JP4069807B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4069807B2
JP4069807B2 JP2003163607A JP2003163607A JP4069807B2 JP 4069807 B2 JP4069807 B2 JP 4069807B2 JP 2003163607 A JP2003163607 A JP 2003163607A JP 2003163607 A JP2003163607 A JP 2003163607A JP 4069807 B2 JP4069807 B2 JP 4069807B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
flow path
outlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163607A
Other languages
Japanese (ja)
Other versions
JP2005003212A (en
Inventor
立群 毛
竹司 渡辺
啓次郎 國本
昌宏 尾浜
宣彦 藤原
誠一 安木
一彦 丸本
隆幸 高谷
裕介 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003163607A priority Critical patent/JP4069807B2/en
Publication of JP2005003212A publication Critical patent/JP2005003212A/en
Application granted granted Critical
Publication of JP4069807B2 publication Critical patent/JP4069807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来のこの種の給湯装置は、図3に示すように、閉回路に構成される冷媒流路1で圧縮機2、放熱器3、減圧手段4、吸熱器5が接続された冷媒循環回路7と、放熱器3の冷媒流路a8と熱交換を行う水流路9を備えた熱交換器10と、この水流路9に水道水を供給する給水管11と、前記水流路9とシャワーや蛇口等の給湯端末12とを接続する給湯回路13と、給湯回路13に設け給湯温度を検出する温度センサー14と、圧縮機2の回転数を制御するインバータ15を備え、圧縮機2を温度センサー14の検出温度と設定温度との差に応じてインバータ15の出力周波数を変換するようにしていた。
【0003】
すなわち従来の給湯装置では、設定温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度を上げて設定温度となるように、また、給湯温度が高い場合は回転数を下げ、給湯温度を下げて設定温度となるように制御していた(例えば特許文献1参照)。
【0004】
【特許文献1】
特開平2−223767号公報(第5―7頁、第1図)
【0005】
【発明が解決しようとする課題】
しかし、給湯時における流量は使用者が使用目的などによってさまざまに変化させる場合があるため、例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となる。
【0006】
上記従来例の給湯装置の構成では、例えばシャワー等の大流量の場合、放熱器の冷媒流路と熱交換を行う水流路の圧力損失が増えるため、水流路を通過できる流量が制限されるとともに、高所設置または圧損大きな給湯端末への給湯が困難となる。水流路の圧力損失低減を図るため、口径の大きい水流路または多数の水流路を設けることが考えられるが、口径の大きい水流路だと、冷媒との熱交換特性が低下し、多数の水流路だと、熱交換器の複雑化と大型化を招き、給湯装置の給湯温度や圧力の立ち上がりが遅くなる不都合が生じてくるという課題があった。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた水/冷媒熱交換器と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給湯端末から流出する温水の給湯温度を設定する給湯温度設定手段と、前記水流路の出口温度を制御する熱交出口温度制御手段と、湯を貯留する貯湯タンクと、前記水流路の出口と前記貯湯タンクとを連通させ、前記水流路からの温水を前記貯湯タンクに導く貯湯通路と、前記貯湯タンクと給湯回路とを連通させ、前記貯湯タンクからの湯を給湯端末に導く貯湯給湯通路と、前記貯湯タンクの残湯量を検知する残湯検知手段とを備え、前記冷媒循環回路が運転中、前記残湯検知手段の検知結果により前記貯湯タンクの残湯量が少ないと判断した時、前記給湯端末への給湯負荷を満たしながら、前記熱交出口温度制御手段は、前記水流路の出口温度を上昇させ、前記水流路出口の一部または全部の温水を前記貯湯タンクへ導くように制御するヒートポンプ給湯装置を提供する。
【0008】
上記発明によれば、水流路の出口温度を制御する熱交出口温度制御手段によって、給湯温度設定手段によって設定される給湯端末から流出する温水の給湯温度に左右されず、水流路の出口温度を制御することが可能となるため、給湯負荷または外気温度、給水温度など外部条件に応じて、例えば水流路の流量を小さくして出口温度を給湯温度より高くし給湯回路にて水道水をミキシングして給湯温度とすることができるため、水流路での圧力損失を抑え大流量の給湯を実現することができる。また、例えば出口温度を給湯温度より小さくして、補助熱源をもって給湯温度まで上げることによって、最適なヒートポンプサイクル成績係数をねらい総合的な高効率給湯装置を提供することできる。また、熱交出口温度制御手段によって、水流路の出口温度を高め、迅速に貯湯タンクへ高温貯湯に切替することができる。
【0009】
【発明の実施の形態】
本発明の請求項1にかかるヒートポンプ給湯装置は、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた水/冷媒熱交換器と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給湯端末から流出する温水の給湯温度を設定する給湯温度設定手段と、前記水流路の出口温度を制御する熱交出口温度制御手段と、湯を貯留する貯湯タンクと、前記水流路の出口と前記貯湯タンクとを連通させ、前記水流路からの温水を前記貯湯タンクに導く貯湯通路と、前記貯湯タンクと給湯回路とを連通させ、前記貯湯タンクからの湯を給湯端末に導く貯湯給湯通路と、前記貯湯タンクの残湯量を検知する残湯検 知手段とを備え、前記冷媒循環回路が運転中、前記残湯検知手段の検知結果により前記貯湯タンクの残湯量が少ないと判断した時、前記給湯端末への給湯負荷を満たしながら、前記熱交出口温度制御手段は、前記水流路の出口温度を上昇させ、前記水流路出口の一部または全部の温水を前記貯湯タンクへ導くように制御する構成を有する。
【0010】
そして、ヒートポンプ給湯装置が水流路の出口温度を制御する熱交出口温度制御手段によって、給湯温度設定手段によって設定される給湯端末から流出する温水の給湯温度に左右されず、水流路の出口温度を制御することが可能となるため、給湯負荷または外気温度、給水温度など外部条件に応じて、例えば水流路の流量を小さくして出口温度を給湯温度より高くし給湯回路にて水道水をミキシングして給湯温度とすることができるため、水流路の圧力損失を抑え大流量の給湯を実現することができる。また、例えば出口温度を給湯温度より小さくして、補助熱源をもって給湯温度まで上げることによって、最適なヒートポンプサイクル成績係数を狙った総合的な高効率給湯装置を提供することできる。
【0011】
そして、ヒートポンプ給湯装置は、水流路から給湯端末へ温水を供給することもできるし、貯湯通路を通じて貯湯タンクへ湯を貯留することもできる。また、立ち上がりあるいは大能力の給湯負荷が求められる時に、貯湯給湯通路を通じて貯湯タンクのあらかじめ貯留した高温湯を給湯端末へ導くことによって、敏速に所定温度の温水を供給することができる、また、貯湯タンクとヒートポンプサイクルの同時運転で大能力給湯負荷にも対応できる。また、ユーザーの意思などで給湯端末が急に閉められた時でも、熱交出口温度制御手段によって、水流路の出口温度を高め、迅速に貯湯タンクへ高温貯湯に切替することができる。
【0012】
そして、ヒートポンプ給湯装置は、残湯検知手段によって、残湯量が少ないと判断された時に、熱交出口温度制御手段は水流路の出口温度を高め、水流路出口から一部または全部の温水を貯湯タンクへ導くように制御することによって、適切に貯湯タンクを補給することができる。また、出湯端末からの出湯が停止した時、残湯検知手段の検知結果によって、水流路の出口温度を高め、貯湯タンクを沸き上げるかどうかを判断し、適切な貯湯運転を行うことができる。また、残湯量が多いと判断された時に、貯湯給湯通路を通じて貯湯タンクから高温湯を供給することで、水流路の出口温度を低く抑え、高効率の冷媒循環回路運転を図ることができる。
【0013】
本発明の請求項2にかかるヒートポンプ給湯装置は、請求項1の構成に加え、熱交出口温度制御手段は水流路の出口温度を給湯温度設定手段によって設定された給湯温度より高くしたことを特徴とする。
【0014】
そして、ヒートポンプ給湯装置は熱交出口温度制御手段を用いて、水流路の出口温度を設定された給湯温度より高くしたことによって、水流路の流量を小さくして圧力損失を抑えられるとともに、水流路の出口から流れた温水の一部を他の用途へ導き、例えば給湯温度より高い温度レベルで他所へ給湯することができるため、二ヶ所以上の給湯端末へ同時に異なる温度レベルの温水を供給することができる。
【0015】
本発明の請求項3にかかるヒートポンプ給湯装置は、請求項1または2記載の構成に加え、給湯温度設定手段によって設定される給湯温度に基づいて、熱交出口温度制御手段は冷媒循環回路の運転を制御する構成を有する。
【0016】
そして、ヒートポンプ給湯装置は給湯温度に基づいて、熱交出口温度制御手段は冷媒循環回路の運転を制御することによって、給湯温度設定手段によって設定された給湯温度に基づいて、他に外気温度、給水温度、給湯負荷など外部条件も考慮し、熱交出口温度制御手段によって水流路の出口温度が最適値となるように冷媒循環回路を制御することができる。
【0017】
本発明の請求項4にかかるヒートポンプ給湯装置は、請求項1〜3のいずれか1項記載の構成に加え、熱交出口温度制御手段が水流路の出口温度をあらかじめ決めた所定温度とすることを特徴とする。
【0018】
そして、ヒートポンプ給湯装置は、熱交出口温度制御手段によって、水流路の出口温度をあらかじめ決めた所定温度とすることによって、給湯負荷、外気温度などの外部条件によらず水流路の出口温度を所定温度とすることができるため、複雑な制御シーケンスが不要となり、制御要件を簡略化でき、ヒートポンプ給湯装置の信頼性を高めることができる。
【0019】
本発明の請求項5にかかるヒートポンプ給湯装置は、請求項1〜4のいずれか1項記載の構成に加え、熱交出口温度制御手段が、水流路の出口温度をあらかじめ決めた上限温度を超えないようにすることを特徴とする。
【0020】
そして、ヒートポンプ給湯装置は、熱交出口温度制御手段によって、水流路の出口温度をあらかじめ決めた上限温度を超えないようにすることによって、出口温度が高温となった場合の水中スケール成分析出と付着を防ぐことができ、給湯装置の経年耐久性を高めることができる。また、出口温度が高温になればなるほどヒートポンプサイクル成績係数が低下するため、上限温度を超えないようにすることによって、適切な成績係数を確保することができ、高効率の給湯装置を提供することができる。
【0021】
本発明の請求項6にかかるヒートポンプ給湯装置は、請求項1〜5のいずれか1項記載の構成に加え、給湯回路に設けたミキシング部と、ミキシング部と連通し水道水を供給する給水路とを備えた構成を有する。
【0022】
そして、ヒートポンプ給湯装置は、給湯回路に水道水と連通するミキシング部を設けることによって、水流路から流れてくる温水は水道水とミキシング部にて混合し給湯端末へ供給されるため、低圧損で大流量な給湯を実現することができる。
【0023】
本発明の請求項7にかかるヒートポンプ給湯装置は、請求項1記載の構成に加え、給湯端末からの出湯時間もしくは出湯熱量を計測する出湯計測手段と、この出湯計測手段の結果に基づき、水流路の出口温度を制御する熱交出口温度制御手段とを備える構成を有する。
【0024】
そして、ヒートポンプ給湯装置は、出湯計測手段によって、給湯端末からの出湯時間もしくは出湯熱量が所定値に到達した時点から、熱交出口温度制御手段を用いて、水流路の出口温度を徐々に高めて、出湯停止し貯湯タンクへ高温貯湯を切替するのを備えることができるため、水流路の出口温度を給湯温度設定手段によって設定される給湯温度通りにし、適切な温度で高効率運転が行えるとともに、給湯温度から高温貯湯への切替がスムーズに行うことができる。
【0025】
本発明の請求項8にかかるヒートポンプ給湯装置は、請求項1〜7のいずれか1項記載の構成に加え、冷媒循環通路に封入する冷媒は二酸化炭素(CO2)としたものである。
【0026】
そして、冷媒循環回路に封入する冷媒を二酸化炭素とすることによって、地球環境保全を実現するとともに、冷媒が超臨界状態まで圧縮され、放熱器内において冷媒と水の温度差を保ちやすいため、高温まで水を沸き上げすることができる。
【0027】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0028】
(実施例1)
図1は本発明の実施例1によるヒートポンプ給湯装置の回路構成図である。まず、本実施例によるヒートポンプ給湯装置の冷凍回路について説明する。
【0029】
本実施例によるヒートポンプ給湯装置は、第1の冷媒循環回路20と、第2の冷媒循環回路30とを備えている。第1の冷媒循環回路20及び第2の冷媒循環回路30は、二酸化炭素を冷媒として用い、高圧側では臨界圧を越える状態で運転することが好ましい。
【0030】
第1の冷媒循環回路20は、圧縮機21、放熱器22、膨張弁23、及び蒸発器24を順に配管で接続して構成されている。また、第1の冷媒循環回路20には、圧縮機21の温度を検出する本体温度センサ、圧縮機21からの吐出冷媒温度を検出する吐出温度センサ、圧縮機21からの吐出冷媒圧力を検出する吐出圧力センサ、蒸発器24の出口側の低圧冷媒温度を検出する吸込温度センサ、蒸発器24の吸入空気を検出する外気温度センサなど(図示せず)を備えている。さらに冷媒循環回路20に対応する蒸発器24に送風するためのファン25と風路26を設けている。
【0031】
一方、第2の冷媒循環回路30は、圧縮機31、放熱器32、膨張弁33、及び蒸発器34を順に配管で接続して構成されている。また、第2の冷媒循環回路30には、圧縮機31の温度を検出する本体温度センサ、圧縮機31からの吐出冷媒温度を検出する吐出温度センサ、圧縮機31からの吐出冷媒圧力を検出する吐出圧力センサ、蒸発器34の出口側の低圧冷媒温度を検出する吸込温度センサ、蒸発器34の吸入空気を検出する外気温度センサなど(図示せず)を備えている。さらに冷媒循環回路30に対応する蒸発器34に送風するためのファン35と風路36を設けている。なお風路26と風路36は互いに独立している。
【0032】
次に、本実施例によるヒートポンプ給湯装置の出湯回路について説明する。放熱器22と熱交換を行う水流路22Aは、放熱器32と熱交換を行う水流路32Aと並列に接続されている。ここで水流路22Aは放熱器22を流れる冷媒と熱交換する水の流路であり、
水流路32Aは放熱器32を流れる冷媒と熱交換する水の流路である。放熱器22と水流路22Aは第1冷媒循環回路20の水/冷媒熱交換器を構成し、放熱器32と水流路32Aは第2冷媒循環回路30の水/冷媒熱交換器を構成する。水流路22A及び水流路32Aの流入側は、流量調整弁41、減圧弁42、及び逆止弁43を介して水道管等の給水管44に接続されている。また、水流路32Aの流入側には、水流路32Aの開閉度を調整する制御弁45を設けている。一方、水流路22A及び水流路32Aの流出側は、逆止弁46、第一混合弁47、及び第二混合弁48を含む給湯回路49などを介して、キッチン、又は洗面所等の給湯端末50に接続されている。上記の回路には、給水管44からの入水量を検出する流量センサ51A、入水温度を検出する温度センサ51B、水流路22Aの出口温度を検出する温度センサ51C、水流路32Aの出口温度を検出する温度センサ51D、水流路22Aと水流路32Aとの混合湯温を検出する温度センサ51E、第一混合弁47の出口温度を検出する温度センサ51F、及び第二混合弁48の出口温度を検出する温度センサ51G、水流路22Aおよび水流路32Aへの流入流量を検出する流量センサ51Hを備えている。
【0033】
次に、本実施例によるヒートポンプ給湯装置の貯湯回路について説明する。貯湯タンク52の底部配管53は、流量調整弁41、減圧弁42、及び逆止弁54を介して水道管等の給水管44に接続されている。この底部配管53は、循環ポンプ55を介して水流路22Aの流入側及び水流路32Aの流入側と接続されている。また、貯湯タンク52の貯湯通路56は、制御弁57を介して水流路22Aの流出側及び水流路32Aの流出側と接続されている。なお、本実施例による貯湯タンク52は、積層式の給湯タンクであり、タンク内での撹拌が防止され、上部に高温水が底部に低温水が蓄積されるように構成されている。
【0034】
一方、貯湯タンク52の貯湯給湯通路58は、第一混合弁47に接続されている。また、貯湯タンク52の底部配管53から分岐させた給水路59は、逆止弁60を介して第二混合弁48に接続されている。なお、貯湯タンク52には、出湯温度を検出する温度センサ52Aの他に、貯湯タンク52内の湯量を検出するための複数の温度センサ52B、52C、52Dが設けられている。また、水流路22A及び水流路32Aの分岐前の流入側配管には、貯湯タンク52の底部配管53から導出される湯温を検出する温度センサ52Eが設けられている。
【0035】
リモコン61は、給湯端末50からの出湯温度を設定する給湯温度設定手段として、このリモコン61からの指示に基づいて、第1の冷媒循環回路20と第2の冷媒循環回路30とを熱交出口温度制御手段62にて制御する。なお各種のセンサの検出値はこの熱交出口温度制御手段62に入力される。
【0036】
以下、本実施例によるヒートポンプ給湯装置の動作について説明する。まず、本実施例によるヒートポンプ給湯装置の通常の給湯運転モードについて説明する。
【0037】
蛇口39の開放を流量センサ51Aにて検知し、第1の冷媒循環回路20及び第2の冷媒循環回路30が運転を開始する。第1の冷媒循環回路20では、圧縮機21で圧縮された冷媒は、放熱器22で放熱し、膨張弁23で減圧された後、蒸発器24にて吸熱し、ガス状態で圧縮機21に吸入される。第2の冷媒循環回路30では、第1の冷媒循環回路20と同様な動作をする。給水管44から供給される水は、流量調整弁41、減圧弁42、及び逆止弁43を順に通り、分岐して、水流路22Aと水流路32Aとにそれぞれ導かれる。水流路22Aと水流路32Aでそれぞれ加熱された温水は、再び合流した後に、逆止弁46、第一混合弁47、及び第二混合弁48を順に通り、給湯回路49から給湯端末50に導かれる。
【0038】
次に、本実施例によるヒートポンプ給湯装置の給湯運転モードの立ち上げ制御について説明する。圧縮機21、31の起動から所定の時間は、それぞれの水/冷媒熱交換器で十分な放熱量を得られない。従って、給湯端末50の開放を流量センサ51Aにて検知し、第1の冷媒循環回路20及び第2の冷媒循環回路30が運転を開始すると同時に、貯湯タンク52の貯湯給湯通路58から貯湯タンク52内の高温水を第一混合弁47に導く。このとき、温度センサ51Eと温度センサ52Aとの温度を検出し、温度センサ51Fでの検出温度が設定温度となるように第一混合弁47での混合割合を制御する。運転開始時には、水流路22A、32Aからの水温は低いため、貯湯タンク52からの温水を多く流し、その後水流路22A、32Aからの水温が高まるにしたがって貯湯タンク52からの温水を減少させる。そして水流路22A、2Aらの水温が十分に高まった時点で貯湯タンク52の出湯を停止する。このような立ち上げの時、貯湯タンク52より高温湯を出湯するとともに、貯湯タンク52の底部配管53から給水管44より水道水が貯湯タンク52内に流入する、この分の水道水は貯湯運転モードの時、沸きあげられ貯湯される。貯湯運転モードでは、第1の冷媒循環回路20及び第2の冷媒循環回路30を運転する。なお、複数の冷媒循環回路の全てを運転しない場合でもある。貯湯運転モードでは、制御弁57を開として循環ポンプ55を運転する。
【0039】
循環ポンプ55の運転により、貯湯タンク52の底部配管53から冷水を導出し、分岐して、水流路22Aと水流路32Aとにそれぞれ導かれ、そこで加熱された温水は、貯湯通路56から貯湯タンク52の上部に戻される。圧縮機21、31での能力制御は、温度センサ52Eによる水流路22、32の入口温度と、温度センサ51Eによる水流路22、32の出口温度と、流量センサ52Hによる循環流量などによって制御される。
【0040】
このように、給湯運転モードにおいて、圧縮機21、31での能力制御及び膨張弁23、33での開度制御は、水流路22Aと水流路32Aとの混合湯温を検出する温度センサ51Eでの検出温度が給湯温度設定手段であるリモコン61で設定された設定湯温に関係せずに、熱交出口温度制御手段62にて所定の温度とすることができる。このように、給湯負荷または外気温度、給水温度など外部条件に応じて、例えば水流路22Aと32Aの流量を小さくして水流路22Aと32Aの出口温度を設定湯温より高くし、第二混合弁48にて給水路59から水道水をミキシングして給湯回路への供給温度を設定湯温とすることができるため、水流路22Aと32Aの圧力損失を抑え大流量の給湯を実現することができる。また、逆に例えば水流路22Aと32Aの出口温度を設定湯温より低くして、補助熱源である貯湯タンク52をもって貯湯給湯通路58から第一混合弁47へ高温の貯蔵湯を供給し、第一混合弁47にてミキシングして給湯回路への供給温度を設定湯温とすることができるため、最適なヒートポンプサイクル成績係数を狙った総合的な高効率給湯装置を提供することできる。もちろん、運転条件などによって、水流路22Aと32Aからの温水と貯湯給湯通路58からの貯蔵湯が第一混合弁47にて混合した後、第二混合弁48にて給水路59からの水道水などとさらに混合し、設定湯温となって、給湯端末50へ供給されることもある。
【0041】
また、設定湯温に基づいて、熱交出口温度制御手段62は冷媒循環回路20と30の運転を制御することによって、他に外気温度、給水温度、給湯負荷など外部条件も考慮し、熱交出口温度制御手段62によって水流路22Aと32Aの出口温度が最適値となるように冷媒循環回路20と30を制御することができる。
【0042】
また、水流路22Aと32Aの出口温度を設定湯温より高くすることによって、水流路の22Aと32Aの流量を小さくして圧力損失を抑えられるとともに、水流路22Aと32Aの出口から流出した温水の一部を他の用途へ導き、例えば設定湯温より高い温度レベルで他の所へ供給することができるため、二ヶ所以上の給湯端末へ同時に異なる温度レベルの温水を供給することができる。
【0043】
(実施例2)
本発明の実施例2によるヒートポンプ給湯装置について説明する。なお、本実施例において、実施例1と異なる点は、熱交出口制御手段62は、水流路22Aと32Aの出口温度をあらかじめ決めた所定温度とすることと、水流路22Aと32Aの出口温度をあらかじめ決めた上限温度を超えないようにすることである。なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0044】
次に動作、作用を説明すると、ヒートポンプ給湯装置は、熱交出口温度制御手段62によって、水流路22Aと32Aの出口温度をあらかじめ決めた所定温度とすることによって、給湯負荷、外気温度などの外部条件によらず水流路22Aと32Aの出口温度を所定温度とすることができるため、複雑な制御シーケンスが不要となり、制御要件を簡略化でき、ヒートポンプ給湯装置の信頼性を高めることができる。
【0045】
また、熱交出口温度制御手段62によって、水流路22Aと32Aの出口温度をあらかじめ決めた上限温度を超えないようにすることによって、出口温度が高温となった場合の水中スケール成分析出と付着を防ぐことができ、給湯装置の経年耐久性を高めることができる。また、出口温度が高温になればなるほどヒートポンプサイクル成績係数が低下するため、上限温度を超えないようにすることによって、適切な成績係数を確保することができ、高効率の給湯装置を提供することができる。
【0046】
(実施例3)
図2は本発明の実施例3によるヒートポンプ給湯装置の回路構成図である。なお、本実施例において、実施例1と異なる点は、熱交出口制御手段62は、貯湯タンク52の残湯検知手段である温度センサ52B、52C、52Dの検知結果に基づいて水流路22Aと32Aの出口温度を制御することと、給湯端末50からの出湯時間をカウントするもしくは出湯熱量をカウントする出湯計測手段63を新設し、熱交出口制御手段62はこの出湯計測手段63の結果に基づき水流路22Aと32Aの出口温度を制御することである。なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0047】
次に動作、作用を説明すると、第1冷媒循環回路と第2冷媒循環回路が定常運転中、貯湯タンク52の残湯検知手段である温度センサ52B、52C、52Dの検知結果に基づいて、貯湯タンク52の残湯量が少ないと判断された時に、給湯端末50への給湯負荷を満たしながら、熱交出口温度制御手段62は水流路22Aと32Aの出口温度を高め、水流路出口の一部または全部の温水を貯湯タンク52へ導くように制御することによって、適切に貯湯タンク52を補給することができる。また、貯湯タンク52の残湯量が少ない場合、給湯端末50の出湯が停止された時に、水流路22Aと32Aの出口温度が高いと、すみやかに適切な温度で貯湯タンク52への貯湯運転へ切替ることができる。また、残湯量が多いと判断された時に、貯湯給湯通路58を通じて貯湯タンク52から第一混合弁47へ高温湯を供給することで、水流路22Aと32Aの出口温度を低く抑えることができ、冷媒循環回路20と30の成績係数の高い運転を図ることができる。
【0048】
また、出湯計測手段63を設けることによって、給湯端末50からの出湯時間をカウントするもしくは出湯熱量をカウントすることで、給湯端末50が閉じるタイミングを予測して、出湯時間または出湯熱量が指定値を上回ると、熱交出口制御手段62は給湯端末50の出湯停止が近づいていると判断し、この判断結果に基づき水流路22Aと32Aの出口温度を高め、出湯端末50が停止し貯湯タンク52へ高温貯湯を切替するのを備えることができるため、通常運転時は、水流路の出口温度を給湯温度設定手段によって設定される給湯温度通りにし、通常は適切な温度で高効率運転が行えるとともに、給湯停止後、高温貯湯への切替がスムーズに行うことができる。
【0049】
なお、上記各実施例では冷媒として二酸化炭素を用いた場合で説明したが、冷媒としてフロンガスである410A冷媒やプロパンやブタンなどのHC(ハイドロカーボン)冷媒、或いはアンモニアなどのその他の冷媒を用いてもよい。
【0050】
また、上記各実施例では、第1の冷媒循環回路20と第2の冷媒循環回路30とを備えたヒートポンプ給湯装置を用いて説明したが、1つのみまたは3つ以上の冷媒循環回路を用いてもよい。
【0051】
また、上記各実施例では水流路22Aからの温水と水流路32Aからの温水を合流させて給湯端末50などから出湯させたが、それぞれの水流路からの温水を別々に出湯するように構成することもできる。この時冷媒循環回路を異なる条件で運転させると2温度出湯が可能となる。
【0052】
【発明の効果】
以上説明したように、本発明によれば、大流量なおかつ給湯―貯湯切替運転がスムーズに行えるヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯装置の回路構成図
【図2】 本発明の実施例2におけるヒートポンプ給湯装置の回路構成図
【図3】 従来の給湯装置の構成図
【符号の説明】
20、30 冷媒循環回路
21、31 圧縮機
22、32 放熱器
22A、32A 水流路
23、33 膨張弁(減圧手段)
24、34 吸熱器
44 給水管
48 第二混合弁(ミキシング部)
49 給湯回路
50 給湯端末
52 貯湯タンク
52B、52C、52D 温度センサー(残湯検知手段)
56 貯湯通路
58 貯湯給湯通路
59 給水路
61 リモコン(給湯温度設定手段)
62 熱交出口温度制御手段
63 出湯計測手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat pump water heater.
[0002]
[Prior art]
  As shown in FIG. 3, a conventional hot water supply apparatus of this type has a refrigerant circulation circuit 7 in which a compressor 2, a radiator 3, a decompression means 4, and a heat absorber 5 are connected by a refrigerant flow path 1 configured in a closed circuit. A heat exchanger 10 having a water channel 9 for exchanging heat with the refrigerant channel a8 of the radiator 3, a water supply pipe 11 for supplying tap water to the water channel 9, and the water channel 9 and a shower or faucet A hot water supply circuit 13 for connecting a hot water supply terminal 12 such as a temperature sensor 14 provided in the hot water supply circuit 13 for detecting the hot water supply temperature, and an inverter 15 for controlling the rotational speed of the compressor 2. The output frequency of the inverter 15 is converted according to the difference between the detected temperature and the set temperature.
[0003]
  That is, in the conventional hot water supply apparatus, when the hot water supply temperature is lower than the set temperature, the rotation speed of the compressor 2 is increased, the hot water supply temperature is increased to the set temperature, and when the hot water supply temperature is high, the rotation speed is increased. The hot water supply temperature is lowered and controlled to a set temperature (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
    JP-A-2-223767 (Pages 5-7, Fig. 1)
[0005]
[Problems to be solved by the invention]
  However, since the flow rate at the time of hot water supply may be changed variously depending on the purpose of use, etc., for example, in the case of hot water supply for home use, when supplying hot water to a shower or bath, a large amount of 10 to 20 L / min. Flow rate.
[0006]
  In the configuration of the above-described conventional hot water supply device, for example, in the case of a large flow rate such as a shower, the pressure loss of the water flow channel that performs heat exchange with the refrigerant flow channel of the radiator increases, so that the flow rate that can pass through the water flow channel is limited. It becomes difficult to install hot water to a hot water supply terminal installed at a high place or with a large pressure loss. In order to reduce the pressure loss of the water channel, it is conceivable to provide a water channel with a large diameter or a large number of water channels. However, if the water channel has a large diameter, the heat exchange characteristics with the refrigerant will decrease, and a large number of water channels In this case, the heat exchanger becomes complicated and large, and there is a problem that the rise of the hot water supply temperature and pressure of the hot water supply apparatus becomes slow.
[0007]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a refrigerant circulation circuit including a compressor, a radiator, a decompression unit, and a heat absorber, a water / refrigerant heat exchanger having a water flow path for exchanging heat with the radiator, A water supply pipe for supplying tap water to the water flow path, a hot water supply circuit connected to pass water from the water flow path to the hot water supply terminal, and a hot water supply temperature setting means for setting a hot water supply temperature flowing out of the hot water supply terminal A heat exchange outlet temperature control means for controlling the outlet temperature of the water flow path;A hot water storage tank for storing hot water, an outlet of the water flow path and the hot water storage tank are connected, a hot water storage passage for guiding hot water from the water flow path to the hot water storage tank, and the hot water storage tank and a hot water supply circuit are connected; A hot water storage hot water passage that guides hot water from the hot water storage tank to a hot water supply terminal, and residual hot water detection means for detecting the amount of hot water in the hot water storage tank, and the refrigerant circulation circuit is in operation, according to the detection result of the residual hot water detection means When it is determined that the amount of hot water remaining in the hot water storage tank is small, the heat exchange outlet temperature control means increases the outlet temperature of the water flow path while satisfying the hot water supply load to the hot water supply terminal, Control to direct all hot water to the hot water storage tankA heat pump water heater is provided.
[0008]
  According to the above invention, the heat exchange outlet temperature control means for controlling the outlet temperature of the water flow path does not depend on the hot water supply temperature flowing out from the hot water supply terminal set by the hot water supply temperature setting means, and the outlet temperature of the water flow path is controlled. Because it is possible to control, depending on external conditions such as hot water supply load or outside temperature, water supply temperature, etc., tap water is mixed in the hot water supply circuit by reducing the flow rate of the water flow path and making the outlet temperature higher than the hot water supply temperature, for example. Therefore, it is possible to achieve hot water supply with a large flow rate while suppressing pressure loss in the water flow path. Further, for example, by making the outlet temperature smaller than the hot water supply temperature and raising the auxiliary heat source to the hot water supply temperature, it is possible to provide a comprehensive high-efficiency hot water supply device aiming at an optimum heat pump cycle performance coefficient.Further, the heat exchange outlet temperature control means can increase the outlet temperature of the water flow path and quickly switch to the hot water storage tank to the hot water storage.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  A heat pump water heater according to claim 1 of the present invention is a water / refrigerant heat exchange comprising a refrigerant circulation circuit including a compressor, a radiator, a decompression means, and a heat absorber, and a water flow path for exchanging heat with the radiator. A hot water supply temperature that sets a hot water supply temperature that flows out from the hot water supply terminal, and a hot water supply circuit that is connected to pass water from the water flow path to the hot water supply terminal. Setting means; heat exchange outlet temperature control means for controlling the outlet temperature of the water flow path;A hot water storage tank for storing hot water, an outlet of the water flow path and the hot water storage tank are connected, a hot water storage passage for guiding hot water from the water flow path to the hot water storage tank, and the hot water storage tank and a hot water supply circuit are connected; A hot water storage hot water passage that guides hot water from the hot water storage tank to the hot water supply terminal, and a remaining hot water detection that detects the amount of hot water in the hot water storage tank. And when the refrigerant circulation circuit is in operation, when it is determined that the amount of remaining hot water in the hot water storage tank is small according to the detection result of the remaining hot water detection means, the heat exchange is performed while satisfying the hot water supply load to the hot water supply terminal. The outlet temperature control means controls to increase the outlet temperature of the water channel and to guide part or all of the hot water at the outlet of the water channel to the hot water storage tank.It has a configuration.
[0010]
  The heat pump hot water supply device controls the outlet temperature of the water flow path by the heat exchange outlet temperature control means for controlling the outlet temperature of the water flow path, regardless of the hot water supply temperature flowing out from the hot water supply terminal set by the hot water supply temperature setting means. Because it is possible to control, depending on external conditions such as hot water supply load or outside temperature, water supply temperature, etc., tap water is mixed in the hot water supply circuit by reducing the flow rate of the water flow path and making the outlet temperature higher than the hot water supply temperature, for example. Therefore, it is possible to achieve hot water supply with a large flow rate while suppressing pressure loss in the water flow path. Further, for example, by making the outlet temperature lower than the hot water supply temperature and raising the auxiliary heat source to the hot water supply temperature, it is possible to provide a comprehensive high-efficiency hot water supply device aiming at an optimum heat pump cycle performance coefficient.
[0011]
  And a heat pump hot-water supply apparatus can also supply hot water to a hot-water supply terminal from a water flow path, and can also store hot water into a hot-water storage tank through a hot-water storage channel. In addition, when a hot water supply load with a large capacity is required, hot water at a predetermined temperature can be supplied promptly by guiding the hot water stored in the hot water storage tank in advance through the hot water storage hot water passage to the hot water supply terminal. A large capacity hot water supply load can be handled by simultaneous operation of the tank and heat pump cycle. Further, even when the hot water supply terminal is suddenly closed due to the user's intention, the heat exchange outlet temperature control means can increase the outlet temperature of the water flow path and quickly switch the hot water storage tank to the high temperature hot water storage.
[0012]
  When the heat pump hot water supply device determines that the amount of remaining hot water is small by the remaining hot water detection means, the heat exchange outlet temperature control means increases the outlet temperature of the water flow path and stores part or all of the hot water from the water flow path outlet. By controlling to lead to the tank, the hot water storage tank can be appropriately replenished. Further, when the hot water from the hot water terminal stops, it is possible to determine whether to raise the outlet temperature of the water flow path and to boil the hot water storage tank according to the detection result of the remaining hot water detection means, and to perform an appropriate hot water storage operation. Further, when it is determined that the amount of remaining hot water is large, high temperature hot water is supplied from the hot water storage tank through the hot water storage hot water passage, so that the outlet temperature of the water flow path can be kept low and a highly efficient refrigerant circulation circuit operation can be achieved.
[0013]
The heat pump hot water supply apparatus according to claim 2 of the present invention is characterized in that, in addition to the configuration of claim 1, the heat exchange outlet temperature control means sets the outlet temperature of the water flow path to be higher than the hot water supply temperature set by the hot water supply temperature setting means. And
[0014]
  The heat pump water heater uses the heat exchanger outlet temperature control means to increase the outlet temperature of the water channel higher than the set hot water temperature, thereby reducing the flow rate of the water channel and suppressing pressure loss. Because some hot water flowing from the outlet of the water can be used for other purposes, for example, hot water can be supplied to other places at a temperature level higher than the hot water temperature, hot water of different temperature levels can be supplied simultaneously to two or more hot water terminals. Can do.
[0015]
  According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the heat exchange outlet temperature control means operates the refrigerant circulation circuit based on the hot water supply temperature set by the hot water supply temperature setting means. It has the structure which controls.
[0016]
  Then, the heat pump hot water supply device is based on the hot water supply temperature, the heat exchange outlet temperature control means is controlling the operation of the refrigerant circulation circuit, and based on the hot water supply temperature set by the hot water supply temperature setting means, the outside air temperature, the water supply Considering external conditions such as temperature and hot water supply load, the refrigerant circulation circuit can be controlled by the heat exchange outlet temperature control means so that the outlet temperature of the water channel becomes an optimum value.
[0017]
  The heat pump hot water supply apparatus according to claim 4 of the present invention is such that, in addition to the configuration of any one of claims 1 to 3, the heat exchange outlet temperature control means sets the outlet temperature of the water flow path to a predetermined temperature. It is characterized by.
[0018]
  The heat pump hot water supply device sets the outlet temperature of the water channel to a predetermined temperature regardless of external conditions such as the hot water supply load and the outside temperature by setting the outlet temperature of the water channel to a predetermined temperature by the heat exchange outlet temperature control means. Since it can be set to temperature, a complicated control sequence becomes unnecessary, a control requirement can be simplified, and the reliability of a heat pump hot-water supply apparatus can be improved.
[0019]
  The heat pump hot water supply apparatus according to claim 5 of the present invention, in addition to the structure according to any one of claims 1 to 4, the heat exchange outlet temperature control means exceeds the predetermined upper limit temperature of the outlet temperature of the water flow path. It is characterized by not.
[0020]
  And the heat pump hot water supply device is a submersible scale component precipitation when the outlet temperature becomes high by preventing the outlet temperature of the water flow path from exceeding the predetermined upper limit temperature by the heat exchange outlet temperature control means. Adhesion can be prevented and the aging durability of the hot water supply device can be increased. In addition, since the heat pump cycle coefficient of performance decreases as the outlet temperature becomes higher, an appropriate coefficient of performance can be ensured by not exceeding the upper limit temperature, and a high-efficiency water heater is provided. Can do.
[0021]
  A heat pump hot water supply apparatus according to a sixth aspect of the present invention includes, in addition to the configuration according to any one of the first to fifth aspects, a mixing section provided in the hot water supply circuit, and a water supply path that communicates with the mixing section and supplies tap water. It has the composition provided with.
[0022]
  The heat pump hot water supply device is provided with a mixing unit communicating with tap water in the hot water supply circuit, so that hot water flowing from the water flow channel is mixed with the tap water and mixing unit and supplied to the hot water supply terminal. Realizing a large flow of hot water supplyit can.
[0023]
  Claim 7 of the present inventionThe heat pump water heaterClaim 1In addition to the configuration described above, a configuration comprising a tapping time measuring means for measuring a tapping time or a tapping heat amount from a hot water supply terminal, and a heat exchange outlet temperature control means for controlling the outlet temperature of the water flow path based on the result of the tapping hot water measuring means Have
[0024]
  Then, the heat pump hot water supply device gradually increases the outlet temperature of the water flow path using the heat exchange outlet temperature control means from the time when the hot water discharge time from the hot water supply terminal or the amount of heat of the hot water reaches a predetermined value by the hot water measuring means. Since it is possible to prepare for stopping hot water supply and switching hot water storage to a hot water storage tank, the outlet temperature of the water flow path is set to the hot water supply temperature set by the hot water supply temperature setting means, and high efficiency operation can be performed at an appropriate temperature. Switching from hot water supply temperature to high temperature hot water storage can be performed smoothly.
[0025]
  Of the present inventionClaim 8The heat pump water heaterClaims 1-7In addition to the configuration described in any one of the above, the refrigerant sealed in the refrigerant circulation passage is carbon dioxide (CO2).
[0026]
  And, by using carbon dioxide as the refrigerant sealed in the refrigerant circulation circuit, it is possible to maintain the global environment, and the refrigerant is compressed to a supercritical state, and it is easy to maintain the temperature difference between the refrigerant and water in the radiator. Can boil water up to.
[0027]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0028]
  Example 1
  FIG. 1 is a circuit configuration diagram of a heat pump hot water supply apparatus according to Embodiment 1 of the present invention. First, the refrigeration circuit of the heat pump water heater according to the present embodiment will be described.
[0029]
  The heat pump water heater according to this embodiment includes a first refrigerant circulation circuit 20 and a second refrigerant circulation circuit 30. The first refrigerant circulation circuit 20 and the second refrigerant circulation circuit 30 preferably use carbon dioxide as a refrigerant and operate in a state exceeding the critical pressure on the high pressure side.
[0030]
  The first refrigerant circulation circuit 20 is configured by connecting a compressor 21, a radiator 22, an expansion valve 23, and an evaporator 24 in order by piping. Further, the first refrigerant circulation circuit 20 detects a main body temperature sensor that detects the temperature of the compressor 21, a discharge temperature sensor that detects the discharge refrigerant temperature from the compressor 21, and a discharge refrigerant pressure from the compressor 21. A discharge pressure sensor, a suction temperature sensor that detects a low-pressure refrigerant temperature on the outlet side of the evaporator 24, an outside air temperature sensor that detects intake air of the evaporator 24, and the like (not shown) are provided. Further, a fan 25 and an air passage 26 are provided for blowing air to the evaporator 24 corresponding to the refrigerant circulation circuit 20.
[0031]
  On the other hand, the second refrigerant circulation circuit 30 is configured by connecting a compressor 31, a radiator 32, an expansion valve 33, and an evaporator 34 in order by piping. Further, the second refrigerant circulation circuit 30 detects a main body temperature sensor that detects the temperature of the compressor 31, a discharge temperature sensor that detects the discharge refrigerant temperature from the compressor 31, and a discharge refrigerant pressure from the compressor 31. A discharge pressure sensor, a suction temperature sensor for detecting the low-pressure refrigerant temperature on the outlet side of the evaporator 34, an outside air temperature sensor for detecting the intake air of the evaporator 34, and the like (not shown) are provided. Further, a fan 35 and an air passage 36 for blowing air to the evaporator 34 corresponding to the refrigerant circulation circuit 30 are provided. The air passage 26 and the air passage 36 are independent of each other.
[0032]
  Next, the hot water supply circuit of the heat pump hot water supply apparatus according to this embodiment will be described. The water flow path 22A that exchanges heat with the radiator 22 is connected in parallel with the water flow path 32A that exchanges heat with the radiator 32. Here, the water flow path 22A is a water flow path for exchanging heat with the refrigerant flowing through the radiator 22,
The water channel 32 </ b> A is a water channel that exchanges heat with the refrigerant flowing through the radiator 32. The radiator 22 and the water flow path 22A constitute a water / refrigerant heat exchanger of the first refrigerant circulation circuit 20, and the radiator 32 and the water flow path 32A constitute a water / refrigerant heat exchanger of the second refrigerant circulation circuit 30. The inflow sides of the water channel 22A and the water channel 32A are connected to a water supply pipe 44 such as a water pipe via a flow rate adjustment valve 41, a pressure reducing valve 42, and a check valve 43. A control valve 45 that adjusts the degree of opening and closing of the water channel 32A is provided on the inflow side of the water channel 32A. On the other hand, the outflow side of the water flow path 22A and the water flow path 32A is connected to a hot water supply terminal such as a kitchen or a washroom via a hot water supply circuit 49 including a check valve 46, a first mixing valve 47, and a second mixing valve 48. 50. In the above circuit, a flow rate sensor 51A for detecting the amount of incoming water from the water supply pipe 44, a temperature sensor 51B for detecting the incoming water temperature, a temperature sensor 51C for detecting the outlet temperature of the water passage 22A, and an outlet temperature of the water passage 32A are detected. Temperature sensor 51D for detecting, temperature sensor 51E for detecting the temperature of the mixed water of the water flow path 22A and the water flow path 32A, temperature sensor 51F for detecting the outlet temperature of the first mixing valve 47, and detecting the outlet temperature of the second mixing valve 48. A temperature sensor 51G, a water flow path 22A, and a flow rate sensor 51H that detects an inflow flow rate into the water flow path 32A.
[0033]
  Next, a hot water storage circuit of the heat pump hot water supply apparatus according to this embodiment will be described. A bottom pipe 53 of the hot water storage tank 52 is connected to a water supply pipe 44 such as a water pipe via a flow rate adjusting valve 41, a pressure reducing valve 42, and a check valve 54. The bottom pipe 53 is connected to the inflow side of the water channel 22A and the inflow side of the water channel 32A via the circulation pump 55. The hot water storage passage 56 of the hot water storage tank 52 is connected to the outflow side of the water flow path 22A and the outflow side of the water flow path 32A via a control valve 57. The hot water storage tank 52 according to the present embodiment is a stacked hot water tank, and is configured so that stirring in the tank is prevented and high temperature water is accumulated at the top and low temperature water is accumulated at the bottom.
[0034]
  On the other hand, the hot water storage hot water supply passage 58 of the hot water storage tank 52 is connected to the first mixing valve 47. A water supply path 59 branched from the bottom piping 53 of the hot water storage tank 52 is connected to the second mixing valve 48 via a check valve 60. The hot water storage tank 52 is provided with a plurality of temperature sensors 52B, 52C and 52D for detecting the amount of hot water in the hot water storage tank 52 in addition to the temperature sensor 52A for detecting the hot water temperature. In addition, a temperature sensor 52E that detects a hot water temperature derived from the bottom piping 53 of the hot water storage tank 52 is provided in the inflow side piping before branching of the water flow channel 22A and the water flow channel 32A.
[0035]
  The remote controller 61 serves as a hot water supply temperature setting means for setting the hot water temperature from the hot water supply terminal 50, based on an instruction from the remote controller 61, the first refrigerant circulation circuit 20 and the second refrigerant circulation circuit 30. Control is performed by the temperature control means 62. The detection values of various sensors are input to the heat exchange outlet temperature control means 62.
[0036]
  Hereinafter, the operation of the heat pump water heater according to the present embodiment will be described. First, the normal hot water supply operation mode of the heat pump hot water supply apparatus according to the present embodiment will be described.
[0037]
  The opening of the faucet 39 is detected by the flow sensor 51A, and the first refrigerant circulation circuit 20 and the second refrigerant circulation circuit 30 start operation. In the first refrigerant circulation circuit 20, the refrigerant compressed by the compressor 21 radiates heat by the radiator 22, is depressurized by the expansion valve 23, absorbs heat by the evaporator 24, and enters the compressor 21 in a gas state. Inhaled. The second refrigerant circulation circuit 30 operates in the same manner as the first refrigerant circulation circuit 20. Water supplied from the water supply pipe 44 passes through the flow rate adjustment valve 41, the pressure reducing valve 42, and the check valve 43 in order, branches, and is guided to the water flow path 22A and the water flow path 32A, respectively. The hot water heated in each of the water flow path 22A and the water flow path 32A merges again, and then passes through the check valve 46, the first mixing valve 47, and the second mixing valve 48 in order, and is led from the hot water supply circuit 49 to the hot water supply terminal 50. It is burned.
[0038]
  Next, start-up control in the hot water supply operation mode of the heat pump hot water supply apparatus according to the present embodiment will be described. A sufficient amount of heat radiation cannot be obtained by the respective water / refrigerant heat exchangers for a predetermined time from the start of the compressors 21 and 31. Accordingly, the opening of the hot water supply terminal 50 is detected by the flow sensor 51A, and the first refrigerant circulation circuit 20 and the second refrigerant circulation circuit 30 start operation, and at the same time, the hot water storage tank 52 from the hot water storage hot water supply passage 58 of the hot water storage tank 52. The high temperature water inside is guided to the first mixing valve 47. At this time, the temperature of the temperature sensor 51E and the temperature sensor 52A is detected, and the mixing ratio in the first mixing valve 47 is controlled so that the temperature detected by the temperature sensor 51F becomes the set temperature. At the start of operation, since the water temperature from the water flow paths 22A and 32A is low, a large amount of hot water flows from the hot water storage tank 52, and then the hot water from the hot water storage tank 52 decreases as the water temperature from the water flow paths 22A and 32A increases. And when the water temperature of water channel 22A, 2A etc. fully rises, the hot water discharge of the hot water storage tank 52 is stopped. At the time of startup, hot water is discharged from the hot water storage tank 52 and tap water flows into the hot water storage tank 52 from the water supply pipe 44 through the bottom pipe 53 of the hot water storage tank 52. When in mode, the water is boiled and stored. In the hot water storage operation mode, the first refrigerant circulation circuit 20 and the second refrigerant circulation circuit 30 are operated. It may be the case where not all of the plurality of refrigerant circulation circuits are operated. In the hot water storage operation mode, the control valve 57 is opened and the circulation pump 55 is operated.
[0039]
  By operating the circulation pump 55, cold water is led out from the bottom pipe 53 of the hot water storage tank 52, branched, and led to the water flow path 22 </ b> A and the water flow path 32 </ b> A, respectively. Returned to the top of 52. The capacity control in the compressors 21 and 31 is controlled by the inlet temperature of the water passages 22 and 32 by the temperature sensor 52E, the outlet temperature of the water passages 22 and 32 by the temperature sensor 51E, the circulating flow rate by the flow sensor 52H, and the like. .
[0040]
  As described above, in the hot water supply operation mode, the capacity control in the compressors 21 and 31 and the opening degree control in the expansion valves 23 and 33 are performed by the temperature sensor 51E that detects the mixed hot water temperature of the water flow path 22A and the water flow path 32A. The detected temperature can be set to a predetermined temperature by the heat exchange outlet temperature control means 62 regardless of the set hot water temperature set by the remote controller 61 which is the hot water supply temperature setting means. Thus, according to the external conditions such as the hot water supply load or the outside air temperature, the water supply temperature, for example, the flow rates of the water flow paths 22A and 32A are reduced, and the outlet temperatures of the water flow paths 22A and 32A are set higher than the set hot water temperature. Since the tap water can be mixed from the water supply channel 59 by the valve 48 and the supply temperature to the hot water supply circuit can be set to the set hot water temperature, the pressure loss of the water flow paths 22A and 32A can be suppressed and a large flow rate of hot water supply can be realized. it can. Conversely, for example, the outlet temperatures of the water flow paths 22A and 32A are set lower than the set hot water temperature, and hot hot water is supplied from the hot water storage hot water passage 58 to the first mixing valve 47 through the hot water storage tank 52 as an auxiliary heat source. Mixing with the one mixing valve 47 enables the supply temperature to the hot water supply circuit to be the set hot water temperature, so that it is possible to provide a comprehensive high-efficiency hot water supply device aiming at an optimum heat pump cycle performance coefficient. Of course, the hot water from the water flow paths 22A and 32A and the stored hot water from the hot water storage hot water supply passage 58 are mixed by the first mixing valve 47 and then the tap water from the water supply path 59 is supplied by the second mixing valve 48 depending on operating conditions. In some cases, it is further mixed with a hot water temperature to be set to a hot water supply terminal 50.
[0041]
  Further, based on the set hot water temperature, the heat exchange outlet temperature control means 62 controls the operation of the refrigerant circulation circuits 20 and 30 to take into account other external conditions such as outside air temperature, water supply temperature, and hot water supply load. The refrigerant circulation circuits 20 and 30 can be controlled by the outlet temperature control means 62 so that the outlet temperatures of the water flow paths 22A and 32A become optimum values.
[0042]
  In addition, by making the outlet temperatures of the water passages 22A and 32A higher than the set hot water temperature, the flow rate of the water passages 22A and 32A can be reduced to suppress pressure loss, and the hot water flowing out from the outlets of the water passages 22A and 32A Can be supplied to other places at a temperature level higher than the set hot water temperature, for example, so that hot water having different temperature levels can be simultaneously supplied to two or more hot water supply terminals.
[0043]
  (Example 2)
  A heat pump hot water supply apparatus according to Embodiment 2 of the present invention will be described. In this embodiment, the difference from the first embodiment is that the heat exchange outlet control means 62 sets the outlet temperatures of the water flow paths 22A and 32A to a predetermined temperature and the outlet temperatures of the water flow paths 22A and 32A. Is not to exceed a predetermined upper limit temperature. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0044]
  Next, the operation and action will be described. In the heat pump hot water supply device, the heat exchange outlet temperature control means 62 sets the outlet temperature of the water flow paths 22A and 32A to a predetermined temperature, so that the outside of the hot water supply load, the outside air temperature, etc. Regardless of the conditions, the outlet temperatures of the water flow paths 22A and 32A can be set to a predetermined temperature, so that a complicated control sequence is not required, the control requirements can be simplified, and the reliability of the heat pump water heater can be improved.
[0045]
  In addition, the heat exchange outlet temperature control means 62 prevents the outlet temperatures of the water flow paths 22A and 32A from exceeding a predetermined upper limit temperature, thereby precipitating and attaching underwater scale components when the outlet temperature becomes high. Can be prevented, and the aging durability of the water heater can be enhanced. In addition, since the heat pump cycle coefficient of performance decreases as the outlet temperature becomes higher, an appropriate coefficient of performance can be ensured by not exceeding the upper limit temperature, and a high-efficiency water heater is provided. Can do.
[0046]
  (Example 3)
  FIG. 2 is a circuit configuration diagram of a heat pump hot water supply apparatus according to Embodiment 3 of the present invention. In this embodiment, the difference from the first embodiment is that the heat exchange outlet control means 62 is different from the water flow path 22A on the basis of the detection results of the temperature sensors 52B, 52C, 52D which are the remaining hot water detection means of the hot water storage tank 52. A hot water measuring means 63 for controlling the outlet temperature of 32A and counting the amount of hot water discharged from the hot water supply terminal 50 or counting the amount of hot water discharged is newly provided. The heat exchange outlet control means 62 is based on the result of the hot water measuring means 63. This is to control the outlet temperatures of the water flow paths 22A and 32A. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0047]
  Next, the operation and action will be described. Based on the detection results of the temperature sensors 52B, 52C and 52D, which are the remaining hot water detection means of the hot water storage tank 52, during the steady operation of the first refrigerant circulation circuit and the second refrigerant circulation circuit. When it is determined that the amount of remaining hot water in the tank 52 is small, the heat exchange outlet temperature control means 62 increases the outlet temperature of the water flow paths 22A and 32A while satisfying the hot water supply load to the hot water supply terminal 50, and By controlling so that all the hot water is led to the hot water storage tank 52, the hot water storage tank 52 can be appropriately replenished. Also, when the amount of remaining hot water in the hot water storage tank 52 is small and the outlet temperature of the hot water supply terminal 50 is stopped and the outlet temperature of the water flow paths 22A and 32A is high, the hot water storage operation is quickly switched to the hot water storage tank 52 at an appropriate temperature. Can. Moreover, when it is determined that the amount of remaining hot water is large, the outlet temperature of the water flow paths 22A and 32A can be kept low by supplying high temperature hot water from the hot water storage tank 52 to the first mixing valve 47 through the hot water storage hot water supply passage 58. Operation with a high coefficient of performance of the refrigerant circulation circuits 20 and 30 can be achieved.
[0048]
  Moreover, by providing the hot water measuring means 63, the hot water terminal 50 counts the hot water time or the hot water heat amount is counted, thereby predicting the closing timing of the hot water terminal 50, and the hot water time or the hot water heat amount has a specified value. If it exceeds, the heat exchange outlet control means 62 determines that the hot water supply terminal 50 is approaching the stop of hot water supply, and based on this determination result, the outlet temperature of the water flow paths 22A and 32A is increased, and the hot water supply terminal 50 stops and moves to the hot water storage tank 52. Since it is possible to provide switching of high temperature hot water storage, during normal operation, the outlet temperature of the water flow path is set to the hot water supply temperature set by the hot water supply temperature setting means, and usually high efficiency operation can be performed at an appropriate temperature. After stopping hot water supply, switching to high temperature hot water storage can be performed smoothly.
[0049]
  In each of the above embodiments, carbon dioxide is used as the refrigerant. However, as the refrigerant, a refrigerant of 410A that is Freon gas, an HC (hydrocarbon) refrigerant such as propane or butane, or another refrigerant such as ammonia is used. Also good.
[0050]
  In each of the above embodiments, the heat pump hot water supply apparatus including the first refrigerant circulation circuit 20 and the second refrigerant circulation circuit 30 has been described. However, only one or three or more refrigerant circulation circuits are used. May be.
[0051]
  Further, in each of the above embodiments, the hot water from the water flow path 22A and the hot water from the water flow path 32A are combined and discharged from the hot water supply terminal 50 or the like, but the hot water from each water flow path is separately discharged. You can also At this time, if the refrigerant circuit is operated under different conditions, two-temperature hot water can be discharged.
[0052]
【The invention's effect】
  As described above, according to the present invention, it is possible to provide a heat pump hot water supply apparatus that can perform a large flow rate and a hot water supply-hot water storage switching operation smoothly.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a heat pump water heater in Embodiment 1 of the present invention.
FIG. 2 is a circuit configuration diagram of a heat pump water heater in Embodiment 2 of the present invention.
FIG. 3 is a configuration diagram of a conventional hot water supply apparatus.
[Explanation of symbols]
  20, 30 Refrigerant circuit
  21, 31 Compressor
  22, 32 radiator
  22A, 32A Water flow path
  23, 33 Expansion valve (pressure reduction means)
  24, 34 Heat absorber
  44 Water supply pipe
  48 Second mixing valve (mixing part)
  49 Hot water supply circuit
  50 Hot water supply terminal
  52 Hot water storage tank
  52B, 52C, 52D Temperature sensor (remaining hot water detection means)
  56 Hot water passage
  58 Hot water storage hot water passage
  59 Waterway
  61 Remote control (hot water temperature setting means)
  62 Heat exchange outlet temperature control means
  63 Hot water measuring means

Claims (8)

圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた水/冷媒熱交換器と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給湯端末から流出する温水の給湯温度を設定する給湯温度設定手段と、前記水流路の出口温度を制御する熱交出口温度制御手段と、湯を貯留する貯湯タンクと、前記水流路の出口と前記貯湯タンクとを連通させ、前記水流路からの温水を前記貯湯タンクに導く貯湯通路と、前記貯湯タンクと給湯回路とを連通させ、前記貯湯タンクからの湯を給湯端末に導く貯湯給湯通路と、前記貯湯タンクの残湯量を検知する残湯検知手段とを備え、前記冷媒循環回路が運転中、前記残湯検知手段の検知結果により前記貯湯タンクの残湯量が少ないと判断した時、前記給湯端末への給湯負荷を満たしながら、前記熱交出口温度制御手段は、前記水流路の出口温度を上昇させ、前記水流路出口の一部または全部の温水を前記貯湯タンクへ導くように制御するヒートポンプ給湯装置。A refrigerant circulation circuit including a compressor, a radiator, a decompression means, and a heat absorber, a water / refrigerant heat exchanger having a water channel for exchanging heat with the radiator, and water supply for supplying tap water to the water channel A pipe, a hot water supply circuit connected so as to pass water from the water flow path to the hot water supply terminal, a hot water supply temperature setting means for setting a hot water supply temperature flowing out of the hot water supply terminal, and an outlet temperature of the water flow path A heat exchange outlet temperature control means, a hot water storage tank for storing hot water, an outlet of the water flow path and the hot water storage tank, and a hot water storage passage for guiding hot water from the water flow path to the hot water storage tank; and the hot water storage tank; A hot water storage passage for communicating hot water from the hot water storage tank to the hot water supply terminal, and remaining hot water detection means for detecting the amount of hot water remaining in the hot water storage tank; Depending on the detection result of the hot water detection means When it is determined that the amount of hot water remaining in the hot water storage tank is small, the heat exchange outlet temperature control means increases the outlet temperature of the water flow path while satisfying the hot water supply load to the hot water supply terminal, A heat pump hot water supply device that controls all hot water to be guided to the hot water storage tank . 熱交出口温度制御手段は、給湯温度設定手段によって設定される給湯温度より水流路の出口温度を高くする請求項1記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to claim 1, wherein the heat exchange outlet temperature control means makes the outlet temperature of the water flow path higher than the hot water supply temperature set by the hot water supply temperature setting means. 熱交出口温度制御手段は、給湯温度設定手段によって設定される給湯温度に基づいて、冷媒循環回路の運転を制御する請求項1または2記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to claim 1 or 2, wherein the heat exchange outlet temperature control means controls the operation of the refrigerant circulation circuit based on the hot water supply temperature set by the hot water supply temperature setting means. 熱交出口温度制御手段は、水流路の出口温度をあらかじめ決めた所定温度とする請求項1〜3のいずれか1項記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 3, wherein the heat exchange outlet temperature control means sets the outlet temperature of the water flow path to a predetermined temperature. 熱交出口温度制御手段は、水流路の出口温度をあらかじめ決めた上限温度を超えないようにする請求項1〜4のいずれか1項記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the heat exchange outlet temperature control means prevents the outlet temperature of the water flow path from exceeding a predetermined upper limit temperature. 給湯回路に設けたミキシング部と、前記ミキシング部と連通し水道水を供給する給水路とを備えた請求項1〜5のいずれか1項記載のヒートポンプ給湯装置。  The heat pump hot-water supply apparatus of any one of Claims 1-5 provided with the mixing part provided in the hot-water supply circuit, and the water supply path which connects the said mixing part and supplies a tap water. 給湯端末からの出湯時間もしくは出湯熱量を計測する出湯計測手段と、この出湯計測手段の結果に基づき、水流路の出口温度を制御する熱交出口温度制御手段とを備えた請求項1記載のヒートポンプ給湯装置。The heat pump according to claim 1 , further comprising a hot water measuring means for measuring a hot water discharge time or a hot water quantity from the hot water supply terminal, and a heat exchange outlet temperature control means for controlling an outlet temperature of the water flow path based on a result of the hot water measuring means. Hot water supply device. 冷媒循環通路では冷媒として、二酸化炭素を使用した請求項1〜7のいずれか1項記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to any one of claims 1 to 7 , wherein carbon dioxide is used as a refrigerant in the refrigerant circulation passage.
JP2003163607A 2003-06-09 2003-06-09 Heat pump water heater Expired - Fee Related JP4069807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163607A JP4069807B2 (en) 2003-06-09 2003-06-09 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163607A JP4069807B2 (en) 2003-06-09 2003-06-09 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005003212A JP2005003212A (en) 2005-01-06
JP4069807B2 true JP4069807B2 (en) 2008-04-02

Family

ID=34090681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163607A Expired - Fee Related JP4069807B2 (en) 2003-06-09 2003-06-09 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4069807B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863153B2 (en) * 2005-01-07 2012-01-25 Toto株式会社 Cooking air treatment device
JP4747928B2 (en) * 2006-04-21 2011-08-17 株式会社デンソー Hot water storage water heater
JP4933171B2 (en) * 2006-06-30 2012-05-16 東芝キヤリア株式会社 Water heater
WO2008053959A1 (en) * 2006-11-02 2008-05-08 Yasuo Uchikawa Supercritical heat pump device
JP4337126B2 (en) 2006-11-02 2009-09-30 靖夫 内川 Supercritical heat pump equipment
JP5021385B2 (en) * 2007-07-11 2012-09-05 日立アプライアンス株式会社 Heat pump water heater and operating method thereof
JP5159857B2 (en) * 2010-10-01 2013-03-13 三菱電機株式会社 Heat pump water heater

Also Published As

Publication number Publication date
JP2005003212A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US6874694B2 (en) Heat pump hot-water supply system
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP6545375B2 (en) Heat pump type air conditioner water heater
KR100847619B1 (en) Heat pump water heater
JP4124258B2 (en) Heat pump water heater
JP4069807B2 (en) Heat pump water heater
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
JP2009264717A (en) Heat pump hot water system
JP4082350B2 (en) Heat pump type water heater
JP2009052798A (en) Storage water heater with bath hot water supply function
JP2005098530A (en) Heat pump type water heater
JP2006132889A (en) Hot water storage type heat pump hot water supply apparatus
JP4055692B2 (en) Heat pump type water heater
JP3906857B2 (en) Heat pump water heater
JP6962136B2 (en) Hot water storage type hot water supply device
JP3843978B2 (en) Heat pump water heater
JP4016875B2 (en) Heat pump water heater
JP6743519B2 (en) Hot water supply system
JP2005300008A (en) Heat pump hot water supply device
JP3856003B2 (en) Heat pump water heater
JP2004232912A (en) Heat pump water heater
JP2004218920A (en) Water heater
JP2004211986A (en) Heat pump hot water feeding system
JP3706969B2 (en) Water heater
JP2018017417A (en) Storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees