JP6962136B2 - Hot water storage type hot water supply device - Google Patents

Hot water storage type hot water supply device Download PDF

Info

Publication number
JP6962136B2
JP6962136B2 JP2017211942A JP2017211942A JP6962136B2 JP 6962136 B2 JP6962136 B2 JP 6962136B2 JP 2017211942 A JP2017211942 A JP 2017211942A JP 2017211942 A JP2017211942 A JP 2017211942A JP 6962136 B2 JP6962136 B2 JP 6962136B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
flow path
storage tank
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017211942A
Other languages
Japanese (ja)
Other versions
JP2019086163A (en
Inventor
史人 竹内
正明 古内
智 赤木
利幸 佐久間
真行 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017211942A priority Critical patent/JP6962136B2/en
Publication of JP2019086163A publication Critical patent/JP2019086163A/en
Application granted granted Critical
Publication of JP6962136B2 publication Critical patent/JP6962136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、貯湯式給湯装置に関する。 The present invention relates to a hot water storage type hot water supply device.

下記特許文献1に開示された貯湯式給湯装置は、以下のようなものである。貯湯タンクに貯湯するための沸上げ温度よりも低い温度の湯をヒートポンプにより生成する低温沸上げを行い、その湯を貯湯タンクに流入させることなく、混合弁の湯側に導き、浴槽等へ供給する。この貯湯式給湯装置によれば、沸上げ時の出湯温度が低いほどヒートポンプのCOP(成績係数)が高い特性を利用し、より効率の良い給湯が実現される。このとき、低温沸上げした湯水は、貯湯タンク内の湯と混合させることで、設定した給湯温度の湯水を生成することができる。 The hot water storage type hot water supply device disclosed in Patent Document 1 below is as follows. Low-temperature boiling is performed by a heat pump to generate hot water at a temperature lower than the boiling temperature for storing hot water in the hot water storage tank, and the hot water is guided to the hot water side of the mixing valve and supplied to the bathtub, etc. without flowing into the hot water storage tank. do. According to this hot water storage type hot water supply device, the lower the hot water discharge temperature at the time of boiling, the higher the COP (coefficient of performance) of the heat pump is utilized, and more efficient hot water supply is realized. At this time, the hot water boiled at a low temperature can be mixed with the hot water in the hot water storage tank to generate hot water having a set hot water supply temperature.

特開2011−21825号公報Japanese Unexamined Patent Publication No. 2011-21825

上述した従来の貯湯式給湯装置では、貯湯運転を行うための沸上げ経路と、混合弁への給湯回路とが、貯湯タンクを介さずに配管で接続されている。このような貯湯式給湯装置では、以下のような課題がある。貯湯運転の実行中に混合弁からの給湯が開始されると、給湯回路の湯水が混合弁へ流れることにより、給湯回路内の湯水の静圧が減少する。その結果、沸上げ経路の圧力損失が減少するので、沸上げ経路の循環流量が増加する。沸上げ経路の水ポンプは、ヒートポンプから流出する湯の温度、すなわち沸上げ温度が目標値に等しくなるように回転速度がフィードバック制御されている。沸上げ経路の循環流量が増加し、沸上げ温度が低下すると、沸上げ温度を回復させようとするフィードバック制御が働くことで、水ポンプの回転速度は減少する。その状態で混合弁からの給湯が終了すると、沸上げ経路の圧力損失が増加し、沸上げ経路の循環流量が低下することで、沸上げ温度が目標値を超えてしまう。その結果、沸上げ温度を低下させようとするフィードバック制御が働き、水ポンプの回転速度は上昇する。水ポンプの回転速度が上昇すると、沸上げ温度が目標値をアンダーシュートする可能性がある。 In the conventional hot water storage type hot water supply device described above, a boiling path for performing hot water storage operation and a hot water supply circuit to the mixing valve are connected by a pipe without a hot water storage tank. Such a hot water storage type hot water supply device has the following problems. When hot water supply from the mixing valve is started during the hot water storage operation, the hot water in the hot water supply circuit flows to the mixing valve, so that the static pressure of the hot water in the hot water supply circuit is reduced. As a result, the pressure loss in the boiling path is reduced, and the circulating flow rate in the boiling path is increased. The rotation speed of the water pump in the boiling path is feedback-controlled so that the temperature of the hot water flowing out from the heat pump, that is, the boiling temperature becomes equal to the target value. When the circulation flow rate of the boiling path increases and the boiling temperature decreases, the feedback control for recovering the boiling temperature works, and the rotation speed of the water pump decreases. When the hot water supply from the mixing valve is completed in that state, the pressure loss in the boiling path increases and the circulation flow rate in the boiling path decreases, so that the boiling temperature exceeds the target value. As a result, the feedback control that tries to lower the boiling temperature works, and the rotation speed of the water pump increases. As the rotation speed of the water pump increases, the boiling temperature may undershoot the target value.

このように、給湯の開始または終了に起因する水ポンプの回転速度の変動によって沸上げ温度が変動すると、以下のような問題が発生する可能性がある。貯湯タンク内には、温度による水の密度の違いにより、上側が高温で下側が低温の温度成層が形成されている。目標値よりも低い沸上げ温度の湯が貯湯タンクの上部に流入すると、密度差により、その低温の湯が一気に中間部へと落下することで、貯湯タンク内が撹拌されて温度成層が乱される。その結果、貯湯タンク内で、給湯設定温度よりも低温の、給湯に供することのできない無効温度の湯水の生成が促進される可能性がある。また、沸上げ温度が目標値を超えると、高温の湯が沸騰して発生した気体が流路内に滞留することで、流路内に湯水の滞留が発生する可能性がある。 In this way, if the boiling temperature fluctuates due to fluctuations in the rotation speed of the water pump due to the start or end of hot water supply, the following problems may occur. In the hot water storage tank, a temperature stratification is formed in which the upper side is high temperature and the lower side is low temperature due to the difference in water density depending on the temperature. When hot water with a boiling temperature lower than the target value flows into the upper part of the hot water storage tank, the low temperature hot water drops to the middle part at once due to the density difference, and the inside of the hot water storage tank is agitated and the temperature stratification is disturbed. NS. As a result, the generation of hot water having an invalid temperature that cannot be used for hot water supply, which is lower than the hot water supply set temperature, may be promoted in the hot water storage tank. Further, when the boiling temperature exceeds the target value, the gas generated by boiling the hot water may stay in the flow path, so that the hot water may stay in the flow path.

本発明は、上述のような課題を解決するためになされたもので、加熱手段により加熱された湯を貯湯槽に流入させることなく混合手段に流入させる出湯運転を実行可能であり、かつ、加熱手段により加熱された湯を貯湯槽に流入させる貯湯運転のときに混合手段からの給湯が開始または終了した場合においても、加熱手段から流出する湯の温度の変動を軽減できる貯湯式給湯装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is possible to execute a hot water discharge operation in which hot water heated by a heating means is made to flow into a mixing means without flowing into a hot water storage tank, and is heated. Provided is a hot water storage type hot water supply device that can reduce fluctuations in the temperature of hot water flowing out of the heating means even when the hot water supply from the mixing means is started or ended during the hot water storage operation in which the hot water heated by the means flows into the hot water storage tank. The purpose is to do.

本発明に係る貯湯式給湯装置は、水を加熱する加熱手段と、湯を貯留する貯湯槽と、湯と水とを混合することにより給湯温度を調整する混合手段と、水を流れさせるポンプと、貯湯槽の上部と混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、加熱手段により加熱された湯を貯湯槽に流入させる貯湯運転と、加熱手段により加熱された湯を貯湯槽に流入させることなく出湯流路及び混合手段に流入させる出湯運転とを行う制御手段と、を備え、配管設備は、貯湯運転のときの流路となる貯湯加熱経路と、出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、貯湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に出湯流路を経由することなく貯湯槽の上部に繋がる経路であり、出湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に貯湯槽を経由することなく出湯流路に繋がる経路である貯湯式給湯装置であって、加熱手段により加熱された湯の温度である沸上げ温度を検出する沸上げ温度検出手段と、貯湯槽内の湯の温度である貯湯温度を検出する貯湯温度検出手段と、をさらに備え、制御手段は、出湯運転のときの沸上げ温度が貯湯運転のときの沸上げ温度よりも低くなるように制御し、制御手段は、出湯運転から貯湯運転へ移行する場合には、沸上げ温度を上昇させ、沸上げ温度が閾値温度に達した後に、流路切替手段を出湯加熱経路から貯湯加熱経路へ切り替え、制御手段は、貯湯温度が比較的高い第一の場合には貯湯温度が比較的低い第二の場合よりも閾値温度を高い値にするものである。
また、本発明に係る貯湯式給湯装置は、水を加熱する加熱手段と、湯を貯留する貯湯槽と、湯と水とを混合することにより給湯温度を調整する混合手段と、水を流れさせるポンプと、貯湯槽の上部と混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、加熱手段により加熱された湯を貯湯槽に流入させる貯湯運転と、加熱手段により加熱された湯を貯湯槽に流入させることなく出湯流路及び混合手段に流入させる出湯運転とを行う制御手段と、を備え、配管設備は、貯湯運転のときの流路となる貯湯加熱経路と、出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、貯湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に出湯流路を経由することなく貯湯槽の上部に繋がる経路であり、出湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に貯湯槽を経由することなく出湯流路に繋がる経路である貯湯式給湯装置であって、加熱手段により加熱された湯の温度である沸上げ温度を検出する沸上げ温度検出手段をさらに備え、制御手段は、出湯運転のときの沸上げ温度が貯湯運転のときの沸上げ温度よりも低くなるように制御し、制御手段は、貯湯運転から出湯運転へ移行する場合には、流路切替手段を貯湯加熱経路から出湯加熱経路へ切り替えた後に、沸上げ温度を低下させるものである。
また、本発明に係る貯湯式給湯装置は、水を加熱する加熱手段と、湯を貯留する貯湯槽と、湯と水とを混合することにより給湯温度を調整する混合手段と、水を流れさせるポンプと、貯湯槽の上部と混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、加熱手段により加熱された湯を貯湯槽に流入させる貯湯運転と、加熱手段により加熱された湯を貯湯槽に流入させることなく出湯流路及び混合手段に流入させる出湯運転とを行う制御手段と、を備え、配管設備は、貯湯運転のときの流路となる貯湯加熱経路と、出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、貯湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に出湯流路を経由することなく貯湯槽の上部に繋がる経路であり、出湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に貯湯槽を経由することなく出湯流路に繋がる経路である貯湯式給湯装置であって、制御手段は、混合手段により混合された湯を浴槽へ供給する湯張り運転を出湯運転として実行可能であり、制御手段は、混合手段の湯側入口の開度及び水側入口の開度を制御可能であり、制御手段は、湯張り運転を終了する場合に、混合手段の湯側入口の開度を縮小させて水側入口の開度を増大させた後に、浴槽への給湯を停止するものである。
また、本発明に係る貯湯式給湯装置は、水を加熱する加熱手段と、湯を貯留する貯湯槽と、湯と水とを混合することにより給湯温度を調整する混合手段と、水を流れさせるポンプと、貯湯槽の上部と混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、加熱手段により加熱された湯を貯湯槽に流入させる貯湯運転と、加熱手段により加熱された湯を貯湯槽に流入させることなく出湯流路及び混合手段に流入させる出湯運転とを行う制御手段と、を備え、配管設備は、貯湯運転のときの流路となる貯湯加熱経路と、出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、貯湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に出湯流路を経由することなく貯湯槽の上部に繋がる経路であり、出湯加熱経路は、貯湯槽の下部からポンプ及び加熱手段を経由した後に貯湯槽を経由することなく出湯流路に繋がる経路である貯湯式給湯装置であって、混合手段は、第一混合弁及び第二混合弁を含み、出湯運転は、第二混合弁から湯を流出させる運転であり、第一混合弁から流出する水流を検出する水流検出手段をさらに備え、制御手段は、出湯運転の実行中に第一混合弁から流出する水流が検出された場合には、流路切替手段を出湯加熱経路から貯湯加熱経路へ切り替えるものである。
The hot water storage type hot water supply device according to the present invention includes a heating means for heating water, a hot water storage tank for storing hot water, a mixing means for adjusting the hot water supply temperature by mixing hot water and water, and a pump for flowing water. , A piping facility having a hot water outlet connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, a hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and heating by the heating means. It is equipped with a control means for performing a hot water discharge flow path and a hot water discharge operation for flowing hot water into the hot water flow path and the mixing means without flowing the hot water into the hot water storage tank. The hot water storage heating path includes a flow path switching means capable of switching between the hot water discharge heating path, which is the flow path at the time of The hot water heating path is a hot water storage type hot water supply device that connects to the hot water flow path from the lower part of the hot water storage tank via the pump and heating means and then without passing through the hot water storage tank. The control means further includes a boiling temperature detecting means for detecting the boiling temperature which is the temperature of the hot water heated by the means, and a hot water storage temperature detecting means for detecting the hot water storage temperature which is the temperature of the hot water in the hot water storage tank. , The boiling temperature during the hot water discharge operation is controlled to be lower than the boiling temperature during the hot water storage operation, and the control means raises the boiling temperature when shifting from the hot water discharge operation to the hot water storage operation. After the boiling temperature reaches the threshold temperature, the flow path switching means is switched from the hot water outlet heating path to the hot water storage heating path, and the control means is that the hot water storage temperature is relatively low in the first case where the hot water storage temperature is relatively high. The threshold temperature is set to a higher value than in the case of.
Further, in the hot water storage type hot water supply device according to the present invention, a heating means for heating water, a hot water storage tank for storing hot water, a mixing means for adjusting the hot water supply temperature by mixing hot water and water, and water flowing are allowed to flow. A piping facility having a pump and a hot water outlet connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, a hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and heating by the heating means. The piping equipment includes a hot water storage heating path that serves as a flow path during the hot water storage operation, and a control means that performs a hot water discharge operation that allows the hot water to flow into the hot water flow path and the mixing means without flowing into the hot water storage tank. The hot water storage heating path includes a flow path switching means that can switch between the hot water heating path and the hot water heating path that is the flow path during the hot water operation, and the hot water storage heating path does not pass through the hot water flow path after passing through the pump and the heating means from the lower part of the hot water storage tank. It is a hot water storage type hot water supply device that is a route that connects to the upper part of the hot water storage tank, and is a route that connects from the lower part of the hot water storage tank to the hot water flow path without going through the hot water storage tank after passing through the pump and heating means. Further, the boiling temperature detecting means for detecting the boiling temperature which is the temperature of the hot water heated by the heating means is further provided, and the control means has a boiling temperature at the time of the hot water discharge operation higher than the boiling temperature at the time of the hot water storage operation. The control means is controlled so as to be low, and when shifting from the hot water storage operation to the hot water discharge operation, the boiling temperature is lowered after the flow path switching means is switched from the hot water storage heating path to the hot water discharge heating path.
Further, in the hot water storage type hot water supply device according to the present invention, a heating means for heating water, a hot water storage tank for storing hot water, a mixing means for adjusting the hot water supply temperature by mixing hot water and water, and water flowing are allowed to flow. A piping facility having a pump and a hot water outlet connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, a hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and heating by the heating means. The piping equipment includes a hot water storage heating path that serves as a flow path during the hot water storage operation, and a control means that performs a hot water discharge operation that allows the hot water to flow into the hot water flow path and the mixing means without flowing into the hot water storage tank. The hot water storage heating path includes a flow path switching means that can switch between the hot water heating path and the hot water heating path that is the flow path during the hot water operation, and the hot water storage heating path does not pass through the hot water flow path after passing through the pump and the heating means from the lower part of the hot water storage tank. It is a route that connects to the upper part of the hot water storage tank, and the hot water outlet heating route is a hot water storage type hot water supply device that connects to the hot water supply flow path from the lower part of the hot water storage tank via the pump and heating means and then without passing through the hot water storage tank. , The control means can execute the hot water filling operation of supplying the hot water mixed by the mixing means to the tub as the hot water discharge operation, and the control means determines the opening degree of the hot water side inlet and the opening degree of the water side inlet of the mixing means. It is controllable, and when the hot water filling operation is terminated, the control means stops the hot water supply to the bath after reducing the opening degree of the hot water side inlet of the mixing means to increase the opening degree of the water side inlet. It is a thing.
Further, in the hot water storage type hot water supply device according to the present invention, a heating means for heating water, a hot water storage tank for storing hot water, a mixing means for adjusting the hot water supply temperature by mixing hot water and water, and water flowing are allowed to flow. A piping facility having a pump and a hot water outlet connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, a hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and heating by the heating means. The piping equipment includes a hot water storage heating path that serves as a flow path during the hot water storage operation, and a control means that performs a hot water discharge operation that allows the hot water to flow into the hot water flow path and the mixing means without flowing into the hot water storage tank. The hot water storage heating path includes a flow path switching means that can switch between the hot water heating path and the hot water heating path that is the flow path during the hot water operation, and the hot water storage heating path does not pass through the hot water flow path after passing through the pump and the heating means from the lower part of the hot water storage tank. It is a hot water storage type hot water supply device that is a route that connects to the upper part of the hot water storage tank, and is a route that connects from the lower part of the hot water storage tank to the hot water flow path without going through the hot water storage tank after passing through the pump and heating means. , The mixing means includes a first mixing valve and a second mixing valve, and the hot water discharge operation is an operation of discharging hot water from the second mixing valve, further providing a water flow detecting means for detecting the water flow flowing out from the first mixing valve. The control means switches the flow path switching means from the hot water heating path to the hot water storage heating path when a water flow flowing out from the first mixing valve is detected during the hot water discharge operation.

本発明によれば、加熱手段により加熱された湯を貯湯槽に流入させることなく混合手段に流入させる出湯運転を実行可能であり、かつ、加熱手段により加熱された湯を貯湯槽に流入させる貯湯運転のときに混合手段からの給湯が開始または終了した場合においても、加熱手段から流出する湯の温度の変動を軽減することが可能となる。 According to the present invention, it is possible to execute a hot water discharge operation in which hot water heated by the heating means flows into the mixing means without flowing into the hot water storage tank, and hot water stored by the hot water stored by the heating means flows into the hot water storage tank. Even when the hot water supply from the mixing means is started or ended during operation, it is possible to reduce the fluctuation of the temperature of the hot water flowing out from the heating means.

実施の形態1による貯湯式給湯装置を示す図である。It is a figure which shows the hot water storage type hot water supply apparatus by Embodiment 1. FIG. 図1に示す貯湯式給湯装置が備えるヒートポンプ加熱手段の構成を示す図である。It is a figure which shows the structure of the heat pump heating means provided in the hot water storage type hot water supply apparatus shown in FIG. 実施の形態2による貯湯式給湯装置を示す図である。It is a figure which shows the hot water storage type hot water supply apparatus according to Embodiment 2.

以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、重複する説明を簡略化または省略する。本開示は、以下の各実施の形態で説明する構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含み得る。 Hereinafter, embodiments will be described with reference to the drawings. Common or corresponding elements in the drawings are designated by the same reference numerals to simplify or omit duplicate description. The present disclosure may include any combination of configurable configurations among the configurations described in each of the following embodiments.

実施の形態1.
図1は、実施の形態1による貯湯式給湯装置1を示す図である。図1に示す貯湯式給湯装置1は、貯湯槽2を内蔵した貯湯ユニット10と、ヒートポンプ加熱手段31とを備える。ヒートポンプ加熱手段31は、ヒートポンプサイクルを利用して水を加熱するように構成された装置である。貯湯ユニット10の貯湯槽2の内部では、温度による水の密度の差によって、上側が高温で下側が低温になる温度成層を形成することができる。本実施の形態における貯湯槽2は、直列に接続された第一貯湯タンク2a及び第二貯湯タンク2bを備える。第一貯湯タンク2aの下部と、第二貯湯タンク2bの上部とは、タンク連結配管3によって接続されている。貯湯槽2は、一つの貯湯タンクのみで構成されるものでもよいが、本実施の形態のように、直列に接続された複数の貯湯タンクを貯湯槽2が備えることで、貯湯槽2の容量を大きくできる。以下の説明において、貯湯槽2における上下方向の位置に関して言及するが、直列に接続された複数の貯湯タンクを貯湯槽2が備える場合には、それらの複数の貯湯タンク全体での階層において、上下方向の位置が特定されるものとする。
Embodiment 1.
FIG. 1 is a diagram showing a hot water storage type hot water supply device 1 according to the first embodiment. The hot water storage type hot water supply device 1 shown in FIG. 1 includes a hot water storage unit 10 having a built-in hot water storage tank 2 and a heat pump heating means 31. The heat pump heating means 31 is a device configured to heat water using a heat pump cycle. Inside the hot water storage tank 2 of the hot water storage unit 10, a temperature stratification can be formed in which the upper side is high temperature and the lower side is low temperature due to the difference in water density depending on the temperature. The hot water storage tank 2 in the present embodiment includes a first hot water storage tank 2a and a second hot water storage tank 2b connected in series. The lower part of the first hot water storage tank 2a and the upper part of the second hot water storage tank 2b are connected by a tank connecting pipe 3. The hot water storage tank 2 may be composed of only one hot water storage tank, but as in the present embodiment, the hot water storage tank 2 is provided with a plurality of hot water storage tanks connected in series, so that the capacity of the hot water storage tank 2 is increased. Can be increased. In the following description, the vertical position in the hot water storage tank 2 will be referred to, but when the hot water storage tank 2 includes a plurality of hot water storage tanks connected in series, the upper and lower positions in the entire hierarchy of the plurality of hot water storage tanks The position of the direction shall be specified.

貯湯ユニット10内には、給湯混合弁11及び湯張り混合弁61が設置されている。給湯混合弁11及び湯張り混合弁61は、湯と水とを混合することにより給湯温度を調整する混合手段の例である。給湯混合弁11は、第一混合弁に相当する。湯張り混合弁61は、第二混合弁に相当する。貯湯式給湯装置1は、配管設備を備える。当該配管設備は、ヒートポンプ入口配管4と、ヒートポンプ出口配管5と、水を流れさせるポンプ7と、第一貯湯タンク2aの上部と給湯混合弁11及び湯張り混合弁61の湯側入口との間を繋ぐ出湯流路8とを備える。第一貯湯タンク2aの上部には、第一上部口23及び第二上部口24が設けられている。出湯流路8の一端は、第一上部口23に接続されている。 A hot water supply mixing valve 11 and a hot water filling mixing valve 61 are installed in the hot water storage unit 10. The hot water supply mixing valve 11 and the hot water filling mixing valve 61 are examples of mixing means for adjusting the hot water supply temperature by mixing hot water and water. The hot water supply mixing valve 11 corresponds to the first mixing valve. The hot water filling mixing valve 61 corresponds to the second mixing valve. The hot water storage type hot water supply device 1 includes piping equipment. The piping equipment is between the heat pump inlet pipe 4, the heat pump outlet pipe 5, the pump 7 for flowing water, the upper part of the first hot water storage tank 2a, and the hot water side inlet of the hot water supply mixing valve 11 and the hot water filling mixing valve 61. It is provided with a hot water flow path 8 for connecting the above. A first upper opening 23 and a second upper opening 24 are provided above the first hot water storage tank 2a. One end of the hot water flow path 8 is connected to the first upper port 23.

貯湯ユニット10とヒートポンプ加熱手段31との間は、ヒートポンプ入口配管4と、ヒートポンプ出口配管5と、電気配線(図示省略)とによって接続されている。貯湯ユニット10内には、制御手段に相当する制御装置100が設置されている。貯湯ユニット10及びヒートポンプ加熱手段31が備える各種の弁類、ポンプ類等の動作は、これらと配線を介して接続された制御装置100により制御される。 The hot water storage unit 10 and the heat pump heating means 31 are connected by a heat pump inlet pipe 4, a heat pump outlet pipe 5, and electrical wiring (not shown). A control device 100 corresponding to a control means is installed in the hot water storage unit 10. The operations of various valves, pumps, and the like included in the hot water storage unit 10 and the heat pump heating means 31 are controlled by the control device 100 connected to them via wiring.

第二貯湯タンク2bの下部は、ヒートポンプ入口配管4を介してヒートポンプ加熱手段31の入水口に接続されている。第二貯湯タンク2bの下部には、水道等の水源からの水を供給するための給水配管6が接続されている。第一貯湯タンク2a及び第二貯湯タンク2bの側面には、複数の貯湯温度センサ15が、異なる高さの位置に配置されている。これらの貯湯温度センサ15により、貯湯槽2内の湯の鉛直方向の温度分布を検出することで、貯湯槽2内の貯湯温度及び蓄熱量を計算できる。給湯するときには、給水配管6から第二貯湯タンク2bに作用する水源の水圧により、第一貯湯タンク2a内の湯を出湯流路8へ流出させることができる。貯湯槽2内は、給水配管6から水が流入することで、満水状態に維持される。 The lower portion of the second hot water storage tank 2b is connected to the water inlet of the heat pump heating means 31 via the heat pump inlet pipe 4. A water supply pipe 6 for supplying water from a water source such as tap water is connected to the lower part of the second hot water storage tank 2b. A plurality of hot water storage temperature sensors 15 are arranged at different heights on the side surfaces of the first hot water storage tank 2a and the second hot water storage tank 2b. By detecting the temperature distribution of the hot water in the hot water storage tank 2 in the vertical direction by these hot water storage temperature sensors 15, the hot water storage temperature and the heat storage amount in the hot water storage tank 2 can be calculated. When hot water is supplied, the hot water in the first hot water storage tank 2a can be discharged to the hot water flow path 8 by the water pressure of the water source acting on the second hot water storage tank 2b from the water supply pipe 6. The inside of the hot water storage tank 2 is maintained in a full state by the inflow of water from the water supply pipe 6.

第一貯湯タンク2aの下部の内部には、バッフル21が設置されている。バッフル21は、タンク連結配管3から第一貯湯タンク2aの下部に流入した水流を横方向に向けるように配置されている。バッフル21を設けたことで、タンク連結配管3から第一貯湯タンク2aに流入した水流によって第一貯湯タンク2a内の温度成層が乱されることを防止できる。 A baffle 21 is installed inside the lower part of the first hot water storage tank 2a. The baffle 21 is arranged so that the water flow flowing from the tank connecting pipe 3 to the lower part of the first hot water storage tank 2a is directed in the lateral direction. By providing the baffle 21, it is possible to prevent the temperature stratification in the first hot water storage tank 2a from being disturbed by the water flow flowing into the first hot water storage tank 2a from the tank connecting pipe 3.

第二貯湯タンク2bの上部の内部には、バッフル22が設置されている。バッフル22は、タンク連結配管3から第二貯湯タンク2bの上部に流入した水流を横方向に向けるように配置されている。バッフル22を設けたことで、タンク連結配管3から第二貯湯タンク2bに流入した水流によって第二貯湯タンク2b内の温度成層が乱されることを防止できる。 A baffle 22 is installed inside the upper part of the second hot water storage tank 2b. The baffle 22 is arranged so that the water flow flowing from the tank connecting pipe 3 to the upper part of the second hot water storage tank 2b is directed in the lateral direction. By providing the baffle 22, it is possible to prevent the temperature stratification in the second hot water storage tank 2b from being disturbed by the water flow flowing into the second hot water storage tank 2b from the tank connecting pipe 3.

なお、図示の例では、第二貯湯タンク2bの上端部にタンク連結配管3が接続されているが、第二貯湯タンク2bに対するタンク連結配管3の接続位置は、図示の位置に限定されるものではない。タンク連結配管3は、ヒートポンプ入口配管4または給水配管6が接続されている第二貯湯タンク2bの下部よりも上の位置に接続されていればよい。 In the illustrated example, the tank connecting pipe 3 is connected to the upper end of the second hot water storage tank 2b, but the connection position of the tank connecting pipe 3 with respect to the second hot water storage tank 2b is limited to the position shown in the figure. is not it. The tank connecting pipe 3 may be connected at a position above the lower part of the second hot water storage tank 2b to which the heat pump inlet pipe 4 or the water supply pipe 6 is connected.

貯湯ユニット10内には、三方弁41が設置されている。三方弁41は、aポート、bポート、及びcポートを有する流路切替手段である。三方弁41は、a−bポート間が導通してcポートが遮断される状態と、a−cポート間が導通してbポートが遮断される状態とに、流路を切り替えることができる。ヒートポンプ出口配管5は、ヒートポンプ加熱手段31の出湯口と、三方弁41のaポートとの間を繋ぐ。出湯配管44は、三方弁41のbポートと、出湯流路8の途中に設けられた接続点P1との間を繋ぐ。貯湯配管43は、三方弁41のcポートと、第一貯湯タンク2aの第二上部口24との間を繋ぐ。 A three-way valve 41 is installed in the hot water storage unit 10. The three-way valve 41 is a flow path switching means having an a port, a b port, and a c port. The three-way valve 41 can switch the flow path between a state in which the a-b port is conducting and the c port is cut off, and a state in which the a-c port is conducting and the b port is cut off. The heat pump outlet pipe 5 connects the hot water outlet of the heat pump heating means 31 and the a port of the three-way valve 41. The hot water discharge pipe 44 connects the b port of the three-way valve 41 and the connection point P1 provided in the middle of the hot water flow path 8. The hot water storage pipe 43 connects the c port of the three-way valve 41 and the second upper port 24 of the first hot water storage tank 2a.

図2は、図1に示す貯湯式給湯装置1が備えるヒートポンプ加熱手段31の構成を示す図である。図2に示すように、ヒートポンプ加熱手段31は、圧縮機32、ガスクーラ33、内部熱交換器34、膨張弁35、及び空気熱交換器36が環状に接続された冷媒回路37を備える。ヒートポンプ加熱手段31は、冷媒回路37により、冷凍サイクルすなわちヒートポンプサイクルの運転を行う。圧縮機32は、低圧冷媒ガスを圧縮する。冷媒は、例えば二酸化炭素でもよい。ガスクーラ33は、圧縮機32から吐出された高温高圧の冷媒と、貯湯ユニット10から導かれた水との間で熱を交換する熱交換器である。 FIG. 2 is a diagram showing a configuration of a heat pump heating means 31 included in the hot water storage type hot water supply device 1 shown in FIG. As shown in FIG. 2, the heat pump heating means 31 includes a refrigerant circuit 37 in which a compressor 32, a gas cooler 33, an internal heat exchanger 34, an expansion valve 35, and an air heat exchanger 36 are connected in an annular shape. The heat pump heating means 31 operates the refrigeration cycle, that is, the heat pump cycle by the refrigerant circuit 37. The compressor 32 compresses the low-pressure refrigerant gas. The refrigerant may be, for example, carbon dioxide. The gas cooler 33 is a heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 32 and the water guided from the hot water storage unit 10.

膨張弁35は、高圧冷媒を減圧して低圧冷媒にする減圧装置の例である。減圧された低圧冷媒は、気液二相の状態になる。空気熱交換器36は、低圧冷媒と大気との間で熱を交換する熱交換器である。空気熱交換器36において、低圧冷媒は、大気の熱を吸収することで蒸発する。送風機38は、外気を空気熱交換器36へ送風する。内部熱交換器34は、高圧流路及び低圧流路を備える。内部熱交換器34は、高圧流路を流れる高圧冷媒と、低圧流路を流れる低圧冷媒との間で熱を交換する。ガスクーラ33を通過した高圧冷媒は、内部熱交換器34の高圧流路を経由して、膨張弁35に至る。空気熱交換器36で蒸発した低圧冷媒ガスは、内部熱交換器34の低圧流路を経由して、圧縮機32に吸入される。 The expansion valve 35 is an example of a pressure reducing device that reduces the pressure of the high pressure refrigerant into the low pressure refrigerant. The decompressed low-pressure refrigerant is in a gas-liquid two-phase state. The air heat exchanger 36 is a heat exchanger that exchanges heat between the low-pressure refrigerant and the atmosphere. In the air heat exchanger 36, the low pressure refrigerant evaporates by absorbing the heat of the atmosphere. The blower 38 blows the outside air to the air heat exchanger 36. The internal heat exchanger 34 includes a high-pressure flow path and a low-pressure flow path. The internal heat exchanger 34 exchanges heat between the high-pressure refrigerant flowing through the high-pressure flow path and the low-pressure refrigerant flowing through the low-pressure flow path. The high-pressure refrigerant that has passed through the gas cooler 33 reaches the expansion valve 35 via the high-pressure flow path of the internal heat exchanger 34. The low-pressure refrigerant gas evaporated in the air heat exchanger 36 is sucked into the compressor 32 via the low-pressure flow path of the internal heat exchanger 34.

ヒートポンプ加熱手段31は、入水温度センサ51及び出湯温度センサ52を備える。入水温度センサ51は、ヒートポンプ入口配管4からガスクーラ33の入水口への流路に設置されている。出湯温度センサ52は、ガスクーラ33の出湯口からヒートポンプ出口配管5への流路に設置されている。以下の説明では、ヒートポンプ加熱手段31により加熱された湯の温度を「沸上げ温度」と称する。出湯温度センサ52は、沸上げ温度を検出する沸上げ温度検出手段の例である。入水温度センサ51は、ヒートポンプ加熱手段31により加熱される前の水の温度である入水温度を検出する。 The heat pump heating means 31 includes a water inlet temperature sensor 51 and a hot water outlet temperature sensor 52. The water entry temperature sensor 51 is installed in the flow path from the heat pump inlet pipe 4 to the water inlet of the gas cooler 33. The hot water temperature sensor 52 is installed in the flow path from the hot water outlet of the gas cooler 33 to the heat pump outlet pipe 5. In the following description, the temperature of the hot water heated by the heat pump heating means 31 is referred to as "boiling temperature". The hot water temperature sensor 52 is an example of a boiling temperature detecting means for detecting the boiling temperature. The water entry temperature sensor 51 detects the water entry temperature, which is the temperature of the water before it is heated by the heat pump heating means 31.

再び図1を参照して説明する。貯湯式給湯装置1は、ヒートポンプ加熱手段31により加熱された湯を貯湯槽2に流入させる貯湯運転を実行できる。貯湯運転のときには、以下のようになる。ポンプ7及びヒートポンプ加熱手段31が運転される。三方弁41は、a−cポート間が導通してbポートが遮断される状態にされる。第二貯湯タンク2bの下部に貯められた水がヒートポンプ入口配管4を通ってヒートポンプ加熱手段31のガスクーラ33へと送られる。ヒートポンプ加熱手段31のガスクーラ33にて加熱された湯すなわち高温水は、ヒートポンプ出口配管5、三方弁41及び貯湯配管43を通り、第二上部口24から第一貯湯タンク2a内に流入する。上述したような貯湯運転のときの流路を以下「貯湯加熱経路」と称する。貯湯加熱経路は、第二貯湯タンク2bの下部からポンプ7及びヒートポンプ加熱手段31を経由した後に出湯流路8を経由することなく第一貯湯タンク2aの上部に繋がる経路である。 This will be described again with reference to FIG. The hot water storage type hot water supply device 1 can execute a hot water storage operation in which hot water heated by the heat pump heating means 31 flows into the hot water storage tank 2. During hot water storage operation, it is as follows. The pump 7 and the heat pump heating means 31 are operated. The three-way valve 41 is in a state in which the a-c port is electrically connected and the b port is cut off. The water stored in the lower part of the second hot water storage tank 2b is sent to the gas cooler 33 of the heat pump heating means 31 through the heat pump inlet pipe 4. The hot water, that is, the high-temperature water heated by the gas cooler 33 of the heat pump heating means 31, passes through the heat pump outlet pipe 5, the three-way valve 41 and the hot water storage pipe 43, and flows into the first hot water storage tank 2a from the second upper port 24. The flow path during the hot water storage operation as described above is hereinafter referred to as a “hot water storage heating path”. The hot water storage heating path is a path from the lower part of the second hot water storage tank 2b to the upper part of the first hot water storage tank 2a without passing through the hot water flow path 8 after passing through the pump 7 and the heat pump heating means 31.

貯湯運転が行われると、第一貯湯タンク2a内の上部から下部に向かって高温水が貯えられていく。第一貯湯タンク2a内の下部まで高温水が満たされると、高温水がタンク連結配管3を通って第二貯湯タンク2bに流入する。その後、第二貯湯タンク2b内の上部から下部に向かって高温水が貯えられていく。 When the hot water storage operation is performed, high-temperature water is stored from the upper part to the lower part in the first hot water storage tank 2a. When the lower part of the first hot water storage tank 2a is filled with the high temperature water, the high temperature water flows into the second hot water storage tank 2b through the tank connecting pipe 3. After that, high-temperature water is stored from the upper part to the lower part in the second hot water storage tank 2b.

給湯混合弁11は、湯側入口11a、水側入口11b、及び出口11cを備える。湯張り混合弁61は、湯側入口61a、水側入口61b、及び出口61cを備える。出湯流路8の下流部は、湯側入口11a及び湯側入口61aのそれぞれに連通している。出湯流路8には、逆流を防止する逆止弁70が設置されている。給水配管6の途中には、水源の水圧を所定圧力に減圧する減圧弁71が設置されている。減圧弁71よりも下流の給水配管6から給水配管9が分岐している。給水配管9の下流部は、水側入口11b及び水側入口61bのそれぞれに連通している。給水配管9には、逆流を防止する逆止弁72が設置されている。 The hot water supply mixing valve 11 includes a hot water side inlet 11a, a water side inlet 11b, and an outlet 11c. The hot water filling mixing valve 61 includes a hot water side inlet 61a, a water side inlet 61b, and an outlet 61c. The downstream portion of the hot water flow path 8 communicates with each of the hot water side inlet 11a and the hot water side inlet 61a. A check valve 70 for preventing backflow is installed in the hot water flow path 8. A pressure reducing valve 71 for reducing the water pressure of the water source to a predetermined pressure is installed in the middle of the water supply pipe 6. The water supply pipe 9 branches from the water supply pipe 6 downstream of the pressure reducing valve 71. The downstream portion of the water supply pipe 9 communicates with each of the water side inlet 11b and the water side inlet 61b. A check valve 72 for preventing backflow is installed in the water supply pipe 9.

給湯配管12の一端は、出口11cに接続されている。給湯混合弁11は、出湯流路8を通って供給される湯と、給水配管9を通って供給される水源からの水とを混合し、温度調節する。その温度調節された湯は、給湯配管12に流入する。 One end of the hot water supply pipe 12 is connected to the outlet 11c. The hot water supply mixing valve 11 mixes hot water supplied through the hot water flow path 8 and water from a water source supplied through the water supply pipe 9 to control the temperature. The temperature-controlled hot water flows into the hot water supply pipe 12.

湯張り配管63の一端は、出口61cに接続されている。湯張り混合弁61は、出湯流路8を通って供給される湯と、給水配管9を通って供給される水源からの水とを混合し、温度調節する。その温度調節された湯は、湯張り配管63に流入する。 One end of the hot water filling pipe 63 is connected to the outlet 61c. The hot water filling mixing valve 61 mixes the hot water supplied through the hot water flow path 8 and the water from the water source supplied through the water supply pipe 9 to control the temperature. The temperature-controlled hot water flows into the hot water filling pipe 63.

給湯配管12には、給湯流量センサ13及び給湯温度センサ14が設けられている。給湯流量センサ13は、給湯配管12を流れる湯の流量を検出する。本実施の形態における給湯流量センサ13は、給湯混合弁11から給湯配管12へ流出する水流を検出する水流検出手段に相当する。給湯温度センサ14は、給湯配管12を流れる湯の温度を検出する。湯張り配管63には、湯張り開閉弁62、湯張り流量センサ64、及び湯張り温度センサ65が設けられている。湯張り開閉弁62は、湯張り配管63を開閉する。湯張り流量センサ64は、湯張り配管63を流れる湯の流量を検出する。湯張り温度センサ65は、湯張り配管63を流れる湯の温度を検出する。 The hot water supply pipe 12 is provided with a hot water supply flow rate sensor 13 and a hot water supply temperature sensor 14. The hot water supply flow rate sensor 13 detects the flow rate of hot water flowing through the hot water supply pipe 12. The hot water supply flow rate sensor 13 in the present embodiment corresponds to a water flow detecting means for detecting the water flow flowing out from the hot water supply mixing valve 11 to the hot water supply pipe 12. The hot water supply temperature sensor 14 detects the temperature of the hot water flowing through the hot water supply pipe 12. The hot water filling pipe 63 is provided with a hot water filling on-off valve 62, a hot water filling flow rate sensor 64, and a hot water filling temperature sensor 65. The hot water filling on-off valve 62 opens and closes the hot water filling pipe 63. The hot water filling flow rate sensor 64 detects the flow rate of hot water flowing through the hot water filling pipe 63. The hot water filling temperature sensor 65 detects the temperature of the hot water flowing through the hot water filling pipe 63.

図示の例では、水源からの低温水が水側入口11b及び水側入口61bに供給されるが、変形例として、貯湯槽2の中間部から取り出される中温水が水側入口11b及び水側入口61bに供給されるように構成してもよい。湯側入口11a及び湯側入口61aに流入する湯よりも温度の低い水が水側入口11b及び水側入口61bに供給される構成であればよい。 In the illustrated example, low-temperature water from the water source is supplied to the water-side inlet 11b and the water-side inlet 61b, but as a modification, medium-temperature water taken out from the intermediate portion of the hot water storage tank 2 is supplied to the water-side inlet 11b and the water-side inlet. It may be configured to be supplied to 61b. The configuration may be such that water having a temperature lower than that of the hot water flowing into the hot water side inlet 11a and the hot water side inlet 61a is supplied to the water side inlet 11b and the water side inlet 61b.

給湯混合弁11により温度調整された湯は、給湯配管12を通って、例えば、台所の蛇口、浴室内のシャワーのような給湯端末(図示省略)に供給される。湯張り混合弁61により温度調整された湯は、湯張り配管63を通って、浴室内の浴槽(図示省略)に供給される。 The hot water whose temperature has been adjusted by the hot water supply mixing valve 11 is supplied to a hot water supply terminal (not shown) such as a faucet in a kitchen or a shower in a bathroom through a hot water supply pipe 12. The hot water whose temperature has been adjusted by the hot water filling mixing valve 61 is supplied to a bathtub (not shown) in the bathroom through the hot water filling pipe 63.

以下の説明では、浴槽内の湯を「浴水」と称する。本実施の形態の貯湯式給湯装置1は、浴槽と貯湯ユニット10との間で浴水を循環させるための浴水ポンプ73を有する浴水循環回路を備える。湯張り配管63の一部は、浴水循環回路を形成する。浴水循環回路には、貯湯槽2からのタンク水と、浴水との間で熱を交換する熱交換器(図示省略)が備えられる。貯湯式給湯装置1は、当該熱交換器を用いて、浴槽内の浴水を加熱する追焚運転と、浴槽内の浴水の熱を貯湯槽2内に回収する熱回収運転との少なくとも一方を実行可能でもよい。 In the following description, the hot water in the bathtub is referred to as "bath water". The hot water storage type hot water supply device 1 of the present embodiment includes a bath water circulation circuit having a bath water pump 73 for circulating bath water between the bathtub and the hot water storage unit 10. A part of the hot water filling pipe 63 forms a bath water circulation circuit. The bath water circulation circuit is provided with a heat exchanger (not shown) that exchanges heat between the tank water from the hot water storage tank 2 and the bath water. The hot water storage type hot water supply device 1 uses the heat exchanger to perform at least one of a reheating operation for heating the bath water in the bathtub and a heat recovery operation for recovering the heat of the bath water in the bathtub into the hot water storage tank 2. May be feasible.

制御装置100と、リモコン装置200との間は、有線通信または無線通信により、双方向に通信可能である。制御装置100と、リモコン装置200とが、ネットワークを介して通信可能でもよい。リモコン装置200は、ユーザーインターフェースの例である。リモコン装置200は、ユーザーが操作する操作部と、情報を表示する表示部とを有する。リモコン装置200は、操作部及び表示部の両方の機能を有するタッチスクリーンを備えてもよい。ユーザーは、リモコン装置200を操作することで、貯湯式給湯装置1を遠隔操作し、各種の設定などを行うことが可能である。リモコン装置200の表示部は、ユーザーに情報を報知する報知手段としての機能を有する。本実施の形態におけるリモコン装置200は、表示部を報知手段として備えるが、変形例として、例えば音声案内装置のような他の報知手段を備えてもよい。 The control device 100 and the remote control device 200 can communicate in both directions by wired communication or wireless communication. The control device 100 and the remote control device 200 may be able to communicate with each other via a network. The remote control device 200 is an example of a user interface. The remote controller 200 has an operation unit operated by the user and a display unit for displaying information. The remote control device 200 may include a touch screen having both functions of an operation unit and a display unit. By operating the remote controller 200, the user can remotely control the hot water storage type hot water supply device 1 and make various settings. The display unit of the remote controller 200 has a function as a notification means for notifying the user of information. The remote controller 200 according to the present embodiment includes a display unit as a notification means, but as a modification, other notification means such as a voice guidance device may be provided.

本実施の形態において、リモコン装置200は、例えば台所、リビング、浴室などの壁に設置されたものでもよい。または、例えばスマートフォンのような携帯端末がリモコン装置200のようなユーザーインターフェースとしての機能を有するように構成してもよい。複数のリモコン装置200が制御装置100に対して通信可能でもよい。 In the present embodiment, the remote controller 200 may be installed on a wall such as a kitchen, a living room, or a bathroom. Alternatively, for example, a mobile terminal such as a smartphone may be configured to have a function as a user interface such as the remote control device 200. A plurality of remote control devices 200 may be able to communicate with the control device 100.

ユーザーは、リモコン装置200を操作することで、給湯配管12へ供給される湯の設定温度及び湯張り配管63へ供給される湯の設定温度をそれぞれ変更できる。以下の説明では、給湯配管12へ供給される湯の設定温度を「給湯設定温度」と呼ぶことがある。湯張り配管63へ供給される湯の設定温度を「湯張り設定温度」と呼ぶことがある。 By operating the remote controller 200, the user can change the set temperature of the hot water supplied to the hot water supply pipe 12 and the set temperature of the hot water supplied to the hot water filling pipe 63, respectively. In the following description, the set temperature of the hot water supplied to the hot water supply pipe 12 may be referred to as a “hot water supply set temperature”. The set temperature of the hot water supplied to the hot water filling pipe 63 may be referred to as a “hot water filling set temperature”.

制御装置100は、浴槽に湯を張る湯張り運転を制御する。例えば、ユーザーがリモコン装置200に対して湯張り運転の起動操作を実施した場合、あるいは、予め設定してあった予約タイマー設定による予約設定時刻になった場合に、湯張り運転が開始される。湯張り運転のときには、以下のようになる。まず、制御装置100は、湯張り開閉弁62を開状態にする。減圧弁71を通過した水は、給水配管6から第二貯湯タンク2bの下部に流入する経路と、給水配管9を通って湯張り混合弁61に流入する経路と分かれて流通する。第一貯湯タンク2aの上部に溜められた高温水が出湯流路8へ流出して、湯張り混合弁61に流入する。湯側入口61aからの湯と水側入口61bからの水とが混合した湯が、出口61c及び湯張り配管63を通って、浴槽内へ放出される。湯張り配管63を通る水流を湯張り流量センサ64が検出すると、制御装置100は、湯張り温度センサ65で検出される温度が湯張り設定温度に等しくなるように、湯張り混合弁61による湯と水の混合比を調整する。 The control device 100 controls the hot water filling operation of filling the bathtub with hot water. For example, when the user performs an operation to start the hot water filling operation on the remote controller 200, or when the reservation set time according to the reservation timer setting set in advance is reached, the hot water filling operation is started. At the time of hot water filling operation, it becomes as follows. First, the control device 100 opens the hot water filling on-off valve 62. The water that has passed through the pressure reducing valve 71 is distributed separately from a path that flows from the water supply pipe 6 to the lower part of the second hot water storage tank 2b and a path that flows into the hot water filling mixing valve 61 through the water supply pipe 9. The high-temperature water stored in the upper part of the first hot water storage tank 2a flows out to the hot water outlet flow path 8 and flows into the hot water filling mixing valve 61. The hot water in which the hot water from the hot water side inlet 61a and the water from the water side inlet 61b are mixed is discharged into the bathtub through the outlet 61c and the hot water filling pipe 63. When the hot water filling flow sensor 64 detects the water flow passing through the hot water filling pipe 63, the control device 100 uses the hot water filling mixing valve 61 so that the temperature detected by the hot water filling temperature sensor 65 becomes equal to the hot water filling set temperature. And adjust the mixing ratio of water.

湯張り混合弁61は、例えば、ステッピングモータにより弁体を回転させることで、湯側入口61aの開度と水側入口61bの開度を調整可能となるように構成されている。この場合、制御装置100は、湯張り混合弁61のステッピングモータを制御することで、湯側入口61aの開度及び水側入口61bの開度を制御可能である。 The hot water filling mixing valve 61 is configured so that the opening degree of the hot water side inlet 61a and the opening degree of the water side inlet 61b can be adjusted by rotating the valve body by, for example, a stepping motor. In this case, the control device 100 can control the opening degree of the hot water side inlet 61a and the opening degree of the water side inlet 61b by controlling the stepping motor of the hot water filling mixing valve 61.

給湯配管12を通る水流を給湯流量センサ13が検出すると、制御装置100は、給湯温度センサ14で検出される温度が給湯設定温度に等しくなるように、給湯混合弁11による湯と水の混合比を調整する。 When the hot water supply flow rate sensor 13 detects the water flow passing through the hot water supply pipe 12, the control device 100 determines the mixing ratio of hot water and water by the hot water supply mixing valve 11 so that the temperature detected by the hot water supply temperature sensor 14 becomes equal to the hot water supply set temperature. To adjust.

給湯混合弁11は、例えば、ステッピングモータにより弁体を回転させることで、湯側入口11aの開度と水側入口11bの開度を調整可能となるように構成されている。この場合、制御装置100は、給湯混合弁11のステッピングモータを制御することで、湯側入口11aの開度及び水側入口11bの開度を制御可能である。 The hot water supply mixing valve 11 is configured so that the opening degree of the hot water side inlet 11a and the opening degree of the water side inlet 11b can be adjusted by rotating the valve body by, for example, a stepping motor. In this case, the control device 100 can control the opening degree of the hot water side inlet 11a and the opening degree of the water side inlet 11b by controlling the stepping motor of the hot water supply mixing valve 11.

変形例として、給湯配管12の下流に設けられた給湯端末(図示省略)の開閉度合いに応じて、給湯温度センサ14で検出される温度が所望の給湯温度となるように、制御装置100が給湯混合弁11を制御するものとしてもよい。 As a modification, the control device 100 supplies hot water so that the temperature detected by the hot water supply temperature sensor 14 becomes a desired hot water supply temperature according to the degree of opening and closing of the hot water supply terminal (not shown) provided downstream of the hot water supply pipe 12. The mixing valve 11 may be controlled.

次に、実施の形態1の貯湯式給湯装置1の特徴的な構成について、再び図2を参照して説明する。圧縮機32から吐出された高温高圧のガス冷媒は、ガスクーラ33に流入する。このガスクーラ33において、ガス冷媒は、貯湯ユニット10から導かれた水を加熱しながら温度低下する。この冷媒は、低温高圧の状態でガスクーラ33から流出する。このとき、このガス冷媒が、臨界圧以上であれば、超臨界状態のまま気液相転移しないで、水へ放熱して温度低下する。また、このガス冷媒が、臨界圧未満であれば、ガス冷媒は凝縮しながら、水へ放熱して温度低下する。ガスクーラ33を通過した冷媒は、膨張弁35に流入する。この膨張弁35において、冷媒は、膨張されて減圧され、蒸発しやすい低温低圧の気液二相の状態となり、空気熱交換器36に送られる。この空気熱交換器36において、冷媒は、送風機38によって外部から送られる空気の熱を吸収して蒸発し、低圧のガス冷媒となり、再び圧縮機32へと送られる。 Next, the characteristic configuration of the hot water storage type hot water supply device 1 of the first embodiment will be described again with reference to FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 32 flows into the gas cooler 33. In the gas cooler 33, the temperature of the gas refrigerant drops while heating the water led from the hot water storage unit 10. This refrigerant flows out of the gas cooler 33 in a low temperature and high pressure state. At this time, if the gas refrigerant has a critical pressure or higher, the gas-liquid phase transition does not occur in the supercritical state, and heat is dissipated to water to lower the temperature. If the pressure of the gas refrigerant is less than the critical pressure, the gas refrigerant condenses and dissipates heat to water to lower the temperature. The refrigerant that has passed through the gas cooler 33 flows into the expansion valve 35. In the expansion valve 35, the refrigerant is expanded and depressurized to be in a low-temperature, low-pressure gas-liquid two-phase state in which it easily evaporates, and is sent to the air heat exchanger 36. In the air heat exchanger 36, the refrigerant absorbs the heat of the air sent from the outside by the blower 38, evaporates, becomes a low-pressure gas refrigerant, and is sent to the compressor 32 again.

このとき、冷媒回路37においては、通常、各機器の定格能力で運転される。このときの冷媒回路37の加熱能力は、圧縮機32の運転周波数によって制御される。例えば、外気温度が低いほど、高い周波数で圧縮機32が運転される。ここで、加熱能力とは、冷媒回路37のガスクーラ33において生成することができる単位時間当たりの熱エネルギーをいうものとする。 At this time, the refrigerant circuit 37 is normally operated at the rated capacity of each device. The heating capacity of the refrigerant circuit 37 at this time is controlled by the operating frequency of the compressor 32. For example, the lower the outside air temperature, the higher the frequency at which the compressor 32 is operated. Here, the heating capacity means the heat energy per unit time that can be generated in the gas cooler 33 of the refrigerant circuit 37.

貯湯運転において、制御装置100は、出湯温度センサ52によって検出される沸上げ温度が、例えば65℃から90℃の範囲内にある目標沸上げ温度に等しくなるようにポンプ7の回転速度を調節するフィードバック制御を行うことができる。ポンプ7の回転速度が上昇すると、貯湯加熱経路を流れる水の流量が増加し、水がガスクーラ33に入ってから出るまでの加熱時間が短くなるので、沸上げ温度が低下する。ポンプ7の回転速度が低下すると、貯湯加熱経路を流れる水の流量が低下し、水がガスクーラ33に入ってから出るまでの加熱時間が長くなるので、沸上げ温度が上昇する。 In the hot water storage operation, the control device 100 adjusts the rotation speed of the pump 7 so that the boiling temperature detected by the hot water temperature sensor 52 becomes equal to the target boiling temperature in the range of, for example, 65 ° C. to 90 ° C. Feedback control can be performed. When the rotation speed of the pump 7 increases, the flow rate of water flowing through the hot water storage heating path increases, and the heating time from when the water enters the gas cooler 33 to when it exits becomes shorter, so that the boiling temperature decreases. When the rotation speed of the pump 7 decreases, the flow rate of water flowing through the hot water storage heating path decreases, and the heating time from when the water enters the gas cooler 33 to when it exits becomes long, so that the boiling temperature rises.

貯湯運転の実行中に、給湯配管12または湯張り配管63への給湯が開始されると、出湯流路8の湯が給湯混合弁11または湯張り混合弁61へ流れることで、出湯流路8内の静圧が減少する。このとき、貯湯配管43が出湯流路8に直接連通していたと仮定とすると、貯湯加熱経路の圧力損失が低下し、貯湯加熱経路の循環流量が変動することで、フィードバック制御されているポンプ7の回転速度も変動する。これに対し、本実施の形態であれば、貯湯配管43が出湯流路8に直接連通しておらず、出湯流路8が接続された第一上部口23とは別の第二上部口24にて貯湯配管43が第一貯湯タンク2aに接続されていることで、以下の効果が得られる。貯湯運転の実行中に、給湯配管12または湯張り配管63への給湯が開始され、出湯流路8内の静圧が減少したときでも、貯湯加熱経路の圧力損失の低下を抑制できるので、貯湯加熱経路の循環流量の変動を抑制できる。その結果、ポンプ7の回転速度の変動を抑制できるので、沸上げ温度の変動を抑制できる。よって、貯湯運転のときの沸上げ温度が目標値に対して変動することを確実に軽減できる。上記では、給湯配管12または湯張り配管63への給湯が開始された場合について説明したが、給湯配管12または湯張り配管63への給湯が終了した場合についても、同様の理由によって、貯湯運転のときの沸上げ温度が目標値に対して変動することを確実に軽減できる。 When hot water supply to the hot water supply pipe 12 or the hot water filling pipe 63 is started during the execution of the hot water storage operation, the hot water of the hot water flow path 8 flows to the hot water supply mixing valve 11 or the hot water filling mixing valve 61, so that the hot water flow path 8 The static pressure inside is reduced. At this time, assuming that the hot water storage pipe 43 communicates directly with the hot water outlet flow path 8, the pressure loss in the hot water storage heating path decreases, and the circulation flow rate in the hot water storage heating path fluctuates, so that the pump 7 is feedback-controlled. The rotation speed of is also fluctuating. On the other hand, in the present embodiment, the hot water storage pipe 43 does not directly communicate with the hot water flow path 8, and the second upper port 24 different from the first upper port 23 to which the hot water flow path 8 is connected is connected. By connecting the hot water storage pipe 43 to the first hot water storage tank 2a, the following effects can be obtained. Even when the hot water supply to the hot water supply pipe 12 or the hot water filling pipe 63 is started during the hot water storage operation and the static pressure in the hot water discharge flow path 8 decreases, the decrease in the pressure loss in the hot water storage heating path can be suppressed, so that the hot water storage can be suppressed. Fluctuations in the circulation flow rate of the heating path can be suppressed. As a result, the fluctuation of the rotation speed of the pump 7 can be suppressed, so that the fluctuation of the boiling temperature can be suppressed. Therefore, it is possible to surely reduce the fluctuation of the boiling temperature during the hot water storage operation with respect to the target value. In the above, the case where the hot water supply to the hot water supply pipe 12 or the hot water filling pipe 63 is started has been described, but also when the hot water supply to the hot water supply pipe 12 or the hot water filling pipe 63 is completed, the hot water storage operation is performed for the same reason. It is possible to surely reduce the fluctuation of the boiling temperature with respect to the target value.

本実施の形態における湯張り運転においては、前述したような第一貯湯タンク2aからの湯を出湯流路8へ流入させる動作に加えて、冷媒回路37によるヒートポンプサイクル運転も同時に実施される。このような本実施の形態における湯張り運転では、以下のようになる。ポンプ7及びヒートポンプ加熱手段31が運転される。三方弁41は、a−bポート間が導通してcポートが遮断される状態にされる。第二貯湯タンク2bの下部に貯められた水がヒートポンプ入口配管4を通ってヒートポンプ加熱手段31のガスクーラ33へと送られる。ヒートポンプ加熱手段31のガスクーラ33にて加熱された湯は、ヒートポンプ出口配管5、三方弁41及び出湯配管44を通り、接続点P1から出湯流路8に流入する。出湯配管44から出湯流路8に流入した湯と、第一貯湯タンク2aから出湯流路8に流入した湯とが混合して、湯張り混合弁61の湯側入口61aに流入する。本実施の形態であれば、上記のような湯張り運転を行うことで、エネルギー効率を向上することが可能となる。 In the hot water filling operation according to the present embodiment, in addition to the operation of flowing the hot water from the first hot water storage tank 2a into the hot water flow path 8 as described above, the heat pump cycle operation by the refrigerant circuit 37 is also carried out at the same time. The hot water filling operation in such an embodiment is as follows. The pump 7 and the heat pump heating means 31 are operated. The three-way valve 41 is in a state in which the a-b port is electrically connected and the c port is cut off. The water stored in the lower part of the second hot water storage tank 2b is sent to the gas cooler 33 of the heat pump heating means 31 through the heat pump inlet pipe 4. The hot water heated by the gas cooler 33 of the heat pump heating means 31 passes through the heat pump outlet pipe 5, the three-way valve 41 and the hot water outlet pipe 44, and flows into the hot water flow path 8 from the connection point P1. The hot water that has flowed into the hot water flow path 8 from the hot water outlet pipe 44 and the hot water that has flowed into the hot water flow path 8 from the first hot water storage tank 2a are mixed and flow into the hot water side inlet 61a of the hot water filling mixing valve 61. In the present embodiment, the energy efficiency can be improved by performing the hot water filling operation as described above.

上述した、第二貯湯タンク2bの下部、ヒートポンプ入口配管4、ヒートポンプ加熱手段31、ヒートポンプ出口配管5、三方弁41及び出湯配管44を経由して出湯流路8に至る流路を以下「出湯加熱経路」と称する。出湯加熱経路は、貯湯槽2の下部からポンプ7及びヒートポンプ加熱手段31を経由した後に貯湯槽2を経由することなく出湯流路8に繋がる経路である。三方弁41は、貯湯加熱経路と出湯加熱経路とを切り替え可能な流路切替手段に相当する。 The flow path leading to the hot water flow path 8 via the lower part of the second hot water storage tank 2b, the heat pump inlet pipe 4, the heat pump heating means 31, the heat pump outlet pipe 5, the three-way valve 41, and the hot water discharge pipe 44 will be referred to as "hot water heating". It is called "path". The hot water hot water heating path is a path that connects from the lower part of the hot water storage tank 2 to the hot water flow path 8 without passing through the hot water storage tank 2 after passing through the pump 7 and the heat pump heating means 31. The three-way valve 41 corresponds to a flow path switching means capable of switching between a hot water storage heating path and a hot water discharge heating path.

本実施の形態の貯湯式給湯装置1は、出湯加熱経路を用いることで、出湯運転を実行することができる。出湯運転は、ヒートポンプ加熱手段31により加熱された湯を貯湯槽2に流入させることなく出湯流路8及び湯張り混合弁61に流入させる運転である。本実施の形態では、湯張り運転がこの出湯運転に相当する。 The hot water storage type hot water supply device 1 of the present embodiment can execute the hot water discharge operation by using the hot water discharge heating path. The hot water discharge operation is an operation in which the hot water heated by the heat pump heating means 31 flows into the hot water flow path 8 and the hot water filling mixing valve 61 without flowing into the hot water storage tank 2. In the present embodiment, the hot water filling operation corresponds to this hot water discharge operation.

なお、湯張り運転のときには、出湯配管44の流量は出湯流路8の流量よりも小さいので、出湯配管44の湯が接続点P1から第一上部口23へ向かって第一貯湯タンク2aの上部に流入することはない。 During the hot water filling operation, the flow rate of the hot water outlet pipe 44 is smaller than the flow rate of the hot water discharge flow path 8, so that the hot water of the hot water discharge pipe 44 goes from the connection point P1 toward the first upper port 23 and is above the first hot water storage tank 2a. Will not flow into.

ヒートポンプ加熱手段31の特性としては、冷媒回路37が同一の仕様であることを前提として、沸上げ温度及び加熱能力と、冷媒回路37のCOP(成績係数)との相関は、その加熱能力が低くなるほどCOPが高く、また、沸上げ温度が低くなるほどCOPが高くなる特性を有する。 As a characteristic of the heat pump heating means 31, assuming that the refrigerant circuits 37 have the same specifications, the correlation between the boiling temperature and the heating capacity and the COP (coefficient of performance) of the refrigerant circuit 37 is low. The COP is higher as the boiling temperature is lower, and the COP is higher as the boiling temperature is lower.

湯張り運転において、制御装置100は、冷媒回路37の加熱能力を貯湯運転のときの加熱能力よりも低い能力にしてもよい。例えば、制御装置100は、湯張り運転のときの圧縮機32の運転周波数及び回転速度を貯湯運転のときよりも低くしてもよい。そのようにすることで、エネルギー効率をさらに向上することが可能となる。 In the hot water filling operation, the control device 100 may set the heating capacity of the refrigerant circuit 37 to be lower than the heating capacity in the hot water storage operation. For example, the control device 100 may lower the operating frequency and rotation speed of the compressor 32 during the hot water filling operation than during the hot water storage operation. By doing so, it becomes possible to further improve energy efficiency.

湯張り運転において、制御装置100は、沸上げ温度が湯張り設定温度よりも低くなるように制御してもよい。例えば、制御装置100は、湯張り運転のときの沸上げ温度が、湯張り設定温度よりも低い目標沸上げ温度に等しくなるようにポンプ7の回転速度を調節するフィードバック制御を行ってもよい。そのようにすることで、エネルギー効率をさらに向上することが可能となる。 In the hot water filling operation, the control device 100 may control the boiling temperature to be lower than the hot water filling set temperature. For example, the control device 100 may perform feedback control for adjusting the rotation speed of the pump 7 so that the boiling temperature during the hot water filling operation becomes equal to the target boiling temperature lower than the hot water filling set temperature. By doing so, it becomes possible to further improve energy efficiency.

湯張り運転において、制御装置100は、以下のようにしてもよい。湯張り運転の開始から所定時間の間は、ヒートポンプ加熱手段31から供給される湯を用いることなく、貯湯槽2から供給される湯だけを用いて、浴槽に給湯する。次に、制御装置100は、湯張り開閉弁62を閉じ、浴槽に供給された湯の量及び温度を確認する水位判定を実施する。制御装置100は、この水位判定後、浴槽内の湯量及び温度を、ユーザーがリモコン装置200で設定した湯張り量設定値及び湯張り設定温度に等しくするために必要な、浴槽に供給する残りの湯量及び温度を求める。そして、制御装置100は、湯張り開閉弁62を再び開状態にし、貯湯槽2からの湯とヒートポンプ加熱手段31で加熱された湯とを出湯流路8で混合させて湯張り混合弁61に供給する湯張り運転を行うとともに、冷媒回路37の加熱動作を制御する。その後、浴槽内の湯量及び温度がそれぞれ湯張り量設定値及び湯張り設定温度に等しくなったとき、制御装置100は、ヒートポンプ加熱手段31の運転を停止し、湯張り運転を終了させる。 In the hot water filling operation, the control device 100 may be as follows. During a predetermined time from the start of the hot water filling operation, hot water is supplied to the bathtub using only the hot water supplied from the hot water storage tank 2 without using the hot water supplied from the heat pump heating means 31. Next, the control device 100 closes the hot water filling on-off valve 62, and performs a water level determination for confirming the amount and temperature of the hot water supplied to the bathtub. After the water level determination, the control device 100 supplies the remaining amount of hot water and temperature in the bathtub to the bathtub, which is necessary for equalizing the hot water filling amount set value and the hot water filling set temperature set by the user with the remote control device 200. Obtain the amount and temperature of hot water. Then, the control device 100 opens the hot water filling on-off valve 62 again, mixes the hot water from the hot water storage tank 2 and the hot water heated by the heat pump heating means 31 in the hot water flow path 8, and forms the hot water filling mixing valve 61. The hot water supply operation is performed, and the heating operation of the refrigerant circuit 37 is controlled. After that, when the amount and temperature of the hot water in the bathtub become equal to the set value of the hot water filling amount and the set temperature of the hot water filling, the control device 100 stops the operation of the heat pump heating means 31 and ends the hot water filling operation.

湯張り運転において、制御装置100は、沸上げ温度が、湯張り設定温度よりも高く、かつ、貯湯運転のときの沸上げ温度よりも低くなるように制御してもよい。この場合、制御装置100は、例えば、貯湯運転のときよりも圧縮機32の回転速度を下げること等によって冷媒回路37の加熱能力を低く運転させたり、または、ポンプ7の回転速度を貯湯運転のときよりも高く運転させればよい。 In the hot water filling operation, the control device 100 may control the boiling temperature to be higher than the hot water filling set temperature and lower than the boiling temperature in the hot water storage operation. In this case, the control device 100 operates the refrigerant circuit 37 at a lower heating capacity by, for example, lowering the rotation speed of the compressor 32 than in the hot water storage operation, or sets the rotation speed of the pump 7 in the hot water storage operation. You just have to drive it higher than it is.

変形例として、制御装置100は、湯張り運転における沸上げ温度及び冷媒回路37の加熱能力の少なくとも一方を、貯湯運転における沸上げ温度及び冷媒回路37の加熱能力よりも高くなるように運転を制御してもよい。 As a modification, the control device 100 controls the operation so that at least one of the boiling temperature and the heating capacity of the refrigerant circuit 37 in the hot water filling operation is higher than the boiling temperature and the heating capacity of the refrigerant circuit 37 in the hot water storage operation. You may.

湯張り開閉弁62を閉じることにより湯張り運転を終了するときに、出湯流路8の流れが止まることで、出湯流路8の静圧が増大する。その結果、出湯流路8に連通する出湯加熱経路の圧力損失が増加し、出湯加熱経路の流量が低下することで、ポンプ7の回転速度が変動する。そのため、沸上げ温度が変動する。そのような沸上げ温度の変動を軽減するために、制御装置100は、以下のようにしてもよい。湯張り運転を終了する場合に、制御装置100は、まず、湯張り混合弁61の湯側入口61aの開度を現在よりも縮小させる。換言すれば、制御装置100は、水側入口61bの開度を現在よりも増大させる。その後、制御装置100は、湯張り開閉弁62を閉じることで、浴槽への給湯を停止する。湯側入口61aの開度が小さい状態であれば、湯張り開閉弁62が閉じて出湯流路8の流れが止まったときの出湯加熱経路の圧力損失の変動を軽減できるので、沸上げ温度の変動を軽減できる。 When the hot water filling operation is terminated by closing the hot water filling on-off valve 62, the flow of the hot water flow path 8 is stopped, so that the static pressure of the hot water flow path 8 is increased. As a result, the pressure loss of the hot water discharge heating path communicating with the hot water flow path 8 increases, and the flow rate of the hot water heating path decreases, so that the rotation speed of the pump 7 fluctuates. Therefore, the boiling temperature fluctuates. In order to reduce such fluctuations in boiling temperature, the control device 100 may be as follows. When ending the hot water filling operation, the control device 100 first reduces the opening degree of the hot water side inlet 61a of the hot water filling mixing valve 61 from the present. In other words, the control device 100 increases the opening degree of the water side inlet 61b from the present. After that, the control device 100 stops the hot water supply to the bathtub by closing the hot water filling on-off valve 62. When the opening degree of the hot water side inlet 61a is small, the fluctuation of the pressure loss in the hot water discharge heating path when the hot water filling on-off valve 62 is closed and the flow of the hot water flow path 8 is stopped can be reduced, so that the boiling temperature can be increased. Fluctuation can be reduced.

制御装置100は、貯湯運転から湯張り運転へ移行する場合には、三方弁41を貯湯加熱経路から出湯加熱経路へ切り替えた後に、沸上げ温度を低下させるように制御してもよい。例えば、制御装置100は、貯湯運転の実行中に、湯張り運転を開始する要求が発生した場合には、以下のようにしてもよい。まず、三方弁41をa−cポート間導通の状態からa−bポート間導通の状態へ切り替える。次いで、湯張り開閉弁62を開いて、浴槽への給湯を開始する。続いて、冷媒回路37の加熱能力及びポンプ7の回転速度の少なくとも一方を調整することで、沸上げ温度を低下させる。上記のようにすることで、貯湯運転の目標沸上げ温度よりも低い温度の湯が第一貯湯タンク2aの上部に流入することを防止できる。その結果、第一貯湯タンク2a内の温度成層が乱されることを防止でき、第一貯湯タンク2a内で無効温度の湯の生成が促進されることを防止できる。 When shifting from the hot water storage operation to the hot water filling operation, the control device 100 may control the three-way valve 41 so as to lower the boiling temperature after switching from the hot water storage heating path to the hot water discharge heating path. For example, the control device 100 may do the following when a request to start the hot water filling operation occurs during the execution of the hot water storage operation. First, the three-way valve 41 is switched from the state of conduction between ac ports to the state of continuity between ab ports. Next, the hot water filling on-off valve 62 is opened to start supplying hot water to the bathtub. Subsequently, the boiling temperature is lowered by adjusting at least one of the heating capacity of the refrigerant circuit 37 and the rotation speed of the pump 7. By doing so, it is possible to prevent hot water having a temperature lower than the target boiling temperature of the hot water storage operation from flowing into the upper part of the first hot water storage tank 2a. As a result, it is possible to prevent the temperature stratification in the first hot water storage tank 2a from being disturbed, and it is possible to prevent the production of hot water having an invalid temperature in the first hot water storage tank 2a from being promoted.

次に、湯張り能力について説明する。湯張り能力とは、所定の浴槽容量、給水温度及び湯張り流量の条件下で、目標とする湯張り温度となる状態で浴槽を満たす場合に必要とされる単位時間当たりの熱エネルギーである。例として、浴槽容量180L、給水温度9℃、及び湯張り温度40℃の条件において、一般的な湯張り流量を10L/min〜15L/minとすると、標準的な湯張り能力は21kW〜33kWとなる。その一方で、ヒートポンプ加熱手段31の冷媒回路37は、貯湯運転のときには例えば4.5kW〜9kW程度の加熱能力で運転され、沸上げ温度が例えば65℃〜90℃の範囲で運転される。つまり、湯張り能力の方がヒートポンプ加熱手段31の加熱能力よりも大きい。このように、加熱能力が4.5kW〜9kW程度の冷媒回路37のみでは、湯張り能力21kW〜33kW程度で直接湯張りすることができない。また、その湯張り能力に達する加熱能力が仮に得られたとしても、前述の通り、冷媒回路37は加熱能力が大きくなるとCOPが低下するので、COPが大幅に低下する。また、4.5kW〜9kWの加熱能力で、ヒートポンプ加熱手段31からの湯のみで湯張り運転を実施することもできるが、湯張り時間が長くなってしまう。 Next, the hot water filling ability will be described. The hot water filling capacity is the heat energy per unit time required to fill the bathtub at the target hot water filling temperature under the conditions of the predetermined bathtub capacity, water supply temperature and hot water filling flow rate. As an example, under the conditions of a bathtub capacity of 180 L, a water supply temperature of 9 ° C., and a hot water filling temperature of 40 ° C., assuming that the general hot water filling flow rate is 10 L / min to 15 L / min, the standard hot water filling capacity is 21 kW to 33 kW. Become. On the other hand, the refrigerant circuit 37 of the heat pump heating means 31 is operated with a heating capacity of, for example, about 4.5 kW to 9 kW during the hot water storage operation, and the boiling temperature is operated in the range of, for example, 65 ° C. to 90 ° C. That is, the hot water filling capacity is larger than the heating capacity of the heat pump heating means 31. As described above, the refrigerant circuit 37 having a heating capacity of about 4.5 kW to 9 kW alone cannot directly fill the water with a hot water filling capacity of about 21 kW to 33 kW. Further, even if a heating capacity that reaches the hot water filling capacity is obtained, as described above, the COP of the refrigerant circuit 37 decreases as the heating capacity increases, so that the COP decreases significantly. Further, with a heating capacity of 4.5 kW to 9 kW, it is possible to carry out the hot water filling operation only with the hot water from the heat pump heating means 31, but the hot water filling time becomes long.

これに対し、本実施の形態の湯張り運転であれば、第一貯湯タンク2aから出湯流路8へ供給される湯と、ヒートポンプ加熱手段31から出湯配管44を介して出湯流路8へ供給される湯とを併用して湯張りを行うことで、前述の湯張り能力を確保しつつ、湯張り運転のCOPを向上させることができる。特に、湯張り運転のときの沸上げ温度を貯湯運転のときの沸上げ温度よりも低い温度にすることで、湯張り運転のCOPの向上に有利になる。 On the other hand, in the hot water filling operation of the present embodiment, the hot water supplied from the first hot water storage tank 2a to the hot water flow path 8 and the hot water supplied from the heat pump heating means 31 to the hot water flow path 8 via the hot water discharge pipe 44. By filling the hot water in combination with the hot water to be used, it is possible to improve the COP of the hot water filling operation while ensuring the above-mentioned hot water filling capacity. In particular, setting the boiling temperature during the hot water filling operation to a temperature lower than the boiling temperature during the hot water storage operation is advantageous for improving the COP of the hot water filling operation.

本実施の形態であれば、貯湯運転と湯張り運転とで、ヒートポンプ加熱手段31により加熱された湯の流路を、三方弁41でbポートとcポートに分けることにより、次のような効果が得られる。沸上げ温度の高い貯湯運転の実行中に、出湯流路8へ湯を流出させる給湯運転がなされた場合において、三方弁41によって、貯湯運転による水の流路と給湯運転による水の流路とを独立させることができる。このため、給湯の開始及び終了が、沸上げ温度の変動をもたらすことを確実に防止できる。 In the present embodiment, the following effects are obtained by dividing the flow path of the hot water heated by the heat pump heating means 31 into the b port and the c port by the three-way valve 41 in the hot water storage operation and the hot water filling operation. Is obtained. When a hot water supply operation is performed in which hot water flows out to the hot water flow path 8 during the hot water storage operation with a high boiling temperature, the three-way valve 41 provides a water flow path for the hot water storage operation and a water flow path for the hot water supply operation. Can be made independent. Therefore, it is possible to reliably prevent the start and end of hot water supply from causing fluctuations in the boiling temperature.

その一方で、湯張り運転の実行中に、給湯配管12へ給湯する給湯運転がなされた場合においては、湯張り運転による水の流路と、給湯運転による水の流路を独立させることはできないが、湯張り運転中であるため、ヒートポンプ加熱手段31で加熱された、比較的低い沸上げ温度の湯が第一貯湯タンク2aの上部に流入することはない。このため、第一貯湯タンク2a内の温度成層が乱されることを防止でき、第一貯湯タンク2a内で無効温度の湯の生成が促進されることを防止できる。また、多くの場合、湯張り運転中の沸上げ温度は、貯湯運転のときの沸上げ温度よりも十分に低い温度にされているので、沸上げ温度が多少変動しても、沸点を超えることはない。よって、流路内での沸騰による気体の発生を確実に防止できるので、流路内に湯水の滞留が発生することを確実に防止できる。 On the other hand, when the hot water supply operation for supplying hot water to the hot water supply pipe 12 is performed during the hot water filling operation, the water flow path for the hot water filling operation and the water flow path for the hot water supply operation cannot be made independent. However, since the hot water filling operation is in progress, hot water having a relatively low boiling temperature heated by the heat pump heating means 31 does not flow into the upper part of the first hot water storage tank 2a. Therefore, it is possible to prevent the temperature stratification in the first hot water storage tank 2a from being disturbed, and it is possible to prevent the production of hot water having an invalid temperature in the first hot water storage tank 2a from being promoted. Also, in many cases, the boiling temperature during the hot water filling operation is set to a temperature sufficiently lower than the boiling temperature during the hot water storage operation, so even if the boiling temperature fluctuates slightly, it will exceed the boiling point. There is no. Therefore, since the generation of gas due to boiling in the flow path can be reliably prevented, the retention of hot water in the flow path can be reliably prevented.

制御装置100は、三方弁41がa−bポート間導通の状態で待機しているとき、すなわち湯張り運転の実行中に、給湯配管12への給湯を給湯流量センサ13が検出した場合には、三方弁41をa−bポート間導通の状態(出湯加熱経路)からa−cポート間導通の状態(貯湯加熱経路)に変化させるようにしてもよい。三方弁41をa−cポート間導通の状態にすることで、ヒートポンプ加熱手段31で加熱された湯の流路を給湯配管12への給湯運転の流路から独立させることができるので、沸上げ温度の変動を軽減できる。この場合において、三方弁41は、貯湯加熱経路と出湯加熱経路とを切り替える間の過渡状態のすべての状態において、aポートの流路の閉塞が発生しない弁構造を有することが望ましい。仮に、貯湯加熱経路と出湯加熱経路とを切り替える間において三方弁41のaポートが閉塞する状態があると、ヒートポンプ加熱手段31を通過する水の流量が大きく変動することで、沸上げ温度が変動する可能性がある。これに対し、上記の弁構造を有する三方弁41を用いることで、そのような沸上げ温度の変動をより確実に軽減できる。 When the three-way valve 41 is on standby in a state of continuity between the a and b ports, that is, when the hot water supply flow rate sensor 13 detects hot water supply to the hot water supply pipe 12 during execution of the hot water filling operation, the control device 100 is used. , The three-way valve 41 may be changed from the state of conduction between ab ports (hot water heating path) to the state of continuity between ac ports (hot water storage heating path). By making the three-way valve 41 conductive between the a and c ports, the flow path of the hot water heated by the heat pump heating means 31 can be made independent from the flow path of the hot water supply operation to the hot water supply pipe 12, so that the water can be boiled. Fluctuations in temperature can be reduced. In this case, it is desirable that the three-way valve 41 has a valve structure in which the flow path of the a port is not blocked in all the transient states during switching between the hot water storage heating path and the hot water discharge heating path. If the a port of the three-way valve 41 is blocked between the hot water storage heating path and the hot water heating path, the boiling temperature fluctuates due to a large fluctuation in the flow rate of water passing through the heat pump heating means 31. there's a possibility that. On the other hand, by using the three-way valve 41 having the above-mentioned valve structure, such fluctuations in boiling temperature can be more reliably reduced.

制御装置100は、湯張り運転から貯湯運転へ移行する場合には、沸上げ温度を上昇させた後に、三方弁41を出湯加熱経路から貯湯加熱経路へ切り替えることが望ましい。これにより、比較的低い沸上げ温度の湯が第一貯湯タンク2aの上部に流入することをより確実に防止できる。例えば、以下のようにしてもよい。湯張り運転の実行中に、冷媒回路37の加熱能力及びポンプ7の回転速度の少なくとも一方を調整することで、沸上げ温度を上昇させる。沸上げ温度が貯湯運転の目標沸上げ温度に近い温度(例えば55℃)になった後、三方弁41をa−bポート間導通の状態からa−cポート間導通の状態へと変化させる。その後、湯張り開閉弁62を閉状態とすることで湯張り運転を終了させ、貯湯運転を続行する。 When shifting from the hot water filling operation to the hot water storage operation, it is desirable that the control device 100 switches the three-way valve 41 from the hot water discharge heating path to the hot water storage heating path after raising the boiling temperature. As a result, it is possible to more reliably prevent hot water having a relatively low boiling temperature from flowing into the upper part of the first hot water storage tank 2a. For example, it may be as follows. During the hot water filling operation, the boiling temperature is raised by adjusting at least one of the heating capacity of the refrigerant circuit 37 and the rotation speed of the pump 7. After the boiling temperature reaches a temperature close to the target boiling temperature of the hot water storage operation (for example, 55 ° C.), the three-way valve 41 is changed from the state of conduction between ab ports to the state of conduction between ac ports. After that, the hot water filling operation is terminated by closing the hot water filling on-off valve 62, and the hot water storage operation is continued.

上述したように、制御装置100は、湯張り運転から貯湯運転へ移行する場合には、沸上げ温度が閾値温度に達した後に、三方弁41を出湯加熱経路から貯湯加熱経路へ切り替えることが望ましい。この閾値温度を以下「切替温度」と称する。制御装置100は、貯湯温度センサ15により検出される貯湯温度が比較的高い第一の場合には、当該貯湯温度が比較的低い第二の場合よりも切替温度を高い値に設定することが望ましい。そのようにすることで、第二上部口24から第一貯湯タンク2a内に流入した湯によって第一貯湯タンク2a内の温度成層が乱されることをより確実に防止できる。上記の「貯湯温度」は、例えば、第一貯湯タンク2aに設置された貯湯温度センサ15のうちで最も高い位置の貯湯温度センサ15により検出された温度でもよいし、第一貯湯タンク2aに設置された複数の貯湯温度センサ15により検出された温度を統計的に処理した温度でもよい。一般には、密度差がおよそ10kg/m以内の湯の流入であれば、温度境界層は乱されにくい。例として、第一貯湯タンク2a内の上部の貯湯温度が65℃の場合には、45℃の湯の流入であれば、温度境界層は乱されにくい。そこで、第一貯湯タンク2a内の上部の貯湯温度が65℃の場合には、切替温度を45℃に設定することが望ましい。これに対し、第一貯湯タンク2a内の上部の貯湯温度が例えば90℃の場合には、45℃の湯が流入すると温度成層が乱されてしまうため、切替温度を65℃に設定することが望ましい。 As described above, when shifting from the hot water filling operation to the hot water storage operation, it is desirable that the control device 100 switches the three-way valve 41 from the hot water discharge heating path to the hot water storage heating path after the boiling temperature reaches the threshold temperature. .. This threshold temperature is hereinafter referred to as "switching temperature". In the first case where the hot water storage temperature detected by the hot water storage temperature sensor 15 is relatively high, the control device 100 preferably sets the switching temperature to a higher value than in the second case where the hot water storage temperature is relatively low. .. By doing so, it is possible to more reliably prevent the temperature stratification in the first hot water storage tank 2a from being disturbed by the hot water flowing into the first hot water storage tank 2a from the second upper port 24. The above "hot water storage temperature" may be, for example, the temperature detected by the hot water storage temperature sensor 15 at the highest position among the hot water storage temperature sensors 15 installed in the first hot water storage tank 2a, or may be installed in the first hot water storage tank 2a. The temperature detected by the plurality of hot water storage temperature sensors 15 may be statistically processed. Generally, if the inflow of hot water has a density difference of about 10 kg / m 3 , the temperature boundary layer is not easily disturbed. As an example, when the hot water storage temperature of the upper part in the first hot water storage tank 2a is 65 ° C., the temperature boundary layer is not easily disturbed if the inflow of hot water at 45 ° C. Therefore, when the hot water storage temperature of the upper part in the first hot water storage tank 2a is 65 ° C., it is desirable to set the switching temperature to 45 ° C. On the other hand, when the hot water storage temperature of the upper part in the first hot water storage tank 2a is, for example, 90 ° C., the temperature stratification is disturbed when hot water of 45 ° C. flows in, so the switching temperature may be set to 65 ° C. desirable.

実施の形態2.
次に、図3を参照して、実施の形態2について説明するが、前述した実施の形態1との相違点を中心に説明し、同一部分または相当部分については説明を簡略化または省略する。図3は、実施の形態2による貯湯式給湯装置50を示す図である。本実施の形態の貯湯式給湯装置50は、図1に示す貯湯式給湯装置1と比べて、三方弁41、貯湯配管43、及び出湯配管44が省略されている。ヒートポンプ出口配管5の下流部は、出湯流路8の接続点P1に接続されている。本実施の形態において、ヒートポンプ加熱手段31により加熱された湯の接続点P1までの流路は、貯湯運転のときと湯張り運転ときとで、同じである。貯湯運転のときには、ヒートポンプ加熱手段31により加熱された湯は、接続点P1から第一上部口23へ向かい、第一貯湯タンク2aの上部に流入する。湯張り運転のときには、ヒートポンプ加熱手段31により加熱された湯は、接続点P1から出湯流路8に流入し、第一貯湯タンク2aの上部から出湯流路8へ流出した湯と混合して、湯張り混合弁61に流入する。
Embodiment 2.
Next, the second embodiment will be described with reference to FIG. 3, but the differences from the first embodiment will be mainly described, and the same or corresponding parts will be simplified or omitted. FIG. 3 is a diagram showing a hot water storage type hot water supply device 50 according to the second embodiment. In the hot water storage type hot water supply device 50 of the present embodiment, the three-way valve 41, the hot water storage pipe 43, and the hot water discharge pipe 44 are omitted as compared with the hot water storage type hot water supply device 1 shown in FIG. The downstream portion of the heat pump outlet pipe 5 is connected to the connection point P1 of the hot water flow path 8. In the present embodiment, the flow path to the connection point P1 of the hot water heated by the heat pump heating means 31 is the same in the hot water storage operation and the hot water filling operation. During the hot water storage operation, the hot water heated by the heat pump heating means 31 goes from the connection point P1 to the first upper port 23 and flows into the upper part of the first hot water storage tank 2a. During the hot water filling operation, the hot water heated by the heat pump heating means 31 flows into the hot water flow path 8 from the connection point P1 and mixes with the hot water flowing out from the upper part of the first hot water storage tank 2a to the hot water flow path 8. It flows into the hot water filling mixing valve 61.

制御装置100は、貯湯運転の実行中に、給湯混合弁11から給湯配管12へ流出する水流を給湯流量センサ13が検出した場合には、ポンプ7の回転速度を、当該水流が検出された時点よりも低い回転速度へ補正することを禁止する。これにより、以下の効果が得られる。貯湯運転の実行中に給湯配管12への給湯が開始すると、出湯流路8内の静圧が減少し、貯湯加熱回路の循環流量が増加することで、沸上げ温度が低下する。沸上げ温度が低下しても、ポンプ7の回転速度が低い回転速度へ補正されることが禁止されているので、ポンプ7の回転速度は低下することなく保持される。その後、給湯配管12への給湯が終了すると、出湯流路8内の静圧が元に戻り、貯湯加熱回路の循環流量も元に戻る。その結果、沸上げ温度が元の温度に回復する。このとき、ポンプ7の回転速度は低下していないので、沸上げ温度が目標沸上げ温度を超えることを確実に防止できる。よって、沸上げ温度が沸点を超えることが確実に防止され、流路内での沸騰による気体の発生を確実に防止できるので、流路内に湯水の滞留が発生することを確実に防止できる。 When the hot water supply flow rate sensor 13 detects the water flow flowing out from the hot water supply mixing valve 11 to the hot water supply pipe 12 during the hot water storage operation, the control device 100 determines the rotation speed of the pump 7 at the time when the water flow is detected. It is prohibited to correct to a lower rotation speed. As a result, the following effects can be obtained. When hot water supply to the hot water supply pipe 12 is started during the hot water storage operation, the static pressure in the hot water discharge flow path 8 decreases, and the circulation flow rate of the hot water storage heating circuit increases, so that the boiling temperature decreases. Even if the boiling temperature decreases, it is prohibited to correct the rotation speed of the pump 7 to a lower rotation speed, so that the rotation speed of the pump 7 is maintained without decreasing. After that, when the hot water supply to the hot water supply pipe 12 is completed, the static pressure in the hot water outlet flow path 8 is restored, and the circulation flow rate of the hot water storage heating circuit is also restored. As a result, the boiling temperature is restored to the original temperature. At this time, since the rotation speed of the pump 7 has not decreased, it is possible to reliably prevent the boiling temperature from exceeding the target boiling temperature. Therefore, the boiling temperature is surely prevented from exceeding the boiling point, and the generation of gas due to boiling in the flow path can be surely prevented, so that the retention of hot water in the flow path can be surely prevented.

本実施の形態の変形例として、以下のようにしてもよい。制御装置100は、貯湯運転の実行中には、給湯混合弁11及び湯張り混合弁61を、湯側入口11a,61aの開度よりも水側入口11b,61bの開度が大きい状態で保持させる。このようにすることで、給湯配管12または湯張り配管63への給湯が開始しても、出湯流路8内の静圧が減少しにくくなるので、貯湯加熱回路の循環流量の変動が抑制され、沸上げ温度の変動を抑制することが可能となる。 As a modification of this embodiment, it may be as follows. The control device 100 holds the hot water supply mixing valve 11 and the hot water filling mixing valve 61 in a state where the opening degrees of the water side inlets 11b and 61b are larger than the opening degrees of the hot water side inlets 11a and 61a during the hot water storage operation. Let me. By doing so, even if the hot water supply to the hot water supply pipe 12 or the hot water filling pipe 63 is started, the static pressure in the hot water discharge flow path 8 is less likely to decrease, so that the fluctuation of the circulation flow rate of the hot water storage heating circuit is suppressed. , It is possible to suppress fluctuations in boiling temperature.

1 貯湯式給湯装置、 2 貯湯槽、 2a 第一貯湯タンク、 2b 第二貯湯タンク、 3 タンク連結配管、 4 ヒートポンプ入口配管、 5 ヒートポンプ出口配管、 6 給水配管、 7 ポンプ、 8 出湯流路、 9 給水配管、 10 貯湯ユニット、 11 給湯混合弁、 12 給湯配管、 13 給湯流量センサ、 14 給湯温度センサ、 15 貯湯温度センサ、 23 第一上部口、 24 第二上部口、 31 ヒートポンプ加熱手段、 32 圧縮機、 33 ガスクーラ、 34 内部熱交換器、 35 膨張弁、 36 空気熱交換器、 37 冷媒回路、 38 送風機、 41 三方弁、 43 貯湯配管、 44 出湯配管、 50 貯湯式給湯装置、 51 入水温度センサ、 52 出湯温度センサ、 61 湯張り混合弁、 62 湯張り開閉弁、 63 湯張り配管、 64 湯張り流量センサ、 65 湯張り温度センサ、 100 制御装置、 200 リモコン装置 1 Hot water storage type hot water supply device, 2 Hot water storage tank, 2a 1st hot water storage tank, 2b 2nd hot water storage tank, 3 Tank connection pipe, 4 Heat pump inlet pipe, 5 Heat pump outlet pipe, 6 Water supply pipe, 7 Pump, 8 Hot water flow path, 9 Water supply pipe, 10 hot water storage unit, 11 hot water supply mixing valve, 12 hot water supply pipe, 13 hot water supply flow rate sensor, 14 hot water supply temperature sensor, 15 hot water storage temperature sensor, 23 first upper port, 24 second upper port, 31 heat pump heating means, 32 compression Machine, 33 Gas cooler, 34 Internal heat exchanger, 35 Expansion valve, 36 Air heat exchanger, 37 Coolant circuit, 38 Blower, 41 Three-way valve, 43 Hot water storage pipe, 44 Hot water supply pipe, 50 Hot water storage type hot water supply device, 51 Water inlet temperature sensor , 52 Hot water temperature sensor, 61 Hot water mixing valve, 62 Hot water on-off valve, 63 Hot water piping, 64 Hot water flow sensor, 65 Hot water temperature sensor, 100 Control device, 200 Remote control device

Claims (7)

水を加熱する加熱手段と、
湯を貯留する貯湯槽と、
湯と水とを混合することにより給湯温度を調整する混合手段と、
水を流れさせるポンプと、前記貯湯槽の上部と前記混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、
前記加熱手段により加熱された湯を前記貯湯槽に流入させる貯湯運転と、前記加熱手段により加熱された湯を前記貯湯槽に流入させることなく前記出湯流路及び前記混合手段に流入させる出湯運転とを行う制御手段と、
を備え、
前記配管設備は、前記貯湯運転のときの流路となる貯湯加熱経路と、前記出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、
前記貯湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記出湯流路を経由することなく前記貯湯槽の上部に繋がる経路であり、
前記出湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記貯湯槽を経由することなく前記出湯流路に繋がる経路である貯湯式給湯装置であって、
前記加熱手段により加熱された湯の温度である沸上げ温度を検出する沸上げ温度検出手段と、
前記貯湯槽内の湯の温度である貯湯温度を検出する貯湯温度検出手段と、
をさらに備え、
前記制御手段は、前記出湯運転のときの前記沸上げ温度が前記貯湯運転のときの前記沸上げ温度よりも低くなるように制御し、
前記制御手段は、前記出湯運転から前記貯湯運転へ移行する場合には、前記沸上げ温度を上昇させ、前記沸上げ温度が閾値温度に達した後に、前記流路切替手段を前記出湯加熱経路から前記貯湯加熱経路へ切り替え、
前記制御手段は、前記貯湯温度が比較的高い第一の場合には前記貯湯温度が比較的低い第二の場合よりも前記閾値温度を高い値にする
貯湯式給湯装置。
A heating means to heat water and
A hot water storage tank that stores hot water and
A mixing means that adjusts the hot water supply temperature by mixing hot water and water,
A piping facility having a pump for flowing water, a hot water flow path connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, and a piping facility.
A hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and a hot water discharge operation in which hot water heated by the heating means flows into the hot water flow path and the mixing means without flowing into the hot water storage tank. And the control means to do
With
The piping equipment includes a flow path switching means capable of switching between a hot water storage heating path that serves as a flow path during the hot water storage operation and a hot water discharge heating path that serves as a flow path during the hot water discharge operation.
The hot water storage heating path is a path from the lower part of the hot water storage tank to the upper part of the hot water storage tank after passing through the pump and the heating means and without passing through the hot water discharge flow path.
The hot water supply heating path is a hot water storage type hot water supply device which is a path from the lower part of the hot water storage tank to the hot water supply flow path after passing through the pump and the heating means and then connecting to the hot water flow path without passing through the hot water storage tank.
A boiling temperature detecting means for detecting a boiling temperature which is the temperature of hot water heated by the heating means, and a boiling temperature detecting means.
A hot water storage temperature detecting means for detecting the hot water storage temperature, which is the temperature of the hot water in the hot water storage tank,
With more
The control means controls so that the boiling temperature during the hot water discharge operation is lower than the boiling temperature during the hot water storage operation.
When shifting from the hot water discharge operation to the hot water storage operation, the control means raises the boiling temperature, and after the boiling temperature reaches a threshold temperature, the flow path switching means is switched from the hot water heating path. Switch to the hot water storage heating path,
The control means is a hot water storage type hot water supply device in which the threshold temperature is set higher in the first case where the hot water storage temperature is relatively high than in the second case where the hot water storage temperature is relatively low.
水を加熱する加熱手段と、
湯を貯留する貯湯槽と、
湯と水とを混合することにより給湯温度を調整する混合手段と、
水を流れさせるポンプと、前記貯湯槽の上部と前記混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、
前記加熱手段により加熱された湯を前記貯湯槽に流入させる貯湯運転と、前記加熱手段により加熱された湯を前記貯湯槽に流入させることなく前記出湯流路及び前記混合手段に流入させる出湯運転とを行う制御手段と、
を備え、
前記配管設備は、前記貯湯運転のときの流路となる貯湯加熱経路と、前記出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、
前記貯湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記出湯流路を経由することなく前記貯湯槽の上部に繋がる経路であり、
前記出湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記貯湯槽を経由することなく前記出湯流路に繋がる経路である貯湯式給湯装置であって、
前記加熱手段により加熱された湯の温度である沸上げ温度を検出する沸上げ温度検出手段をさらに備え、
前記制御手段は、前記出湯運転のときの前記沸上げ温度が前記貯湯運転のときの前記沸上げ温度よりも低くなるように制御し、
前記制御手段は、前記貯湯運転から前記出湯運転へ移行する場合には、前記流路切替手段を前記貯湯加熱経路から前記出湯加熱経路へ切り替えた後に、前記沸上げ温度を低下させる
貯湯式給湯装置。
A heating means to heat water and
A hot water storage tank that stores hot water and
A mixing means that adjusts the hot water supply temperature by mixing hot water and water,
A piping facility having a pump for flowing water, a hot water flow path connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, and a piping facility.
A hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and a hot water discharge operation in which hot water heated by the heating means flows into the hot water flow path and the mixing means without flowing into the hot water storage tank. And the control means to do
With
The piping equipment includes a flow path switching means capable of switching between a hot water storage heating path that serves as a flow path during the hot water storage operation and a hot water discharge heating path that serves as a flow path during the hot water discharge operation.
The hot water storage heating path is a path from the lower part of the hot water storage tank to the upper part of the hot water storage tank after passing through the pump and the heating means and without passing through the hot water discharge flow path.
The hot water supply heating path is a hot water storage type hot water supply device which is a path from the lower part of the hot water storage tank to the hot water supply flow path after passing through the pump and the heating means and then connecting to the hot water flow path without passing through the hot water storage tank.
Further provided with a boiling temperature detecting means for detecting the boiling temperature which is the temperature of the hot water heated by the heating means.
The control means controls so that the boiling temperature during the hot water discharge operation is lower than the boiling temperature during the hot water storage operation.
When shifting from the hot water storage operation to the hot water discharge operation, the control means is a hot water storage type hot water supply device that lowers the boiling temperature after switching the flow path switching means from the hot water storage heating path to the hot water discharge heating path. ..
前記制御手段は、前記出湯運転から前記貯湯運転へ移行する場合には、前記沸上げ温度を上昇させた後に、前記流路切替手段を前記出湯加熱経路から前記貯湯加熱経路へ切り替える請求項に記載の貯湯式給湯装置。 Wherein when shifting from the tapping operation to the hot water storage operation, after raising the boiling-up temperature, to claim 2 for switching the flow path switching means from said tapping heating path to the hot water storage heating path The hot water storage type hot water supply device described. 水を加熱する加熱手段と、
湯を貯留する貯湯槽と、
湯と水とを混合することにより給湯温度を調整する混合手段と、
水を流れさせるポンプと、前記貯湯槽の上部と前記混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、
前記加熱手段により加熱された湯を前記貯湯槽に流入させる貯湯運転と、前記加熱手段により加熱された湯を前記貯湯槽に流入させることなく前記出湯流路及び前記混合手段に流入させる出湯運転とを行う制御手段と、
を備え、
前記配管設備は、前記貯湯運転のときの流路となる貯湯加熱経路と、前記出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、
前記貯湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記出湯流路を経由することなく前記貯湯槽の上部に繋がる経路であり、
前記出湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記貯湯槽を経由することなく前記出湯流路に繋がる経路である貯湯式給湯装置であって、
前記制御手段は、前記混合手段により混合された湯を浴槽へ供給する湯張り運転を前記出湯運転として実行可能であり、
前記制御手段は、前記混合手段の前記湯側入口の開度及び水側入口の開度を制御可能であり、
前記制御手段は、前記湯張り運転を終了する場合に、前記混合手段の前記湯側入口の開度を縮小させて前記水側入口の開度を増大させた後に、前記浴槽への給湯を停止する
貯湯式給湯装置。
A heating means to heat water and
A hot water storage tank that stores hot water and
A mixing means that adjusts the hot water supply temperature by mixing hot water and water,
A piping facility having a pump for flowing water, a hot water flow path connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, and a piping facility.
A hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and a hot water discharge operation in which hot water heated by the heating means flows into the hot water flow path and the mixing means without flowing into the hot water storage tank. And the control means to do
With
The piping equipment includes a flow path switching means capable of switching between a hot water storage heating path that serves as a flow path during the hot water storage operation and a hot water discharge heating path that serves as a flow path during the hot water discharge operation.
The hot water storage heating path is a path from the lower part of the hot water storage tank to the upper part of the hot water storage tank after passing through the pump and the heating means and without passing through the hot water discharge flow path.
The hot water supply heating path is a hot water storage type hot water supply device which is a path from the lower part of the hot water storage tank to the hot water supply flow path after passing through the pump and the heating means and then connecting to the hot water flow path without passing through the hot water storage tank.
The control means can execute the hot water filling operation of supplying the hot water mixed by the mixing means to the bathtub as the hot water discharge operation.
The control means can control the opening degree of the hot water side inlet and the opening degree of the water side inlet of the mixing means.
When the hot water filling operation is terminated, the control means stops the hot water supply to the bathtub after reducing the opening degree of the hot water side inlet of the mixing means to increase the opening degree of the water side inlet. hot water storage type water heater that.
水を加熱する加熱手段と、
湯を貯留する貯湯槽と、
湯と水とを混合することにより給湯温度を調整する混合手段と、
水を流れさせるポンプと、前記貯湯槽の上部と前記混合手段の湯側入口との間を繋ぐ出湯流路とを有する配管設備と、
前記加熱手段により加熱された湯を前記貯湯槽に流入させる貯湯運転と、前記加熱手段により加熱された湯を前記貯湯槽に流入させることなく前記出湯流路及び前記混合手段に流入させる出湯運転とを行う制御手段と、
を備え、
前記配管設備は、前記貯湯運転のときの流路となる貯湯加熱経路と、前記出湯運転のときの流路となる出湯加熱経路とを切り替え可能な流路切替手段を含み、
前記貯湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記出湯流路を経由することなく前記貯湯槽の上部に繋がる経路であり、
前記出湯加熱経路は、前記貯湯槽の下部から前記ポンプ及び前記加熱手段を経由した後に前記貯湯槽を経由することなく前記出湯流路に繋がる経路である貯湯式給湯装置であって、
前記混合手段は、第一混合弁及び第二混合弁を含み、
前記出湯運転は、前記第二混合弁から湯を流出させる運転であり、
前記第一混合弁から流出する水流を検出する水流検出手段をさらに備え、
前記制御手段は、前記出湯運転の実行中に前記第一混合弁から流出する水流が検出された場合には、前記流路切替手段を前記出湯加熱経路から前記貯湯加熱経路へ切り替える
貯湯式給湯装置。
A heating means to heat water and
A hot water storage tank that stores hot water and
A mixing means that adjusts the hot water supply temperature by mixing hot water and water,
A piping facility having a pump for flowing water, a hot water flow path connecting the upper part of the hot water storage tank and the hot water side inlet of the mixing means, and a piping facility.
A hot water storage operation in which hot water heated by the heating means flows into the hot water storage tank, and a hot water discharge operation in which hot water heated by the heating means flows into the hot water flow path and the mixing means without flowing into the hot water storage tank. And the control means to do
With
The piping equipment includes a flow path switching means capable of switching between a hot water storage heating path that serves as a flow path during the hot water storage operation and a hot water discharge heating path that serves as a flow path during the hot water discharge operation.
The hot water storage heating path is a path from the lower part of the hot water storage tank to the upper part of the hot water storage tank after passing through the pump and the heating means and without passing through the hot water discharge flow path.
The hot water supply heating path is a hot water storage type hot water supply device which is a path from the lower part of the hot water storage tank to the hot water supply flow path after passing through the pump and the heating means and then connecting to the hot water flow path without passing through the hot water storage tank.
The mixing means includes a first mixing valve and a second mixing valve.
The hot water discharge operation is an operation in which hot water flows out from the second mixing valve.
Further provided with a water flow detecting means for detecting the water flow flowing out from the first mixing valve,
The control means is a hot water storage type hot water supply device that switches the flow path switching means from the hot water heating path to the hot water storage heating path when a water flow flowing out from the first mixing valve is detected during the execution of the hot water discharge operation. ..
前記貯湯槽は、直列に接続された複数の貯湯タンクを備える請求項1から請求項5のいずれか一項に記載の貯湯式給湯装置。 The hot water storage type hot water supply device according to any one of claims 1 to 5, wherein the hot water storage tank includes a plurality of hot water storage tanks connected in series. 前記流路切替手段は、前記貯湯加熱経路と前記出湯加熱経路とを切り替える間の過渡状態のすべての状態において、流路の閉塞が発生しない弁構造を有する請求項1から請求項のいずれか一項に記載の貯湯式給湯装置。 Any of claims 1 to 6 , wherein the flow path switching means has a valve structure in which the flow path is not blocked in all the transient states during switching between the hot water storage heating path and the hot water discharge heating path. The hot water storage type hot water supply device described in item 1.
JP2017211942A 2017-11-01 2017-11-01 Hot water storage type hot water supply device Active JP6962136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211942A JP6962136B2 (en) 2017-11-01 2017-11-01 Hot water storage type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211942A JP6962136B2 (en) 2017-11-01 2017-11-01 Hot water storage type hot water supply device

Publications (2)

Publication Number Publication Date
JP2019086163A JP2019086163A (en) 2019-06-06
JP6962136B2 true JP6962136B2 (en) 2021-11-05

Family

ID=66762739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211942A Active JP6962136B2 (en) 2017-11-01 2017-11-01 Hot water storage type hot water supply device

Country Status (1)

Country Link
JP (1) JP6962136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243525B2 (en) * 2019-08-26 2023-03-22 三菱電機株式会社 Storage hot water heater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486001B2 (en) * 2005-07-05 2010-06-23 東芝キヤリア株式会社 Heat pump water heater
JP4277834B2 (en) * 2005-07-27 2009-06-10 株式会社デンソー Heat pump type water heater
JP4513760B2 (en) * 2006-02-15 2010-07-28 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP5575049B2 (en) * 2011-04-20 2014-08-20 三菱電機株式会社 Heat pump water heater
JP5903540B2 (en) * 2012-03-02 2016-04-13 パナソニックIpマネジメント株式会社 Water heater
JP2014001880A (en) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp Storage water heater
JP2014077558A (en) * 2012-10-09 2014-05-01 Panasonic Corp Water heater

Also Published As

Publication number Publication date
JP2019086163A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6545375B2 (en) Heat pump type air conditioner water heater
JP4975067B2 (en) Heat pump water heater
JP5226384B2 (en) Hot water storage type hot water supply device and hot water storage type hot water supply and heating device
JP4295241B2 (en) Water heater
JP6962136B2 (en) Hot water storage type hot water supply device
JP2007046856A (en) Heat pump hot-water supply floor heating device
JP6760250B2 (en) Hot water storage type hot water supply device
JP2007046851A (en) Heat pump hot-water supply bathroom heating/drying device
JP6645593B2 (en) Heat medium circulation system
JP4069807B2 (en) Heat pump water heater
JP2005098530A (en) Heat pump type water heater
JP6683171B2 (en) Hot water storage system
JP7006482B2 (en) Hot water storage type hot water supply device
JP2005188879A (en) Heat pump type hot water supplier
JP3906857B2 (en) Heat pump water heater
JP2020091092A (en) Heat pump water heater
JP3843978B2 (en) Heat pump water heater
JP6743519B2 (en) Hot water supply system
JP2019219156A (en) Storage water heater
JP2020091089A (en) Heat pump water heater
JP6841211B2 (en) Hot water storage type water heater
JP2019132566A (en) Storage type hot water supply device
JP5741256B2 (en) Hot water storage water heater
JP6805910B2 (en) Hot water storage type hot water supply device
JP2005300008A (en) Heat pump hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6962136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150