JP6963150B1 - イオンガン及び真空処理装置 - Google Patents

イオンガン及び真空処理装置 Download PDF

Info

Publication number
JP6963150B1
JP6963150B1 JP2021545438A JP2021545438A JP6963150B1 JP 6963150 B1 JP6963150 B1 JP 6963150B1 JP 2021545438 A JP2021545438 A JP 2021545438A JP 2021545438 A JP2021545438 A JP 2021545438A JP 6963150 B1 JP6963150 B1 JP 6963150B1
Authority
JP
Japan
Prior art keywords
magnetic field
anode
cross
ion gun
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021545438A
Other languages
English (en)
Other versions
JPWO2022018840A1 (ja
Inventor
勉 廣石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Application granted granted Critical
Publication of JP6963150B1 publication Critical patent/JP6963150B1/ja
Publication of JPWO2022018840A1 publication Critical patent/JPWO2022018840A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • H01J27/143Hall-effect ion sources with closed electron drift
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/152Magnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Plasma Technology (AREA)

Abstract

イオンガンは、アノードと、アノードに対向する第1部分及び第2部分を有するカソードと、第1部分と第2部分との間に空間磁場を形成する磁石と、を有する。カソードの第1部分と第2部分との間には、直線部と曲線部とを含む環状の間隙が設けられている。磁石は、曲線部の第1部分と第2部分との間に、間隙の断面中心線よりも内側にボトムを有する磁力線を形成する。

Description

本発明は、イオンガン及び真空処理装置に関する。
イオンガンは、生成したイオンをイオンビームとして射出する装置であり、半導体装置の製造に用いられる真空処理装置などに利用されている。中でも、クローズドドリフトイオンソースと呼ばれるタイプのイオンガンは、イオンビームの射出口が文字通り閉じたループを形成しており大面積化が容易であるという特徴を生かし、様々な分野で利用されている。
クローズドドリフト型のイオンガンは、プラズマの生成とイオンの加速とを同時に行うことができるという利点を有する一方、その構造上、加速したイオンの一部が射出口を構成する磁極に衝突するのを避けられない。そのため、磁極は時間の経過とともに削れていき、徐々に放電安定性が低下し、最終的には放電を維持できなくなる。また、磁極が削れること以外にも、削れた磁極材による処理物の汚染、磁極の発熱、ビームロスによるエッチングレートの低下といった問題も引き起こす。
このような課題を解消する方法として、特許文献1には、射出口の近傍のミラー比を高めたイオンガンが開示されている。また、特許文献2には、耐スパッタ性の高い部材により磁極をコーティングしたイオンガンが開示されている。
米国特許出願公開第2005/0247885号明細書 米国特許出願公開第2004/0016640号明細書
クローズドドリフト型のイオンガンとして、直線部と曲線部の形状を組み合わせた環状の射出口を有するものが知られている。しかしながら、このようなイオンガンにおいて直線部と曲線部とを同じように設計すると、磁極に衝突するイオンの量が直線部では少ないが曲線部で非常に多くなることが、本発明者等の検討により初めて明らかとなった。特許文献1及び特許文献2では、射出口の形状について特段の考慮はなされていなかった。
本発明の目的は、イオンビームの射出効率及び均一性を向上しうるとともに、長期間に渡って安定して稼働しうるイオンガン及びこれを用いた真空処理装置を提供することにある。
本発明の一観点によれば、アノードと、前記アノードに対向する第1部分及び第2部分を有するカソードと、前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、前記カソードの前記第1部分と前記第2部分との間に、直線部と曲線部とを含む環状の間隙が設けられており、前記磁石は、前記曲線部の前記第1部分と前記第2部分との間に、前記間隙の断面中心線よりも内側にボトムを有する磁力線を形成するイオンガンが提供される。
また、本発明の他の一観点によれば、アノードと、前記アノードに対向する第1部分及び第2部分を有するカソードと、前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、前記カソードの前記第1部分と前記第2部分との間に、直線部と曲線部とを含む環状の間隙が設けられており、前記第1部分は前記間隙に対して内側に配され、前記第2部分は前記間隙に対して外側に配されており、前記磁石は、前記第1部分及び前記第2部分と前記アノードとの間の空間に、前記第2部分から前記第1部分の方向に向かう磁力線を形成し、前記曲線部において、前記磁力線と前記間隙の断面中心線とが交差する点の磁場ベクトルは、前記断面中心線と直交する面に対して、前記第1部分及び前記第2部分の側に1.5度よりも小さく、前記アノードの側に0度よりも大きい第1の角度で傾斜しているイオンガンが提供される。
また、本発明の更に他の一観点によれば、アノードと、前記アノードに対向する第1部分及び第2部分を有するカソードと、前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、前記カソードの前記第1部分と前記第2部分との間に直線部と曲線部とを含む環状の間隙が設けられたイオンガンにおいて、前記間隙から射出されるイオンビームを調整するイオンビームの調整方法であって、前記曲線部の前記第1部分と前記第2部分との間に形成される磁力線のボトムの位置を前記間隙の断面中心線よりも内側方向にシフトすることにより、前記間隙から射出されるイオンビームの中心位置を調整するイオンビームの調整方法が提供される。
また、本発明の更に他の一観点によれば、アノードと、前記アノードに対向する第1部分及び第2部分を有するカソードと、前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、前記カソードの前記第1部分と前記第2部分との間に直線部と曲線部とを含む環状の間隙が設けられており、前記第1部分が前記間隙に対して内側に配され、前記第2部分が前記間隙に対して外側に配されており、前記磁石が前記第1部分及び前記第2部分と前記アノードとの間の空間に前記第2部分から前記第1部分の方向に向かう磁力線を形成するイオンガンにおいて、前記間隙から射出されるイオンビームを調整するイオンビームの調整方法であって、前記曲線部において、前記磁力線と前記間隙の断面中心線とが交差する点の磁場ベクトルを、前記断面中心線と直交する面に対して前記アノードの側に傾斜させることにより、前記間隙から射出されるイオンビームの中心位置を調整するイオンビームの調整方法が提供される。
本発明によれば、イオンビームの射出効率及び均一性を向上することができる。また、磁極へのイオンビームの衝突を抑制することができ、経時変化の低減、メンテナンス周期の改善、ランニングコストの低減といった優れた効果を実現することができる。
図1は、本発明の第1実施形態によるイオンガンの構造を示す斜視図である。 図2は、本発明の第1実施形態によるイオンガンの構造を示す平面図である。 図3Aは、本発明の第1実施形態によるイオンガンの構造を示す概略断面図(その1)である。 図3Bは、本発明の第1実施形態によるイオンガンの構造を示す概略断面図(その2)である。 図4は、本発明の第1実施形態によるイオンガンの射出口の近傍の構造を示す拡大概略断面図である。 図5Aは、本発明の第1実施形態によるイオンガンの動作を説明する図(その1)である。 図5Bは、本発明の第1実施形態によるイオンガンの動作を説明する図(その2)である。 図6は、ミラー磁場により生じる磁気ミラー力を説明する模式図である。 図7Aは、参考例によるイオンガンの構造及び動作を示す図(その1)である。 図7Bは、参考例によるイオンガンの構造及び動作を示す図(その2)である。 図8は、射出口の曲線部に生じる磁気ミラー力を説明する模式図である。 図9は、射出口の曲線部におけるプラズマとアノード及び磁極板との電気的な関係を示す模式図である。 図10は、射出口の断面中心線上における磁場ベクトルの方向を説明する模式図である。 図11は、磁極板とアノードとの間の空間における電子の動きを説明する模式図である。 図12は、磁力線のボトムの位置を変えたときの磁極板の削れ量についてシミュレーションを行った結果を示すグラフである。 図13は、磁石下の距離と磁力線のボトム位置との関係をシミュレーションにより求めた結果を示すグラフである。 射出口の断面中心線上におけるアノードからの距離と磁力線の傾斜角度との関係をシミュレーションにより求めた結果を示すグラフである。 本発明の第2実施形態による真空処理装置を示す概略図である。
[第1実施形態]
本発明の第1実施形態によるイオンガンの構造について、図1乃至図3Bを用いて説明する。図1は、本実施形態によるイオンガンの構造を示す斜視図である。図2は、本実施形態によるイオンガンの構造を示す平面図である。図3A及び図3Bは、本実施形態によるイオンガンの構造を示す概略断面図である。図3Aは図2のA−A′線断面図であり、図3Bは図2のB−B′線断面図である。
本実施形態によるイオンガン10は、図1乃至図3Bに示すように、磁極板20A,20Bと、磁石32と、ヨーク34と、アノード40と、を含み、略直方体形状の外観をなしている。イオンガン10の一主面には、図1に示すように、イオンビームを射出するための射出口22が設けられている。
磁極板20A及び磁極板20Bは、導電性を有する高透磁率の磁性材料からなる板状体である。磁極板20Bは、磁極板20Aの外周形状に応じた開口部を有する環状の板状体である。磁極板20Aは、磁極板20Bとの間に所定の間隙(ギャップ)を確保するように、磁極板20Bの開口部の内側に配される。磁極板20A及び磁極板20Bは、所定の間隙を空けて配置することで空間磁場を形成する磁極としての機能を備え得る。また、磁極板20A及び磁極板20Bは、アノード40に対向するカソード(陰極)としての機能をも備える。磁極板20Aはカソードの第1部分を構成し、磁極板20Bはカソードの第2部分を構成する。
磁極板20Aと磁極板20Bとの間の間隙は、磁極板20Aの外周及び磁極板20Bの内周に沿った環状の開口部を形成している。このように形成される環状の開口部が、イオンビームの射出口22を構成している。射出口22は、例えば図1及び図2に示すように、直線状の直線部22aと、半円状の曲線部22bと、を含み得る。なお、射出口22は、放電を維持するために環状であることが好ましいが、その形状は特に限定されるものではない。例えば、曲線部22bには、真円形状の一部や楕円形状の一部などの任意の形状を適用可能である。曲線形状の曲率は一定でもよいし、変動してもよい。
平面視において射出口22を中心に見ると、図2に示すように、磁極板20Aは環状の射出口22の内側に位置し、磁極板20Bは環状の射出口22の外側に位置している。本明細書において、射出口22の「内側」と表現するときは射出口22に対して磁極板20Aの側であることを示し、射出口22の「外側」と表現するときは射出口22に対して磁極板20Bの側であることを示すものとする。
磁極板20A及び磁極板20Bは、導電性を有する高透磁率の磁性材料であれば特に限定されるものではないが、例えば、SUS430等の強磁性ステンレス鋼、SmCo合金、NdFe合金等により構成され得る。
磁石32及びヨーク34は、図2及び図3に示すように、環状の凹部36を有する構造体30を構成している。磁極板20A及び磁極板20Bは、凹部36に沿って射出口22がその上に位置するように、構造体30の凹部36が設けられた面の上に接合されている。ヨーク34は、磁石32及び磁極板20A,20Bに磁気的に結合し、磁石32から発生される磁束を磁極板20A,20Bに導く磁気導体としての役割を有する。磁石32及びヨーク34は、磁極板20A,20B、磁石32及びヨーク34によって構成される磁気回路(磁路)の内側に凹部36が位置するように配される。磁石32は、ヨーク34を介して磁極板20Aと磁極板20Bとの間に空間磁場を形成する。ヨーク34及び磁石32は、磁極板20A,20Bに電気的に接続され得る。
ヨーク34は、導電性を有する高透磁率の磁性材料であれば特に限定されるものではないが、例えば、SUS430等の強磁性ステンレス鋼、SmCo合金、NdFe合金等により構成され得る。磁石32は、永久磁石でも電磁石でも構わない。磁石32によって磁極板20Aと磁極板20Bとの間に形成される磁場における最大磁束密度は、1000[Gauss]程度であることが好ましい。
ヨーク34には、構造体30の外部から凹部36内に連通するガス導入孔38が設けられている。なお、図3A及び図3Bには構造体30の底部に設けられた複数のガス導入孔38を示しているが、ガス導入孔38の数や配置場所は、特に限定されるものではない。
磁石32は、射出口22の直線部22aにおいては、図3Aに示すように、射出口22の断面中心線24上に位置している。別の言い方をすると、磁石32と磁極板20Bとの間の距離は、磁石32と磁極板20Aとの間の距離とほぼ等しくなっている。或いは、磁石32と磁極板20Bとの間の磁路の長さは、磁石32と磁極板20Aとの間の磁路の長さとほぼ等しくなっている。なお、本明細書において射出口22の断面中心線24とは、射出口22の幅方向の中心を通るイオンビームの射出方向(Z方向)に平行な直線を言うものとする。
また、磁石32は、射出口22の曲線部22bにおいては、図3Bに示すように、射出口22の断面中心線24よりも外側に位置している。別の言い方をすると、磁石32と磁極板20Bとの間の距離は、磁石32と磁極板20Aとの間の距離よりも近くなっている。或いは、磁石32と磁極板20Bとの間の磁路の長さは、磁石32と磁極板20Aとの間の磁路の長さよりも短くなっている。
アノード(陽極)40は、凹部36の形状に応じた環状の構造体であり、磁極板20A,20B、磁石32及びヨーク34から離間して凹部36の中に収容される。アノード40は、カソードとしての磁極板20A,20Bと対向し、磁極板20A,20Bとともに、磁極板20A,20Bとアノード40との間の空間に生じたプラズマ中のイオンを加速する加速電極としての機能を備える。アノード40は、特に限定されるものではないが、例えば図示しない絶縁体からなるスペーサ等により、構造体30に固定され得る。アノード40は、導電性を有していればよく、磁気的な考慮は不要であり、例えば非磁性のステンレス鋼などにより構成され得る。
次に、磁極板20A,20Bとアノード40とが対向する部分における具体的な形状について、図4を用いて説明する。図4は、磁極板20A,20Bとアノード40とが対向する部分の形状を概念的に示した断面図である。
射出口22から射出されるイオンビームの特性は、磁極板20A,20Bの先端部の形状や磁極板20A,20Bとアノード40との間の位置関係などにより大きく変化する。そのため、磁極板20A,20Bの先端部の形状や磁極板20A,20Bとアノード40との間の位置関係などは、必要とされるイオンビームの特性に応じて適宜設定されるが、典型的には、例えば図4に示すような関係に設定され得る。
磁極板20A,20Bの先端部は、例えば図4に示すように、アノード40に対向する面側の角部が面取りされたテーパ形状に成形され得る。射出口22の幅をG、磁極板20A,20Bの最薄部の厚さをT1、テーパ部の厚さをT2、磁極板20A,20Bとアノード40との間隔をSとすると、これらはいずれも数mm程度のサイズに設定され得る。また、テーパ角度θは45度程度に設定され得る。なお、磁極板20A,20Bの先端部の形状や各部のサイズは一例であり、特に限定されるものではない。また、イオンガンによっては、磁極板20A,20Bのアノード40とは反対の面側の角部が面取りされることもある。
次に、本実施形態によるイオンガンの動作について、図5A及び図5Bを用いて説明する。図5A及び図5Bは、本実施形態によるイオンガンの動作を説明する図である。図5Aは図2のA−A′線断面図に対応し、図5Bは図2のB−B′線断面図に対応している。なお、図5A及び図5Bに示される断面は、射出口22の幅が最小となる方向にイオンガン10を切断したときに現れる面であるものとする。
まず、ガス導入孔38を介して凹部36にアルゴン(Ar)等の放電用のガスを供給し、イオンガン10の内部の圧力が0.1Pa程度になるように調整する。使用環境の圧力(例えば、イオンガン10が設置される真空処理装置のチャンバ内の圧力)が既に0.1Pa程度でありその状態で放電が可能な場合には、ガスの供給動作は省略してもよい。
次に、カソードとしての磁極板20A,20B及びヨーク34を接地電位(0V)とし、アノード40に図示しない電源から例えば1000V〜4000V程度の電圧を印加する。これにより、アノード40と磁極板20A,20Bとの間に電界が生じ、その電界によってイオンガン10の内部に導入したガスが励起、解離、電離され、プラズマ50が生成される。
一方、磁石32のN極から出た磁束(磁力線60)は、ヨーク34及び磁極板20Bを通り、磁極板20Bの先端から放出される。磁極板20Bの先端から放出された磁力線60は、斥力で広がった後、磁極板20Aへと吸い込まれる。その結果、磁極板20Aと磁極板20Bとの間のギャップ空間では、図5A及び図5Bに示すように、磁力線60が上下に凸の形状となる。このような形状の磁場空間は、ミラー磁場と呼ばれる。ミラー磁場は、その中に荷電粒子を閉じ込めるように作用する。
図6は、ミラー磁場により生じる磁気ミラー力を説明する模式図である。図6に示すように、磁力線60に密の部分と疎の部分とがあると、ミラー磁場の中の荷電粒子は磁力線60が密の部分から磁力線が疎の部分へと向かう方向に磁気ミラー力64を受ける。これにより、荷電粒子はミラー磁場の中に閉じ込められる。また、ミラー磁場の中でプラズマ50を生成すると、磁場がないときと比較して高い密度のプラズマ50となる。
プラズマ50中の電子は、磁極板20A,20Bとアノード40との間の電界によりアノード40へと引き込まれる。また、プラズマ50中の陽イオンは、磁極板20A,20Bとアノード40との間の電位差によって加速され、イオンビーム52となる。
本実施形態によるイオンガン10は、前述のように、射出口22の曲線部22bにおいて、磁石32を射出口22の断面中心線24よりも外側に配置していることを1つの特徴としている。本実施形態のイオンガン10をこのように構成している理由について、参考例によるイオンガンとの比較を交えつつ、以下に説明する。
図7A及び図7Bは、参考例によるイオンガンの構造及び動作を示す概略断面図である。図7Aは図1のA−A′線断面図に対応し、図7Bは図1のB−B′線断面図に対応している。図7A及び図7Bに示す参考例によるイオンガンは、磁石32の配置が異なるほかは、本実施形態によるイオンガン10と同様である。すなわち、参考例によるイオンガンにおいて、磁石32は、アノード40を挟んで射出口22と対向する位置に配置されている。すなわち、磁石32は、射出口22の直線部22a及び曲線部22bの両方において、射出口22の断面中心線24上に位置している。
一般的なイオンガンでは、射出口22の断面中心線24に対して磁場が対称となるように磁場設計がなされる。このように磁場設計をすることで、生成されたプラズマ50の中心が射出口22の断面中心線24上に位置するようになり、磁極板20A,20Bへのイオンビーム52の衝突を最小化し、ひいてはイオンビーム52を効率よく射出することができる。この目的のもと磁石32については、例えば図7A及び図7Bに示す参考例によるイオンガンのように、アノード40を挟んで射出口22と対向する位置に配置することが多い。
しかしながら、射出口22の曲線部22bにおいて直線部22aと同様の磁場設計を行うと、図7Bに示すように、生成したプラズマ50の中心が射出口22の断面中心線24よりも外側にシフトし、磁極板20Bに衝突するイオンビーム52が増加する。これにより、射出口22からイオンビーム52を効率よく射出することができなくなる。
また、磁極板20A,20Bは衝突するイオンビーム52によるスパッタリング作用によって時間とともに削れていき、徐々に放電安定性が低下し、最終的には放電を維持できなくなる。そのため、磁極板20A,20Bは定期的に交換する必要があるが、衝突するイオンビーム52が増加すると磁極板20A,20Bが削れる量も多くなり、メンテナンス周期が短くなる。また、磁極板20A,20Bがスパッタリングされることにより生じるパーティクルは装置汚染の原因となるため、磁極板20A,20Bに衝突するイオンビーム52は可能な限り少なくすることが望ましい。
射出口22の曲線部22bにおいてプラズマ50の中心が射出口22の断面中心よりも外側にシフトする原因について、図8及び図9を用いて説明する。図8は、射出口22の曲線部22bに生じる磁気ミラー力を説明する模式図である。図9は、射出口22の曲線部22bにおけるプラズマ50とアノード40及び磁極板20A,20Bとの電気的な関係を示す図である。
磁極板20A,20Bに平行な面(XY平面)における曲線部22bの磁力線60の間隔は、図8に示すように、磁極板20Aから磁極板20Bの方向に向かって徐々に広がる。すなわち、磁力線60は、磁極板20Aの側(射出口22よりも内側)で密に、磁極板20Bの側(射出口22よりも外側)で疎になる。この結果、プラズマ50は、図7Bに示すように、磁気ミラー効果によって外側向きの磁気ミラー力64を受け、磁極板20Bの側(射出口22の断面中心線24よりも外側)にシフトするようになる。
また、曲線部22bにおいて磁極板20A,20Bがプラズマ50に接する面積を比較すると、磁極板20Aがプラズマ50に接する面積(電極面積)よりも、磁極板20Bがプラズマ50に接する面積(電極面積)の方が大きくなる。したがって、プラズマ50と磁極板20Aとの間の抵抗Rとプラズマ50と磁極板20Bとの間の抵抗Rとを比較すると、磁極板20Aよりも電極面積の大きい磁極板20Bの方がプラズマ50との間の抵抗が小さくなる(R>R)。すなわち、磁極板20Aよりも磁極板20Bの方がカソードとして強く作用する。その結果、より多くの電流が磁極板20Bの側に流れ、プラズマ50の生成も磁極板20Bの側で多くなる。
これら2つの作用により、射出口22の曲線部22bでは、プラズマ50の中心が射出口22の断面中心線24よりも外側にシフトすることになる。
このような観点から、本実施形態によるイオンガン10では、射出口22の曲線部22bにおいて磁力線60のボトム62が射出口22の断面中心線24よりも磁極板20Aの側に位置するように磁場設計を行っている(図5Bを参照)。すなわち、曲線部22bの磁極板20Aと磁極版20Bとの間に形成される磁力線60のボトム62の位置を射出口22の断面中心線24よりも内側方向にシフトするように、射出口22から射出されるイオンビーム52の中心位置を調整する。ここで、本明細書において磁力線60のボトム62とは、磁極板20A,20Bとアノード40との間の空間における磁力線60上の点であって、磁力線60に対する接線の方向が射出口22に対向するアノード40の面と平行になる点を意味するものとする。
別の観点から見ると、曲線部22bの磁極板20A,20Bとアノード40との間の空間において磁極板20Bから磁極板20Aに向かう磁力線60の方向(磁場ベクトル)が、射出口22の断面中心線24と磁力線60とが交差する点において、断面中心線24と直交する面66に対してアノード40の側に傾斜している(図10参照)。すなわち、曲線部22bにおいて、磁力線60と射出口22の断面中心線24とが交差する点の磁場ベクトルが、断面中心線24と直交する面に対してアノード40の側に傾斜するように、射出口22から射出されるイオンビーム52の中心位置を調整する。
図11は、磁極板20A,20Bとアノード40との間の空間における電子の動きを説明する模式図である。プラズマ内では、電離によって絶えず電子とイオンとが生成されている。生成された電子eは、磁極板20A,20Bとアノード40との間の電位差によってアノード40に引き寄せられるが、磁界の力(ローレンツ力)も受けるため、磁力線60に絡まるように磁力線60に沿って移動し、ボトム62を中心として往復運動する。往復運動する電子eは、ガスとの衝突によって徐々にエネルギーを失っていき、最終的にアノード40に捕集される。往復運動する間に電子eの運動エネルギーが最も高くなるのは、電子eが磁力線60のボトム62に位置するときである。そのため、電離の発生頻度、つまりプラズマ50の密度も、磁力線60のボトム62の近傍が最も高くなる。したがって、磁力線60のボトム62の位置を射出口22の断面中心線24からずらすように磁場設計を行えば、それに応じてプラズマ50やイオンビーム52の中心をも射出口22の断面中心線24からずらすことが可能となる。
したがって、磁気ミラー効果による外側方向へのプラズマ50の移動を相殺するように磁力線60のボトム62の位置を射出口22の断面中心線24よりも内側方向へずらすことで、プラズマ50の中心を射出口22の断面中心線24の近傍にシフトすることができる。これにより、射出口22の曲線部22bにおいても直線部22aと同様、イオンビーム52の磁極板20A,20Bへの衝突を最小化し、イオンビーム52を効率よく射出することができる。
なお、磁力線60は無数に存在するため、磁力線60のボトム62も無数に存在する。本発明で重要となるのは、そのメカニズムからも分かるように、プラズマ50が生成される高さにおける磁力線60のボトム62の位置である。多くの場合、プラズマ50が生成されるのはアノード40の表面から1mm程度の高さ付近である。したがって、一例では、磁力線60のボトム62の位置は、アノード40の表面から1mmの高さにおける磁力線60のボトム62の位置として定義することができる。
次に、磁力線60のボトム62の位置を射出口22の断面中心線24から内側にシフトする量について説明する。なお、ボトム62のシフト量に関する検討は、汎用の磁場解析ソフトウェアであるELF/MAGICと、汎用のプラズマ解析ソフトウェアであるPEGASUSを用い、シミュレーションにより行った。シミュレーションの条件は、プラズマ生成用のガスをAr、チャンバ内圧力を0.07Pa、アノード40への印加電圧を3000Vとした。
図12は、磁力線60のボトム62の位置を変えたときの磁極板20A,20Bの削れ量についてシミュレーションを行った結果を示すグラフである。縦軸は、磁極板20Aの削れ量と磁極板20Bとの削れ量との比(削れの内外比)を表している。縦軸の値は、磁極板20Aの削れ量及び磁極板20Bの削れ量のうち、大きい方の値を小さい方の値で割ったものである。縦軸の値は、磁極板20Bの削れ量が磁極板20Aの削れ量よりも大きい場合に正の値を示し、磁極板20Aの削れ量が磁極板20Bの削れ量よりも大きい場合に負の値を示すものとする。横軸は、射出口22の断面中心線から磁力線60のボトム62までの距離(磁力線のボトムの位置)を表している。横軸の値は、ボトム62の位置が射出口22の断面中心線24に対して外側方向にシフトしているときのシフト量を正の値、ボトム62の位置が射出口22の断面中心に対して内側方向にシフトしているときのシフト量を負の値で示している。
図12に示すように、磁極板20A,20Bの削れの内外比は、磁力線60のボトム62の位置に対して概ね比例関係にある。削れの内外比は、磁力線60のボトム62の位置が外側方向にシフトするほど正方向に大きくなり、磁力線60のボトム62の位置が内側方向にシフトするほど負方向に大きくなる。
例えば、射出口22の曲線部22bにおける磁力線60のボトム62が射出口22の断面中心線24上に位置している場合(シフト量=0mm)、前述のように、プラズマ50及びイオンビーム52の中心は射出口22の断面中心線24よりも外側方向にシフトする。この場合、磁極板20Bの削れ量は、磁極板20Aの削れ量の2.1倍程度であった。
磁極板20A,20Bの削れ量を均等に、すなわちプラズマ50及びイオンビーム52の中心を射出口22の断面中心線24の付近にシフトするためには、磁力線60のボトム62を射出口22の断面中心線24よりも内側方向にシフトすればよい。図12の例では、磁力線60のボトム62の位置を、射出口22の断面中心よりも0.1mm〜0.4mm程度、内側方向にシフトすることが好ましく、射出口22の断面中心よりも0.25mm内側方向にシフトするのが最適であることが分かった。
削れの内外比が均等な位置では、磁極板20A,20Bの削れの絶対量も小さくなる傾向がある。発明者等の検討では、ボトム62のシフト量を0.1mm〜0.4mmに設定することにより、ボトム62のシフト量を0mmに設定した場合よりも、磁極板20A,20Bの削れ量を最大で20%程度低減することができた。このことは、磁極板20A,20Bの発熱、処理物への汚染、ビームロス等についても最大で20%程度低減できることを意味している。
また、本発明者等の検討では、ボトム62のシフト量を0.1mm〜0.4mmに設定することにより、ボトム62のシフト量を0mmに設定した場合よりも、削れレートのピーク値を1.3分の1から1.8分の1程度まで低減することができた。このことは、部品の寿命やメンテナンス周期が1.3倍〜1.8倍程度長くなることに相当する。
なお、磁力線60のボトム62の位置の適切なシフト量は、イオンガン10の構造や放電条件などによって変化する。例えば、イオンガン10のサイズや射出口22の曲線部22bの曲率が大きくなった場合は、最適なシフト量は上記の値より大きくなると考えられる。磁力線60のボトム62の位置のシフト量は、イオンガン10の構造や放電条件などに応じて適宜設定することが好ましい。
射出口22の曲線部22bにおいて磁力線60のボトム62の位置をシフトする方法は特に限定されるものではないが、一例では本実施形態において説明したように、磁石32の位置を変える方法が挙げられる。磁力線60のボトム62の位置をシフトすることは射出口22の断面中心線24に対する磁場の対称性を崩すことであり、磁石32の場所を移動することが最も直接的な方法であるといえる。
図13は、磁石下の距離と磁力線のボトム位置との関係をシミュレーションにより求めた結果を示すグラフである。縦軸の「磁石下の距離」は、構造体30の下面から磁石32の下面までの距離x(図5B参照)を表している。横軸の「磁力線のボトムの位置」は、ボトム62が射出口22の断面中心線24上に位置しているときを0とし、断面中心線24よりも内側の位置をマイナスの符号で表し、断面中心線24よりも外側の位置をプラスの符号で表している。シミュレーションでは、磁石32の大きさは変えずに磁石下の距離xを変化している。
図13に示すように、磁石下の距離xと磁力線60のボトム62の位置とは概ね比例関係にある。磁石下の距離xを変化することで、磁極近傍における磁場の内外バランスが変化し、磁力線60のボトム62の位置が変化する。磁石下の距離xを増加することにより、磁力線60のボトム62の位置を射出口22の内側方向にシフトすることができる。このシミュレーション結果によれば、磁石下の距離xをYにすることで、磁力線60のボトム62の位置を0.25mm内側にシフトすることができる。Yは数十mm程度のサイズに設定され得る。
図14は、射出口22の断面中心線24上におけるアノード40からの距離と磁力線60の傾斜角度との関係をシミュレーションにより求めた結果を示すグラフである。図14には、磁力線60のボトム62の位置を−0.1mm、−0.4mm及び−0.56mmに設定した場合のシミュレーション結果をそれぞれ示している。磁力線60のボトム62の位置は、射出口22の断面中心線24よりも内側の位置をマイナスの符号で、射出口22の断面中心線24よりも外側の位置をプラスの符号で表している。磁力線60の傾斜角度は、射出口22の断面中心線24と直交する面66(図10)に平行な場合を0度とし、アノード40の側に傾斜している場合をマイナスの符号で表し、磁極板20A,20Bの方向に傾斜している場合をプラスの符号で表している。
図14に示すように、アノード40に近い磁力線60ほど、射出口22の断面中心線24と交差する点における磁力線60のアノード40方向への傾斜角度は大きくなる。また、磁力線60のボトム62の位置のシフト量が内側方向に大きくなるほど、射出口22の断面中心線24と交差する点におけるアノード40方向への傾斜角度は大きくなる。このシミュレーション結果によれば、磁極板20A,20Bの削れの絶対量や削れレートのピーク値に改善が見られたシフト量−0.1mmから−0.4mmの範囲における磁力線60の傾斜角度は、1.5度から−3.5度の範囲であることが判った。
すなわち、曲線部22bにおいて、磁力線60と射出口22の断面中心線24とが交差する点の磁場ベクトルは、断面中心線24と直交する面66に対して磁極板20A,20Bの側に0度から1.5度の範囲、アノード40の側に0度から3.5度の範囲の第1の角度で傾斜していることが望ましい。また、直線部22aにおいて、磁力線60と射出口22の断面中心線24とが交差する点の磁場ベクトルは、断面中心線24と直交する面66に対して第1の角度よりも小さい第2の角度をなしていることが望ましい。第2の角度の最適値は、磁場ベクトルが面66に平行となる0度である。
磁場の対称性を崩して磁力線60のボトム62の位置をシフトする方法は、磁石32の位置を移動する方法に限定されるものではない。その他の方法としては、例えば、磁石32として電磁石を用いる場合にあっては印加電流を制御する方法などが挙げられる。
このように、本実施形態によれば、イオンビームの射出効率及び均一性を向上することができる。また、磁極へのイオンビームの衝突を抑制し、経時変化の低減、メンテナンス周期の改善、ランニングコストの低減といった優れた効果を実現することができる。
[第2実施形態]
本発明の第2実施形態による真空処理装置について、図15を用いて説明する。図15は、本実施形態による真空処理装置の概略図である。第1実施形態によるイオンガンと同様の構成要素には同一の符号を付し、説明を省略し或いは簡潔にする。
本実施形態では、第1実施形態によるイオンガン10を適用した装置の一例として、半導体装置の製造などに用いられる真空処理装置の1つであるイオンビームエッチング装置について説明する。なお、第1実施形態によるイオンガンの適用例は、イオンビームエッチング装置に限定されるものではなく、イオンビームスパッタ装置などの成膜装置であってもよい。また、第1実施形態によるイオンガンの適用例は、真空処理装置に限定されるものでもなく、イオンガンを備えたその他の装置であってもよい。
本実施形態による真空処理装置100は、図15に示すように、真空チャンバ110と、真空ポンプ120と、被処理基板132を保持するホルダ130と、イオンガン140と、を主要な構成要素として備え得る。真空ポンプ120は、真空チャンバ110に接続されている。ホルダ130及びイオンガン140は、真空チャンバ110の中に設置されている。
真空チャンバ110は、内部を真空状態に維持することができる処理室であり、その内部でエッチング、表面改質、表面清浄などの種々の処理を行うことが可能である。
真空ポンプ120は、真空チャンバ110内の気体を排出し、真空チャンバ110内を真空状態にするための排気装置である。真空ポンプ120により真空チャンバ110内の気体を排出することで、真空チャンバの内部を10−3〜10−6Pa程度の高真空状態にすることが可能である。
ホルダ130は、例えばSi、Ga、炭素などからなる被処理物(被処理基板132)を保持するための部材である。ホルダ130は、揺動機構を備えていてもよい。ホルダ130が揺動機構を備えることにより、被処理基板132に対して面内均一性の高い処理を施すことが可能である。ホルダ130は、その他の機能、例えば、被処理基板132を加熱する加熱機能などを更に備えていてもよい。
イオンガン140は、第1実施形態で説明したイオンガンであって、ホルダ130に保持された被処理基板132と対向する位置に設置される。イオンガン140は、陽イオンのイオンビーム52を被処理基板132に向けて照射する。イオンガン140から放出されたイオンビーム52は、高い運動エネルギーを持ったまま被処理基板132に衝突する。これにより、被処理基板132の表面に対してエッチングなどの所定の処理を施すことができる。
第1実施形態によるイオンガン10を用いて真空処理装置100を構成することにより、均一性の高いイオンビーム52を被処理基板132に照射することが可能となり、処理品質を高めることができる。また、磁極板20A,20Bへのイオンビーム52の衝突を低減できることにより、メンテナンス周期を伸ばすことができる。これにより、生産コストを改善し、被処理基板132の処理能力を向上することができる。また、また、イオンビーム52によって磁極板20A,20Bがスパッタリングされることにより生じるパーティクルによって真空チャンバ110の内部や被処理基板132が汚染されるのを抑制することができる。
[変形実施形態]
本発明は、上記実施形態に限らず種々の変形が可能である。
例えば、いずれかの実施形態の一部の構成を他の実施形態に追加した例や、他の実施形態の一部の構成と置換した例も、本発明の実施形態である。また、実施形態において特段の説明や図示のない部分に関しては、当該技術分野の周知技術や公知技術を適宜適用可能である。
また、上記実施形態では、射出口22の直線部22aにおいて磁石32を射出口22の断面中心線24上に配置しているが、射出口22の断面中心線24に対して磁場が対称となる位置であれば、必ずしも断面中心線24上に配置する必要はない。
また、上記実施形態では、放電用のガスとしてアルゴンガスを例示したが、放電用のガスはアルゴン等の希ガスに限定されるものではなく、酸素ガスや窒素ガスに代表される反応性ガスであってもよい。放電用のガスは、イオンガン10の使用目的等に応じて適宜選択することができる。
10…イオンガン
20A,20B…磁極板
22…射出口
22a…直線部
22b…曲線部
24…断面中心線
30…構造体
32…磁石
34…ヨーク
36…凹部
38…ガス導入孔
40…アノード
42…磁性板
50…プラズマ
52…イオンビーム
60…磁力線
62…ボトム
64…磁気ミラー力
66…断面中心線と直交する面
100…真空処理装置
110…真空チャンバ
120…真空ポンプ
130…ホルダ基板
132…被処理基板
140…イオンガン

Claims (18)

  1. アノードと、
    前記アノードに対向する第1部分及び第2部分を有するカソードと、
    前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、
    前記カソードの前記第1部分と前記第2部分との間に、直線部と曲線部とを含む環状の間隙が設けられており、
    前記磁石は、前記曲線部の前記第1部分と前記第2部分との間に、前記間隙の断面中心線よりも内側にボトムを有する磁力線を形成する
    ことを特徴とするイオンガン。
  2. 前記磁石は、前記直線部の前記第1部分と前記第2部分との間に、前記間隙の断面中心線に対するボトムの位置が前記曲線部よりも外側である磁力線を形成する
    ことを特徴とする請求項1記載のイオンガン。
  3. 前記磁石は、前記直線部の前記第1部分と前記第2部分との間に、前記断面中心線の上にボトムを有する磁力線を形成する
    ことを特徴とする請求項2記載のイオンガン。
  4. 前記アノードと前記カソードとの間に印加する電界により、前記ボトムの位置にプラズマが生成される
    ことを特徴とする請求項1乃至3のいずれか1項に記載のイオンガン。
  5. 前記ボトムは、前記アノードの表面から1mmの高さである
    ことを特徴とする請求項1乃至4のいずれか1項に記載のイオンガン。
  6. 前記断面中心線と前記ボトムとの間の距離は、0.1mmから0.4mmの範囲である
    ことを特徴とする請求項1乃至5のいずれか1項に記載のイオンガン。
  7. アノードと、
    前記アノードに対向する第1部分及び第2部分を有するカソードと、
    前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、
    前記カソードの前記第1部分と前記第2部分との間に、直線部と曲線部とを含む環状の間隙が設けられており、
    前記第1部分は前記間隙に対して内側に配され、前記第2部分は前記間隙に対して外側に配されており、
    前記磁石は、前記第1部分及び前記第2部分と前記アノードとの間の空間に、前記第2部分から前記第1部分の方向に向かう磁力線を形成し、
    前記曲線部において、前記磁力線と前記間隙の断面中心線とが交差する点の磁場ベクトルは、前記断面中心線と直交する面に対して、前記第1部分及び前記第2部分の側に1.5度よりも小さく、前記アノードの側に0度よりも大きい第1の角度で傾斜している
    ことを特徴とするイオンガン。
  8. 前記直線部において、前記磁力線と前記間隙の断面中心線とが交差する点の磁場ベクトルは、前記断面中心線と直交する面に対して前記アノードの側における前記第1の角度よりも小さい第2の角度をなしている
    ことを特徴とする請求項7記載のイオンガン。
  9. 前記第1の角度は、前記アノードの側に0度から3.5度の範囲である
    ことを特徴とする請求項7又は8記載のイオンガン。
  10. 前記曲線部において、前記磁力線の磁場ベクトルが前記断面中心線と直交する面と平行になる点は、前記断面中心線よりも前記第2部分の側に位置しており、前記断面中心線からの距離が0.1mmから0.4mmの範囲である
    ことを特徴とする請求項7乃至9のいずれか1項に記載のイオンガン。
  11. 前記磁石は、前記曲線部において、前記間隙の前記断面中心線よりも外側に配置されている
    ことを特徴とする請求項1乃至10のいずれか1項に記載のイオンガン。
  12. 前記磁石は、前記直線部において、前記間隙の断面中心線の上に配置されている
    ことを特徴とする請求項1乃至11のいずれか1項に記載のイオンガン。
  13. 前記第2部分と前記磁石との間の磁路の厚さは、前記第1部分と前記磁石との間の磁路の厚さよりも小さい
    ことを特徴とする請求項1乃至12のいずれか1項に記載のイオンガン。
  14. 前記間隙は、イオンビームを射出するための射出口である
    ことを特徴とする請求項1乃至13のいずれか1項に記載のイオンガン。
  15. 前記磁石は、前記磁石と前記第1部分及び前記第2部分とを磁気的に結合するヨークとともに、前記アノードを収容する環状の凹部が設けられた構造体を構成し、
    前記カソードの前記第1部分及び前記第2部分は、前記環状の凹部に沿って前記間隙がその上に位置するように、前記構造体の前記環状の凹部が設けられた面の上に接合されている
    ことを特徴とする請求項1乃至14のいずれか1項に記載のイオンガン。
  16. 真空状態を維持することが可能な処理室と、
    前記処理室の中に配置され、被処理物を保持するホルダと、
    前記処理室の中に配置され、イオンビームを用いて前記被処理物に対して所定の処理を施すための請求項1乃至15のいずれか1項に記載のイオンガンと
    を有することを特徴とする真空処理装置。
  17. アノードと、前記アノードに対向する第1部分及び第2部分を有するカソードと、前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、前記カソードの前記第1部分と前記第2部分との間に直線部と曲線部とを含む環状の間隙が設けられたイオンガンにおいて、前記間隙から射出されるイオンビームを調整するイオンビームの調整方法であって、
    前記曲線部の前記第1部分と前記第2部分との間に形成される磁力線のボトムの位置を前記間隙の断面中心線よりも内側方向にシフトすることにより、前記間隙から射出されるイオンビームの中心位置を調整する
    ことを特徴とするイオンビームの調整方法。
  18. アノードと、前記アノードに対向する第1部分及び第2部分を有するカソードと、前記第1部分と前記第2部分との間に空間磁場を形成する磁石と、を有し、前記カソードの前記第1部分と前記第2部分との間に直線部と曲線部とを含む環状の間隙が設けられており、前記第1部分が前記間隙に対して内側に配され、前記第2部分が前記間隙に対して外側に配されており、前記磁石が前記第1部分及び前記第2部分と前記アノードとの間の空間に前記第2部分から前記第1部分の方向に向かう磁力線を形成するイオンガンにおいて、前記間隙から射出されるイオンビームを調整するイオンビームの調整方法であって、
    前記曲線部において、前記磁力線と前記間隙の断面中心線とが交差する点の磁場ベクトルを、前記断面中心線と直交する面に対して前記アノードの側に傾斜させることにより、前記間隙から射出されるイオンビームの中心位置を調整する
    ことを特徴とするイオンビームの調整方法。
JP2021545438A 2020-07-22 2020-07-22 イオンガン及び真空処理装置 Active JP6963150B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028362 WO2022018840A1 (ja) 2020-07-22 2020-07-22 イオンガン及び真空処理装置

Publications (2)

Publication Number Publication Date
JP6963150B1 true JP6963150B1 (ja) 2021-11-05
JPWO2022018840A1 JPWO2022018840A1 (ja) 2022-01-27

Family

ID=78409765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021545438A Active JP6963150B1 (ja) 2020-07-22 2020-07-22 イオンガン及び真空処理装置

Country Status (6)

Country Link
US (1) US11521822B2 (ja)
JP (1) JP6963150B1 (ja)
KR (1) KR20230041062A (ja)
CN (1) CN116114046A (ja)
TW (1) TWI793656B (ja)
WO (2) WO2022018840A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018840A1 (ja) 2020-07-22 2022-01-27 キヤノンアネルバ株式会社 イオンガン及び真空処理装置
KR20230042086A (ko) * 2020-07-22 2023-03-27 캐논 아네르바 가부시키가이샤 이온 건 및 진공 처리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
JP2000294157A (ja) * 1999-04-09 2000-10-20 Ken Takahashi イオン発生方法およびイオン源
JP2008053116A (ja) * 2006-08-25 2008-03-06 Ulvac Japan Ltd イオンガン、及び成膜装置
US20120187843A1 (en) * 2009-08-03 2012-07-26 Madocks John E Closed drift ion source with symmetric magnetic field
CN109065429A (zh) * 2018-08-10 2018-12-21 成都极星等离子科技有限公司 一种可降低电子逃逸率的离子源
WO2019182111A1 (ja) * 2018-03-22 2019-09-26 株式会社アルバック イオンガン

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI297167B (en) 2000-06-27 2008-05-21 Ebara Corp Inspection apparatus and inspection method
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
TW539845B (en) * 2000-07-27 2003-07-01 Ebara Corp Sheet beam-type inspection device
US7049585B2 (en) 2000-07-27 2006-05-23 Ebara Corporation Sheet beam-type testing apparatus
JPWO2002037527A1 (ja) 2000-11-02 2004-03-11 株式会社荏原製作所 電子線装置及びその装置を用いたデバイス製造方法
EP1271605A4 (en) 2000-11-02 2009-09-02 Ebara Corp ELECTRON BEAM APPARATUS AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE COMPRISING SAID APPARATUS
EP1273907A4 (en) 2000-11-17 2006-08-30 Ebara Corp METHOD AND INSTRUMENT FOR WAFER INSPECTION AND ELECTRON BEAM
US6855929B2 (en) 2000-12-01 2005-02-15 Ebara Corporation Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former
WO2002049065A1 (fr) 2000-12-12 2002-06-20 Ebara Corporation Dispositif a faisceau d'electrons et procede de production de dispositifs a semi-conducteur utilisant ledit dispositif a faisceau d'electrons
US6815690B2 (en) 2002-07-23 2004-11-09 Guardian Industries Corp. Ion beam source with coated electrode(s)
US7259378B2 (en) 2003-04-10 2007-08-21 Applied Process Technologies, Inc. Closed drift ion source
WO2022018840A1 (ja) 2020-07-22 2022-01-27 キヤノンアネルバ株式会社 イオンガン及び真空処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763989A (en) * 1995-03-16 1998-06-09 Front Range Fakel, Inc. Closed drift ion source with improved magnetic field
JP2000294157A (ja) * 1999-04-09 2000-10-20 Ken Takahashi イオン発生方法およびイオン源
JP2008053116A (ja) * 2006-08-25 2008-03-06 Ulvac Japan Ltd イオンガン、及び成膜装置
US20120187843A1 (en) * 2009-08-03 2012-07-26 Madocks John E Closed drift ion source with symmetric magnetic field
WO2019182111A1 (ja) * 2018-03-22 2019-09-26 株式会社アルバック イオンガン
CN109065429A (zh) * 2018-08-10 2018-12-21 成都极星等离子科技有限公司 一种可降低电子逃逸率的离子源

Also Published As

Publication number Publication date
WO2022018840A1 (ja) 2022-01-27
CN116114046A (zh) 2023-05-12
KR20230041062A (ko) 2023-03-23
JPWO2022018840A1 (ja) 2022-01-27
TWI793656B (zh) 2023-02-21
US20220301807A1 (en) 2022-09-22
TW202220005A (zh) 2022-05-16
US11521822B2 (en) 2022-12-06
WO2022019130A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
US4155825A (en) Integrated sputtering apparatus and method
JP4808818B2 (ja) 低インピーダンスプラズマ
US11521822B2 (en) Ion gun and vacuum processing apparatus
JP3869680B2 (ja) イオン注入装置
US20160133426A1 (en) Linear duoplasmatron
JP4906331B2 (ja) シートプラズマ成膜装置
US8840844B2 (en) Plasma generating apparatus
US6432285B1 (en) Planar magnetron sputtering apparatus
US4767931A (en) Ion beam apparatus
US5997705A (en) Rectangular filtered arc plasma source
US11810748B2 (en) Ion gun and vacuum processing apparatus
US20050205412A1 (en) Sputtering device for manufacturing thin films
JP2008053116A (ja) イオンガン、及び成膜装置
US6242749B1 (en) Ion-beam source with uniform distribution of ion-current density on the surface of an object being treated
KR20080075441A (ko) 플라즈마 성막장치
JP5477868B2 (ja) マグネトロン型スパッタ装置
JP2012164677A (ja) イオンガン、及び成膜装置
JPH08190995A (ja) 高速原子線源
JP5124317B2 (ja) シートプラズマ成膜装置、及びシートプラズマ調整方法
KR20230133188A (ko) 이온원
JP2005290442A (ja) Ecrスパッタリング装置
JP5695805B2 (ja) イオンビーム処理のための磁場低減装置及び磁気プラズマ供給システム
KR20210105398A (ko) 플라즈마 처리들을 실행하기 위한 플라즈마 소스를 위한 자석 배열체
JPH0755998A (ja) 高速原子線源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6963150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250