22の他端に接続されるとともに、供給整流回路25に接続される。
伝送コイル21は、一次装置2から二次装置3へ電力伝送される場合、例えば、一次装置2の伝送コイル13に流れる交流電流と共振することで、伝送コイル13から電力を受信する。そして伝送コイル21は、共振コンデンサ22、コンデンサ23及びコイル24を介して、受信した電力を供給整流回路25へ出力する。また、伝送コイル21は、二次装置3から一次装置2へ電力伝送される場合、供給整流回路25と接続された直流電源から供給され、供給整流回路25により交流に変換された電力を、空間を介して一次装置2の伝送コイル13へ伝送する。
なお、伝送コイル21の巻き数と、一次装置2の伝送コイル13の巻き数は同一でもよく、あるいは、異なっていてもよい。
共振コンデンサ22は、その一端で伝送コイル21の一端及びコンデンサ23と接続され、他端で伝送コイル21の他端及び供給整流回路25と接続される。そして共振コンデンサ22は、一次装置2から二次装置3へ電力伝送される場合、伝送コイル21にて受信した電力を、コンデンサ23及びコイル24を介して供給整流回路25へ出力する。また共振コンデンサ22は、二次装置3から一次装置2へ電力伝送される場合、伝送コイル21とともに、一次装置2の伝送コイル13及びコンデンサ14からなる共振回路と共振して、電源から供給され、供給整流回路25により交流に変換された電力を、伝送コイル13へ伝送する。
コンデンサ23は、伝送コイル21とコイル24との間に、伝送コイル21と直列に接続される。そしてコンデンサ23は、一次装置2から二次装置3へ電力伝送される場合、受電した交流電力により充電と放電とを繰り返すことで、受電した電力を、コイル24を介して供給整流回路25へ出力する。
またコンデンサ23は、二次装置3から一次装置2へ電力伝送される場合、供給整流回路25から供給された交流電力により充電と放電とを繰り返すことで、偏励磁現象が生じることを抑制しつつ、共振回路20へ供給された交流電力を伝達する。
二次装置3から一次装置2へ電力伝送される場合において、偏励磁現象は、例えば、供給整流回路25において、伝送コイル21の一端側の電位が伝送コイル21の他端側の電位よりも高くなる期間と、その一端側の電位が他端側の電位よりも低くなる期間とが同一でないか、あるいは、伝送コイル21の一端側から他端側へ電流が流れるときの供給整流回路25の抵抗値と、逆方向に電流が流れるときの供給整流回路25の抵抗値とが同一でないときに生じ得る。このような場合、伝送コイル21の一端側から他端側へ流れる励磁電流の量と、逆方向に流れる励磁電流の量とに差が生じるためである。
図2(a)は、参考例として、SPL方式の非接触給電装置において、偏励磁現象が生じたときの二次側の伝送コイルに流れる電流の時間変化を表す図である。図2(a)において、横軸は時間を表し、縦軸は電流の強さを表す。グラフ200は、二次側の伝送コイルに流れる電流の時間変化を表す。グラフ200に示されるように、偏励磁現象が生じた場合、時間経過とともに、伝送コイルに流れる電流が徐々に増加する。そのため、このまま電流が増加すると、二次側の装置が有するスイッチング素子などが破壊されるおそれがある。
しかし、本実施形態では、伝送コイル21と直列に接続されるコンデンサ23が、励磁電流の変動に対する負帰還の作用を生じさせるため、偏励磁現象の発生が抑制される。すなわち、コンデンサ23から伝送コイル21へ向かう方向の励磁電流の量が逆向きの励磁電流の量よりも多い場合、コンデンサ23の充電量が増加してコンデンサ23の両端子間電圧も増加することで伝送コイル21の両端子間の電圧が減少し、その結果としてコンデンサ23から伝送コイル21へ向かう方向の励磁電流が減少することで偏励磁が抑制される。コンデンサ23から伝送コイル21へ向かう方向の励磁電流の量が逆向きの励磁電流の量よりも少ない場合も、同様に、コンデンサ23により、伝送コイル21からコンデンサ23へ向かう方向の励磁電流が減少することで偏励磁が抑制される。
図2(b)は、本実施形態による非接触給電装置1において、二次装置3から一次装置2へ電力伝送される場合における、伝送コイル21に流れる電流の時間変化を表す図である。図2(b)において、横軸は時間を表し、縦軸は電流の強さを表す。グラフ201は、伝送コイル21に流れる電流の時間変化を表す。グラフ201に示されるように、伝送コイル21に流れる電流はスイッチング周波数にて周期的に増減するだけで、時間が経過しても電流の平均値は一定となり、偏励磁現象が抑制されていることが分かる。
なお、コンデンサ23は、共振コンデンサ22の静電容量の略10倍以上の静電容量を有することが好ましい。これにより、コンデンサ23は、一次装置2から二次装置3へ電力伝送される場合の共振回路20の共振を抑制することなく、二次装置3から一次装置2へ電力伝送される場合の偏励磁現象の発生を抑制できる。
コイル24は、共振回路20と供給整流回路25との間に接続される。本実施形態では、コイル24は、コンデンサ23及び伝送コイル21と直列となるように、その一端で共振回路20のコンデンサ23と接続され、他端で供給整流回路25と接続される。そしてコイル24は、一次装置2から二次装置3へ電力伝送される場合、共振回路20により受電した電力を供給整流回路25へ出力する。このコイル24が設けられることにより、受電した電力の高調波成分が抑制される。また、コイル24は、二次装置3から一次装置2へ電力伝送される場合、供給整流回路25から共振回路20へ供給される電力を伝達する。なお、伝送コイル21の巻き数と、コイル24の巻き数は同一でもよく、あるいは、異なっていてもよい。
供給整流回路25は、第2の変換回路の一例であり、一次装置2から二次装置3へ電力伝送する場合、負荷回路あるいはバッテリと接続され、共振回路20を介して受電した交流電力を整流して、負荷回路あるいはバッテリへ供給する。その際、供給整流回路25の正極側入出力端子T+に、負荷回路あるいはバッテリの正極が接続され、供給整流回路25の負極側入出力端子T-に、バッテリの負極が接続される。一方、供給整流回路25は、二次装置3から一次装置2へ電力伝送する場合、直流電力を供給する電源と接続され、その電源から供給される直流電力を交流電力に変換して共振回路20へ供給する。この場合にも、供給整流回路25の正極側入出力端子T+に、電源の正極が接続され、供給整流回路25の負極側入出力端子T-に、電源の負極が接続される。
また供給整流回路25は、整流回路の一例であり、一次装置2の供給整流回路10と同様の構成を有する。すなわち、供給整流回路25は、フルブリッジ状に接続された4個のスイッチング素子26−1〜26−4と、平滑コンデンサ27とを有する。
4個のスイッチング素子26−1〜26−4のうち、スイッチング素子26−1とスイッチング素子26−2は、供給整流回路25の正極側入出力端子T+と負極側入出力端子T-との間に直列に接続される。本実施形態では、スイッチング素子26−1のドレイン端子は、正極側入出力端子T+と接続され、スイッチング素子26−1のソース端子は、スイッチング素子26−2のドレイン端子と接続される。また、スイッチング素子26−2のソース端子は、負極側入出力端子T-と接続される。さらに、スイッチング素子26−1のソース端子、及び、スイッチング素子26−2のドレイン端子は、コイル24及びコンデンサ23を介して共振回路20の一端に接続される。
同様に、4個のスイッチング素子26−1〜26−4のうち、スイッチング素子26−3とスイッチング素子26−4は、スイッチング素子26−1及びスイッチング素子26−2と並列に、かつ、正極側入出力端子T+と負極側入出力端子T-との間に直列に接続される。また、スイッチング素子26−3のドレイン端子は、正極側入出力端子T+と接続され、スイッチング素子26−3のソース端子は、スイッチング素子26−4のドレイン端子と接続される。また、スイッチング素子26−4のソース端子は、負極側入出力端子T-と接続される。さらに、スイッチング素子26−3のソース端子、及び、スイッチング素子26−4のドレイン端子は、共振回路20の他端に接続される。
また、各スイッチング素子26−1〜26−4のゲート端子は、ゲートドライバ29と接続される。さらに、各スイッチング素子26−1〜26−4のゲート端子は、オンとなる電圧が印加されたときにそのスイッチング素子がオンとなることを保証するために、それぞれ、抵抗を介して自素子のソース端子と接続されてもよい。そして各スイッチング素子26−1〜26−4は、制御回路30からの制御信号にしたがってゲートドライバ29から印加される電圧に応じて、調整可能なスイッチング周波数にてオン/オフが切り替えられる。
一次装置2から二次装置3へ電力伝送される場合、スイッチング素子26−1とスイッチング素子26−4とがオンとなっている間、スイッチング素子26−2とスイッチング素子26−3とがオフとなり、逆に、スイッチング素子26−2とスイッチング素子26−3とがオンとなっている間、スイッチング素子26−1とスイッチング素子26−4とがオフとなるように、スイッチング素子26−1とスイッチング素子26−4の組と、スイッチング素子26−2とスイッチング素子26−3との組について交互にオン/オフが切り替えられる。さらに、同期整流されるよう、スイッチング素子26−1及びスイッチング素子26−2と接続される側の共振回路20の一端の電位が、スイッチング素子26−3及びスイッチング素子26−4と接続される側の共振回路20の他端の電位よりも高く、かつ後述する条件が満たされる場合に、スイッチング素子26−1とスイッチング素子26−4の組がオンとなる。また、スイッチング素子26−1及びスイッチング素子26−2と接続される側の共振回路20の一端の電位が、スイッチング素子26−3及びスイッチング素子26−4と接続される側の共振回路20の他端の電位よりも低く、かつ後述する条件が満たされる場合に、スイッチング素子26−2とスイッチング素子26−3の組がオンとなる。これにより、一次装置2から二次装置3へ伝送され、共振回路20を介して受電された電力は整流される。
逆に、二次装置3から一次装置2へ電力伝送される場合も、同様に、スイッチング素子26−1とスイッチング素子26−4とがオンとなっている間、スイッチング素子26−2とスイッチング素子26−3とがオフとなり、逆に、スイッチング素子26−2とスイッチング素子26−3とがオンとなっている間、スイッチング素子26−1とスイッチング素子26−4とがオフとなるように、スイッチング素子26−1とスイッチング素子26−4の組と、スイッチング素子26−2とスイッチング素子26−3との組について交互にオン/オフが切り替えられる。これにより、電源から供給された直流電力は、各スイッチング素子のスイッチング周波数を持つ交流電力に変換されて、共振回路20に供給される。
平滑コンデンサ27は、スイッチング素子26−1〜26−4よりも正極側入出力端子T+及び負極側入出力端子T-側において、スイッチング素子26−1及びスイッチング素子26−2と並列に、かつ、正極側入出力端子T+と負極側入出力端子T-との間に接続される。そして平滑コンデンサ27は、一次装置2から二次装置3へ電力伝送される場合に、共振回路20を介して受電し、かつ、スイッチング素子26−1〜26−4により整流された電力を平滑化する。平滑化された直流電力は、正極側入出力端子T+及び負極側入出力端子T-に接続される負荷回路などへ出力される。
電圧検出回路28−1は、スイッチング素子26−4のソース−ドレイン間の電圧を測定し、その測定値を制御回路30へ出力する。同様に、電圧検出回路28−2は、スイッチング素子26−2のソース−ドレイン間の電圧を測定し、その測定値を制御回路30へ出力する。なお、電圧検出回路28−1及び電圧検出回路28−2は、それぞれ、対応するスイッチング素子のソース−ドレイン間の電圧の測定値を求めることができるどのような回路であってもよい。
ゲートドライバ29は、制御回路30から、スイッチング素子26−1〜26−4のそれぞれのオン/オフを切り替える制御信号を受信し、その制御信号に応じて、スイッチング素子26−1〜26−4のそれぞれのゲート端子に印加する電圧を変化させる。すなわち、ゲートドライバ29は、スイッチング素子26−1をオンにする制御信号を受け取ると、スイッチング素子26−1のゲート端子に、スイッチング素子26−1がオンとなる相対的に高い電圧を印加する。一方、ゲートドライバ29は、スイッチング素子26−1をオフにする制御信号を受け取ると、スイッチング素子26−1のゲート端子に、スイッチング素子26−1がオフとなる、相対的に低い電圧を印加する。これにより、ゲートドライバ29は、制御回路30により指示されたタイミングでスイッチング素子26−1のオン/オフを切り替える。ゲートドライバ29は、スイッチング素子26−2〜26−4のそれぞれについても同様に、ゲート端子に印加する電圧を変化させることでスイッチング素子26−2〜26−4のオン/オフを切り替える。
制御回路30は、例えば、不揮発性のメモリ回路及び揮発性のメモリ回路と、演算回路と、他の回路と接続するためのインターフェース回路とを有する。そして制御回路30は、外部の装置(図示せず)から、一次装置2から二次装置3へ電力伝送するか、あるいは、二次装置3から一次装置2へ電力伝送するかを表す信号を受信し、その信号に従って供給整流回路25を制御する。
すなわち、制御回路30は、一次装置2から二次装置3へ電力伝送される場合、共振回路20を介して受電した交流電力を同期整流するよう、供給整流回路25の各スイッチング素子のオン/オフを制御する。例えば、制御回路30は、二次装置3から一次装置2へ電力伝送される場合の制御回路17の制御と同様に、スイッチング素子26−1〜26−4のオン/オフを制御すればよい。すなわち、制御回路30は、スイッチング素子26−4のボディダイオードに電流が流れ始めることで、電圧検出回路28−1により検出されたスイッチング素子26−4のソース−ドレイン間電圧が所定の基準値以下となると、ゲートドライバ29に、スイッチング素子26−1及びスイッチング素子26−4をオンにする制御信号を出力する。ゲートドライバ29は、その制御信号を受信すると、スイッチング素子26−1及びスイッチング素子26−4をオンにする。一方、電圧検出回路28−1により検出されたスイッチング素子26−4のソース−ドレイン間電圧が所定の基準値を超えると、制御回路30は、ゲートドライバ29に、スイッチング素子26−1及びスイッチング素子26−4をオフにする制御信号を出力する。ゲートドライバ29は、その制御信号を受信すると、スイッチング素子26−1及びスイッチング素子26−4をオフにする。同様に、制御回路30は、スイッチング素子26−2のボディダイオードに電流が流れ始めることで、電圧検出回路28−2により検出されたスイッチング素子26−2のソース−ドレイン間電圧が所定の基準値以下となると、ゲートドライバ29に、スイッチング素子26−2及びスイッチング素子26−3をオンにする制御信号を出力する。ゲートドライバ29は、その制御信号を受信すると、スイッチング素子26−2及びスイッチング素子26−3をオンにする。一方、電圧検出回路28−2により検出されたスイッチング素子26−2のソース−ドレイン間電圧が所定の基準値を超えると、制御回路30は、ゲートドライバ29に、スイッチング素子26−2及びスイッチング素子26−3をオフにする制御信号を出力する。ゲートドライバ29は、その制御信号を受信すると、スイッチング素子26−2及びスイッチング素子26−3をオフにする。これにより、供給整流回路25は、同期整流動作して、供給整流回路25を流れる電流による損失を軽減できる。
また、制御回路30は、二次装置3から一次装置2へ電力伝送される場合、供給整流回路25から共振回路20に供給される交流電力が所定のスイッチング周波数となるように、供給整流回路25の各スイッチング素子のオン/オフを制御する。
上記のように、一次装置2と二次装置3間の電力伝送効率の周波数特性は、一次装置2の伝送コイル13と二次装置3の伝送コイル21間の結合度に応じて変化する。そこで、電力伝送時における、伝送コイル13と伝送コイル21間の結合度が略一定となる場合、例えば、電力伝送時において、一次装置2と二次装置3の相対的な位置関係が予め固定される場合、制御回路30は、その結合度において最も電力伝送効率が良いスイッチング周波数にて、スイッチング素子26−1とスイッチング素子26−4の組とスイッチング素子26−2とスイッチング素子26−3の組のオン/オフを交互に切り替えるよう、ゲートドライバ29へ制御信号を出力すればよい。
以上に説明してきたように、この非接触給電装置は、SPL方式に従った構成を有することで、双方向の電力伝送を可能とする。さらに、この非接触給電装置は、二次装置の並列共振回路が有する伝送コイルと直列に接続されるコンデンサを有する。これにより、この非接触給電装置は、二次装置から一次装置へ電力伝送する場合において偏励磁現象が発生することを抑制する。その結果として、この非接触給電装置は、偏励磁現象による故障の発生を防止して、何れの方向への給電においても安定的に動作することができる。
なお、コンデンサ23が接続される位置は、上記の実施形態における位置に限られない。コンデンサ23は、共振回路20の伝送コイル21と直列に接続されればよい。
図3は、二次装置3の変形例における、コンデンサ23の接続位置を示す図である。図3では、簡単化のために、供給整流回路25、電圧検出回路28−1、28−2、ゲートドライバ29及び制御回路30の図示は省略される。
この変形例では、コンデンサ23は、共振回路20内において、伝送コイル21の一端と共振コンデンサ22の一端との間に接続される。ただし、この例でも、コンデンサ23は、伝送コイル21とコイル24の間において、伝送コイル21と直列に接続される。
図4は、二次装置3の他の変形例における、コンデンサ23の接続位置を示す図である。図4では、簡単化のために、供給整流回路25、電圧検出回路28−1、28−2、ゲートドライバ29及び制御回路30の図示は省略される。
この変形例では、コンデンサ23は、コイル24と接続される側の伝送コイル21の一端とは反対側の伝送コイル21の他端及び共振コンデンサ22の他端に対して、伝送コイル21と直列に接続される。
図3及び図4の何れの変形例においても、二次装置3は、コンデンサ23を有することで、二次装置3から一次装置2へ電力伝送される場合において偏励磁現象が生じることを抑制できる。なお、図3及び図4の何れの変形例においても、一次装置2から二次装置3へ電力伝送される場合における、一次装置2の制御回路17及び二次装置3の制御回路30による制御、及び、二次装置3から一次装置2へ電力伝送される場合における、一次装置2の制御回路17及び二次装置3の制御回路30による制御は、上記の実施形態における各制御回路による制御と同様とすることができる。
また、一次装置2と二次装置3との位置関係が一定でないことがある。このような場合、一次装置2の伝送コイル13と二次装置3の伝送コイル21間の結合度が変動することがある。そこでこのような場合には、電力を受電する側の出力電圧を測定し、その出力電圧が高くなるよう、電力を送電する側の制御回路が、伝送コイルに印加される交流電力のスイッチング周波数を調整するよう、供給整流回路を制御してもよい。
例えば、一次装置2は、供給整流回路10の二つの入出力端子間の電圧を測定する電圧検出回路と二次装置3と通信するための通信器を有していてもよい。同様に、二次装置3は、供給整流回路25の二つの入出力端子間の電圧を測定する電圧検出回路と一次装置2と通信するための通信器を有していてもよい。そして一次装置2から二次装置3へ電力伝送される場合、一定周期ごとに、供給整流回路25の二つの入出力端子間の測定電圧が、通信器を介して二次装置3から一次装置2へ通知され、一次装置2の制御回路17は、その測定電圧が所定の閾値以上となるか、あるいは、最大となるスイッチング周波数が見つかるまで、供給整流回路10のスイッチング周波数を変更すればよい。
同様に、二次装置3から一次装置2へ電力伝送される場合、一定周期ごとに、供給整流回路10の二つの入出力端子間の測定電圧が、通信器を介して一次装置2から二次装置3へ通知され、二次装置3の制御回路30は、その測定電圧が所定の閾値以上となるか、あるいは、最大となるスイッチング周波数が見つかるまで、供給整流回路25のスイッチング周波数を変更すればよい。
このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
1 非接触給電装置
2 一次装置
10 供給整流回路
11−1〜11−4 スイッチング素子
12 平滑コンデンサ
13 伝送コイル
14 コンデンサ
15−1、15−2 電圧検出回路
16 ゲートドライバ
17 制御回路
3 二次装置
20 共振回路
21 伝送コイル
22 共振コンデンサ
23 コンデンサ
24 コイル
25 供給整流回路
26−1〜26−4 スイッチング素子
27 平滑コンデンサ
28−1、28−2 電圧検出回路
29 ゲートドライバ
30 制御回路

Claims (1)

  1. 一次装置と、前記一次装置との間で電力伝送する二次装置とを有する非接触給電装置であって、
    前記一次装置は、
    前記一次装置と前記二次装置との間で電力を伝送する第1の伝送コイルと、
    前記第1の伝送コイルと直列に接続されるコンデンサと、
    前記第1の伝送コイルと前記コンデンサを介して接続され、直流電力と、前記第1の伝送コイルを流れる交流電力との変換を行う第1の変換回路とを有し、
    前記二次装置は、
    前記一次装置と前記二次装置の間で電力を伝送する第2の伝送コイルと、前記第2の伝送コイルと並列に接続される共振コンデンサとを有する共振回路と、
    前記共振回路と接続され、前記共振回路を流れる交流電力と、直流電力との変換を行う第2の変換回路と、
    前記共振回路と前記第2の変換回路の間に、前記第2の伝送コイルと直列に接続されるコイルと、
    前記第2の伝送コイルと前記第2の変換回路の間に、前記第2の伝送コイルと直列に接続されるコンデンサとを有し、
    前記コンデンサの静電容量は、前記共振コンデンサの静電容量の10倍以上である
    非接触給電装置。
JP2018038546A 2018-03-05 2018-03-05 非接触給電装置 Active JP6965793B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018038546A JP6965793B2 (ja) 2018-03-05 2018-03-05 非接触給電装置
DE112019001154.5T DE112019001154T5 (de) 2018-03-05 2019-01-18 Kontaktlose energieübertragungsvorrichtung
CN201980012613.8A CN111699610A (zh) 2018-03-05 2019-01-18 非接触供电装置
PCT/JP2019/001537 WO2019171784A1 (ja) 2018-03-05 2019-01-18 非接触給電装置
US16/971,709 US11108273B2 (en) 2018-03-05 2019-01-18 Contactless power transmission apparatus with stable bidirectional power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038546A JP6965793B2 (ja) 2018-03-05 2018-03-05 非接触給電装置

Publications (2)

Publication Number Publication Date
JP2019154173A JP2019154173A (ja) 2019-09-12
JP6965793B2 true JP6965793B2 (ja) 2021-11-10

Family

ID=67846999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038546A Active JP6965793B2 (ja) 2018-03-05 2018-03-05 非接触給電装置

Country Status (5)

Country Link
US (1) US11108273B2 (ja)
JP (1) JP6965793B2 (ja)
CN (1) CN111699610A (ja)
DE (1) DE112019001154T5 (ja)
WO (1) WO2019171784A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488505B2 (ja) * 2011-03-16 2014-05-14 株式会社ダイフク 無接触給電設備
WO2013118274A1 (ja) * 2012-02-09 2013-08-15 株式会社 テクノバ 双方向非接触給電システム
JP5741962B2 (ja) * 2012-11-30 2015-07-01 株式会社デンソー 非接触給電装置
CN103746462B (zh) * 2013-07-11 2016-01-20 重庆米亚车辆技术有限公司 一种用于无线电能传输的双边lcc补偿网络及其调谐方法
JP5977213B2 (ja) 2013-08-21 2016-08-24 トヨタ自動車株式会社 非接触電力伝送システム
JP2015046547A (ja) * 2013-08-29 2015-03-12 トヨタ自動車株式会社 受電装置、送電装置、および電力伝送システム
JP6307368B2 (ja) * 2014-06-27 2018-04-04 新電元工業株式会社 Dc/dcコンバータの制御装置及びその制御方法
JP6097270B2 (ja) * 2014-12-10 2017-03-15 株式会社豊田中央研究所 電力変換回路システム
JP6278012B2 (ja) * 2015-08-28 2018-02-14 トヨタ自動車株式会社 非接触電力伝送システム及び送電装置
JP6515015B2 (ja) * 2015-11-11 2019-05-15 株式会社ダイヘン 非接触電力伝送システム
JP6480602B2 (ja) * 2015-12-15 2019-03-13 日立オートモティブシステムズ株式会社 電力変換装置
CN109690903B (zh) * 2016-08-08 2020-06-09 韦特里西提公司 具有用于通量消除的共用材料的电感器系统及用于通量消除的方法

Also Published As

Publication number Publication date
DE112019001154T5 (de) 2020-12-24
US11108273B2 (en) 2021-08-31
WO2019171784A1 (ja) 2019-09-12
CN111699610A (zh) 2020-09-22
US20210119485A1 (en) 2021-04-22
JP2019154173A (ja) 2019-09-12

Similar Documents

Publication Publication Date Title
JP6004122B2 (ja) 受電装置及び電力伝送システム
JP6497614B2 (ja) 送電装置及び無線電力伝送システム
JP6677306B2 (ja) 受電装置およびワイヤレス給電システム
JP4941417B2 (ja) 非接触電力伝送装置
JP6519574B2 (ja) ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送装置並びに整流器
WO2019230052A1 (ja) 非接触給電装置
JP2014060840A (ja) 非接触給電システム、端末装置、非接触給電装置および非接触給電方法
JP6680243B2 (ja) 非接触給電装置
WO2019155820A1 (ja) 非接触給電装置
JP2010226890A (ja) 非接触電力伝送装置
WO2011122248A1 (ja) 非接触送電装置、非接触受電装置及び非接触充電システム
JP2005318719A (ja) スイッチング電源装置
WO2018212102A1 (ja) 非接触給電装置
JP2019176565A (ja) 非接触給電装置
WO2020090534A1 (ja) 非接触給電装置
JP2019154198A (ja) 非接触給電装置
US20190341809A1 (en) Non-contact power supply device
JP6965793B2 (ja) 非接触給電装置
US11245291B2 (en) Non-contact power supply device capable of performing constant voltage output operation
CN112448482B (zh) 非接触供电装置及送电装置
JP2021083139A (ja) 受電装置
WO2020116033A1 (ja) 非接触給電装置
JP6251342B2 (ja) 端末装置
JP2017005841A (ja) 送電機器
JP6276128B2 (ja) 携帯端末、制御方法及び充電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6965793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150