JP4016875B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4016875B2
JP4016875B2 JP2003111119A JP2003111119A JP4016875B2 JP 4016875 B2 JP4016875 B2 JP 4016875B2 JP 2003111119 A JP2003111119 A JP 2003111119A JP 2003111119 A JP2003111119 A JP 2003111119A JP 4016875 B2 JP4016875 B2 JP 4016875B2
Authority
JP
Japan
Prior art keywords
water supply
hot water
hot
temperature
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111119A
Other languages
Japanese (ja)
Other versions
JP2004317021A (en
Inventor
誠一 安木
竹司 渡辺
昌宏 尾浜
啓次郎 國本
龍太 近藤
宣彦 藤原
英樹 大野
立群 毛
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003111119A priority Critical patent/JP4016875B2/en
Publication of JP2004317021A publication Critical patent/JP2004317021A/en
Application granted granted Critical
Publication of JP4016875B2 publication Critical patent/JP4016875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯装置は図2に示すように、閉回路に構成される冷媒配管1で圧縮機2、放熱器である熱交換器3、減圧手段4、吸熱器5が接続されて構成された冷媒循環回路6と、熱交換器3の冷媒流路7と熱交換を行う熱交換器3内の水流路8と、この水流路8に水道水を供給する給水管9と、前記水流路8とシャワーや蛇口等の給湯端末10とを接続する給湯回路11と、給湯回路11に設け給湯温度を検知する温度センサ12と、圧縮機2の回転数を制御するインバータ13を備え、給湯温度設定手段14によって設定される給湯設定温度と圧縮機2を温度センサ12の検知温度と差に応じて制御手段15によってインバータ13の出力周波数を変換するようにしているものがあった(例えば特許文献1参照。)。すなわち従来の給湯装置では設定温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度が高い場合は回転数を下げるように制御して給湯負荷に応じて加熱能力を変化させる。
【0003】
また、従来、マルチ型空調装置においては、複数の圧縮機を並列に接続して、そのうち1台の圧縮機を容量可変、他の圧縮機を容量一定として構成している。運転する容量一定の圧縮機の台数と容量可変の圧縮機の運転容量を変化させて幅広い範囲の負荷変動に対応した圧縮能力を実現している。
【0004】
【特許文献1】
特開平2−223767号公報
【0005】
【発明が解決しようとする課題】
しかし、上記従来例のヒートポンプ給湯装置の構成では、給湯時における給湯負荷が一定ではない。特に流量は使用者が給湯目的によってさまざまに変化させるために給湯負荷は大きく変ってしまう。例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となるが、台所で食器を洗う場合や洗面への給湯では3〜5L/minと少流量である。また、季節による給水温度の変化によっても給湯負荷は大きく変化する。
【0006】
こうした流量や水温の変化により大きくかわる給湯負荷を、従来のヒートポンプ給湯装置のように単一の圧縮機の回転数を変えるだけで給湯熱量を制御しようとした場合に、まずシャワー等の大流量の給湯負荷に対応するために大型の圧縮機が必要になる。しかし、小さな給湯負荷に対して能力を低くしようとする場合に限界があり、こうした低負荷に対応しにくくなる不都合が生じてくる。
【0007】
このように、従来のヒートポンプ給湯装置では、大型の装置で単一の圧縮機の回転数を変えるだけの制御では能力変更幅に限界があり、例えばシャワーと風呂の湯張りの同時使用といった大能力から、食器洗いなどの微小能力までの幅広い給湯能力をカバーできなかった。そのためシャワー温度が低下したり、食器洗いで熱い湯がでたりするなどの不都合がでる可能性があった。
【0008】
また、気温や水温や給湯負荷によりヒートポンプサイクルの運転条件が変化すると、運転効率も変化するが、従来のヒートポンプ給湯装置では給湯温度に応じて大型の圧縮機の回転数を変えるだけなので、温度の立ち上がりが遅くなるだけでなく、給湯負荷が小さい場合でも大型圧縮機を運転するために機械損失が大きく運転効率の悪い条件で運転されていた。したがって条件によっては極端に効率が悪化し、能力が発揮できなくなるばかりでなく、ランニングコストも高いものとなる可能性もあった。
【0009】
以上のように従来のヒートポンプ給湯装置では給湯負荷や外気条件の大小に関わりなく単一の圧縮機により運転を行うために幅広い給湯負荷への対応が困難であったり、応答性が悪化したり、効率が悪化するなどの課題があった。
【0010】
また、従来のマルチ型空調装置では、1台の圧縮機を容量可変、他の圧縮機を容量一定として構成することで圧縮能力を幅広く変化させて、室内機の運転台数の変化によって大きく変動する空調負荷に対応している。負荷の変動に応じて圧縮能力を変化させる時に容量一定の圧縮機の台数を変更すると同時に容量可変の圧縮機の運転容量を変化させるため、圧縮能力の変化が遅れてしまうという問題があった。給湯端末での給湯利用は数秒から数分程度の短時間のものがほとんどであり、使用する給湯端末の数やそれぞれの流量の変化によって全体の給湯負荷が急激に変化するため、同様の圧縮機構成を給湯装置に応用しても急激な給湯負荷の変化に対応できない。また、容量可変である圧縮機が絶えず運転するので、他の容積一定の圧縮機に比べて寿命が短くなり、装置としての信頼性が低下するといった課題があった。
【0011】
本発明は、上記従来の課題を解決するもので、給湯負荷の急激で幅広い変動に素早く対応できるようにするとともに、圧縮機にかかる負担を分散させて装置の信頼性を向上させるヒートポンプ給湯装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記課題を解決するために、並列に接続された複数の圧縮機と放熱器である給湯熱交換器とを含む冷媒循環回路と、前記給湯熱交換器の冷媒流路と熱交換を行う前記給湯熱交換器内の水流路と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給湯熱交換器の出口の水温度を検出する沸上温度検知手段と、給湯温度を設定する給湯温度設定手段と、前記給湯熱交換器と並列に、かつ、混合手段を介して前記給湯回路と連通するように設けられ、前記給湯温度より高温の水を貯湯する貯湯タンクとを備え、前記複数の圧縮機は運転周波数を可変とし、前記沸上温度検知手段の検知温度が所定値以下のときには、前記給湯熱交換器からの水と前記貯湯タンクからの水とを前記混合手段において混合する構成としたことを特徴とするヒートポンプ給湯装置としたものである。
【0013】
上記発明によれば、複数の圧縮機を並列に接続しているので、圧縮機1台の最低容量での運転からすべての圧縮機の最大容量での運転まで幅広く圧縮能力を変化させることができる。また、圧縮機は運転周波数を可変としたので、できる限り多くの圧縮機で運転を行うことができるとともに、素早く必要な圧縮能力へと変化させることができる。
【0014】
【発明の実施の形態】
請求項1に記載の発明のヒートポンプ給湯装置は、並列に接続された複数の圧縮機と放熱器である給湯熱交換器とを含む冷媒循環回路と、前記給湯熱交換器の冷媒流路と熱交換を行う前記給湯熱交換器内の水流路と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給湯熱交換器の出口の水温度を検出する沸上温度検知手段と、給湯温度を設定する給湯温度設定手段と、前記給湯熱交換器と並列に、かつ、混合手段を介して前記給湯回路と連通するように設けられ、前記給湯温度より高温の水を貯湯する貯湯タンクとを備え、前記複数の圧縮機は運転周波数を可変とし、前記沸上温度検知手段の検知温度が所定値以下のときには、前記給湯熱交換器からの水と前記貯湯タンクからの水とを前記混合手段において混合する構成としたことを特徴とするものである。
【0015】
この発明によれば、複数の圧縮機を並列に接続しているので、圧縮機1台の最低容量での運転からすべての圧縮機の最大容量での運転まで幅広く圧縮能力を変化させて給湯負荷の幅広い変動に対応することができる。また、圧縮機は運転周波数を可変としたので、できる限り多くの圧縮機で運転を行って圧縮機にかかる負担を分散させて、装置の信頼性を向上させることができるとともに、素早く必要な圧縮能力へと変化させて給湯負荷の急激な変動に対応することができる。
【0016】
請求項2に記載の発明のヒートポンプ給湯装置は、運転している圧縮機はすべて同一運転周波数で運転するものである。
【0017】
この発明によれば、運転する圧縮機を同一運転周波数で運転することで、それぞれの運転している圧縮機の運転条件を同等として、圧縮機への負担の集中を抑えることができる。
【0018】
請求項3に記載の発明のヒートポンプ給湯装置は、請求項1または2記載の圧縮機の吐出管に逆止弁を設けたものである。
【0019】
この発明によれば、運転している圧縮機から吐出される冷媒が停止している圧縮機を逆流して損失となるのを防ぐことができる。また、一部の圧縮機が運転している時に、停止している圧縮機の圧力を低圧側の圧力に保つことができるので、停止していた圧縮機の起動をスムーズに行うことができる。
【0020】
請求項4に記載の発明のヒートポンプ給湯装置は、請求項1〜3のいずれか1項記載の圧縮機の起動を一定時間以上ずらして行うものである。
【0021】
この発明によれば、圧縮機の起動を時間的に分散させて、複数の圧縮機の起動時にかかる負荷が集中することを防止する。
【0022】
請求項5に記載の発明のヒートポンプ給湯装置は、請求項1〜4のいずれか1項記載のヒートポンプ給湯機に、必要な給湯負荷を検知する給湯負荷検知手段を設けたものである。
【0023】
この発明によれば、給湯負荷検知手段によって検知された必要となる給湯負荷に応じた圧縮能力となる合計運転容量であらかじめ複数の圧縮機を運転することによって、給湯負荷の急激な変化に応じた圧縮能力に素早く変化させることができる。
【0024】
請求項6に記載の発明のヒートポンプ給湯装置は、請求項1〜5のいずれか1項に記載の冷媒循環回路を、冷媒の圧力が臨界圧力以上となる超臨界冷媒循環回路とし、前記臨界圧力以上に昇圧された冷媒により給湯熱交換器の水流路の流水を加熱するものである。
【0025】
この発明によれば、給湯熱交換器の冷媒流路を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、給湯熱交換器の水流路の流水により熱を奪われて温度低下しても凝縮することがない。したがって給湯熱交換器全域で冷媒流路と水流路とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0026】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0027】
(実施例1)
図1は本発明の実施例におけるヒートポンプ式給湯装置の構成図である。図1において、冷媒配管21により並列に設けられた同仕様である2台の圧縮機22a、22b、放熱器として機能する給湯熱交換器23、減圧手段24、吸熱器25が閉回路に接続されて冷媒循環回路26が構成されている。この冷媒循環回路26は、例えば炭酸ガスを冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。
【0028】
圧縮機22a、22bは、任意の運転周波数で運転するインバータ27a、27bによってそれぞれ独立して駆動される。圧縮機22の駆動によって吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。圧縮機22a、22bの吐出管にはそれぞれ逆止弁28a、28bを備えている。
【0029】
また、給湯熱交換器23には冷媒が流れる冷媒流路29と水が流れる水流路30を備えており、冷媒と水が熱交換可能になっている。この水流路30に水道を直結して水道水を直接供給する給水管31と、水流路30から出湯される湯を給湯端末32a、32bへ通水させるための給湯回路33が接続されている。給湯熱交換器23は、冷媒流路29の流れ方向と水流路30の流れ方向を対向流とし、各流路間を熱移動が容易になるように密着して構成している。この構成により冷媒流路29と水流路30の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。
【0030】
そして給水管31と給湯熱交換器23内の水流路30と給湯回路33とで構成される冷媒回路側水回路34において熱交換器23と並行に給湯温度より高温の水を貯留する貯留タンク35を備えている。貯留タンク35は断熱手段36で覆われており、貯留タンク35の底部に給水管31から給水分岐管37によって給水し、貯留タンク35の上部からの配管が冷媒回路側水回路34における給湯熱交換器23の下流に混合手段38によって給湯熱交換器23からの水と任意の混合比で混合されるように接続している。
【0031】
また貯留タンク35内の水を底部から取出し、給湯熱交換器23の水流路30に流して貯留タンク35上部に戻すための循環水路39を設け、循環水路39における給湯熱交換器23の水流路30の下流に流量を調節できる循環ポンプ40を備えている。このような水路の切り替えに関して、循環水路39の貯留タンク35への戻り部分に循環水路閉止弁41を設けて、循環水路39を利用しない場合には循環水路閉止弁41を閉止して給水管31からの水が給湯熱交換器23内の水流路30を通って貯留タンク35上部に流れ込むのを防止する。また、給水分岐管37に短絡防止弁42を設けて、循環水路39の利用時は短絡防止弁42を閉止して循環ポンプ40の駆動によって水が給水分岐管37を通って短絡して流れないようにする。
【0032】
このように構成されたヒートポンプ給湯装置の運転状態を制御するために制御手段43を備えている。装置の運転状態を把握するために給水管31に水温度を検知する給水温度検知手段44、冷媒回路側水回路34における給湯熱交換器23の出口に水温度を検知する沸上温度検知手段45、混合手段38の下流側に給湯端末32に供給する直前の水温度を検知する給湯温度検知手段46と水流量を検知する給湯流量検知手段47、貯留タンク35に蓄熱量を検知するために蓄熱温度検知手段48a、48b、48cを設けて、制御手段にこれらの検知結果を送るように接続し、これらの検知手段の検知結果に基づいて圧縮機22a、22bを任意の運転周波数でそれぞれ個別に駆動するインバータ27a、27b、減圧手段24、混合手段38、循環ポンプ40が制御手段43によって制御するように接続している。そして給湯の目標温度を使用者が任意に設定する給湯温度設定手段49が設けられ、その温度が制御手段43に伝えられるよう接続している。
【0033】
以上の構成において、その動作、作用について説明する。図1に示す実施例において、給湯端末32aまたは32bが開かれると給水管31から水道水が流れ込み始める。このとき給湯流量検知手段47によって給湯流量が検知され、給水温度検知手段44が検知する給水温度と給湯温度設定手段49によって設定されている給湯設定温度から必要となる給湯負荷を算出し、その給湯負荷に応じた圧縮能力となるように2台の圧縮機22a、22bの運転周波数を決定することによって、あらかじめ必要となる圧縮能力で運転を開始して装置の立ち上がりを早くする。このとき、圧縮機22a、22bの起動が同時にならないように一定の時間差をおいてから起動を行う。圧縮機起動時にかかる電流値の上昇といった瞬間的な負荷の上昇を分散させることで装置をスムーズに起動する。2台の圧縮機22a、22bから吐出され給湯熱交換器23の冷媒流路29へ流入する高温高圧の冷媒ガスによって水流路30を流れる水を加熱する。給湯熱交換器23の冷媒流路29を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、給湯熱交換器23の水流路30の流水により熱を奪われて温度低下しても凝縮することがない。したがって給湯熱交換器23全域で冷媒流路29と水流路30とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。一方、給湯熱交換器23で冷却された冷媒は減圧手段24で減圧されて吸熱器25に流入し、ここで大気熱、太陽熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機22a、22bに戻る。
【0034】
圧縮機22a、22bの運転について、それぞれインバータ27a、27bによって駆動するため、どちらの圧縮機22a、22bも商用電源による一定周波数より低い運転周波数から高い周波数まで運転でき、2台の合計周波数を幅広く変化させることができる。例えば、それぞれの最低運転周波数を40Hz、最高運転周波数を120Hzとすると、圧縮能力としては単独運転40Hzから2台を120Hzで運転する合計240Hz相当まで変化させることができ、幅広い給湯負荷に圧縮能力を変化させて対応することができる。両方の圧縮機の運転周波数を変化させる事ができるので、必要となる圧縮能力が最低運転周波数40Hzの2台分である80Hz相当以上となる場合であれば、2台で同時運転して圧縮機にかかる負荷を分散することができる。そして、この同時運転を同じ周波数で行う事によって圧縮機の運転条件を同等にして、それぞれにかかる負荷の分散を最適にすることができる。
【0035】
さらに、冷媒の循環に関して、それぞれの圧縮機22a、22bからのそれぞれの吐出量と吸入前の分岐量が同等になるので、冷媒とともに冷媒循環回路26を循環する潤滑油もそれぞれの圧縮機22a、22bを同等の条件で循環し、圧縮機内の潤滑油量をそれぞれ均一に保って安定した圧縮機の複数台運転ができる。また、圧縮機の運転台数の切り換えを運転周波数の可変範囲において低い80Hzとしている。80Hzから240Hzといった広範囲において連続して運転周波数を変化させることができ、幅広く急激に変化する給湯負荷に対応した圧縮能力に素早く変化させることができる。
【0036】
片側運転時は圧縮機22a、22bの吐出側にそれぞれ逆止弁28a、28bを設けているので、例えば、圧縮機22aを運転して圧縮機22bを停止させている時に、運転側の圧縮機22aから吐出された高圧の冷媒が停止側の圧縮機22bへ吐出側から流入し、停止側の圧縮機22bの内部を通って運転側の圧縮機22aの吸入側へと流れて損失となるのを防止する。このとき、吐出側で冷媒の流れを止めているので、停止側の圧縮機22bは運転側の圧縮機22aの吸入圧力とほぼ同等に低圧に保たれる。よって、圧縮機22aの片側運転から停止側の圧縮機22bの起動をスムーズに行うことができる。また、両方の圧縮機22a、22bの吐出側に同等に逆止弁28a、28bを設けているので、運転時に生じる逆止弁28a、28bでの圧力損失がそれぞれの圧縮機22a、22bに同等に生じて、同時運転時にそれぞれの運転条件を同等とすることができるとともに、片側運転をどちらの圧縮機22a、22bでも損失なく行うことができる。
【0037】
立上がり時、必要となる給湯温度に満たない温度の水が水流路30から出てしまうので、貯留タンク35に貯留している給湯温度より高温の水を混合して昇温して給湯する。このとき短絡防止弁42を開いて貯留タンク35の下部に給水することで貯留タンク35上部の水を押し出している。制御手段43によって給湯温度検知手段46の温度が給湯端末32で必要とされる給湯設定温度となるように混合手段38の混合割合を調節する。そして、冷媒回路側水回路34からの水の温度が上昇してくると貯留タンク35側からの混合比率を少なくするよう混合手段38を調節して給湯温度が給湯設定温度になるように制御して冷媒循環回路26の運転開始直後から必要となる給湯温度での給湯を行う。冷媒回路
側水回路34からの水が給湯設定温度まで上昇すると混合手段38の混合割合は冷媒回路側水回路34からの水のみとなり、冷媒循環回路26の加熱のみで給湯を行う。ヒートポンプサイクルによって加熱を行う場合は沸上温度を高くすると運転効率が悪くなるが、必要となる給湯温度までしか加熱を行わないので効率の良い給湯運転とすることができる。
【0038】
そして、給湯端末32を閉じて給湯を停止すると、給湯流量検知手段47によって給湯の停止を検知する。給湯を行っていない時間を利用して貯湯タンク35へ蓄熱を行う貯湯運転を行う。蓄熱運転は貯留タンク35の底部からの低温水を循環水路39に流して給湯熱交換器23において加熱し、貯留タンク35上部へと戻すことで行う。また、給湯運転時の蓄熱利用は貯留タンク35の底部から給水によって押し上げて上部から混合手段へと蓄熱された高温水を供給する。貯留タンク35内は上部の蓄熱温度の水と下部の給水温度の水によって温度境界層を形成させている。よって、貯留タンク35の上部、中部、下部に設けた蓄熱温度検知手段48a、48b、48cによってそれぞれの場所の温度を検知することによって貯留タンク35の上部からどの蓄熱温度検知手段48の位置まで加熱された水があるかを検知する事で蓄熱量を推定する。そして、蓄熱温度検知手段48によって推定される蓄熱量が一定量以下になると蓄熱運転を行う。蓄熱運転を行っていくことで貯留タンク35の上部に加熱された水を戻していくにつれて、加熱された水と給水温度の水との間に形成された温度境界層の位置が下がっていく。貯留タンク35への蓄熱量をできる限り増やして有効に利用するために、この温度境界層の部分の加熱を加熱していくと給湯熱交換器23に送る水の温度が上昇してヒートポンプサイクルの高圧側が上昇していくため、それに応じて加熱能力を低下させていかなければならない。
【0039】
よって、蓄熱運転においては、圧縮機22aまたは22bのどちらかを単独で運転し、給湯熱交換器23に送る水の温度の上昇に応じて運転周波数を低下させていくことで、圧縮機22の運転台数を切り換えるときに起こる圧縮能力の不連続な変化を避けて、連続的にかつ急激に変化する給湯負荷に対応する。つまり、あらかじめわかっているならば、単独運転と2台運転の切り換えるポイントを変化させて対応することができる。また、単独運転を行う圧縮機を運転負荷や運転時間などの累積に応じて交代させることで圧縮機22a、22bのうち片方の圧縮機だけが劣化しないようにして装置の信頼性を向上させることもできる。また、本実施例では圧縮機を2台で説明しているが、3台以上の圧縮機を並列に接続しても良い。
【0040】
また、本実施例ではヒートポンプサイクルを冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。また、冷媒としては、フロン冷媒、ハイドロカーボン冷媒等を用いても実現できるものである。なお、本実施例におけるそれぞれの発明の効果は単独でも効果があるものである。
【0041】
【発明の効果】
以上のように、本発明によれば、圧縮機1台の最低容量での運転からすべての圧縮機の最大容量での運転まで幅広く圧縮能力を変化させて給湯負荷の幅広い変動に対応することができる。また、すべての圧縮機が容量可変であるので、素早く必要な圧縮能力へと変化させて給湯負荷の急激な変動に対応することができるとともに、できる限り多くの圧縮機で運転を行って圧縮機にかかる負担を分散させて、装置の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の実施例におけるヒートポンプ給湯装置の構成図
【図2】 従来のヒートポンプ給湯装置の構成図
【符号の説明】
22 圧縮機
23 給湯熱交換器
26 冷媒循環回路
28 逆止弁
29 冷媒流路
30 水流路
31 給水管
32 給湯端末
33 給湯回路
44 給水温度検知手段(給湯負荷検知手段)
47 給湯流量検知手段(給湯負荷検知手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater.
[0002]
[Prior art]
As shown in FIG. 2, the conventional heat pump hot water supply apparatus is configured by connecting a compressor 2, a heat exchanger 3 as a radiator, a decompression means 4, and a heat absorber 5 through a refrigerant pipe 1 configured in a closed circuit. A refrigerant circulation circuit 6, a water flow path 8 in the heat exchanger 3 that exchanges heat with the refrigerant flow path 7 of the heat exchanger 3, a water supply pipe 9 that supplies tap water to the water flow path 8, and the water flow path 8 And a hot water supply circuit 11 for connecting a hot water supply terminal 10 such as a shower and a faucet, a temperature sensor 12 provided in the hot water supply circuit 11 for detecting the hot water supply temperature, and an inverter 13 for controlling the rotation speed of the compressor 2, There is one in which the hot water supply set temperature set by the means 14 and the compressor 2 convert the output frequency of the inverter 13 by the control means 15 according to the difference between the temperature detected by the temperature sensor 12 (for example, Patent Document 1). reference.). That is, in the conventional hot water supply device, the heating speed is changed according to the hot water supply load by controlling to increase the rotation speed of the compressor 2 when the hot water supply temperature is lower than the set temperature and lowering the rotation speed when the hot water supply temperature is high. Let
[0003]
Conventionally, in a multi-type air conditioner, a plurality of compressors are connected in parallel, and one of the compressors has a variable capacity and the other compressor has a constant capacity. By changing the number of compressors with constant capacity to be operated and the operating capacity of variable capacity compressors, a compression capacity corresponding to a wide range of load fluctuations has been realized.
[0004]
[Patent Document 1]
JP-A-2-223767
[Problems to be solved by the invention]
However, in the configuration of the conventional heat pump hot water supply apparatus, the hot water supply load during hot water supply is not constant. In particular, since the flow rate is varied by the user depending on the purpose of hot water supply, the hot water supply load changes greatly. For example, in the case of hot water supply for home use, a large flow rate of 10 to 20 L / min is used when supplying hot water to a shower or bath, but 3 to 5 L / min for washing dishes in the kitchen or hot water supply to the wash surface. Small flow rate. In addition, the hot water supply load varies greatly depending on the seasonal change in the temperature of the water supply.
[0006]
When a hot water supply load that varies greatly depending on changes in the flow rate and water temperature is to control the amount of hot water supply by simply changing the rotation speed of a single compressor as in the conventional heat pump water heater, A large compressor is required to cope with the hot water supply load. However, there is a limit in reducing the capacity for a small hot water supply load, and there is a disadvantage that it is difficult to cope with such a low load.
[0007]
In this way, with the conventional heat pump hot water supply device, there is a limit to the capacity change width in the control that only changes the rotation speed of a single compressor with a large device, for example, large capacity such as simultaneous use of shower and bath hot water filling , And could not cover a wide range of hot water supply capacity, from dishwashing and other micro-capacities. For this reason, there may be inconveniences such as a drop in shower temperature and hot water coming out of the dishes.
[0008]
Also, if the operating conditions of the heat pump cycle change due to temperature, water temperature, and hot water supply load, the operating efficiency also changes, but the conventional heat pump water heater only changes the rotation speed of the large compressor according to the hot water supply temperature, so the temperature Not only the start-up is delayed, but even when the hot water supply load is small, the large compressor is operated under the condition that the mechanical loss is large and the operation efficiency is poor. Therefore, depending on the conditions, the efficiency is extremely deteriorated and not only the ability cannot be exhibited, but also the running cost may be increased.
[0009]
As described above, the conventional heat pump water heater is operated with a single compressor regardless of the size of the hot water supply load and the outside air condition, so it is difficult to cope with a wide range of hot water supply loads, the responsiveness deteriorates, There were problems such as deterioration of efficiency.
[0010]
Also, in the conventional multi-type air conditioner, the compression capacity is widely changed by configuring one compressor with variable capacity and the other compressor with constant capacity, and greatly varies depending on the number of indoor units operated. It corresponds to the air conditioning load. When changing the compression capacity in accordance with the change in the load, the number of compressors having a constant capacity is changed, and at the same time, the operating capacity of the variable capacity compressor is changed, so that the change in the compression capacity is delayed. The use of hot water at the hot water supply terminal is mostly for a short time of a few seconds to a few minutes, and the overall hot water supply load changes abruptly depending on the number of hot water terminals used and their flow rates. Even if the product is applied to a hot water supply device, it cannot cope with a sudden change in hot water supply load. In addition, since the variable capacity compressor is continuously operated, there is a problem that the life is shortened compared with other compressors having a constant volume, and the reliability of the apparatus is lowered.
[0011]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and provides a heat pump hot water supply apparatus that can quickly cope with a wide range of fluctuations in hot water supply load and that improves the reliability of the apparatus by dispersing the burden on the compressor. The purpose is to provide.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention performs a heat exchange with a refrigerant circulation circuit including a plurality of compressors connected in parallel and a hot water supply heat exchanger as a radiator, and a refrigerant flow path of the hot water supply heat exchanger. A water flow path in the hot water supply heat exchanger to be performed, a water supply pipe for supplying tap water to the water flow path, a hot water supply circuit connected to pass water from the water flow path to the hot water supply terminal, and the hot water supply heat exchanger A boiling temperature detection means for detecting the water temperature at the outlet, a hot water temperature setting means for setting the hot water temperature, and a hot water heat exchanger are provided in parallel with the hot water supply circuit via the mixing means. A hot water storage tank for storing hot water that is hotter than the hot water supply temperature , wherein the plurality of compressors are variable in operating frequency, and when the detected temperature of the boiling temperature detecting means is equal to or lower than a predetermined value, the hot water supply heat exchange Before the water from the vessel and the water from the hot water storage tank Is obtained by the heat pump hot water supply apparatus is characterized in that a configuration of mixing in the mixing unit.
[0013]
According to the above invention, since the plurality of compressors are connected in parallel, the compression capacity can be widely changed from the operation at the minimum capacity of one compressor to the operation at the maximum capacity of all the compressors. . Since the operation frequency of the compressor is variable, the compressor can be operated with as many compressors as possible and can be quickly changed to the required compression capacity.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The heat pump hot water supply apparatus according to the first aspect of the present invention includes a refrigerant circulation circuit including a plurality of compressors connected in parallel and a hot water supply heat exchanger as a radiator, and a refrigerant flow path and heat of the hot water supply heat exchanger. A water flow path in the hot water heat exchanger for exchanging, a water supply pipe for supplying tap water to the water flow path, a hot water supply circuit connected to pass water from the water flow path to the hot water supply terminal, and the hot water supply heat exchange A boiling temperature detection means for detecting the water temperature at the outlet of the water heater, a hot water supply temperature setting means for setting the hot water supply temperature, and in parallel with the hot water supply heat exchanger, and in communication with the hot water supply circuit via the mixing means A hot water storage tank for storing hot water that is hotter than the hot water supply temperature , the plurality of compressors have variable operating frequencies, and when the detected temperature of the boiling temperature detecting means is not more than a predetermined value, the hot water supply Water from the heat exchanger and the hot water storage tank Is characterized in that the the water and configured to mix in said mixing means.
[0015]
According to the present invention, since a plurality of compressors are connected in parallel, the hot water supply load can be varied by changing the compression capacity widely from the operation at the minimum capacity of one compressor to the operation at the maximum capacity of all the compressors. Can handle a wide range of fluctuations. In addition, since the operation frequency of the compressor is variable, it is possible to improve the reliability of the device by operating with as many compressors as possible to disperse the burden on the compressor and to quickly perform the necessary compression. The capacity can be changed to cope with sudden fluctuations in hot water supply load.
[0016]
In the heat pump hot water supply apparatus according to the second aspect of the present invention, all the operating compressors are operated at the same operating frequency.
[0017]
According to the present invention, by operating the compressors to be operated at the same operating frequency, the operating conditions of the compressors that are operating can be made equal, and the concentration of the burden on the compressors can be suppressed.
[0018]
According to a third aspect of the present invention, there is provided a heat pump hot water supply apparatus in which a check valve is provided in the discharge pipe of the compressor according to the first or second aspect.
[0019]
According to this invention, it is possible to prevent the refrigerant discharged from the operating compressor from flowing backward through the stopped compressor and causing a loss. Moreover, since the pressure of the stopped compressor can be maintained at the low pressure side when some of the compressors are operating, the stopped compressor can be started smoothly.
[0020]
According to a fourth aspect of the present invention, there is provided a heat pump hot-water supply apparatus in which the start-up of the compressor according to any one of the first to third aspects is shifted by a predetermined time or more.
[0021]
According to the present invention, the start-up of the compressors is dispersed in time to prevent the load applied when starting up the plurality of compressors from being concentrated.
[0022]
According to a fifth aspect of the present invention, there is provided a heat pump hot water supply apparatus according to any one of the first to fourth aspects, wherein a hot water supply load detecting means for detecting a required hot water supply load is provided.
[0023]
According to this invention, by operating a plurality of compressors in advance with a total operating capacity that is a compression capacity corresponding to the required hot water supply load detected by the hot water supply load detecting means, it is possible to respond to a sudden change in the hot water supply load. Can quickly change the compression capacity.
[0024]
The heat pump hot water supply apparatus of the invention described in claim 6 is the supercritical refrigerant circulation circuit in which the refrigerant pressure is equal to or higher than the critical pressure, wherein the refrigerant circulation circuit according to any one of claims 1 to 5 is used. The flowing water in the water flow path of the hot water supply heat exchanger is heated by the pressurized refrigerant as described above.
[0025]
According to the present invention, the refrigerant flowing through the refrigerant flow path of the hot water supply heat exchanger is pressurized to a pressure higher than the critical pressure by the compressor. Even if it does not condense. Therefore, it becomes easy to form a temperature difference between the refrigerant flow path and the water flow path in the entire hot water supply heat exchanger, so that hot water can be obtained and the heat exchange efficiency can be increased.
[0026]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0027]
Example 1
FIG. 1 is a configuration diagram of a heat pump type hot water supply apparatus in an embodiment of the present invention. In FIG. 1, two compressors 22a and 22b having the same specifications provided in parallel by a refrigerant pipe 21, a hot water supply heat exchanger 23 functioning as a radiator, a decompression means 24, and a heat absorber 25 are connected in a closed circuit. Thus, a refrigerant circulation circuit 26 is configured. The refrigerant circulation circuit 26 uses, for example, carbon dioxide as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
[0028]
The compressors 22a and 22b are independently driven by inverters 27a and 27b that operate at an arbitrary operating frequency. The refrigerant sucked by driving the compressor 22 is compressed to a pressure exceeding the critical pressure and discharged. The discharge pipes of the compressors 22a and 22b are provided with check valves 28a and 28b, respectively.
[0029]
The hot water supply heat exchanger 23 includes a refrigerant flow path 29 through which a refrigerant flows and a water flow path 30 through which water flows, so that heat can be exchanged between the refrigerant and water. A water supply pipe 31 directly connected to the water flow path 30 to supply tap water and a hot water supply circuit 33 for passing hot water discharged from the water flow path 30 to the hot water supply terminals 32a and 32b are connected. The hot water supply heat exchanger 23 is configured so that the flow direction of the refrigerant flow path 29 and the flow direction of the water flow path 30 are opposed to each other and are in close contact with each other so as to facilitate heat transfer. With this configuration, heat transfer between the refrigerant flow path 29 and the water flow path 30 is made uniform, and heat exchange efficiency is improved. In addition, hot water can be discharged.
[0030]
And in the refrigerant circuit side water circuit 34 comprised by the water supply pipe 31 and the water flow path 30 in the hot water supply heat exchanger 23, and the hot water supply circuit 33, the storage tank 35 which stores water higher than hot water supply temperature in parallel with the heat exchanger 23. It has. The storage tank 35 is covered with heat insulating means 36, and water is supplied to the bottom of the storage tank 35 from the water supply pipe 31 through the water supply branch pipe 37, and the piping from the upper part of the storage tank 35 exchanges hot water in the refrigerant circuit side water circuit 34. The mixing means 38 is connected downstream of the vessel 23 so as to be mixed with water from the hot water supply heat exchanger 23 at an arbitrary mixing ratio.
[0031]
In addition, a circulation water channel 39 is provided for taking out water in the storage tank 35 from the bottom, flowing it through the water flow path 30 of the hot water supply heat exchanger 23 and returning it to the top of the storage tank 35, and the water flow path of the hot water supply heat exchanger 23 in the circulation water channel 39. A circulation pump 40 capable of adjusting the flow rate is provided downstream of 30. Regarding such switching of the water channel, a circulating water channel closing valve 41 is provided at the return portion of the circulating water channel 39 to the storage tank 35. When the circulating water channel 39 is not used, the circulating water channel closing valve 41 is closed and the water supply pipe 31 is provided. Is prevented from flowing into the upper portion of the storage tank 35 through the water flow path 30 in the hot water supply heat exchanger 23. In addition, a short-circuit prevention valve 42 is provided in the water supply branch pipe 37, and when the circulation water channel 39 is used, the short-circuit prevention valve 42 is closed and water is short-circuited through the water supply branch pipe 37 by the circulation pump 40 and does not flow. Like that.
[0032]
Control means 43 is provided to control the operating state of the heat pump water heater configured as described above. In order to grasp the operating state of the apparatus, the feed water temperature detecting means 44 for detecting the water temperature in the feed water pipe 31 and the boiling temperature detecting means 45 for detecting the water temperature at the outlet of the hot water supply heat exchanger 23 in the refrigerant circuit side water circuit 34. The hot water supply temperature detecting means 46 for detecting the water temperature immediately before being supplied to the hot water supply terminal 32 on the downstream side of the mixing means 38, the hot water supply flow rate detecting means 47 for detecting the water flow rate, and the storage tank 35 for storing the heat storage amount. Temperature detection means 48a, 48b and 48c are provided and connected to send the detection results to the control means, and the compressors 22a and 22b are individually connected at arbitrary operating frequencies based on the detection results of these detection means. The inverters 27a and 27b to be driven, the decompression means 24, the mixing means 38, and the circulation pump 40 are connected to be controlled by the control means 43. And the hot water supply temperature setting means 49 which a user sets arbitrarily the target temperature of hot water supply is provided, and it connects so that the temperature may be transmitted to the control means 43.
[0033]
The operation and action of the above configuration will be described. In the embodiment shown in FIG. 1, tap water starts to flow from the water supply pipe 31 when the hot water supply terminal 32a or 32b is opened. At this time, the hot water supply flow rate detecting means 47 detects the hot water supply flow rate, calculates the required hot water supply load from the hot water supply temperature detected by the hot water supply temperature detecting means 44 and the hot water supply temperature setting temperature set by the hot water supply temperature setting means 49, and By determining the operating frequency of the two compressors 22a and 22b so as to achieve the compression capacity corresponding to the load, the operation is started with the required compression capacity in advance and the start-up of the apparatus is accelerated. At this time, the compressors 22a and 22b are started after a certain time difference so as not to start at the same time. The apparatus is smoothly started up by dispersing instantaneous load increases such as an increase in current value applied when the compressor is started. Water flowing through the water passage 30 is heated by the high-temperature and high-pressure refrigerant gas discharged from the two compressors 22a and 22b and flowing into the refrigerant passage 29 of the hot water supply heat exchanger 23. Since the refrigerant flowing through the refrigerant flow path 29 of the hot water supply heat exchanger 23 is pressurized to a critical pressure or higher by the compressor, the heat is taken away by the flowing water in the water flow path 30 of the hot water supply heat exchanger 23 and the temperature drops. Will not condense. Therefore, it becomes easy to form a temperature difference between the refrigerant flow path 29 and the water flow path 30 in the entire area of the hot water supply heat exchanger 23, high-temperature hot water can be obtained, and heat exchange efficiency can be increased. On the other hand, the refrigerant cooled by the hot water supply heat exchanger 23 is depressurized by the decompression means 24 and flows into the heat absorber 25, where it absorbs natural energy such as atmospheric heat and solar heat to evaporate and is converted into the compressors 22a and 22b. Return.
[0034]
Since the compressors 22a and 22b are driven by the inverters 27a and 27b, respectively, both the compressors 22a and 22b can be operated from a lower operating frequency to a higher frequency than a certain frequency by the commercial power source, and the total frequency of the two units can be widely used. Can be changed. For example, if the minimum operation frequency is 40 Hz and the maximum operation frequency is 120 Hz, the compression capacity can be changed from a single operation of 40 Hz to a total of 240 Hz corresponding to the operation of two units at 120 Hz. You can respond by changing. Since the operation frequency of both compressors can be changed, if the required compression capacity is equivalent to 80 Hz or more, which is the minimum operation frequency of 40 Hz, the compressor can be operated simultaneously with two units. Can be distributed. By performing this simultaneous operation at the same frequency, it is possible to equalize the operating conditions of the compressor and optimize the distribution of the load applied to each.
[0035]
Furthermore, regarding the circulation of the refrigerant, the discharge amount from each compressor 22a, 22b and the branch amount before suction are equivalent, so that the lubricating oil that circulates in the refrigerant circulation circuit 26 together with the refrigerant is also in each compressor 22a, 22b can be circulated under the same conditions, and the amount of lubricating oil in the compressor can be kept uniform, and a plurality of stable compressors can be operated. Further, the switching of the number of operating compressors is set to 80 Hz which is low in the variable range of the operating frequency. The operating frequency can be continuously changed in a wide range from 80 Hz to 240 Hz, and the compression capability corresponding to the hot water supply load changing rapidly and widely can be quickly changed.
[0036]
Since the check valves 28a and 28b are provided on the discharge sides of the compressors 22a and 22b, respectively, during the one-side operation, for example, when the compressor 22a is operated to stop the compressor 22b, the operation-side compressor The high-pressure refrigerant discharged from 22a flows into the stop-side compressor 22b from the discharge side, passes through the inside of the stop-side compressor 22b, and flows to the suction side of the operation-side compressor 22a, resulting in a loss. To prevent. At this time, since the flow of the refrigerant is stopped on the discharge side, the compressor 22b on the stop side is kept at a low pressure almost equal to the suction pressure of the compressor 22a on the operation side. Therefore, it is possible to smoothly start the compressor 22b on the stop side from the one-side operation of the compressor 22a. Further, since the check valves 28a and 28b are equally provided on the discharge side of both the compressors 22a and 22b, the pressure loss in the check valves 28a and 28b generated during operation is equivalent to that of the compressors 22a and 22b. As a result, the operating conditions can be made equal during simultaneous operation, and one-sided operation can be performed without loss in either compressor 22a, 22b.
[0037]
At the time of start-up, water having a temperature lower than the required hot water supply temperature comes out of the water flow path 30, so that water having a temperature higher than the hot water temperature stored in the storage tank 35 is mixed and heated to supply hot water. At this time, the water in the upper part of the storage tank 35 is pushed out by opening the short-circuit prevention valve 42 and supplying water to the lower part of the storage tank 35. The control means 43 adjusts the mixing ratio of the mixing means 38 so that the temperature of the hot water supply temperature detecting means 46 becomes the hot water supply set temperature required at the hot water supply terminal 32. Then, when the temperature of the water from the refrigerant circuit side water circuit 34 rises, the mixing means 38 is adjusted so as to reduce the mixing ratio from the storage tank 35 side so that the hot water supply temperature becomes the hot water supply set temperature. Thus, hot water is supplied at a required hot water supply temperature immediately after the operation of the refrigerant circulation circuit 26 is started. When the water from the refrigerant circuit side water circuit 34 rises to the hot water supply set temperature, the mixing ratio of the mixing means 38 becomes only the water from the refrigerant circuit side water circuit 34, and hot water is supplied only by heating the refrigerant circuit 26. When heating is performed by a heat pump cycle, if the boiling temperature is increased, the operation efficiency is deteriorated. However, since heating is performed only up to the required hot water supply temperature, an efficient hot water supply operation can be achieved.
[0038]
When the hot water supply terminal 32 is closed and the hot water supply is stopped, the hot water supply flow rate detecting means 47 detects the stop of the hot water supply. A hot water storage operation is performed in which heat is stored in the hot water storage tank 35 using a time during which no hot water is supplied. The heat storage operation is performed by flowing low-temperature water from the bottom of the storage tank 35 to the circulation water channel 39, heating it in the hot water supply heat exchanger 23, and returning it to the top of the storage tank 35. In addition, the use of heat storage during hot water supply operation is performed by supplying hot water from the bottom of the storage tank 35 with water supply and storing the heat from the top to the mixing means. A temperature boundary layer is formed in the storage tank 35 by water having an upper heat storage temperature and water having a lower water supply temperature. Therefore, the heat storage temperature detection means 48a, 48b, 48c provided in the upper part, the middle part, and the lower part of the storage tank 35 are heated to the position of which heat storage temperature detection means 48 from the upper part of the storage tank 35. The amount of stored heat is estimated by detecting whether there is water. Then, when the heat storage amount estimated by the heat storage temperature detecting means 48 becomes a certain amount or less, the heat storage operation is performed. As the heated water is returned to the upper part of the storage tank 35 by performing the heat storage operation, the position of the temperature boundary layer formed between the heated water and the water at the feed water temperature is lowered. In order to increase the amount of heat stored in the storage tank 35 as much as possible and use it effectively, the temperature of the water sent to the hot water supply heat exchanger 23 rises as the temperature of the temperature boundary layer is heated, and the heat pump cycle As the high pressure side rises, the heating capacity must be reduced accordingly.
[0039]
Therefore, in the heat storage operation, either the compressor 22a or 22b is operated alone, and the operating frequency is lowered in accordance with the rise in the temperature of the water sent to the hot water supply heat exchanger 23. It avoids discontinuous changes in compression capacity that occur when switching the number of operating units, and responds to hot water supply loads that change continuously and rapidly. That is, if it is known in advance, it is possible to respond by changing the switching point between the single operation and the two-unit operation. Further, the reliability of the apparatus can be improved by replacing only one compressor of the compressors 22a and 22b by replacing the compressor that performs the single operation according to the accumulation of the operation load and the operation time. You can also. In the present embodiment, two compressors are described, but three or more compressors may be connected in parallel.
[0040]
In this embodiment, the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure. The refrigerant can also be realized by using a chlorofluorocarbon refrigerant, a hydrocarbon refrigerant, or the like. In addition, the effect of each invention in the present embodiment is effective even when used alone.
[0041]
【The invention's effect】
As described above, according to the present invention, it is possible to change the compression capacity widely from the operation at the minimum capacity of one compressor to the operation at the maximum capacity of all the compressors to cope with a wide fluctuation of the hot water supply load. it can. In addition, since all the compressors have variable capacity, they can quickly change to the required compression capacity to cope with sudden fluctuations in the hot water supply load, and operate with as many compressors as possible. The reliability of the apparatus can be improved by distributing the burden on the apparatus.
[Brief description of the drawings]
FIG. 1 is a block diagram of a heat pump water heater in an embodiment of the present invention. FIG. 2 is a block diagram of a conventional heat pump water heater.
DESCRIPTION OF SYMBOLS 22 Compressor 23 Hot water supply heat exchanger 26 Refrigerant circulation circuit 28 Check valve 29 Refrigerant flow path 30 Water flow path 31 Water supply pipe 32 Hot water supply terminal 33 Hot water supply circuit 44 Hot water supply temperature detection means (hot water supply load detection means)
47 Hot water flow rate detection means (hot water load detection means)

Claims (6)

並列に接続された複数の圧縮機と放熱器である給湯熱交換器とを含む冷媒循環回路と、前記給湯熱交換器の冷媒流路と熱交換を行う前記給湯熱交換器内の水流路と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給湯熱交換器の出口の水温度を検出する沸上温度検知手段と、給湯温度を設定する給湯温度設定手段と、前記給湯熱交換器と並列に、かつ、混合手段を介して前記給湯回路と連通するように設けられ、前記給湯温度より高温の水を貯湯する貯湯タンクとを備え、前記複数の圧縮機は運転周波数を可変とし、前記沸上温度検知手段の検知温度が所定値以下のときには、前記給湯熱交換器からの水と前記貯湯タンクからの水とを前記混合手段において混合する構成としたことを特徴とするヒートポンプ給湯装置。A refrigerant circulation circuit including a plurality of compressors connected in parallel and a hot water supply heat exchanger as a radiator; a water flow path in the hot water supply heat exchanger for exchanging heat with a refrigerant flow path of the hot water supply heat exchanger; A water supply pipe for supplying tap water to the water flow path, a hot water supply circuit connected to pass water from the water flow path to the hot water supply terminal, and a boiling temperature detection for detecting the water temperature at the outlet of the hot water heat exchanger Means, a hot water supply temperature setting means for setting a hot water supply temperature, and a hot water storage device provided in parallel with the hot water supply heat exchanger and in communication with the hot water supply circuit via a mixing means. A plurality of compressors, the operation frequency of the plurality of compressors being variable, and when the detected temperature of the boiling temperature detecting means is not more than a predetermined value, water from the hot water supply heat exchanger and water from the hot water storage tank Are mixed in the mixing means. The heat pump water heater, characterized in that. 運転している圧縮機はすべて同一運転周波数で運転する請求項1に記載のヒートポンプ給湯装置。  The heat pump hot-water supply apparatus according to claim 1, wherein all of the operating compressors are operated at the same operating frequency. 圧縮機の吐出管に逆止弁を設けた請求項1または2記載のヒートポンプ給湯装置。  The heat pump hot-water supply apparatus of Claim 1 or 2 which provided the check valve in the discharge pipe of the compressor. 複数の圧縮機の起動を一定時間以上ずらして行う請求項1〜3のいずれか1項に記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 3, wherein the start of the plurality of compressors is performed while being shifted by a predetermined time or more. 必要な給湯負荷を検知する給湯負荷検知手段を設けた請求項1〜4に記載のヒートポンプ給湯装置。  The heat pump hot-water supply apparatus of Claims 1-4 which provided the hot-water supply load detection means which detects required hot-water supply load. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱する請求項1〜5のいずれか1項に記載のヒートポンプ給湯装置。  The refrigerant circulation circuit is a supercritical heat pump cycle in which the pressure of the refrigerant becomes equal to or higher than the critical pressure, and the flowing water in the water flow path of the heat exchanger is heated by the refrigerant whose pressure is increased to the critical pressure or higher. The heat pump hot-water supply apparatus of item 1.
JP2003111119A 2003-04-16 2003-04-16 Heat pump water heater Expired - Fee Related JP4016875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111119A JP4016875B2 (en) 2003-04-16 2003-04-16 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111119A JP4016875B2 (en) 2003-04-16 2003-04-16 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2004317021A JP2004317021A (en) 2004-11-11
JP4016875B2 true JP4016875B2 (en) 2007-12-05

Family

ID=33471760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111119A Expired - Fee Related JP4016875B2 (en) 2003-04-16 2003-04-16 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4016875B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500822A (en) * 2019-07-15 2019-11-26 青岛海尔空调器有限总公司 The control method of transducer air conditioning
CN110513924A (en) * 2019-07-15 2019-11-29 青岛海尔空调器有限总公司 The control method of air-conditioner with fixed frequency

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501815B2 (en) * 2005-08-26 2010-07-14 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
KR101270615B1 (en) * 2006-07-25 2013-06-07 엘지전자 주식회사 Co-generation and Control method of the same
WO2015092845A1 (en) * 2013-12-16 2015-06-25 三菱電機株式会社 Heat pump hot water supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500822A (en) * 2019-07-15 2019-11-26 青岛海尔空调器有限总公司 The control method of transducer air conditioning
CN110513924A (en) * 2019-07-15 2019-11-29 青岛海尔空调器有限总公司 The control method of air-conditioner with fixed frequency
CN110500822B (en) * 2019-07-15 2021-10-29 青岛海尔空调器有限总公司 Control method of variable frequency air conditioner
CN110513924B (en) * 2019-07-15 2022-03-29 青岛海尔空调器有限总公司 Control method of fixed-frequency air conditioner

Also Published As

Publication number Publication date
JP2004317021A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP4975067B2 (en) Heat pump water heater
WO2009142004A1 (en) Heating system
WO2016059837A1 (en) Heat pump heating apparatus
CN112629020A (en) Heat pump water heater and control method thereof
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4062930B2 (en) Multi-function water heater
JP4016875B2 (en) Heat pump water heater
JP2007232345A (en) Storage type hot water supply heating device
JP4389842B2 (en) Water heater
JP4403983B2 (en) Water heater
JP2009264716A (en) Heat pump hot water system
JP2005098530A (en) Heat pump type water heater
JP4069807B2 (en) Heat pump water heater
JP3906857B2 (en) Heat pump water heater
JP2005188879A (en) Heat pump type hot water supplier
JP2012154516A (en) Heat pump water heater
JP2004301469A (en) Heat pump water heater
JP4021375B2 (en) Heat pump water heater
JP2004232912A (en) Heat pump water heater
JP2004360970A (en) Heat pump hot water supply device
JP3856003B2 (en) Heat pump water heater
JP2004278987A (en) Heat pump type water heater
JP2004069195A (en) Heat pump type water heater
JP2004156849A (en) Heat pump hot-water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees