JP6955190B2 - Glass member and its manufacturing method - Google Patents

Glass member and its manufacturing method Download PDF

Info

Publication number
JP6955190B2
JP6955190B2 JP2017002328A JP2017002328A JP6955190B2 JP 6955190 B2 JP6955190 B2 JP 6955190B2 JP 2017002328 A JP2017002328 A JP 2017002328A JP 2017002328 A JP2017002328 A JP 2017002328A JP 6955190 B2 JP6955190 B2 JP 6955190B2
Authority
JP
Japan
Prior art keywords
glass member
glass
phase
porous
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017002328A
Other languages
Japanese (ja)
Other versions
JP2018111629A (en
Inventor
克 岩尾
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017002328A priority Critical patent/JP6955190B2/en
Publication of JP2018111629A publication Critical patent/JP2018111629A/en
Application granted granted Critical
Publication of JP6955190B2 publication Critical patent/JP6955190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、ガラス部材及びその製造方法に関する。 The present invention relates to a glass member and a method for producing the same.

近年、携帯電話、自動車等の窓、車載用ディスプレイ等に使用されるガラス部材の軽量化が求められている。このような要求に対し、一般的にガラスの薄肉化が提案されている(例えば、特許文献1参照)。 In recent years, there has been a demand for weight reduction of glass members used for windows of mobile phones, automobiles, automobile displays, and the like. In response to such a demand, thinning of glass has generally been proposed (see, for example, Patent Document 1).

特許第5633718号Patent No. 5633718

しかしながら、一般的なガラスは密度が大きいため、ガラス部材の軽量化には限界があった。 However, since general glass has a high density, there is a limit to reducing the weight of the glass member.

以上に鑑み、本発明は、軽量なガラス部材を提供することを目的とする。 In view of the above, it is an object of the present invention to provide a lightweight glass member.

本発明のガラス部材は、内部が多孔質相であって、表層部が緻密質相であることを特徴とする。このようにすれば、ガラス部材を軽量化することができる。 The glass member of the present invention is characterized in that the inside is a porous phase and the surface layer portion is a dense phase. In this way, the weight of the glass member can be reduced.

本発明のガラス部材は、表面粗さRaが100nm以下であることが好ましい。このようにすれば、表面の光散乱が小さくなりやすく、ガラス部材の可視光域における光透過率が高くなりやすい。 The glass member of the present invention preferably has a surface roughness Ra of 100 nm or less. In this way, the light scattering on the surface tends to be small, and the light transmittance in the visible light region of the glass member tends to be high.

本発明のガラス部材は、多孔質相における孔の孔径が100nm以下であることが好ましい。このようにすれば、孔の孔径が可視光波長よりも十分に小さいため、ガラス部材の可視光域における光透過率が高くなりやすい。 The glass member of the present invention preferably has a pore diameter of 100 nm or less in the porous phase. In this way, since the pore diameter of the hole is sufficiently smaller than the visible light wavelength, the light transmittance of the glass member in the visible light region tends to be high.

本発明のガラス部材は、緻密質相の厚みが0.1〜100μmであることが好ましい。 In the glass member of the present invention, the thickness of the dense phase is preferably 0.1 to 100 μm.

本発明のガラス部材は、多孔質相の孔にガスを含む、または多孔質相の孔内が減圧状態であることが好ましい。このようにすれば、さらなる軽量化が可能となる。なお、ここでいう「ガス」とは、室温において気体となるもの、「減圧」とは大気圧より低い圧力を示す。 It is preferable that the glass member of the present invention contains gas in the pores of the porous phase, or the inside of the pores of the porous phase is in a reduced pressure state. In this way, further weight reduction is possible. The term "gas" as used herein means a gas that becomes a gas at room temperature, and the term "decompression" indicates a pressure lower than atmospheric pressure.

本発明のガラス部材は、密度が2.2g/cm未満であることが好ましい。 The glass member of the present invention preferably has a density of less than 2.2 g / cm 3.

本発明のガラス部材は、可視光域においてヘイズ率が10%以下であることが好ましい。 The glass member of the present invention preferably has a haze rate of 10% or less in the visible light region.

本発明のガラス部材の製造方法は、ガラス母材を熱処理し、2相に分相させる工程、一方の相を酸またはアルカリで除去することにより多孔質体を得る工程、前記多孔質体の表面を熱処理して緻密質相を形成する工程を含むことを特徴とする。当該方法によれば、ガラス部材を容易に作製することが可能となる。 The method for producing a glass member of the present invention includes a step of heat-treating a glass base material to split it into two phases, a step of removing one phase with an acid or an alkali to obtain a porous body, and a surface of the porous body. It is characterized by including a step of forming a dense phase by heat treatment. According to this method, a glass member can be easily manufactured.

本発明のガラス部材の製造方法は、ガラス母材を熱処理し、2相に分相させる工程、一方の相を酸またはアルカリで除去することにより多孔質体を得る工程、及び、前記多孔質体の表面にガラス板を貼り合せることにより緻密質相を形成する工程を含むことを特徴とする。当該方法によれば、ガラス部材を容易に作製することが可能となる。 The method for producing a glass member of the present invention includes a step of heat-treating a glass base material to divide it into two phases, a step of obtaining a porous body by removing one phase with an acid or an alkali, and a step of obtaining the porous body. It is characterized by including a step of forming a dense phase by laminating a glass plate on the surface of the above. According to this method, a glass member can be easily manufactured.

本発明によれば、軽量なガラス部材を提供することが可能となる。 According to the present invention, it is possible to provide a lightweight glass member.

本発明のガラス部材の一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the glass member of this invention. 本発明のガラス部材の他の例を示す模式的断面図である。It is a schematic cross-sectional view which shows the other example of the glass member of this invention. 本発明のガラス部材の製造方法の第1の実施形態を示す模式的断面図である。It is a schematic cross-sectional view which shows 1st Embodiment of the manufacturing method of the glass member of this invention. 本発明のガラス部材の製造方法の第2の実施形態を示す模式的断面図である。It is a schematic cross-sectional view which shows the 2nd Embodiment of the manufacturing method of the glass member of this invention.

以下に、本発明のガラス部材の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the glass member of the present invention will be described. However, the present invention is not limited to the following embodiments.

図1は、本発明のガラス部材の一例を示す模式的断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the glass member of the present invention.

本発明のガラス部材1は内部が多孔質相2であって、表層部が緻密質相3であることを特徴とする。内部が多孔質相2から構成されているため、ガラス部材1を軽量化することができる。また、表層部が緻密質相3から構成されているため、孔4へのガス、水分等の侵入が生じにくくガラス部材1の劣化や質量変化を防止することができる。なお、「緻密質相」とは、孔径1nm以上の孔が形成されていない相を意味する。 The glass member 1 of the present invention is characterized in that the inside is a porous phase 2 and the surface layer portion is a dense phase 3. Since the inside is composed of the porous phase 2, the weight of the glass member 1 can be reduced. Further, since the surface layer portion is composed of the dense phase 3, gas, moisture and the like are less likely to enter the holes 4, and deterioration and mass change of the glass member 1 can be prevented. The "dense phase" means a phase in which pores having a pore diameter of 1 nm or more are not formed.

なお、ガラス部材1の形状は特に限定されないが、通常は板状である。そのほか、棒状、管状、レンズ状、ファイバー状、ブロック状と一般的なガラスの形状を有することができる。 The shape of the glass member 1 is not particularly limited, but is usually plate-shaped. In addition, it can have a general glass shape such as a rod shape, a tubular shape, a lens shape, a fiber shape, and a block shape.

ガラス部材1の表面粗さRaは、100nm以下、90nm以下、特に80nm以下であることが好ましい。Raが大きすぎると、表面の光散乱が大きくなりやすいため、ガラス部材1の可視域における光透過率が低下しやすくなる。Raの下限は特に限定されないが、現実的には0.05nm以上である。 The surface roughness Ra of the glass member 1 is preferably 100 nm or less, 90 nm or less, and particularly preferably 80 nm or less. If Ra is too large, light scattering on the surface tends to be large, so that the light transmittance of the glass member 1 in the visible region tends to decrease. The lower limit of Ra is not particularly limited, but is practically 0.05 nm or more.

多孔質相2における孔4の孔径は、100nm以下、90nm以下、特に80nm以下であることが好ましい。孔4の孔径が大きすぎると、光が散乱しやすくなり、ガラス部材1の可視光域における光透過率が低くなりやすい。孔4の孔径の下限は特に限定されないが、現実的には10nm以上である。 The pore diameter of the pore 4 in the porous phase 2 is preferably 100 nm or less, 90 nm or less, and particularly preferably 80 nm or less. If the hole diameter of the hole 4 is too large, light tends to be scattered and the light transmittance of the glass member 1 in the visible light region tends to be low. The lower limit of the hole diameter of the hole 4 is not particularly limited, but is actually 10 nm or more.

多孔質相2の孔4は、ガスを含むことが好ましい。ガスは、空気、窒素、酸素、水素、アルゴン等の希ガス、混合ガス等であることが好ましい。孔4にガスを含むことで、ガラス部材1を軽量化しやすくなる。ガラス部材1をより軽量化するためには、ガスが空気より軽い水素または窒素であることが特に好ましい。また、孔4が減圧状態であってもよい。 The pores 4 of the porous phase 2 preferably contain a gas. The gas is preferably air, a rare gas such as nitrogen, oxygen, hydrogen or argon, a mixed gas or the like. By containing gas in the holes 4, the weight of the glass member 1 can be easily reduced. In order to make the glass member 1 lighter, it is particularly preferable that the gas is hydrogen or nitrogen, which is lighter than air. Further, the hole 4 may be in a reduced pressure state.

緻密質相3の厚みは、0.1〜100μm、0.5〜90μm、特に1〜80μmであることが好ましい。緻密質相3の厚みが小さすぎると、ガラス部材1が割れやすくなる。一方、緻密質相3の厚みが大きすぎると、ガラス部材1を軽量化しにくくなる。 The thickness of the dense phase 3 is preferably 0.1 to 100 μm, 0.5 to 90 μm, and particularly preferably 1 to 80 μm. If the thickness of the dense phase 3 is too small, the glass member 1 is liable to break. On the other hand, if the thickness of the dense phase 3 is too large, it becomes difficult to reduce the weight of the glass member 1.

上記のような構成のガラス部材1の密度は、2.2g/cm未満、2.1g/cm以下、特に2g/cm以下になりやすい。ちなみに、密度と誘電率には正の相関があることが一般的に知られている。密度が小さいと誘電率も小さくなるため、本発明のガラス部材は、携帯電話、タブレットPC等の低誘電率が求められる基板材料としての利用も可能である。 The density of the glass member 1 having the above configuration tends to be less than 2.2 g / cm 3 , 2.1 g / cm 3 or less, and particularly 2 g / cm 3 or less. By the way, it is generally known that there is a positive correlation between density and permittivity. Since the dielectric constant decreases as the density decreases, the glass member of the present invention can also be used as a substrate material for which a low dielectric constant is required for mobile phones, tablet PCs, and the like.

また、可視光域においてヘイズ率が10%以下、9%以下、特に8%以下になりやすい。ヘイズ率が大きすぎると、ガラス部材1の透明性が損なわれるため、携帯電話等のディスプレイに使用しにくくなる。ヘイズ率の下限は特に限定されないが、現実的には、0.1%以上である。 Further, the haze rate tends to be 10% or less, 9% or less, and particularly 8% or less in the visible light region. If the haze rate is too large, the transparency of the glass member 1 is impaired, making it difficult to use for a display such as a mobile phone. The lower limit of the haze rate is not particularly limited, but in reality, it is 0.1% or more.

なお、孔4は、真球状、略楕円体、チューブ状等の様々な形状を有する。 The hole 4 has various shapes such as a true sphere, a substantially ellipsoid, and a tubular shape.

図2は、本発明のガラス部材の他の例を示す模式的断面図である。図2において、孔4は、表面から内部まで連結した貫通孔である。 FIG. 2 is a schematic cross-sectional view showing another example of the glass member of the present invention. In FIG. 2, the hole 4 is a through hole connected from the surface to the inside.

次に、本発明のガラス部材の製造方法について説明する。 Next, the method for manufacturing the glass member of the present invention will be described.

(第1の実施形態)
図3は、本発明のガラス部材の製造方法の第1の実施形態を示す模式的断面図である。
(First Embodiment)
FIG. 3 is a schematic cross-sectional view showing a first embodiment of the method for manufacturing a glass member of the present invention.

まず、次に述べるようなガラス組成になるように、ガラス原料を調合する。 First, a glass raw material is prepared so as to have a glass composition as described below.

ガラス組成としては、後述するように、熱処理すると分相しやすいホウケイ酸ガラスであることが好ましい。 As the glass composition, as will be described later, it is preferable that the borosilicate glass is easily phase-separated by heat treatment.

ホウケイ酸ガラスとしては、質量%で、SiO 50〜80%、B 1〜40%、RO(RはLi、Na、Kから選択されるすくなくともいずれか1種) 0〜20%、R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種) 0〜20%、Al 0〜10%、P 0〜10%、ZnO 0〜10%を含有するものであることが好ましい。以下に、各成分の含有量を上記のように特定した理由を説明する。なお、特に断りがない場合、以下の成分含有量に関する説明において、「%」は「質量%」を意味する。 As borosilicate glass, SiO 2 50 to 80%, B 2 O 3 to 40%, R 2 O (R is at least one selected from Li, Na, and K) 0 to 20 in mass%. %, R'O (R 'is Mg, Ca, at least one selected from Sr and Ba) 0~20%, Al 2 O 3 0~10%, P 2 O 5 0~10%, ZnO 0~ It preferably contains 10%. The reason why the content of each component is specified as described above will be described below. Unless otherwise specified, "%" means "mass%" in the following description of the component content.

SiOはガラスネットワークを形成する成分である。SiOの含有量は50〜80%、特に50〜75%であることが好ましい。SiOの含有量が少なすぎると、耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、溶融温度が高くなる傾向がある。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 50 to 80%, particularly preferably 50 to 75%. If the content of SiO 2 is too small, the weather resistance and mechanical strength tend to decrease. On the other hand, if the content of SiO 2 is too large, the melting temperature tends to be high.

はガラスネットワークを形成し、分相を促進する成分である。Bの含有量は1〜40%、2〜38%、2〜35%であることが好ましい。Bの含有量が少なすぎると、上記効果が得にくい。一方、Bの含有量が多すぎると、耐候性が低下しやすくなる。 B 2 O 3 is a component that forms a glass network and promotes phase separation. The content of B 2 O 3 is preferably 1 to 40%, 2 to 38%, and 2 to 35%. If the content of B 2 O 3 is too small, it is difficult to obtain the above effect. On the other hand, if the content of B 2 O 3 is too large, the weather resistance tends to decrease.

O(RはLi、Na及びKから選択される少なくとも1種)は溶融温度を低下させて溶融性を改善する成分であるとともに分相を促進させる成分である。ROの含有量は0〜20%、特に0.1〜18%であることが好ましい。ROの含有量が多すぎると、耐候性が低下する傾向がある。なお、LiO、NaO及びKOの含有量は各々0〜20%、特に0.1〜18%であることが好ましい。 R 2 O (R is at least one selected from Li, Na and K) is a component that lowers the melting temperature to improve meltability and promotes phase separation. The content of R 2 O 0 to 20%, particularly preferably from 0.1 to 18%. When the content of R 2 O is too large, the weather resistance tends to decrease. The contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 20%, particularly preferably 0.1 to 18%, respectively.

R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種)は溶融温度を低下させて溶融性を改善する成分である。R’Oの含有量は0〜20%、特に0.1〜18%であることが好ましい。R’Oの含有量が多すぎると、耐候性が低下する傾向がある。なお、MgO、CaO、SrO及びBaOの含有量は各々0〜20%、特に0.1〜18%であることが好ましい。 R'O (R'is at least one selected from Mg, Ca, Sr and Ba) is a component that lowers the melting temperature and improves the meltability. The content of R'O is preferably 0 to 20%, particularly preferably 0.1 to 18%. If the R'O content is too high, the weather resistance tends to decrease. The contents of MgO, CaO, SrO and BaO are each preferably 0 to 20%, particularly preferably 0.1 to 18%.

Alは耐候性や機械的強度を向上させる成分である。Alの含有量は0〜10%、0〜8%であることが好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves weather resistance and mechanical strength. The content of Al 2 O 3 is preferably 0 to 10% and 0 to 8%. If the content of Al 2 O 3 is too large, the meltability tends to decrease.

は溶融温度を低下させてかつ分相を促進させる成分である。Pの含有量は0〜10%、特に0.1〜8%であることが好ましい。ZnOの含有量が多すぎると、耐候性が低下する傾向がある。 P 2 O 5 is a component that lowers the melting temperature and promotes phase separation. The content of P 2 O 5 is preferably 0 to 10%, particularly preferably 0.1 to 8%. If the ZnO content is too high, the weather resistance tends to decrease.

ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜10%、特に0.1〜8%であることが好ましい。ZnOの含有量が多すぎると、耐候性が低下する傾向がある。 ZnO is a component that lowers the melting temperature and improves the meltability. The ZnO content is preferably 0 to 10%, particularly preferably 0.1 to 8%. If the ZnO content is too high, the weather resistance tends to decrease.

上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、TiO、ZrO、La、Ta、TeO、Nb、Gd、Y、Eu、Sb、SnO、P、Bi及びZnO等をそれぞれ15%以下、さらには10%以下、特に5%以下、合量で30%以下の範囲で含有させてもよい。 In addition to the above components, various components can be contained as long as the effects of the present invention are not impaired. For example, TiO 2 , ZrO 2 , La 2 O 3 , Ta 2 O 5 , TeO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , Eu 2 O 3 , Sb 2 O 3 , SnO 2 , P. 2 O 5 , Bi 2 O 3, ZnO and the like may be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less.

次に、調合したガラスバッチを白金坩堝に入れた後、1400〜1600℃で2〜48時間溶融する。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、300〜600℃で10分〜10時間徐冷を行いガラス母材5を得る。なお、得られたガラス母材5を所望の形状にするために、切削、研磨等の加工を施しても構わない。 Next, the prepared glass batch is placed in a platinum crucible and then melted at 1400 to 1600 ° C. for 2 to 48 hours. Next, the molten glass is poured onto a carbon plate, formed into a plate shape, and then slowly cooled at 300 to 600 ° C. for 10 minutes to 10 hours to obtain a glass base material 5. In addition, in order to make the obtained glass base material 5 into a desired shape, processing such as cutting and polishing may be performed.

得られたガラス母材5を熱処理し、2相(ガラス相6、ガラス相7)に分相させる。熱処理温度は、400〜800℃、450〜750℃、特に500〜700℃であることが好ましい。熱処理温度が高すぎると、ガラス母材5が軟化し、所望の形状を得にくくなる。一方、熱処理温度が低すぎると、ガラス母材5を分相させにくくなる。熱処理時間は、10分以上、1時間以上、特に3時間以上であることが好ましい。熱処理時間が短すぎると、ガラス母材5を分相させにくくなる。熱処理時間の上限は特に限定されないが、現実的には、180時間以下である。 The obtained glass base material 5 is heat-treated and split into two phases (glass phase 6 and glass phase 7). The heat treatment temperature is preferably 400 to 800 ° C. and 450 to 750 ° C., particularly preferably 500 to 700 ° C. If the heat treatment temperature is too high, the glass base material 5 softens and it becomes difficult to obtain a desired shape. On the other hand, if the heat treatment temperature is too low, it becomes difficult to separate the phases of the glass base material 5. The heat treatment time is preferably 10 minutes or more, 1 hour or more, and particularly preferably 3 hours or more. If the heat treatment time is too short, it becomes difficult to separate the phases of the glass base material 5. The upper limit of the heat treatment time is not particularly limited, but in reality, it is 180 hours or less.

次に、2相に分相させたガラス母材5を酸またはアルカリに浸漬させ、ガラス相7を除去し、孔を有する多孔質体8を得る。酸としては、塩酸、硫酸、硝酸、フッ酸を用いることができる。なお、これらの酸を混合して用いてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウムの水溶液を用いることができる。なお、これらのアルカリを混合して用いてもよい。酸やアルカリ水溶液の浸漬時間は1時間以上、10時間以上、特に20時間以上であることが好ましい。浸漬時間が短すぎると、多孔質体8を得にくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、多孔質体8を得にくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 Next, the glass base material 5 split into two phases is immersed in an acid or an alkali to remove the glass phase 7 to obtain a porous body 8 having pores. As the acid, hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid can be used. In addition, these acids may be mixed and used. As the alkali, an aqueous solution of sodium hydroxide or potassium hydroxide can be used. In addition, these alkalis may be mixed and used. The immersion time of the acid or alkaline aqueous solution is preferably 1 hour or longer, 10 hours or longer, and particularly preferably 20 hours or longer. If the immersion time is too short, it becomes difficult to obtain the porous body 8. The upper limit of the immersion time is not particularly limited, but in reality, it is 100 hours or less. The immersion temperature is preferably 20 ° C. or higher, 25 ° C. or higher, and particularly preferably 30 ° C. or higher. If the immersion temperature is too low, it becomes difficult to obtain the porous body 8. The upper limit of the immersion temperature is not particularly limited, but in reality, it is 95 ° C. or lower.

次に、多孔質体8を熱処理して緻密質相を形成することにより、多孔質体8の表面の孔を封孔する。このようにして、内部が多孔質相2であって、表層部が緻密質相3であるガラス部材1を得る。熱処理する方法としては、ガスバーナー、電気炉による熱処理が挙げられる。ガスバーナー、電気炉により多孔質体8の表面を熱処理し、多孔質体8の表面のみを軟化変形、緻密化させることにより、多孔質体8の表面の孔を封孔することが出来る。なお、電気炉による熱処理温度は、400〜800℃、450〜750℃、特に500〜700℃であることが好ましい。熱処理温度が高すぎると、多孔質体8の表面のみでなく内部までも軟化変形させてしまいやすくなる。一方、熱処理温度が低すぎると、多孔質体8の表面を軟化変形させにくく表面の孔を封孔させにくくなる。熱処理時間は、5分〜10時間、10分〜8時間、特に20分〜6時間であることが好ましい。熱処理時間が長すぎると、多孔質体8の表面のみでなく内部までも軟化変形させやすくなる。一方、熱処理時間が短すぎると、多孔質体8の表面を軟化変形させにくく表面の孔を封孔させにくくなる。 Next, the pores on the surface of the porous body 8 are sealed by heat-treating the porous body 8 to form a dense phase. In this way, a glass member 1 having a porous phase 2 inside and a dense phase 3 on the surface layer is obtained. Examples of the heat treatment method include heat treatment using a gas burner and an electric furnace. By heat-treating the surface of the porous body 8 with a gas burner or an electric furnace and softening, deforming, and densifying only the surface of the porous body 8, the holes on the surface of the porous body 8 can be sealed. The heat treatment temperature in the electric furnace is preferably 400 to 800 ° C. and 450 to 750 ° C., particularly preferably 500 to 700 ° C. If the heat treatment temperature is too high, not only the surface of the porous body 8 but also the inside is likely to be softened and deformed. On the other hand, if the heat treatment temperature is too low, the surface of the porous body 8 is less likely to be softened and deformed, and the pores on the surface are less likely to be sealed. The heat treatment time is preferably 5 minutes to 10 hours, 10 minutes to 8 hours, and particularly preferably 20 minutes to 6 hours. If the heat treatment time is too long, not only the surface of the porous body 8 but also the inside is easily softened and deformed. On the other hand, if the heat treatment time is too short, the surface of the porous body 8 is less likely to be softened and deformed, and the pores on the surface are less likely to be sealed.

得られたガラス部材1の組成は、質量%で、SiO 60〜99.5%、B 0〜5%、Al 0〜5%、RO(RはLi、Na、Kから選択されるすくなくともいずれか1種)0〜5%、R’O(R’はMg、Ca、Sr及びBaから選択される少なくとも1種) 0〜5%になりやすい。 The resulting composition of the glass member 1, by mass%, SiO 2 60~99.5%, B 2 O 3 0~5%, Al 2 O 3 0~5%, R 2 O (R is Li, Na , At least one selected from K) 0-5%, R'O (R'is at least one selected from Mg, Ca, Sr and Ba) 0-5%.

(第2の実施形態)
図4は、本発明のガラス部材の製造方法の第2の実施形態を示す模式的断面図である。
(Second Embodiment)
FIG. 4 is a schematic cross-sectional view showing a second embodiment of the method for manufacturing a glass member of the present invention.

多孔質体8の表面の孔を封孔する工程以外は、第1の実施形態と同様である。 The procedure is the same as that of the first embodiment except for the step of sealing the pores on the surface of the porous body 8.

第2の実施形態では、多孔質体8の表面に、ガラス板9を貼り合せることにより緻密質相を形成し、表面の孔を封孔させ、ガラス部材1を得る。 In the second embodiment, a glass plate 9 is attached to the surface of the porous body 8 to form a dense phase, and the holes on the surface are sealed to obtain the glass member 1.

多孔質体8とガラス板9の貼り合せ方法としては、熱処理し多孔質体8とガラス板9を融着させる方法、ガラスフリットまたは樹脂による接合、原子拡散接合、表面活性化接合、陽極接合等を用いることが出来る。 As a method of bonding the porous body 8 and the glass plate 9, a method of fusing the porous body 8 and the glass plate 9 by heat treatment, bonding with glass frit or resin, atomic diffusion bonding, surface activation bonding, anode bonding, etc. Can be used.

ガラス板9の厚みは、1〜100μm、5〜90μm、特に10〜80μmであることが好ましい。ガラス板9の厚みが小さすぎると、貼り合せの際に破損する恐れがある。ガラス板9の厚みが大きすぎると、軽量なガラスが得にくくなる。 The thickness of the glass plate 9 is preferably 1 to 100 μm, 5 to 90 μm, and particularly preferably 10 to 80 μm. If the thickness of the glass plate 9 is too small, it may be damaged during bonding. If the thickness of the glass plate 9 is too large, it becomes difficult to obtain lightweight glass.

多孔質体8とガラス板9の熱膨張係数(30〜300℃)の差は、10ppm/℃以下、8ppm/℃以下、特に5ppm/℃以下であることが好ましい。熱膨張係数の差が大きすぎると、多孔質体8、ガラス板9に応力がかかり剥離等の破損が生じやすくなる。 The difference in the coefficient of thermal expansion (30 to 300 ° C.) between the porous body 8 and the glass plate 9 is preferably 10 ppm / ° C. or lower, 8 ppm / ° C. or lower, and particularly preferably 5 ppm / ° C. or lower. If the difference in the coefficient of thermal expansion is too large, stress is applied to the porous body 8 and the glass plate 9, and damage such as peeling is likely to occur.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.

(実施例1)
まず、質量%で、SiO 63%、Al 3%、B 27%、NaO 7%のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れた後、1550℃で24時間溶融した。ガラスバッチの溶融に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、500℃で30分間徐冷した。得られた試料を、切削、研磨し、20×20mm×0.5mm(厚み)のガラス母材を得た。
(Example 1)
First, in mass%, SiO 2 63%, Al 2 O 3 3%, B 2 O 3 27%, such that the Na 2 O 7% of the glass composition, placed in a glass batch was prepared glass raw materials in a platinum crucible After that, it was melted at 1550 ° C. for 24 hours. When the glass batch was melted, it was stirred using a platinum stirrer to homogenize it. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then slowly cooled at 500 ° C. for 30 minutes. The obtained sample was cut and polished to obtain a glass base material having a size of 20 × 20 mm × 0.5 mm (thickness).

得られたガラス母材を電気炉にて540℃で72時間熱処理し、分相させた。分相後のガラス母材を1規定の硫酸(90℃)中に50時間浸漬した後、純水で洗浄し、多孔質体を得た。 The obtained glass base material was heat-treated at 540 ° C. for 72 hours in an electric furnace to separate the phases. The glass base material after phase separation was immersed in 1N sulfuric acid (90 ° C.) for 50 hours and then washed with pure water to obtain a porous body.

得られた多孔質体の表面をガスバーナーで熱処理し、表面の孔を封孔しガラス部材を得た。 The surface of the obtained porous body was heat-treated with a gas burner to seal the holes on the surface to obtain a glass member.

得られたガラス部材の断面を光学顕微鏡で観察したところ、ガラス部材の内部は多孔質であり、表層部が緻密質であった。また、得られたガラス部材の組成、ヘイズ率、内部の細口分布のピーク、表面粗さRa、密度を測定した。ガラス部材の組成は、質量%でSiO 96%、B 3%、NaO 1%であった。ヘイズ率は2.5%、内部の細孔分布のピークは4nm、表面粗さRaは12nm、密度は2.0g/cmであった。 When the cross section of the obtained glass member was observed with an optical microscope, the inside of the glass member was porous and the surface layer portion was dense. In addition, the composition, haze rate, peak of narrow mouth distribution inside, surface roughness Ra, and density of the obtained glass member were measured. The composition of the glass member, SiO 2 96% by mass%, B 2 O 3 3% , was Na 2 O 1%. The haze ratio was 2.5%, the peak of the internal pore distribution was 4 nm, the surface roughness Ra was 12 nm, and the density was 2.0 g / cm 3 .

(実施例2)
実施例1で作製した多孔質体の全面に、厚み30μmの超薄板ガラス(日本電気硝子社製G−Leaf)を、電気炉にて750℃で3時間熱処理し貼り合せることにより、ガラス部材を得た。
(Example 2)
An ultrathin glass (G-Leaf manufactured by Nippon Electric Glass Co., Ltd.) having a thickness of 30 μm is heat-treated in an electric furnace at 750 ° C. for 3 hours and bonded to the entire surface of the porous body produced in Example 1 to form a glass member. Obtained.

得られたガラス部材の断面を光学顕微鏡で観察したところガラス部材の内部は多孔質であり、表層部が緻密質であった。また、得られたガラス部材のヘイズ率、内部の細口径分布のピーク、表面粗さRa、密度を測定した。ヘイズ率は2.5%、内部の細孔径分布のピークは4nm、表面粗さRaは9nm、密度は2.1g/cmであった。 When the cross section of the obtained glass member was observed with an optical microscope, the inside of the glass member was porous and the surface layer portion was dense. In addition, the haze rate of the obtained glass member, the peak of the small diameter distribution inside, the surface roughness Ra, and the density were measured. The haze ratio was 2.5%, the peak of the internal pore size distribution was 4 nm, the surface roughness Ra was 9 nm, and the density was 2.1 g / cm 3 .

なお、組成は、エネルギー分散型X線分析装置(堀場製作所社製 EX−250)により測定した。 The composition was measured with an energy dispersive X-ray analyzer (EX-250 manufactured by HORIBA, Ltd.).

ヘイズ率は、紫外可視近赤外分析光度計(島津製作所社製 UV−3100PC)を用い、JIS K7361−1−1997に基づいて測定した。 The haze rate was measured based on JIS K7361-1-1997 using an ultraviolet-visible near-infrared analysis photometer (UV-3100PC manufactured by Shimadzu Corporation).

内部の細孔分布のピークは、細孔分布測定装置(カンタクローム社製 QUADRASORB evo)により測定した。 The peak of the internal pore distribution was measured by a pore distribution measuring device (QUADRASORB evo manufactured by Kantachrome).

表面粗さRaは、表面粗さ測定器(小坂研究所社製 SE700)により測定した。 The surface roughness Ra was measured by a surface roughness measuring instrument (SE700 manufactured by Kosaka Research Institute).

密度は、アルキメデス法により測定した。 Density was measured by the Archimedes method.

本発明のガラス部材は、自動車等の移動体用の軽量窓、テレビ等の軽量表示デバイス、電子配線基板の低誘電率基材として好適である。 The glass member of the present invention is suitable as a lightweight window for a moving body such as an automobile, a lightweight display device such as a television, and a low dielectric constant base material for an electronic wiring board.

1 ガラス部材
2 多孔質相
3 緻密質相
4 孔
5 ガラス母材
6 ガラス相
7 ガラス相
8 多孔質体
9 ガラス板
1 Glass member 2 Porous phase 3 Dense phase 4 Holes 5 Glass base material 6 Glass phase 7 Glass phase 8 Porous body 9 Glass plate

Claims (8)

内部が多孔質相であって、表層部が緻密質相であり、且つ表面粗さRaが100nm以下であることを特徴とするガラス部材。 A glass member characterized in that the inside is a porous phase, the surface layer portion is a dense phase, and the surface roughness Ra is 100 nm or less. 内部が多孔質相であって、表層部が緻密質相であり、且つ可視光域においてヘイズ率が10%以下であることを特徴とするガラス部材。 A glass member characterized in that the inside is a porous phase, the surface layer portion is a dense phase, and the haze rate is 10% or less in the visible light region. 多孔質相における孔の孔径が100nm以下であることを特徴とする請求項1又は2に記載のガラス材。 Glass member according to claim 1 or 2 pore size of pores in the porous phase is characterized in that at 100nm or less. 緻密質相の厚みが0.1〜100μmであることを特徴とする請求項1〜3のいずれかに記載のガラス部材。 The glass member according to any one of claims 1 to 3, wherein the thickness of the dense phase is 0.1 to 100 μm. 多孔質相の孔にガスを含む、または多孔質相の孔内が減圧状態であることを特徴とする請求項1〜4のいずれかに記載のガラス部材。 The glass member according to any one of claims 1 to 4, wherein the pores of the porous phase contain gas, or the inside of the pores of the porous phase is in a reduced pressure state. 密度が2.2g/cm未満であることを特徴とする請求項1〜5のいずれかに記載のガラス部材。 The glass member according to any one of claims 1 to 5, wherein the density is less than 2.2 g / cm 3. 請求項1〜6のいずれかに記載のガラス部材を製造するための方法であって、
ガラス母材を熱処理し、2相に分相させる工程、一方の相を酸またはアルカリで除去することにより多孔質体を得る工程、前記多孔質体の表面を熱処理して緻密質相を形成する工程を含むことを特徴とするガラス部材の製造方法。
A method for manufacturing the glass member according to any one of claims 1 to 6.
A step of heat-treating the glass base material to split it into two phases, a step of obtaining a porous body by removing one phase with an acid or an alkali, and a step of heat-treating the surface of the porous body to form a dense phase. A method for manufacturing a glass member, which comprises a process.
ガラス母材を熱処理し、2相に分相させる工程、一方の相を酸またはアルカリで除去することにより多孔質体を得る工程、及び、前記多孔質体の表面にガラス板を貼り合せることにより緻密質相を形成する工程を含むことを特徴とするガラス部材の製造方法。 A step of heat-treating the glass base material to split it into two phases, a step of obtaining a porous body by removing one phase with an acid or an alkali, and a step of laminating a glass plate on the surface of the porous body. A method for manufacturing a glass member, which comprises a step of forming a dense phase.
JP2017002328A 2017-01-11 2017-01-11 Glass member and its manufacturing method Active JP6955190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017002328A JP6955190B2 (en) 2017-01-11 2017-01-11 Glass member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017002328A JP6955190B2 (en) 2017-01-11 2017-01-11 Glass member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018111629A JP2018111629A (en) 2018-07-19
JP6955190B2 true JP6955190B2 (en) 2021-10-27

Family

ID=62910879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002328A Active JP6955190B2 (en) 2017-01-11 2017-01-11 Glass member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6955190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189731B2 (en) * 2018-10-31 2022-12-14 古河電気工業株式会社 heat pipe
US20220315480A1 (en) * 2019-11-11 2022-10-06 Nippon Electric Glass Co., Ltd. Porous glass member production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872132U (en) * 1981-11-11 1983-05-16 株式会社豊田中央研究所 foam glass plate
JPS60176932A (en) * 1984-02-17 1985-09-11 Inax Corp Glazed inorganic expansion molded article and production thereof
JPS6458541A (en) * 1987-08-31 1989-03-06 Central Glass Co Ltd Decorative vitreous porous body and its preparation
JPH04160038A (en) * 1990-10-19 1992-06-03 Central Glass Co Ltd Reinforced vetrous foamed body
JP4951799B2 (en) * 2005-01-11 2012-06-13 宮崎県 Porous glass having phase-separated glass as precursor and method for producing the same
EP2118029B1 (en) * 2007-02-28 2017-07-12 Corning Incorporated Method for manufacturing extruded glass structures
KR101880769B1 (en) * 2009-12-11 2018-07-20 스미토모덴키고교가부시키가이샤 Silica-based hydrogen separation material and manufacturing method therefor, as well as hydrogen separation module and hydrogen production apparatus having the same
JP2013203554A (en) * 2012-03-27 2013-10-07 Nitta Corp Porous glass molded body and method for producing the same
CN105765499A (en) * 2013-11-14 2016-07-13 旭硝子株式会社 Cover glass for pen input device and method for manufacturing same

Also Published As

Publication number Publication date
JP2018111629A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP7347449B2 (en) Crystallized glass, chemically strengthened glass, and semiconductor support substrates
EP2607326B1 (en) Alkali-free glass
EP2639205B1 (en) Alkali-free glass
WO2014003188A1 (en) Toughened glass substrate and manufacturing process therefor
KR101490828B1 (en) High-refractive-index glass
CN104254501A (en) Process for producing chemically strengthened glass
JP2006221942A (en) Glass set for manufacturing plasma display panel substrate
WO2015056645A1 (en) Non-alkali glass
US8999871B2 (en) High refractive index glass
JP6315399B2 (en) Glass member
WO2020150422A1 (en) Low dielectric loss glasses for electronic devices
JP6955190B2 (en) Glass member and its manufacturing method
WO2016013612A1 (en) Glass with high refractive index
US20160200624A1 (en) Glass and method for producing same
JP2004075494A (en) Glass substrate and its manufacturing method
EP4201902A1 (en) Chemically strengthened glass and crystallized glass, and manufacturing methods therefor
JP2008056508A (en) Glass substrate for flat panel display
JP6249218B2 (en) Glass manufacturing method and glass
WO2006070686A1 (en) Glass set for preparation of front substrate of plasma display panel
JP6331076B2 (en) Glass film and composite substrate using the same
JP2016064970A (en) Phase splitting glass
JP6331077B2 (en) Phase separation glass and composite substrate using the same
JP2005162536A (en) Glass substrate for flat panel display device
WO2022118512A1 (en) Chemically strengthened glass, and electronic device housing
JP2015227272A (en) Phase-split glass and composite substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6955190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150