JP6957029B2 - プレート式熱交換器製造方法 - Google Patents

プレート式熱交換器製造方法 Download PDF

Info

Publication number
JP6957029B2
JP6957029B2 JP2018195147A JP2018195147A JP6957029B2 JP 6957029 B2 JP6957029 B2 JP 6957029B2 JP 2018195147 A JP2018195147 A JP 2018195147A JP 2018195147 A JP2018195147 A JP 2018195147A JP 6957029 B2 JP6957029 B2 JP 6957029B2
Authority
JP
Japan
Prior art keywords
plate
hydrogen gas
heat exchanger
brine
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018195147A
Other languages
English (en)
Other versions
JP2020063870A (ja
Inventor
孝浩 中根
伸慎 荒川
久保田 敦
真也 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2018195147A priority Critical patent/JP6957029B2/ja
Publication of JP2020063870A publication Critical patent/JP2020063870A/ja
Application granted granted Critical
Publication of JP6957029B2 publication Critical patent/JP6957029B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷却用流体との熱交換によって被冷却流体を冷却可能に構成されたプレート式熱交換器を製造するプレート式熱交換器製造方法に関するものである。
素ガスを燃料とする車両に供給される水素を冷却する熱交換器の発明が下記の特許文献に開示されている。この熱交換器は、水素ステーションの蓄圧器に貯留されている水素ガスを水素自動車の燃料タンク(ガスタンク)に充填する水素充填装置内に配設されて、蓄圧器から燃料タンクに向かって移動させられる水素ガスをブラインとの熱交換によって冷却可能に構成されている。
具体的には、この熱交換器は、プレート式熱交換器であって、ブラインを通過させる溝(以下、「ブライン通過溝」ともいう)、および水素ガスを通過させる溝(以下、「水素ガス通過溝」ともいう)がエッチング処理によって形成された複数の金属板が積層された積層体を備えて構成されている。この場合、上記の各金属板は、ステンレス鋼によってそれぞれ平面視方形状に形成されている。また、各金属板には、水素ガス通過用溝への水素ガスの導入、および水素ガス通過用溝からの水素ガスの排出を行うための円形の孔部(貫通孔)がそれぞれ形成されている。この熱交換器は、各金属板を予め規定された積層順序で積層した状態で各板体の接合面同士を拡散接合させることで一体化されている。
特開2015−105760号公報(第7−12頁、第1−12図)
ところが、上記特許文献に開示されている熱交換器には、以下のような解決すべき課題が存在する。具体的には、上記特許文献に開示の熱交換器では、予め規定された順序で積層された複数の金属板が拡散接合によって接合されて一体化されている。
この場合、金属板などの板体の拡散接合時には、接合対象の板体を板厚方向で加圧しつつ加熱することで各板体の接合面同士が接合される。また、拡散接合によって各板体を接合してプレート式の熱交換器(積層体)を製造する際には、接合処理時に加えられる熱によって各板体が熱膨張する。この際に、各板体が板厚方向で加圧された状態で加熱されるため、各板体は、板厚方向で膨張することができないが、外縁部については、板面に沿って外向きに膨らむようにして膨張する(変形する)ことができる。しかしながら、各板体の中央部については、その周囲に板体の構成物が存在することで板面に沿って大きく膨らむことができない。このため、接合処理時には、各板体の中央部に生じる熱応力が外縁部に生じる熱応力よりも大きくなる傾向がある。
したがって、上記特許文献に開示の熱交換器の構成では、例えば、熱交換効率の向上を目的として各金属板を大形化したとき(広い板体で構成したとき)に、それらの接合処理に際して各板体の中央部に生じる熱応力が大きくなり、各板面の中央部に大きな歪みが生じる結果、各板体における中央部の接合が不完全な状態となるおそれがある。この場合、接合が不完全な状態となったときには、各板体の板厚方向での熱伝導率が低下するため、熱交換器の中央部においてブラインと水素ガスとの熱交換効率が低下する。また、不完全な状態が著しいときには、各板体に剥がれ(熱交換器の破損)が生じるおそれもある。
本発明は、かかる課題を解決すべくなされたものであり、各板体が好適に接合されたプレート式熱交換器を製造可能なプレート式熱交換器製造方法を提供することを主目的とする。
上記目的を達成すべく、請求項1記載のプレート式熱交換器製造方法は、被冷却流体の通過が可能な第1の流体通過用溝が形成された第1の溝形成領域を有する1または複数の第1の板体と、冷却用流体の通過が可能な第2の流体通過用溝が形成された第2の溝形成領域を有する1または複数の第2の板体とを少なくとも含む複数の板体予め規定された積層順序で積層した状態で当該各板体の接合面同士接合、前記第1の流体通過用溝を通過する前記被冷却流体と、前記第2の流体通過用溝を通過する前記冷却用流体との熱交換によって当該被冷却流体を冷却可能プレート式熱交換器を製造するプレート式熱交換器製造方法であって、面視における中央部に規定された第1の中央部領域を避けて前記第1の溝形成領域が規定されると共に、当該第1の中央部領域内に少なくとも1つの第1の貫通孔が形成された前記第1の板体、および平面視における中央部に規定された第2の中央部領域を避けて前記第2の溝形成領域が規定されると共に、当該第2の中央部領域内に少なくとも1つの第2の貫通孔が形成された前記第2の板体を少なくとも含む複数の前記板体を前記予め規定された積層順序で積層する積層処理と、前記積層処理によって前記各板体を積層した積層体を処理装置内に収容し、当該各板体の板厚方向で当該積層体を加圧しつつ加熱すると共に当該処理装置内を真空引きすることによって当該各板体の接合面同士を拡散接合させる接合処理とを実行して前記プレート式熱交換器を製造する際に、前記接合処理時に前記第1の中央部領域および前記第2の中央部領域において前記第1の貫通孔および前記第2の貫通孔の中心に向かって当該第1の中央部領域および当該第2の中央部領域が膨らんで当該第1の貫通孔および当該第2の貫通孔が小径化するように当該第1の板体および当該第2の板体を変形させる
請求項2記載のプレート式熱交換器製造方法は、請求項1記載のプレート式熱交換器製造方法において、平面視矩形状に形成され、平面視における角部に規定された4つの第1の角部領域を避けて前記第1の溝形成領域が規定されると共に、当該各第1の角部領域内に少なくとも1つの前記第1の貫通孔がそれぞれ形成された前記第1の板体と、平面視矩形状に形成され、平面視における角部に規定された4つの第2の角部領域を避けて前記第2の溝形成領域が規定されると共に、当該各第2の角部領域内に少なくとも1つの前記第2の貫通孔がそれぞれ形成された前記第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する際に、前記接合処理時に前記第1の角部領域および前記第2の角部領域において前記第1の貫通孔および前記第2の貫通孔の中心に向かって当該第1の角部領域および当該第2の角部領域が膨らんで当該第1の貫通孔および当該第2の貫通孔が小径化するように当該第1の板体および当該第2の板体を変形させる
請求項3記載のプレート式熱交換器製造方法は、請求項1または2記載のプレート式熱交換器製造方法において、前記第1の貫通孔が丸孔で構成された前記第1の板体と、前記第2の貫通孔が丸孔で構成された前記第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する
請求項4記載のプレート式熱交換器製造方法は、請求項1から3のいずれかに記載のプレート式熱交換器製造方法において、前記複数の板体として、材質および形状が互いに等しく形成された複数の前記第1の板体と、材質および形状が互いに等しく形成された複数の前記第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する
請求項5記載のプレート式熱交換器製造方法は、請求項4記載のプレート式熱交換器製造方法において、縁部を板面方向で凹ませた第1の切欠き部、および板面の当該外縁部を板厚方向で凹ませた第1の凹部の少なくとも一方がそれぞれ形成された前記各第1の板体と、前記各第1の板体における前記少なくとも一方に対して前記各板体の積層方向で少なくとも一部が重ならないように、外縁部を板面方向で凹ませた第2の切欠き部、および板面の当該外縁部を板厚方向で凹ませた第2の凹部の少なくとも一方がそれぞれ形成された前記各第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する
請求項1記載のプレート式熱交換器製造方法では、第1の板体および第2の板体を少なくとも含む複数の板体を予め規定された積層順序で積層する積層処理と、各板体の接合面同士を拡散接合させる接合処理とを実行してプレート式熱交換器を製造するプレート式熱交換器製造方法であって、被冷却流体の通過が可能な第1の流体通過用溝が形成された第1の溝形成領域を有する1または複数の第1の板体に、平面視における中央部に規定された第1の中央部領域を避けて第1の溝形成領域が規定されると共に、第1の中央部領域内に少なくとも1つの第1の貫通孔が形成され、冷却用流体の通過が可能な第2の流体通過用溝が形成された第2の溝形成領域を有する1または複数の第2の板体に、平面視における中央部に規定された第2の中央部領域を避けて第2の溝形成領域が規定されると共に、第2の中央部領域内に少なくとも1つの第2の貫通孔が形成されている。
したがって、請求項1記載のプレート式熱交換器製造方法では、各板体の接合処理時に各板体が加熱されて熱膨張する際に、第1の板体における第1の中央部領域および第2の板体における第2の中央部領域において、第1の貫通孔および第2の貫通孔の中心に向かって膨らむような(各貫通孔が小径化するような)変形が生じることで、第1の板体および第2の板体の両中央部領域に大きな熱応力が生じた状態となるのが回避される。このため、接合処理中に第1の板体および第2の板体の両中央部領域に大きな歪みが生じることがないため、各板体の中央部領域を確実に接合することができる。これにより、各板体の中央部領域に剥がれが生じるのを好適に回避できるだけでなく、各板体間の中央部領域における熱伝導率が向上することで、中央部領域の近傍における冷却用流体と被冷却流体との熱交換効率、すなわち、被冷却流体の冷却効率を十分に向上させることができる。
請求項2記載のプレート式熱交換器製造方法では、平面視矩形状に形成された第1の板体に、平面視における角部に規定された4つの第1の角部領域を避けて第1の溝形成領域が規定されると共に、各第1の角部領域内に少なくとも1つの第1の貫通孔がそれぞれ形成され、平面視矩形状に形成された第2の板体に、平面視における角部に規定された4つの第2の角部領域を避けて第2の溝形成領域が規定されると共に、各第2の角部領域内に少なくとも1つの第2の貫通孔がそれぞれ形成されている。
したがって、請求項2記載のプレート式熱交換器製造方法では、各板体の接合処理時に各板体が加熱されて熱膨張する際に、第1の板体における各第1の角部領域および第2の板体における各第2の角部領域において、第1の貫通孔および第2の貫通孔の中心に向かって膨らむような(各貫通孔が小径化するような)変形が生じることで、第1の板体および第2の板体の各角部領域に大きな熱応力が生じた状態となるのが回避される。このため、接合処理中に第1の板体および第2の板体において応力が集中し易い各角部領域に大きな歪みが生じることがないため、各板体の各角部領域を確実に接合することができる。これにより、各板体の各角部領域に剥がれが生じるのを好適に回避できるだけでなく、各板体間の各角部領域における熱伝導率が向上することで、各角部領域の近傍における冷却用流体と被冷却流体との熱交換効率、すなわち、被冷却流体の冷却効率を十分に向上させることができる。
請求項3記載のプレート式熱交換器製造方法によれば、第1の貫通孔を丸孔で構成すると共に、第2の貫通孔を丸孔で構成したことにより、第1の貫通孔および第2の貫通孔の口縁部に応力が集中し難くなるため、第1の板体や第2の板体の熱膨張時に第1の貫通孔および第2の貫通孔の口縁部にクラックが生じたり、不均一な変形が生じて良好な接合状態にならない事態を招くことなく、第1の貫通孔および第2の貫通孔の近傍を一層好適に接合することができる。また、第1の貫通孔や第2の貫通孔として角孔等を形成するのと比較して、これらの孔を均一かつ容易に形成することができるため、プレート式熱交換器の製造コストを十分に低減することができる。
請求項4記載のプレート式熱交換器製造方法によれば、複数の板体として、材質および形状が互いに等しく形成された複数の第1の板体と、材質および形状が互いに等しく形成された複数の第2の板体とを使用したことにより、材質および形状のいずれかが相違する複数種類の第1の板体を使用したり、材質および形状のいずれかが相違する複数種類の第2の板体を使用したりするのと比較して、材質および形状を統一したことで、第1の板体の製作コストや第2の板体の製作コストを低減することができ、これにより、プレート式熱交換器の製造コストを十分に低減することができると共に、材質および形状が互いに等しいことで、接合処理時における各第1の板体の熱膨張の状態が互いに等しくなり、かつ接合処理時における各第2の板体の熱膨張の状態が互いに等しくなり、これらに生じる歪みの度合いや向きが一致した状態となるため、各板体を一層好適に接合することができる。
請求項5記載のプレート式熱交換器製造方法では、外縁部を板面方向で凹ませた第1の切欠き部、および板面の外縁部を板厚方向で凹ませた第1の凹部の少なくとも一方が各第1の板体にそれぞれ形成され、かつ各第1の板体における少なくとも一方に対して各板体の積層方向で少なくとも一部が重ならないように、外縁部を板面方向で凹ませた第2の切欠き部、および板面の外縁部を板厚方向で凹ませた第2の凹部の少なくとも一方が各第2の板体にそれぞれ形成されている。
したがって、請求項5記載のプレート式熱交換器製造方法によれば、積層処理に際して、第1の板体および第2の板体の積層順序や積層の向きを誤ったときに、各切欠きおよび/または凹部の配列状態が不均一となるため、積層順序や積層の向きを誤ったことを作業者に対して確実かつ容易に認識させることができる。
本発明の実施の形態に係る水素ガス給気システム100の構成を示す構成図である。 本発明の実施の形態に係る水素ガス冷却用熱交換器30の外観斜視図である。 本発明の実施の形態に係る水素ガス冷却用熱交換器30の内部構造について説明するための説明図である。 本発明の実施の形態に係る水素ガス冷却用熱交換器30の分解斜視図である。 本発明の他の実施の形態に係る水素ガス冷却用熱交換器30Aの外観斜視図である。 本発明の他の実施の形態に係る水素ガス冷却用熱交換器30Aにおけるブラインプレート42aおよび水素ガスプレート43aの外観斜視図である。
以下、添付図面を参照して、プレート式熱交換器製造方法の実施の形態について説明する。
最初に、「プレート式熱交換器」の一例である水素ガス冷却用熱交換器30を備えた水素ガス給気システム100の構成について、添付図面を参照して説明する。
図1に示す水素ガス給気システム100は、水素ガス燃料電池自動車等の給気対象Xに水素ガスを給気する水素ガスステーション用の設備であって、水素ガス冷却装置1、ガスタンク2およびディスペンサー3などを備えて構成されている。なお、同図では、水素ガス給気システム100の構成および動作に関する理解を容易とするために、水素ガス冷却装置1、ガスタンク2およびディスペンサー3や、水素ガス配管4a〜4cだけを図示し、その他の構成要素についての図示を省略している。
水素ガス冷却装置1は、冷凍回路11、ブラインタンク12、ブライン配管13a〜13d、液送ポンプ14a,14b、制御部15および水素ガス冷却用熱交換器30を備え、「冷却用流体」の一例であるブラインを冷却すると共に、冷却したブラインを水素ガス冷却用熱交換器30に供給することにより、「被冷却流体」の一例である水素ガスとブラインとの熱交換によって水素ガスを冷却することができるように構成されている。
冷凍回路11は、一元冷凍回路であって、圧縮機21、凝縮器22、膨張弁23および蒸発器24を備え、後述するように、フロン(冷媒)とブライン(熱媒液:冷却用流体)との熱交換によってブラインを冷却することができるように構成されている。ブラインタンク12は、後述するように冷凍回路11(蒸発器24)によって冷却されて水素ガス冷却用熱交換器30に供給されるブラインを貯留可能に構成されている。
ブライン配管13a,13bは、冷凍回路11の蒸発器24とブラインタンク12とを相互に接続する。この場合、本例の水素ガス冷却装置1では、ブラインタンク12内のブラインがブライン配管13aを介して蒸発器24に供給されて冷却された後に、ブライン配管13bを介してブラインタンク12に案内されることにより、ブラインタンク12と蒸発器24との間をブラインが循環させられる構成が採用されている。
ブライン配管13c,13dは、ブラインタンク12と水素ガス冷却用熱交換器30とを相互に接続する。この場合、本例の水素ガス冷却装置1では、ブラインタンク12内のブラインがブライン配管13cを介して水素ガス冷却用熱交換器30に供給されて水素と熱交換させられた後に、ブライン配管13dを介してブラインタンク12に案内されることにより、ブラインタンク12と水素ガス冷却用熱交換器30との間をブラインが循環させられる構成が採用されている。
液送ポンプ14aは、制御部15の制御に従ってブラインタンク12内のブラインを蒸発器24に向けて圧送し、液送ポンプ14bは、制御部15の制御に従ってブラインタンク12内のブラインを水素ガス冷却用熱交換器30に向けて圧送する。この場合、本例の水素ガス冷却装置1では、液送ポンプ14aがブラインタンク12内のブラインを蒸発器24に圧送することにより、蒸発器24内のブライン(蒸発器24において冷却されたブライン)がブラインタンク12に案内されると共に、液送ポンプ14bがブラインタンク12内のブラインを水素ガス冷却用熱交換器30に圧送することにより、水素ガス冷却用熱交換器30内のブラインがブラインタンク12に案内される構成が採用されている。
なお、上記の水素ガス冷却装置1の構成に代えて、例えば、ブラインタンク12内のブラインを冷凍回路11(蒸発器24)に供給して冷却した後に水素ガス冷却用熱交換器30に直接供給して水素ガスを冷却すると共に、水素ガスの冷却によって温度上昇したブラインをブラインタンク12に回収するようにブライン配管13d,13cを配管することもできる(図示せず)。また、大量の水素ガスを連続して冷却する可能性がない環境下、すなわち、大量のブラインを備えている必要がない環境下で使用するときには、ブラインタンク12を不要として冷凍回路11(蒸発器24)と水素ガス冷却用熱交換器30との間でブラインを直接循環させる構成を採用することもできる(図示せず)。
制御部15は、水素ガス冷却装置1を総括的に制御する。具体的には、制御部15は、冷凍回路11(蒸発器24)によってブラインを冷却するブライン冷却処理の実行時に圧縮機21を制御してブラインの冷却に必要かつ十分な量の冷媒を圧縮させると共に、膨張弁23を制御してブラインの冷却に必要かつ十分な量の冷媒を蒸発器24に供給させる。
また、制御部15は、冷凍回路11によるブライン冷却処理と並行して液送ポンプ14aを制御することにより、ブラインタンク12と蒸発器24との間でブラインを循環させてブラインタンク12内のブラインの温度を規定温度(水素ガスの冷却に適した温度)に維持させる。また、制御部15は、液送ポンプ14bを制御してブラインタンク12と水素ガス冷却用熱交換器30との間でブラインを循環させることにより、ガスタンク2からディスペンサー3に向かって移動させられている水素ガスを、水素ガス冷却用熱交換器30においてブラインと熱交換させて冷却させる。
一方、水素ガス冷却用熱交換器30は、水素ガス配管4bを介してディスペンサー3の制御弁3aに接続され、かつ水素ガス配管4cを介して給気対象Xに接続されると共に、ブライン配管13c,13dを介してブラインタンク12に接続されている。この場合、本例の水素ガス給気システム100では、水素ガス冷却用熱交換器30が水素ガス冷却装置1の構成要素の1つとしてディスペンサー3内に設置されており、ガスタンク2から制御弁3aを通過して給気対象Xに向かって流動させられる水素ガスをブラインとの熱交換によって予め規定された温度(一例として、−33℃〜−40℃の温度範囲内の温度)まで冷却することが可能となっている。
この水素ガス冷却用熱交換器30は、図2〜4に示すように、「第2の板体」の一例であるブラインプレート42、および「第1の板体」の一例である水素ガスプレート43がベースプレート41,44の間に交互に積層されて(「予め規定された積層順序」の一例)これらの接合面同士が拡散接合によって接合されて一体化された本体部40と、本体部40にブライン配管13c,13dや水素ガス配管4b,4cを接続可能にベースプレート44に装着される複数の接続具(図示せず)とを備えて構成されている。この場合、本例の水素ガス冷却用熱交換器30では、ベースプレート41、ブラインプレート42、水素ガスプレート43およびベースプレート44がそれぞれ「板体」に相当する。
なお、以下の説明においては、ベースプレート41、ブラインプレート42、水素ガスプレート43およびベースプレート44を総称して「板体41〜44」ともいう。また、本明細書において参照する各図2〜6では、「プレート式熱交換器」の構成に関する理解を容易とするために、各板体の厚みを実際の厚みよりも厚く図示している。さらに、実際の水素ガス冷却用熱交換器30では、放熱および吸熱を回避するために、各板体41〜44の積層体が断熱材で覆われたり、断熱用のケーシング内に収容されたりしているが、これら断熱材やケーシング等の図示および説明を省略する。
ベースプレート41は、ステンレススチール等の金属板によってそれぞれ平面視方形状に形成されている。このベースプレート41には、図3,4に示すように、平面視における中央部(後述のブラインプレート42における中央部領域A2aや水素ガスプレート43の中央部領域A3aに対して各板体41〜44の積層方向で重なる部位)に中央部領域A1aが規定され、かつ平面視における4つの角部(後述のブラインプレート42における角部領域A2bや水素ガスプレート43の角部領域A3bに対して各板体41〜44の積層方向で重なる部位)に角部領域A1bがそれぞれ規定されている。また、ベースプレート41には、中央部領域A1aおよび各角部領域A1bの5つの領域に貫通孔H1がそれぞれ1つずつ形成されている。この場合、本例の水素ガス冷却用熱交換器30では、ベースプレート41の各貫通孔H1が丸孔で構成されている。
ブラインプレート42は、ステンレススチール等の金属板によってそれぞれ平面視方形状に形成されている。このブラインプレート42には、図3,4に示すように、平面視における中央部に中央部領域A2a(「第2の中央部領域」の一例)が規定され、かつ平面視における4つの角部に角部領域A2b(「第2の角部領域」の一例)がそれぞれ規定されている。
また、ブラインプレート42には、上記の中央部領域A2aおよび各角部領域A2bを避けて溝形成領域A2c(「第2の溝形成領域」の一例)が規定されて、この溝形成領域A2c内にブラインの通過が可能なブライン通過用溝(「第2の流体通過用溝」の一例)が形成されている。なお、図4では、ブラインプレート42の構成についての理解を容易とするために、1つの大きな溝(凹部)が溝形成領域A2c内に形成された状態を図示しているが、実際には、複数本の細幅のブライン通過用溝が溝形成領域A2c内に並んで形成されている。
また、図4に示すように、ブラインプレート42には、後述するように水素ガスプレート43に向けて流動させられる水素ガスが通過可能な貫通孔Hi2a、および水素ガスプレート43から排出された水素ガスが通過可能な貫通孔Ho2aが形成されている。さらに、ブラインプレート42には、溝形成領域A2c内の各ブライン通過用溝に導入させるブラインが通過可能な貫通孔Hi2b、および各ブライン通過用溝から排出されたブラインが通過可能な貫通孔Ho2bが形成されている。
また、ブラインプレート42には、中央部領域A2aおよび各角部領域A2bの5つの領域に貫通孔H2(「第2の貫通孔」の一例)がそれぞれ1つずつ形成されている。この場合、本例の水素ガス冷却用熱交換器30では、ブラインプレート42の各貫通孔H2が丸孔で構成されている。さらに、ブラインプレート42には、後述の水素ガスプレート43における切欠きN3に対して各板体41〜44の積層方向で少なくとも一部が重ならないように外縁部を板面方向で凹ませた切欠きN2(「第2の切欠き部」の一例)が形成されている(「第2の切欠き部および第2の凹部の少なくとも一方」として「第2の切欠き部」を備えた構成の例)。
水素ガスプレート43は、上記のブラインプレート42と同様にして、ステンレススチール等の金属板によってそれぞれ平面視方形状に形成されている。この水素ガスプレート43には、図3,4に示すように、平面視における中央部に中央部領域A3a(「第1の中央部領域」の一例)が規定され、かつ平面視における4つの角部に角部領域A3b(「第1の角部領域」の一例)がそれぞれ規定されている。
また、水素ガスプレート43には、上記の中央部領域A3aおよび各角部領域A3bを避けて溝形成領域A3c(「第1の溝形成領域」の一例)が規定されて、この溝形成領域A3c内に水素ガスの通過が可能な水素ガス通過用溝(「第1の流体通過用溝」の一例)が形成されている。なお、図4では、水素ガスプレート43の構成についての理解を容易とするために、1つの大きな溝(凹部)が溝形成領域A3c内に形成された状態を図示しているが、実際には、複数本の細幅の水素ガス通過用溝が溝形成領域A2c内に並んで形成されている。
また、図4に示すように、水素ガスプレート43には、溝形成領域A3c内の各水素ガス通過用溝に導入させる水素ガスが通過可能な貫通孔Hi3a、および各水素ガス通過用溝から排出された水素ガスが通過可能な貫通孔Ho3aが形成されている。さらに、水素ガスプレート43には、ブラインプレート42に向けて流動させられるブラインが通過可能な貫通孔Hi3b、およびブラインプレート42から排出されたブラインが通過可能な貫通孔Ho3bが形成されている。
また、水素ガスプレート43には、中央部領域A3aおよび各角部領域A3bの5つの領域に貫通孔H3(「第1の貫通孔」の一例)がそれぞれ1つずつ形成されている。この場合、本例の水素ガス冷却用熱交換器30では、水素ガスプレート43の各貫通孔H3が丸孔で構成されている。さらに、水素ガスプレート43には、上記のブラインプレート42における切欠きN2に対して各板体41〜44の積層方向で少なくとも一部が重ならないように外縁部を板面方向で凹ませた切欠きN3(「第1の切欠き部」の一例)が形成されている(「第1の切欠き部および第1の凹部の少なくとも一方」として「第1の切欠き部」を備えた構成の例)。
ベースプレート44は、ステンレススチール等の金属板によってそれぞれ平面視方形状に形成されている。このベースプレート44には、図2〜4に示すように、平面視における中央部(上記の中央部領域A1a〜A3aに対して各板体41〜44の積層方向で重なる部位)に中央部領域A4aが規定され、かつ平面視における4つの角部(上記の角部領域A1b〜A3bに対して各板体41〜44の積層方向で重なる部位)に角部領域A4bがそれぞれ規定されている(以下、各板体41〜44の中央部領域A1a〜A4aを総称して中央部領域Aaともいい、各板体41〜44の角部領域A1b〜A4bを総称して角部領域Abともいう)。また、ベースプレート44には、中央部領域A4aおよび各角部領域A4bの5つの領域に貫通孔H4がそれぞれ1つずつ形成されている。この場合、本例の水素ガス冷却用熱交換器30では、ベースプレート44の各貫通孔H4が丸孔で構成されている。
さらに、図2,4に示すように、ベースプレート44には、水素ガス配管4bを接続可能な接続具が取り付けられると共に、上記の貫通孔Hi2a,Hi3aに水素ガスを流入させるための貫通孔Hi4aと、水素ガス配管4cを接続可能な接続具が取り付けられると共に、上記の貫通孔Ho2a,Ho3aを通過させられた水素ガスを水素ガス配管4cに排出するための貫通孔Ho4aとが形成されている。また、ベースプレート44には、ブライン配管13cを接続可能な接続具が取り付けられると共に、上記の貫通孔Hi2b,Hi3bにブラインを流入させるための貫通孔Hi4bと、ブライン配管13dを接続可能な接続具が取り付けられると共に、上記の貫通孔Ho2b,Ho3bを通過させられたブラインをブライン配管13dに排出するための貫通孔Ho4bとが形成されている。
この場合、本例の水素ガス冷却用熱交換器30では、材質および形状が互いに等しい「板体」で各ブラインプレート42が構成され、かつ材質および形状が互いに等しい「板体」で各水素ガスプレート43が構成されている。また、本例の水素ガス冷却用熱交換器30では、平面視における形状および大きさが互いに等しくなるように各板体41〜44が形成されている。したがって、各板体41〜44を積層した状態で接合された本体部40は、図2に示すように、直方体状となっている。また、この水素ガス冷却用熱交換器30では、図3に示すように、各板体41〜44における貫通孔H1〜H4が、互いに等しい内径で、かつ、各板体41〜44の積層方向で連通した状態となるように形成されている。
また、この水素ガス冷却用熱交換器30では、各板体42〜44における貫通孔Hi2a〜Hi4a(以下、区別しないときには「貫通孔Hia」ともいう)が、互いに等しい内形および大きさで、かつ各板体42〜44の積層方向で連通した状態となるように形成されると共に、各板体42〜44における貫通孔Ho2a〜Ho4a(以下、区別しないときには「貫通孔Hoa」ともいう)が、互いに等しい内形および大きさで、かつ各板体42〜44の積層方向で連通した状態となるように形成されている。
さらに、この水素ガス冷却用熱交換器30では、各板体42〜44における貫通孔Hi2b〜Hi4b(以下、区別しないときには「貫通孔Hib」ともいう)が、互いに等しい内形および大きさで、かつ各板体42〜44の積層方向で連通した状態となるように形成されると共に、各板体42〜44における貫通孔Ho2b〜Ho4b(以下、区別しないときには「貫通孔Hob」ともいう)が、互いに等しい内形および大きさで、かつ各板体42〜44の積層方向で連通した状態となるように形成されている。
次に、上記の水素ガス冷却用熱交換器30の製造方法の一例について、添付図面を参照して説明する。
この水素ガス冷却用熱交換器30の製造に際しては、まず、各板体41〜44を「予め規定された積層順序」で積層する積層処理を実施する。この場合、上記したように、本例の水素ガス冷却用熱交換器30における各板体41〜44には、互いに等しい内径で、かつ、各板体41〜44の積層方向で連通した状態となるように貫通孔H1〜H4が形成されている。したがって、一例として、外径が貫通孔H1〜H4の内径よりも僅かに小径の円柱状の位置決めピンを各貫通孔H1〜H4の位置に対応させて立設した積層用治具(位置決め具:図示せず)を用意し、位置決めピンが各貫通孔H1〜H4を挿通させられた状態となるように各板体41〜44を積層用治具上に積層することで、積層作業中に各板体41〜44が板面方向で位置ずれする事態を好適に回避することができる。
具体的には、一例として、まず、ベースプレート41を積層用治具の上に載置した後に、ブライン通過用溝の形成面を上向きにしてベースプレート41の上にブラインプレート42を積層すると共に、水素ガス通過用溝の形成面を上向きにしてブラインプレート42の上に水素ガスプレート43を積層する。これにより、ブラインプレート42および水素ガスプレート43からなる一組の積層物がベースプレート41の上に積層された状態となる。
次いで、水素ガス冷却用熱交換器30に求められている容量に応じて、上記の積層物における水素ガスプレート43の上に、ブラインプレート42および水素ガスプレート43を交互に積層する。続いて、最上部の水素ガスプレート43の上に、ブライン通過用溝の形成面を上向きにしてブラインプレート42を積層し、その上にベースプレート44を積層する。以上により、積層処理が完了する。
この場合、本例の水素ガス冷却用熱交換器30では、前述したように、平面視における形状および大きさが互いに等しくなるように各板体41〜44が形成されると共に、各貫通孔Hiaが互いに等しい内形および大きさで積層方向において連通した状態となり、各貫通孔Hoaが互いに等しい内形および大きさで積層方向において連通した状態となり、各貫通孔Hibが互いに等しい内形および大きさで積層方向において連通した状態となり、かつ各貫通孔Hobが互いに等しい内形および大きさで積層方向において連通した状態となるように各板体42〜44が構成されている。
このため、本例の水素ガス冷却用熱交換器30(本体部40)では、積層処理時にブラインプレート42および水素ガスプレート43が誤った順序で積層されるのを回避するために、ブラインプレート42の外縁部および水素ガスプレート43の外縁部に、各板体41〜44の積層方向で少なくとも一部が重ならない切欠きN2,N3がそれぞれ設けられている。これにより、ベースプレート41上にブラインプレート42および水素ガスプレート43を正しい順序で交互に積層したときには、図2に示すように、その積層物(後述の拡散接合処理後に本体部40となる部材)の側面において、各ブラインプレート42の切欠きN2が積層方向で整列し、かつ各水素ガスプレート43の切欠きN3が積層方向で整列した状態で、切欠きN2および切欠きN3が交互に位置した状態となる。
一方、ベースプレート41や水素ガスプレート43の上に誤って2枚以上のブラインプレート42を積層してしまったり、水素ガスプレート43を積層すべきときに誤ってブラインプレート42を積層してしまったりしたときには、連続して積層されたブラインプレート42,42の切欠きN2,N2が積層方向で連続した状態となり、作業者に対して、複数枚のブラインプレート42が連続して積層された状態であることを確実かつ容易に認識させることができる。
同様にして、ブラインプレート42の上に誤って2枚以上の水素ガスプレート43を積層してしまったり、ブラインプレート42を積層すべきときに誤って水素ガスプレート43を積層してしまったりしたときにも、連続して積層された水素ガスプレート43,43の切欠きN3,N3が積層方向で連続した状態となり、作業者に対して、複数枚の水素ガスプレート43が連続して積層された状態であることを確実かつ容易に認識させることができる。
上記の積層処理が完了した状態では、図3に示すように、各板体41〜44の中央部領域Aaが積層方向で重なり、各中央部領域Aaに形成された貫通孔H1〜H4が積層方向で連通した状態となると共に、各板体41〜44の各角部領域Abが積層方向でそれぞれ重なり、各角部領域Abに形成された貫通孔H1〜H4が積層方向で連通した状態となる。また、各ブラインプレート42の溝形成領域A2c、および各水素ガスプレート43の溝形成領域A3cが積層方向で重なると共に、各板体42〜44の貫通孔Hiaが積層方向で連通した状態となり、各板体42〜44の貫通孔Hoaが積層方向で連通した状態となり、各板体42〜44の貫通孔Hibが積層方向で連通した状態となり、かつ各板体42〜44の貫通孔Hobが積層方向で連通した状態となる。
続いて、上記の積層処理によって積層された各板体41〜44の積層体を図示しない接合処理装置内に収容して接合処理(拡散接合処理)を実施する。具体的には、処理装置内において、各板体41〜44の板厚方向(各板体41〜44の積層方向)で積層体を加圧すると共に、予め規定された接合温度範囲内の温度となるように積層体を加熱しつつ、予め規定された真空度範囲内の真空度となるように処理装置内を真空引きすることによって各板体41〜44の接合面同士を拡散接合させる。
この際に、この接合処理時には、各板体41〜44が加熱されて非常に高い温度まで温度上昇するため、各板体41〜44が熱膨張する。また、各板体41〜44が積層方向で加圧されているため、前述したように、各板体41〜44の中央部については、その周囲に板体の構成物が存在することで板面に沿って大きく膨らむことができず、各板体41〜44の中央部に生じる熱応力が外縁部に生じる熱応力よりも大きくなる傾向がある。
一方、本例の水素ガス冷却用熱交換器30(本体部40)を構成する各板体41〜44には、その中央部領域Aaに貫通孔H1〜H4が形成されている。このため、接合処理時に各板体41〜44が熱膨張するときに、これらの中央部が貫通孔H1〜H4の中心に向かって膨らむような(各貫通孔H1〜H4が小径化するような)変形が生じるため、各板体41〜44の中央部領域Aaに大きな熱応力が生じる状態となるのが回避される。これにより、本例の水素ガス冷却用熱交換器30の製造時には、接合処理中に各板体41〜44の中央部領域Aaに大きな歪みが生じることがないため、各板体41〜44の中央部領域Aaを確実に接合することが可能となっている。
また、本例の水素ガス冷却用熱交換器30(本体部40)を構成する各板体41〜44は、平面視矩形状に形成されている。このため、接合処理時に加熱されて各板体41〜44が熱膨張したときには、各板体41〜44の角部に熱応力が集中し、その他の部位(角部および中央部を除く部位)に生じる熱応力よりも大きな応力が生じた状態となる傾向がある。
一方、本例の水素ガス冷却用熱交換器30(本体部40)を構成する各板体41〜44には、その角部領域Abにも貫通孔H1〜H4が形成されている。このため、接合処理時に各板体41〜44が熱膨張するときに、これらの角部が貫通孔H1〜H4の中心に向かって膨らむような(各貫通孔H1〜H4が小径化するような)変形が生じるため、各板体41〜44の角部領域Abにおいて熱応力が集中した状態となるのが回避される。これにより、本例の水素ガス冷却用熱交換器30の製造時には、接合処理中に各板体41〜44の各角部領域Abに大きな歪みが生じることがないため、各板体41〜44の角部領域Abについても確実に接合することが可能となっている。
また、予め規定された処理時間に亘って積層体の加圧、加熱および処理装置内の真空引きを継続することで各板体41〜44が中央部領域Aaから角部領域Abまでの全域に亘って十分な接合力で接合されたときには、真空引きを停止することで処理装置内を大気圧と同程度まで圧力上昇させ、かつ積層体の加熱を停止することで積層体を常温まで温度低下させる。さらに、積層体が十分に温度低下した状態において加圧を停止させる。これにより、接合処理が完了して、図2,3に示すように、本体部40が完成する。この後、ベースプレート44の各貫通孔Hia,Hoa,Hib,Hobに配管接続用の接続具を取り付けることにより、水素ガス冷却用熱交換器30が完成する。
この場合、この種の熱交換器は、使用開始に先立ち、完成した製品の耐圧検査(各板体41〜44の接合状態が良好であるか否かの検査)が行われる。この際に、本例の水素ガス冷却用熱交換器30では、各貫通孔H1〜H4が各板体41〜44の板厚方向で連通した状態となっているため、この貫通孔H1〜H4を、耐圧検査用流体(検査時にブライン流路に圧送される液体や、水素ガス流路に圧送される気体)の漏れの有無を検出するための漏れ検査ポート(接合不良時に液体や気体が漏れ出す孔)として使用して検出器を接続して耐圧検査を行うことができる。また、マイクロスコープ等を使用して各板体41〜44の接合状態を目視検査する際にも、貫通孔H1〜H4内にスコープを挿入することで各板体の中央部および四隅の接合状態を好適に観察することができる。
さらに、検査を完了した良品の水素ガス冷却用熱交換器30をディスペンサー3内に取り付ける際に、貫通孔H1〜H4の部位に固定用の金具を挿通させて本体部40を保持することで、水素ガス冷却用熱交換器30を確実かつ容易に固定することが可能となる。
この水素ガス冷却用熱交換器30を備えた水素ガス給気システム100では、ブラインタンク12のブラインが、冷凍回路11(蒸発器24)において冷却されて、水素ガスの冷却に適した十分に低い温度に維持されている。また、給気対象Xへの水素ガスの給気(充填)に際しては、ガスタンク2から給気対象Xに向かって移動させられる水素ガスが、水素ガス冷却用熱交換器30においてブラインとの交換によって冷却される。
具体的には、図示しないコントローラによって制御弁3aが開状態に移行させられ、ガスタンク2から水素ガス配管4aを介して供給される水素ガスが水素ガス配管4bを介して水素ガス冷却用熱交換器30に給気される。また、ガスタンク2からの水素ガスの移動開始に連動して、液送ポンプ14bが制御部15の制御下でブラインタンク12から水素ガス冷却用熱交換器30へのブラインの供給を開始する。これにより、水素ガスの冷却に必要な量のブラインがブラインタンク12からブライン配管13cを介して水素ガス冷却用熱交換器30に供給されて、貫通孔Hi4bに接続されている接続具から水素ガス冷却用熱交換器30内に導入される。また、水素ガス冷却用熱交換器30に導入されたブラインは、各貫通孔Hibを介して各ブラインプレート42における溝形成領域A2c内のブライン通過用溝内に移動する。
一方、上記のように制御弁3aから水素ガス配管4bを介して水素ガス冷却用熱交換器30に給気された水素ガスは、貫通孔Hi4aに接続されている接続具から水素ガス冷却用熱交換器30内に導入される。また、水素ガス冷却用熱交換器30に導入された水素ガスは、各貫通孔Hiaを介して各水素ガスプレート43の溝形成領域A3c内の水素ガス通過用溝内に移動する。これにより、各ブラインプレート42のブライン通過用溝内を移動しているブラインと、各水素ガスプレート43における溝形成領域A3c内の水素ガス通過用溝内を移動している水素ガスとの熱交換によって水素ガスが冷却される。
この場合、本例の水素ガス冷却用熱交換器30では、各板体41〜44の接合処理時に中央部領域Aaから角部領域Abまでの全域が十分な接合力で接合されて各板体41〜44が確実に一体化した状態で本体部40が形成されている。この結果、ブライン通過用溝内からのブラインの漏出や、水素ガス通過用溝内からの水素ガスの漏出が阻止されるだけでなく、ブラインプレート42および水素ガスプレート43間の熱伝導率が向上して、ブラインと水素ガスとの熱交換効率(すなわち、水素ガスの冷却効率)が向上している。これにより、給気対象Xに供給すべき水素ガスが水素ガス冷却用熱交換器30において確実かつ十分に冷却される。
また、ブラインとの熱交換によって冷却された水素ガスは、各水素ガスプレート43の溝形成領域A3cにおける水素ガス通過用溝から貫通孔Hoaに排出され、貫通孔Ho4aに接続されている接続具から水素ガス配管4cを介して給気対象Xに給気される。これにより、水素ガス冷却用熱交換器30において十分に温度低下した水素ガスが給気対象Xの燃料タンク(ガスタンク)内に充填される。この結果、給気対象Xへの水素ガスの充填効率を十分に向上させることができる。また、水素ガスとの熱交換によって温度上昇したブラインは、各ブラインプレート42の溝形成領域A2cにおけるブライン通過用溝から貫通孔Hobに排出され、貫通孔Ho4bに接続されている接続具からブライン配管13dを介してブラインタンク12に回収される。
この後、給気対象Xへの水素ガスの給気が完了したときには、コントローラから水素ガス冷却装置1の制御部15に給気終了信号が出力される。これに伴い、制御部15は、ブラインタンク12から水素ガス冷却用熱交換器30へのブラインの供給を停止(または、供給量を減少)させる。以上により、給気対象Xに対する水素ガスの給気に関する一連の処理が終了する。
このように、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)では、水素ガスの通過が可能な「第1の流体通過用溝(水素ガス通過用溝)」が形成された溝形成領域A3cを有する複数の水素ガスプレート43に、平面視における中央部に規定された中央部領域A3aを避けて溝形成領域A3cが規定されると共に、中央部領域A3a内に貫通孔H3が形成され、ブラインの通過が可能な「第2の流体通過用溝(ブライン通過用溝)」が形成された溝形成領域A2cを有する複数のブラインプレート42に、平面視における中央部に規定された中央部領域A2aを避けて溝形成領域A2cが規定されると共に、中央部領域A2a内に貫通孔H2が形成されている。
したがって、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)では、各板体41〜44の接合処理時に各板体41〜44が加熱されて熱膨張する際に、ブラインプレート42の中央部領域A2aおよび水素ガスプレート43の中央部領域A3a(本例では、中央部領域A1a,A4aに貫通孔H1,H4が形成されたベースプレート41,44を含む各板体41〜44のすべての中央部領域Aa)において、貫通孔H2,H3(貫通孔H1〜H4)の中心に向かって膨らむような(各貫通孔H1〜H4が小径化するような)変形が生じるため、ブラインプレート42および水素ガスプレート43(各板体41〜44)の中央部領域Aaに大きな熱応力が生じた状態となるのが回避される。このため、接合処理中にブラインプレート42および水素ガスプレート43(各板体41〜44)の中央部領域Aaに大きな歪みが生じることがないため、各板体41〜44の中央部領域Aaを確実に接合することができる。これにより、各板体41〜44の中央部領域Aaに剥がれが生じるのを好適に回避できるだけでなく、各板体41〜44間の中央部領域Aaにおける熱伝導率が向上することで、中央部領域Aaの近傍におけるブラインと水素ガスとの熱交換効率、すなわち、水素ガスの冷却効率を十分に向上させることができる。
また、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)では、平面視矩形状に形成された水素ガスプレート43に、平面視における角部に規定された4つの角部領域A3bを避けて溝形成領域A3cが規定されると共に、各角部領域A3b内に貫通孔H3がそれぞれ形成され、平面視矩形状に形成されたブラインプレート42に、平面視における角部に規定された4つの角部領域A2bを避けて溝形成領域A2cが規定されると共に、各角部領域A2b内に貫通孔H2がそれぞれ形成されている。
したがって、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)では、各板体41〜44の接合処理時に各板体41〜44が加熱されて熱膨張する際に、ブラインプレート42の各角部領域A2bおよび水素ガスプレート43の各角部領域A3b(本例では、各角部領域A1b,A4bに貫通孔H1,H4が形成されたベースプレート41,44を含む各板体41〜44のすべての各角部領域Ab)において、貫通孔H2,H3(貫通孔H1〜H4)の中心に向かって膨らむような(各貫通孔H1〜H4が小径化するような)変形が生じるため、ブラインプレート42および水素ガスプレート43(各板体41〜44)の各角部領域Abに大きな熱応力が生じた状態となるのが回避される。このため、接合処理中にブラインプレート42および水素ガスプレート43(各板体41〜44)において応力が集中し易い各角部領域Abに大きな歪みが生じることがないため、各板体41〜44の各角部領域Abを確実に接合することができる。これにより、各板体41〜44の各角部領域Abに剥がれが生じるのを好適に回避できるだけでなく、各板体41〜44間の各角部領域Abにおける熱伝導率が向上することで、各角部領域Abの近傍におけるブラインと水素ガスとの熱交換効率、すなわち、水素ガスの冷却効率を十分に向上させることができる。
さらに、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)によれば、貫通孔H2,H3をそれぞれ丸孔で構成したことにより、貫通孔H2,H3の口縁部に応力が集中し難くなるため、ブラインプレート42や水素ガスプレート43の熱膨張時に貫通孔H2,H3の口縁部にクラックが生じたり、不均一な変形が生じて良好な接合状態にならない事態を招くことなく、貫通孔H2,H3の近傍を一層好適に接合することができる。また、「第1の貫通孔」や「第2の貫通孔」として角孔等を形成するのと比較して、これらの孔を均一かつ容易に形成することができるため、水素ガス冷却用熱交換器30の製造コストを十分に低減することができる。
また、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)によれば、「複数の板体」として、材質および形状が互いに等しく形成された複数の水素ガスプレート43と、材質および形状が互いに等しく形成された複数のブラインプレート42とを備えて構成したことにより、材質および形状のいずれかが相違する複数種類の「第1の板体」を備えた構成や、材質および形状のいずれかが相違する複数種類の「第2の板体」を備えた構成と比較して、材質および形状を統一したことで、ブラインプレート42の製作コストや水素ガスプレート43の製作コストを低減することができ、これにより、水素ガス冷却用熱交換器30の製造コストを十分に低減することができると共に、材質および形状が互いに等しいことで、接合処理時における各ブラインプレート42の熱膨張の状態が互いに等しくなり、かつ接合処理時における各水素ガスプレート43の熱膨張の状態が互いに等しくなり、これらに生じる歪みの度合いや向きが一致した状態となるため、各板体41〜44を一層好適に接合することができる。
さらに、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)では、外縁部を板面方向で凹ませた切欠き部N3が各水素ガスプレート43にそれぞれ形成され、かつ各水素ガスプレート43における切欠き部N3に対して各板体41〜44の積層方向で少なくとも一部が重ならないように、外縁部を板面方向で凹ませた切欠き部N2が各ブラインプレート42にそれぞれ形成されている。
したがって、この水素ガス冷却用熱交換器30(水素ガス冷却用熱交換器30の製造方法)によれば、積層処理に際して、ブラインプレート42および水素ガスプレート43の積層順序や積層の向きを誤ったときに、切欠きN2,N3の配列状態が不均一となるため、積層順序や積層の向きを誤ったことを作業者に対して確実かつ容易に認識させることができる。
また、この水素ガス冷却用熱交換器30によれば、「被冷却流体」としての水素ガスを冷却可能に構成したことにより、冷却処理時に高圧の水素ガスが導入される水素ガス冷却用熱交換器30において、各板体41〜44の剥がれに起因する水素ガスの漏出を好適に回避しつつ、各板体41〜44が好適に接合されて各板体41〜44間の熱伝導率が向上していることで、水素ガスを好適に冷却することができる。
次に、「プレート式熱交換器(プレート式熱交換器製造方法)」の他の実施の形態について、添付図面を参照して説明する。
なお、前述の水素ガス冷却用熱交換器30の構成要素と同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。また、水素ガス給気システム100(水素ガス冷却装置1)における水素ガス冷却用熱交換器30以外の構成要素については、水素ガス冷却用熱交換器30を備えて構成した上記の例と同様のため、詳細な説明を省略する。
図5,6に示す水素ガス冷却用熱交換器30Aは、「プレート式熱交換器」の他の一例であって、前述の水素ガス冷却用熱交換器30(本体部40)のブラインプレート42および水素ガスプレート43に代えて、ブラインプレート42aおよび水素ガスプレート43aを備えて本体部40aが構成されている。この場合、この水素ガス冷却用熱交換器30A(本体部40a)では、ベースプレート41、ブラインプレート42a、水素ガスプレート43aおよびベースプレート44がそれぞれ「板体」に相当する。なお、以下の説明においては、ベースプレート41、ブラインプレート42a、水素ガスプレート43aおよびベースプレート44を総称して「板体41〜44」ともいう。
ブラインプレート42aは、前述の水素ガス冷却用熱交換器30におけるブラインプレート42と同様にして、ステンレススチール等の金属板によってそれぞれ平面視方形状に形成されている。このブラインプレート42aは、ブラインプレート42における切欠きN2に代わって「第2の凹部」の一例である凹部C2が形成されている点を除き、ブラインプレート42と同様に構成されている。具体的には、このブラインプレート42aには、後述の水素ガスプレート43aにおける凹部C3に対して各板体41〜44の積層方向で少なくとも一部が重ならないように板面の外縁部(本例では、ブライン通過用溝の形成面の外縁部)を板厚方向で凹ませた凹部C2が形成されている(「第2の切欠き部および第2の凹部の少なくとも一方」として「第2の凹部」を備えた構成の例)。
水素ガスプレート43aは、前述の水素ガス冷却用熱交換器30における水素ガスプレート43と同様にして、ステンレススチール等の金属板によってそれぞれ平面視方形状に形成されている。この水素ガスプレート43aは、水素ガスプレート43における切欠きN3に代わって「第1の凹部」の一例である凹部C3が形成されている点を除き、水素ガスプレート43と同様に構成されている。具体的には、この水素ガスプレート43aには、上記のブラインプレート42aにおける凹部C2に対して各板体41〜44の積層方向で少なくとも一部が重ならないように板面の外縁部(本例では、水素ガス通過用溝の形成面の外縁部)を板厚方向で凹ませた凹部C3が形成されている(「第1の切欠き部および第1の凹部の少なくとも一方」として「第1の凹部」を備えた構成の例)。
この水素ガス冷却用熱交換器30Aの製造時には、前述した水素ガス冷却用熱交換器30の製造時と同様にして、まず、ベースプレート41の上にブラインプレート42aおよび水素ガスプレート43aを交互に積層し、最上部のブラインプレート42aの上にベースプレート44を積層する積層処理を実行する。
この場合、この水素ガス冷却用熱交換器30A(本体部40a)では、積層処理時にブラインプレート42aおよび水素ガスプレート43aを誤った順序で積層するのを回避するために、ブラインプレート42aの外縁部および水素ガスプレート43aの外縁部に、各板体41〜44の積層方向で少なくとも一部が重ならない凹部C2,C3がそれぞれ設けられている。これにより、ベースプレート41上にブラインプレート42aおよび水素ガスプレート43aを正しい順序で交互に積層したときには、図5に示すように、その積層物(後述の拡散接合処理後に本体部40aとなる部材)の側面において、各ブラインプレート42aの凹部C2が積層方向で整列し、かつ各水素ガスプレート43aの凹部C3が積層方向で整列した状態で、凹部C2および凹部C3が交互に位置した状態となる。
一方、ベースプレート41や水素ガスプレート43aの上に誤って2枚以上のブラインプレート42aを積層してしまったり、水素ガスプレート43aを積層すべきときに誤ってブラインプレート42aを積層してしまったりしたときには、連続して積層されたブラインプレート42a,42aの凹部C2,C2が積層方向で連続した状態となり、作業者に対して、複数枚のブラインプレート42aが連続して積層された状態であることを確実かつ容易に認識させることができる。
同様にして、ブラインプレート42aの上に誤って2枚以上の水素ガスプレート43aを積層してしまったり、ブラインプレート42aを積層すべきときに誤って水素ガスプレート43aを積層してしまったりしたときにも、連続して積層された水素ガスプレート43a,43aの凹部C3,C3が積層方向で連続した状態となり、作業者に対して、複数枚の水素ガスプレート43aが連続して積層された状態であることを確実かつ容易に認識させることができる。
これにより、この水素ガス冷却用熱交換器30Aの製造時においても、前述した水素ガス冷却用熱交換器30の製造時における積層処理時と同様にして、各板体41〜44を正しい積層順序で正確に積層することが可能となっている。この後、積層処理が完了した各板体41〜44の積層体を図示しない接合処理装置内に収容して接合処理(拡散接合処理)を実施することで各板体41〜44の接合面同士を拡散接合させる。これにより、接合処理が完了し、図5に示すように、本体部40が完成する。なお、接合処理時に各貫通孔H1〜H4の存在によって各板体41〜44の中央部領域Aaから角部領域Abまでの全域が確実に接合される原理については、水素ガス冷却用熱交換器30の製造時における接合処理の原理と同様のため、詳細な説明を省略する。この後、ベースプレート44の各貫通孔Hia,Hoa,Hib,Hobに配管接続用の接続具を取り付けることにより、水素ガス冷却用熱交換器30Aが完成する。
このように、この水素ガス冷却用熱交換器30A(水素ガス冷却用熱交換器30Aの製造方法)では、板面の外縁部を板厚方向で凹ませた凹部C3が各水素ガスプレート43aにそれぞれ形成され、かつ各水素ガスプレート43aにおける凹部C3に対して各板体41,42a,43a,44の積層方向で少なくとも一部が重ならないように、板面の外縁部を板厚方向で凹ませた凹部C2が各ブラインプレート42aにそれぞれ形成されている。
したがって、この水素ガス冷却用熱交換器30A(水素ガス冷却用熱交換器30Aの製造方法)によれば、積層処理に際して、ブラインプレート42aおよび水素ガスプレート43aの積層順序や積層の向きを誤ったときに、凹部C2,C3の配列状態が不均一となるため、積層順序や積層の向きを誤ったことを作業者に対して確実かつ容易に認識させることができる。
なお、「プレート式熱交換器(プレート式熱交換器製造方法)」は、上記の水素ガス冷却用熱交換器30,30Aの構成(製造方法)の例に限定されない。
例えば、ブラインプレート42,42aの中央部領域A2aに1つの貫通孔H2を形成し、かつ水素ガスプレート43,43aの中央部領域A3aに1つの貫通孔H3を形成した構成を例に挙げて説明したが、「第1の板体」における「第1の中央部領域」に複数の「第1の貫通孔」を形成したり、「第2の板体」における「第2の中央部領域」に複数の「第2の貫通孔」を形成したりすることもできる(図示せず)。
この場合、「第1の中央部領域」に形成する「第1の貫通孔」や「第2の中央部領域」に形成する「第2の貫通孔」については、領域内に形成する数を問わず、「第1の板体」や「第2の板体」の中心から外れた位置(貫通孔の中心が板体の中心とは重ならない位置)に形成することにより、「第1の板体」や「第2の板体」の積層作業時に表面と裏面とを誤って積層したときなどに、各「貫通孔」が連通しない状態となる。これにより、作業ミスを防止して、「第1の板体」や「第2の板体」を正しく積層することが可能となる。
また、ブラインプレート42,42aの各角部領域A2bに1つの貫通孔H2をそれぞれ形成し、かつ水素ガスプレート43,43aの各角部領域A3bに1つの貫通孔H3をそれぞれ形成した構成を例に挙げて説明したが、「第1の板体」における「第1の各角部領域」の少なくとも1つに複数の「第1の貫通孔」を形成したり、「第2の板体」における「第2の各角部領域」の少なくとも1つに複数の「第2の貫通孔」を形成したりすることもできる(図示せず)。
この場合、「第1の角部領域」に形成する「第1の貫通孔」や「第2の角部領域」に形成する「第2の貫通孔」について、4つの「角部領域」のうちのいずれかに「貫通孔」を設けない構成や、4つの「角部領域」のうちのいずれかの「貫通孔」の外縁部からの距離を、他の「角部領域」に形成する「貫通孔」の外縁部からの距離とは相違させる構成を採用することにより、「第1の板体」や「第2の板体」の積層作業時に表面と裏面とを誤って積層したときなどに、各「貫通孔」が連通しない状態となる。これにより、作業ミスを防止して、「第1の板体」や「第2の板体」を正しく積層することが可能となる。
また、「第1の貫通孔」や「第2の貫通孔」は、上記の例における貫通孔H2,H3のような丸孔に限定されず、楕円形の孔や、角部に丸みを帯びさせた角孔とすることができる(図示せず)。さらに、接合時に生じる熱応力がそれほど大きくない場合には、角部が尖った角孔とすることもできる(図示せず)。さらに、「第1の板体」における各「第1の角部領域」に「第1の貫通孔」を形成しない構成や、「第2の板体」における各「第2の角部領域」に「第2の貫通孔」を形成しない構成を採用することもできる(いずれも図示せず)。また、ベースプレート41,44に貫通孔H1,H4(「第1の貫通孔」や「第2の貫通孔」と同様の孔)を形成しない構成を採用することもできる(図示せず)。
さらに、材質および形状が互いに等しく形成された複数のブラインプレート42,42aと、材質および形状が互いに等しく形成された複数の水素ガスプレート43,43aとを備えて本体部40,40aを構成した例について説明したが、材質および形状のいずれか(または双方)が相違する複数種類の「第1の板体」や、材質および形状のいずれか(または双方)が相違する複数種類の「第2の板体」を備えて構成することもできる(いずれも図示せず)。
また、ブラインプレート42に切欠きN2を形成し、かつ水素ガスプレート43に切欠きN3を形成した水素ガス冷却用熱交換器30や、ブラインプレート42aに凹部C2を形成し、かつ水素ガスプレート43aに凹部C3を形成した水素ガス冷却用熱交換器30Aの構成を例に挙げて説明したが、「第1の板体」に「第1の切欠き部」を形成し、かつ「第2の板体」に「第2の凹部」を形成した構成や、「第1の板体」に「第1の凹部」を形成し、かつ「第2の板体」に「第2の切欠き部」を形成した構成を採用することもできる(いずれも図示せず)。また、「第1の板体」に形成した「第1の切欠き部」および「第1の凹部」の少なくとも一方に対して、「第2の板体」に形成した「第2の切欠き部」および「第2の凹部」の少なくとも一方の全体が積層方向で重ならない構成を採用することもできる(図示せず)。
さらに、「第1の板体」に「第1の切欠き部」および「第1の凹部」の少なくとも一方を形成し、かつ「第2の板体」に「第2の切欠き部」および「第2の凹部」のいずれも形成しない構成や、「第1の板体」に「第1の切欠き部」および「第1の凹部」のいずれも形成せずに、「第2の板体」に「第2の切欠き部」および「第2の凹部」に少なくとも一方を形成した構成を採用することもできる(いずれも図示せず)。
また、「第1の板体」に形成する「第1の切欠き部」または「第1の凹部」の形成位置や、「第2の板体」に形成する「第2の切欠き部」または「第2の凹部」の形成位置を「第1の板体」や「第2の板体」における幅方向の中央部から外れた位置とすることにより、「第1の板体」や「第2の板体」の積層作業時に表面と裏面とを誤って積層したときなどに、「切欠き部」や「凹部」が積層方向で不揃いの状態となる。これにより、作業ミスを防止して、「第1の板体」や「第2の板体」を正しく積層することが可能となる。
また、複数枚の「第1の板体」と複数枚の「第2の板体」とを備えて構成した水素ガス冷却用熱交換器30,30Aの例について説明したが、1枚の「第1の板体」と複数枚の「第2の板体」とを備えて「プレート式熱交換器」を構成したり、複数枚の「第1の板体」と1枚の「第2の板体」とを備えて「プレート式熱交換器」を構成したり、1枚の「第1の板体」と1枚の「第2の板体」とを備えて「プレート式熱交換器」を構成したりすることもできる(いずれも図示せず)。
さらに、「第1の板体」および「第2の板体」が直接接するように積層されて本体部40,40aが形成された水素ガス冷却用熱交換器30,30Aの構成を例に挙げて説明したが、「第1の板体(水素ガス通過溝用板)」と「第2の板体(ブライン通過溝用板)」との間に「仕切板」等の「任意の機能を有する板体」を挟み込んで「本体部」を構成することもできる(図示せず)。この場合、「第1の板体」および「第2の板体」の間に「仕切板」等の板体を挟み込む構成を採用するときには、その「板体」にも、「第1の板体」における「第1の貫通孔」や「第2の板体」における「第2の貫通孔」に対応する「貫通孔」を形成して、接合処理時に、その「板体」において大きな歪みが生じるのを回避するのが好ましい。
また、「一元冷凍回路」の一例である冷凍回路11によって「冷却用流体」の一例であるブラインを冷却する構成の水素ガス冷却装置1において使用する水素ガス冷却用熱交換器30を例に挙げて説明したが、第1の冷凍回路(高温側冷凍回路)の蒸発器によって第2の冷凍回路(低温側冷凍回路)の凝縮器を冷却することで第2の冷凍回路の凝縮器において十分な量の冷媒を短時間で凝縮させると共に、第2の冷凍回路の蒸発器によって「冷却用流体」を冷却することで、水素ガスの冷却に適した十分に低い温度まで「冷却用流体」の温度を低下させ得る「二元冷凍回路」を備えた「水素ガス冷却装置」(図示せず)において使用する「プレート式熱交換器」としての水素ガス冷却用熱交換器30,30Aなどを使用することができる。
さらに、「冷却用流体」の一例であるブラインとの熱交換によって水素ガスを冷却する水素ガス冷却用熱交換器30,30Aの構成を例に挙げて説明したが、「冷却用流体」として、冷凍回路11等の冷媒(フロンガス等)を使用して水素ガスを冷却する冷却方式(いわゆる冷媒直冷式の冷却方式)において使用可能に「プレート式熱交換器」を製造する際にも、上記の水素ガス冷却用熱交換器30,30Aと同様の構成を採用することができる。加えて、「被冷却流体」としての水素ガス以外の任意の流体(液体または気体)を冷却可能に「プレート式熱交換器」を製造する際にも、上記の水素ガス冷却用熱交換器30,30Aと同様の構成を採用することができる。
100 水素ガス給気システム
1 水素ガス冷却装置
30,30A 水素ガス冷却用熱交換器
40,40a 本体部
41 ベースプレート
42,42a ブラインプレート
43,43a 水素ガスプレート
44 ベースプレート44
A1a〜A4a 中央部領域
A1b〜A4b 角部領域
A2c,A3c 溝形成領域
C2,C3 凹部
H1〜H4,Hi2a〜Hi4a,Hi2b〜Hi4b,Ho2a〜Ho4a,Ho2b〜Ho4b 貫通孔
N2,N3 切欠き部
X 給気対象

Claims (5)

  1. 被冷却流体の通過が可能な第1の流体通過用溝が形成された第1の溝形成領域を有する1または複数の第1の板体と、冷却用流体の通過が可能な第2の流体通過用溝が形成された第2の溝形成領域を有する1または複数の第2の板体とを少なくとも含む複数の板体予め規定された積層順序で積層した状態で当該各板体の接合面同士接合、前記第1の流体通過用溝を通過する前記被冷却流体と、前記第2の流体通過用溝を通過する前記冷却用流体との熱交換によって当該被冷却流体を冷却可能プレート式熱交換器を製造するプレート式熱交換器製造方法であって、
    面視における中央部に規定された第1の中央部領域を避けて前記第1の溝形成領域が規定されると共に、当該第1の中央部領域内に少なくとも1つの第1の貫通孔が形成された前記第1の板体、および平面視における中央部に規定された第2の中央部領域を避けて前記第2の溝形成領域が規定されると共に、当該第2の中央部領域内に少なくとも1つの第2の貫通孔が形成された前記第2の板体を少なくとも含む複数の前記板体を前記予め規定された積層順序で積層する積層処理と、
    前記積層処理によって前記各板体を積層した積層体を処理装置内に収容し、当該各板体の板厚方向で当該積層体を加圧しつつ加熱すると共に当該処理装置内を真空引きすることによって当該各板体の接合面同士を拡散接合させる接合処理とを実行して前記プレート式熱交換器を製造する際に、
    前記接合処理時に前記第1の中央部領域および前記第2の中央部領域において前記第1の貫通孔および前記第2の貫通孔の中心に向かって当該第1の中央部領域および当該第2の中央部領域が膨らんで当該第1の貫通孔および当該第2の貫通孔が小径化するように当該第1の板体および当該第2の板体を変形させるプレート式熱交換器製造方法
  2. 面視矩形状に形成され、平面視における角部に規定された4つの第1の角部領域を避けて前記第1の溝形成領域が規定されると共に、当該各第1の角部領域内に少なくとも1つの前記第1の貫通孔がそれぞれ形成された前記第1の板体と、平面視矩形状に形成され、平面視における角部に規定された4つの第2の角部領域を避けて前記第2の溝形成領域が規定されると共に、当該各第2の角部領域内に少なくとも1つの前記第2の貫通孔がそれぞれ形成された前記第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する際に、
    前記接合処理時に前記第1の角部領域および前記第2の角部領域において前記第1の貫通孔および前記第2の貫通孔の中心に向かって当該第1の角部領域および当該第2の角部領域が膨らんで当該第1の貫通孔および当該第2の貫通孔が小径化するように当該第1の板体および当該第2の板体を変形させる請求項1記載のプレート式熱交換器製造方法
  3. 前記第1の貫通孔が丸孔で構成された前記第1の板体と、前記第2の貫通孔が丸孔で構成された前記第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する請求項1または2記載のプレート式熱交換器製造方法
  4. 前記複数の板体として、材質および形状が互いに等しく形成された複数の前記第1の板体と、材質および形状が互いに等しく形成された複数の前記第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する請求項1から3のいずれかに記載のプレート式熱交換器製造方法
  5. 縁部を板面方向で凹ませた第1の切欠き部、および板面の当該外縁部を板厚方向で凹ませた第1の凹部の少なくとも一方がそれぞれ形成された前記各第1の板体と、前記各第1の板体における前記少なくとも一方に対して前記各板体の積層方向で少なくとも一部が重ならないように、外縁部を板面方向で凹ませた第2の切欠き部、および板面の当該外縁部を板厚方向で凹ませた第2の凹部の少なくとも一方がそれぞれ形成された前記各第2の板体とを前記積層処理によって積層すると共に前記接合処理によって拡散接合させて前記プレート式熱交換器を製造する請求項4記載のプレート式熱交換器製造方法
JP2018195147A 2018-10-16 2018-10-16 プレート式熱交換器製造方法 Active JP6957029B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195147A JP6957029B2 (ja) 2018-10-16 2018-10-16 プレート式熱交換器製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195147A JP6957029B2 (ja) 2018-10-16 2018-10-16 プレート式熱交換器製造方法

Publications (2)

Publication Number Publication Date
JP2020063870A JP2020063870A (ja) 2020-04-23
JP6957029B2 true JP6957029B2 (ja) 2021-11-02

Family

ID=70387033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195147A Active JP6957029B2 (ja) 2018-10-16 2018-10-16 プレート式熱交換器製造方法

Country Status (1)

Country Link
JP (1) JP6957029B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536115C2 (de) * 1995-09-28 2001-03-08 Behr Gmbh & Co Mehrfluid-Wärmeübertrager mit Plattenstapelaufbau
JP2005291521A (ja) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd 積層型蒸発器
WO2010116459A1 (ja) * 2009-03-30 2010-10-14 三菱電機株式会社 プレート式熱交換器、プレート式熱交換器の製造方法、プレート式熱交換器の積層判定装置及びプレート式熱交換器の積層判定方法
US8118086B2 (en) * 2009-06-16 2012-02-21 Uop Llc Efficient self cooling heat exchanger
JP5773353B2 (ja) * 2011-02-15 2015-09-02 忠元 誠 熱交換器
JP2015031420A (ja) * 2013-07-31 2015-02-16 株式会社神戸製鋼所 水素ガスの冷却方法及び水素ガスの冷却システム
JP2015087023A (ja) * 2013-10-28 2015-05-07 シーアイ化成株式会社 熱交換器及び熱交換器の製造方法
JP5749786B2 (ja) * 2013-11-28 2015-07-15 株式会社前川製作所 熱交換器

Also Published As

Publication number Publication date
JP2020063870A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
US7850061B2 (en) Method for making a component including fluid flow channels
US10399191B2 (en) Method for producing a heat exchanger module having at least two fluid flow circuits
JP2007268555A (ja) 熱交換器製造方法
JP2009522535A (ja) 深絞り熱交換器プレートを備えた熱交換器
JP2007529707A (ja) 燃料電池用マイクロ熱交換器及び製作方法
JP5943619B2 (ja) 積層型熱交換器及び熱交換システム
US20170157723A1 (en) Method for production of a heat exchanger with at least two fluid circulation circuits with a large number of channels and/or large dimensions
KR102272342B1 (ko) 인쇄기판형 열교환기 및 이를 포함하는 열교환 장치
KR101891111B1 (ko) 열교환기 및 이를 구비하는 원전
US20180045469A1 (en) Heat exchanger device
JP6957029B2 (ja) プレート式熱交換器製造方法
EP1847792A1 (en) Method for manufacturing a heat exchanger
JP6865934B2 (ja) プレート式熱交換器
JP2022186860A (ja) 熱輸送デバイスおよびその製造方法
KR20160139725A (ko) 열교환기 및 이를 구비한 원전
JP2019082309A (ja) ループ型ヒートパイプ、及びループ型ヒートパイプ製造方法
JP6834540B2 (ja) マイクロ流路熱交換器およびその製造方法
JP6791102B2 (ja) プレート式熱交換器及びプレート式熱交換器を備えたヒートポンプ式給湯システム
KR101976543B1 (ko) 열교환기 및 이를 구비하는 원전
WO2020188690A1 (ja) プレート式熱交換器及びそれを備えたヒートポンプ装置
JP2016183811A (ja) マイクロ流路熱交換器
EP3816566B1 (en) Heat transport device and method for manufacturing same
EP3819064A1 (en) Method for the manufacture of monolithic multi-tube hydraulic devices, in particular heat exchangers
JP4105902B2 (ja) 液体金属冷却炉用熱交換器および液体金属冷却炉用熱交換器の製造方法
JP5896116B2 (ja) 熱交換器の製造方法および使用方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6957029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150