JP4951799B2 - Porous glass having phase-separated glass as precursor and method for producing the same - Google Patents

Porous glass having phase-separated glass as precursor and method for producing the same Download PDF

Info

Publication number
JP4951799B2
JP4951799B2 JP2005003830A JP2005003830A JP4951799B2 JP 4951799 B2 JP4951799 B2 JP 4951799B2 JP 2005003830 A JP2005003830 A JP 2005003830A JP 2005003830 A JP2005003830 A JP 2005003830A JP 4951799 B2 JP4951799 B2 JP 4951799B2
Authority
JP
Japan
Prior art keywords
glass
porous
phase
porous glass
phase separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005003830A
Other languages
Japanese (ja)
Other versions
JP2006193341A (en
Inventor
雅人 久木崎
正高 清水
忠夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Prefecture
Original Assignee
Miyazaki Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Prefecture filed Critical Miyazaki Prefecture
Priority to JP2005003830A priority Critical patent/JP4951799B2/en
Publication of JP2006193341A publication Critical patent/JP2006193341A/en
Application granted granted Critical
Publication of JP4951799B2 publication Critical patent/JP4951799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、分相性ガラスを前駆体とする多孔質ガラス及びその製造方法に関する。   The present invention relates to a porous glass having a phase-separated glass as a precursor and a method for producing the same.

ガラスのミクロ相分離を利用して製造される多孔質ガラスは、均一に制御された独特の多孔構造を有し、孔径を一定の範囲内で変化させることができる。このように他の多孔体にはない優れた特徴を生かし、例えば吸着剤、マイクロキャリア担体、分画精度に優れた高機能分離膜、単分散乳化素子、単分散気泡生成素子等の工業的利用が期待されている。   Porous glass produced by utilizing microphase separation of glass has a unique and uniformly controlled porous structure, and the pore diameter can be changed within a certain range. Utilizing the excellent features not found in other porous materials, industrial applications such as adsorbents, microcarrier carriers, highly functional separation membranes with excellent fractionation accuracy, monodisperse emulsifying elements, monodispersed bubble generating elements, etc. Is expected.

しかし、従来の技術では、耐水性及び耐アルカリ性に優れ、かつ、工業的に量産できる多孔質ガラス及びその成形体を製造することは困難である。すなわち、製造工程中の酸溶出工程において、細孔内に不溶解物が析出するため、均一な細孔を有する多孔質ガラスを安定して大量に製造することが困難である。   However, it is difficult to produce a porous glass and a molded body thereof that are excellent in water resistance and alkali resistance and can be industrially mass-produced by conventional techniques. That is, in the acid elution step in the production process, insoluble substances are deposited in the pores, and it is difficult to stably produce a large amount of porous glass having uniform pores.

また、多孔質ガラスの前駆体となる分相性基礎ガラスを管状や板状に成形する場合、従来技術による分相性基礎ガラスでは、成形時に結晶が生成するため、所望の特性を有する分相性基礎ガラス成形体を製造することが困難である。一方、工業的に量産可能なガラス組成域の多孔質ガラス及びその成形体では、耐水性及び耐アルカリ性は十分ではない。   In addition, when forming a phase-separating basic glass, which is a precursor of porous glass, into a tubular or plate-like shape, the phase-separating basic glass according to the prior art generates crystals at the time of molding. It is difficult to produce a molded body. On the other hand, water resistance and alkali resistance are not sufficient in a porous glass having a glass composition range that can be industrially mass-produced and molded articles thereof.

さらに、多孔質ガラス及びその成形体を量産化し、コストダウンを図るためには、廃ガラス等の安価な原料を使用することが望まれていた。   Furthermore, in order to mass-produce the porous glass and its molded body and reduce the cost, it has been desired to use an inexpensive raw material such as waste glass.

ところで、分相性基礎ガラスに Al23を添加すれば、多孔質ガラスの化学的耐久性を向上できることが知られている。このような分相性基礎ガラスとしてNa2O−CaO−Al23−B23−SiO2系ガラス(特許文献1)及びNa2O−CaO−MgO−Al23−B23−SiO2系ガラス(特許文献2)が挙げられる。 By the way, it is known that the chemical durability of the porous glass can be improved by adding Al 2 O 3 to the phase separation base glass. Na 2 O—CaO—Al 2 O 3 —B 2 O 3 —SiO 2 glass (Patent Document 1) and Na 2 O—CaO—MgO—Al 2 O 3 —B 2 O as such phase separation basic glass 3 -SiO 2 type glass (patent document 2) is mentioned.

しかし、これらの基礎ガラスでも、管状、板状、粒子等の形状に成形するとき、CaOとSiO2を主成分とする結晶性物質がガラスに発生し、所望の特性を有する多孔質ガラスを製造することが困難である。 However, even when these basic glasses are formed into a shape such as a tube, a plate, or a particle, a crystalline material mainly composed of CaO and SiO 2 is generated in the glass to produce a porous glass having desired characteristics. Difficult to do.

他方、分相性基礎ガラスにZrO2を添加することにより、多孔質ガラスの化学的耐久性を大幅に向上できることが知られている。このような分相性基礎ガラスとしては、MO−Al23−B23ZrO −SiO系ガラス(特許文献3)がある。ところが、この基礎ガラスは、その酸溶出工程において細孔内に不溶解物が析出するという問題がある。この現象が貫通孔(通路)内で生じた場合は、不溶解物が通路の一部を塞ぐような状態となる結果、細孔径の均一化が妨げられるだけでなく、気孔率を高めることも困難となる。
特開昭57−140334号 特許第1518989号 特開昭62−202839号
On the other hand, it is known that the chemical durability of the porous glass can be greatly improved by adding ZrO 2 to the phase separation base glass. Such phase separation base glass, MO-Al 2 O 3 -B 2 O 3 - there are ZrO 2 -SiO 2 glass (Patent Document 3). However, this basic glass has a problem that insoluble substances are deposited in the pores in the acid elution step. If this phenomenon occurs in the through-hole (passage), the insoluble matter may block part of the passage, which not only prevents the uniform pore diameter but also increases the porosity. It becomes difficult.
JP 57-140334 A Japanese Patent No. 1518989 JP-A-62-202839

本発明の主な目的は、工業的に量産できる多孔質ガラスの製造方法を提供することにある。また、本発明は、耐水性及び耐アルカリ性に優れた多孔質ガラスを提供することも目的とする。   A main object of the present invention is to provide a method for producing a porous glass that can be industrially mass-produced. Another object of the present invention is to provide a porous glass excellent in water resistance and alkali resistance.

本発明者は、上記の従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の組成のガラスを用いることにより上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above-mentioned problems of the prior art, the present inventor has found that the above object can be achieved by using a glass having a specific composition, and has completed the present invention.

すなわち、本発明は、下記の多孔質ガラス及びその製造方法に係る。   That is, this invention relates to the following porous glass and its manufacturing method.

1. SiO:40〜60重量%、ZrO:1〜10 重量%、B:15〜40 重量%、Al:6〜15重量%、NaO:1〜20重量%、KO:1〜10重量%及びCaO:10〜20重量%を含む分相性基礎ガラスを600〜800℃に熱処理した後、酸溶液と接触させることにより酸可溶成分を溶出除去することを特徴とする多孔質ガラスの製造方法。 1. SiO 2: 40 to 60 wt%, ZrO 2: 1 to 10 wt%, B 2 O 3: 15~40 wt%, Al 2 O 3: 6~15 wt%, Na 2 O: 1 to 20% by weight, The phase-separated basic glass containing K 2 O: 1 to 10 % by weight and CaO: 10 to 20 % by weight is heat-treated at 600 to 800 ° C., and then contacted with an acid solution to elute and remove acid-soluble components. A method for producing porous glass, which is characterized.

2. 分相性基礎ガラスが、加熱下において成形して得られる成形体である、前記項1に記載の製造方法。   2. Item 2. The method according to Item 1, wherein the phase-separating basic glass is a molded product obtained by molding under heating.

3. 分相性基礎ガラスが、分相速度が異なる分相性基礎ガラスの複数が層状に積層されたものである、前記項1に記載の製造方法。   3. Item 2. The manufacturing method according to Item 1, wherein the phase-separating basic glass is obtained by laminating a plurality of phase-separating basic glasses having different phase separation speeds.

4. 分相性基礎ガラスが、廃ガラス及び火山ガラスの少なくとも1種を含む原料を溶融することにより得られる、前記項1に記載の製造方法。   4). Item 2. The production method according to Item 1, wherein the phase-separated basic glass is obtained by melting a raw material containing at least one of waste glass and volcanic glass.

5. 前記項1〜4のいずれかに記載の製造方法により得られる多孔質ガラス。   5). Porous glass obtained by the manufacturing method according to any one of Items 1 to 4.

6. 平均細孔径が1nm〜25μmの範囲にある、前記項5に記載の多孔質ガラス。   6). Item 6. The porous glass according to Item 5, wherein the average pore diameter is in the range of 1 nm to 25 µm.

7. 管状又は板状の膜状多孔体である、前記項5又は6に記載の多孔質ガラス。   7). Item 7. The porous glass according to Item 5 or 6, wherein the porous glass is a tubular or plate-like membranous porous body.

8. 非対称構造を有する、前記項5〜7のいずれかに記載の多孔質ガラス。   8). Item 8. The porous glass according to any one of Items 5 to 7, which has an asymmetric structure.

本発明の製造方法によれば、特定の組成からなる分相性基礎ガラスを前駆体として用いているので、酸溶液による処理工程において、細孔内での不溶解物の析出を防止することができるとともに、寸法精度及び化学的耐久性(特に、耐水性及び耐アルカリ性)に優れた多孔質ガラスを提供することができる。これにより、所望の均一な細孔径、細孔容積(気孔率)等を有する多孔質ガラスをより確実に得ることができる。   According to the production method of the present invention, since a phase-separated basic glass having a specific composition is used as a precursor, it is possible to prevent precipitation of insoluble matters in the pores in the treatment step using an acid solution. In addition, a porous glass excellent in dimensional accuracy and chemical durability (particularly, water resistance and alkali resistance) can be provided. Thereby, the porous glass which has a desired uniform pore diameter, pore volume (porosity), etc. can be obtained more reliably.

また、本発明の製造方法では、分相性基礎ガラスの組成として特定の組成(とりわけ、特定比率のK2O、B23及びZrO2の組み合わせ)を採用していることから、これを加熱下で成形する際に結晶が生成しないので、多孔質ガラスの成形体(例えば、膜状成形体)を効率的に製造することができる。換言すれば、本発明の製造方法では、分相性基礎ガラスとして、加熱下において成形して得られる成形体を用いることができるので、本発明の製造方法は多孔質ガラスの成形体の量産にも適している。 Further, in the production method of the present invention, a specific composition (particularly, a combination of K 2 O, B 2 O 3 and ZrO 2 in a specific ratio) is adopted as the composition of the phase separation basic glass. Since crystals are not formed when molding under the above, a porous glass molded body (for example, a film-shaped molded body) can be efficiently produced. In other words, in the production method of the present invention, a molded body obtained by molding under heating can be used as the phase separation base glass. Therefore, the production method of the present invention can also be used for mass production of a molded body of porous glass. Is suitable.

さらに、分相性基礎ガラスの原料として安価な廃ガラス及び/又は火山ガラスを用いる場合には、製造コストを大幅に抑えることもできる。   Further, when inexpensive waste glass and / or volcanic glass is used as the raw material for the phase separation base glass, the production cost can be greatly reduced.

分相速度の異なる複数の分相性基礎ガラスを層状に積層する場合には、非対称構造を有する多孔質ガラスの膜状多孔体を得ることもできる。   When a plurality of phase-separating basic glasses having different phase separation speeds are laminated in layers, a film-like porous body of porous glass having an asymmetric structure can also be obtained.

このような製造方法により得られる多孔質ガラスは、例えば吸着剤、マイクロキャリア担体、分画精度に優れた高機能分離膜、単分散乳化素子、単分散気泡生成素子等として利用することが可能である。   The porous glass obtained by such a production method can be used as, for example, an adsorbent, a microcarrier carrier, a high-performance separation membrane with excellent fractionation accuracy, a monodisperse emulsifying element, a monodispersed bubble generating element, and the like. is there.

1.多孔質ガラスの製造方法
本発明の多孔質ガラスの製造方法は、SiO2:40〜60重量%、ZrO2:1〜10 重量%、B23:15〜40 重量%、Al23:6〜15重量%、Na2O:1〜20重量%、K2O:1〜10重量%及びCaO:5〜30重量%を含む分相性基礎ガラスを600〜800℃に熱処理した後、酸溶液と接触させることにより酸可溶成分を溶出除去することを特徴とする。
1. Method for producing a porous glass manufacturing process invention of the porous glass, SiO 2: 40 to 60 wt%, ZrO 2: 1~10 wt%, B 2 O 3: 15~40 wt%, Al 2 O 3 : 6 to 15 wt%, Na 2 O: 1 to 20 wt%, K 2 O: 1 to 10 wt% and CaO: after heat treatment the phase separation base glass containing 5 to 30 wt% in 600 to 800 ° C., The acid-soluble component is eluted and removed by contacting with an acid solution.

分相性基礎ガラス
本発明の製造方法において、前駆体として用いる分相性基礎ガラスは、SiO2:40〜60重量%、ZrO2:1〜10 重量%、B23:15〜40 重量%、Al23:6〜15重量%、Na2O:1〜20重量%、K2O:1〜10重量%及びCaO:5〜30重量%を含む。
The method of manufacturing a phase separation base glass the present invention, phase separation basic glass used as precursors, SiO 2: 40 to 60 wt%, ZrO 2: 1 to 10 wt%, B 2 O 3: 15~40 wt%, al 2 O 3: 5 to 30% by weight: 6 to 15 wt%, Na 2 O: 1 to 20 wt%, K 2 O: 1 to 10 wt% and CaO.

本発明では、上記のような組成を採用することにより、優れた特性を有する多孔質ガラスを工業的規模で生産することができる。特に、所定量のZrO2を含有させ、かつ、ZrO2、CaO及びB23の含有量を制御することにより、1)分相性基礎ガラスを成形する際の結晶性物質の生成を効果的に回避することができ、2)分相させた後に実施される酸溶出工程において、細孔内での不溶解物の析出を効果的に回避することが可能となる。また、上記組成により、耐水性・耐アルカリ性に優れる多孔質ガラスが得られる。これにより、従来品よりも優れた特性を発揮できる多孔質ガラス(又はその成形体)を量産することが可能になる。 In the present invention, by adopting the composition as described above, porous glass having excellent characteristics can be produced on an industrial scale. In particular, by containing a predetermined amount of ZrO 2 and controlling the contents of ZrO 2 , CaO, and B 2 O 3 , 1) effective generation of crystalline substances when forming phase-separated basic glass 2) In the acid elution step carried out after phase separation, it is possible to effectively avoid precipitation of insoluble substances in the pores. Moreover, the said composition can obtain the porous glass excellent in water resistance and alkali resistance. This makes it possible to mass-produce porous glass (or a molded body thereof) that can exhibit characteristics superior to those of conventional products.

SiO2は、通常は40〜60重量%とし、特に45〜55重量%とすることが好ましい。ZrO2は、通常は1〜10重量%とし、特に2〜5重量%とすることが好ましい。特に、ZrO2を上記範囲に設定することにより、多孔質ガラスを製造するときの酸溶出工程において、細孔内に不溶解物の析出を防止できる。これにより、均一性の高い細孔径を有する多孔質ガラスをより確実に得ることができる。B23は、通常は15〜40重量%とし、特に17〜25重量%とすることが好ましい。分相性基礎ガラスにZrO2を加えると分相速度が低下し、孔径の小さな多孔質ガラス(膜状多孔体)が得られる傾向があるが、これにK2OとともにB23を適量加えると分相速度が増し、細孔径の大きな多孔質ガラス又はその膜状多孔体が得られる。Al23は、通常は6〜15重量%とし、特に7〜10重量%とすることが好ましい。Na2Oは、通常は1〜20重量%とし、特に5〜10重量%とすることが好ましい。K2Oは、通常は1〜10重量%とし、特に2〜5重量%とすることが好ましい。K2OをB23とともに適量加えると分相速度が増加し、細孔径の大きな多孔質ガラス又はその膜状多孔体を得ることができる。CaOは、通常は5〜30重量%とし、特に10〜20重量%とすることが好ましい。 SiO 2 is usually 40 to 60% by weight, and preferably 45 to 55% by weight. ZrO 2 is usually 1 to 10% by weight, and particularly preferably 2 to 5% by weight. In particular, by setting ZrO 2 in the above range, it is possible to prevent precipitation of insoluble matter in the pores in the acid elution step when producing porous glass. Thereby, the porous glass which has a highly uniform pore diameter can be obtained more reliably. B 2 O 3 is usually 15 to 40% by weight, particularly preferably 17 to 25% by weight. When ZrO 2 is added to the phase-separating basic glass, the phase separation speed decreases, and a porous glass (film-like porous body) with a small pore diameter tends to be obtained. To this, an appropriate amount of B 2 O 3 is added together with K 2 O. As a result, the phase separation speed increases, and a porous glass having a large pore diameter or a membranous porous body thereof is obtained. Al 2 O 3 is usually 6 to 15% by weight, preferably 7 to 10% by weight. Na 2 O is usually 1 to 20% by weight, and preferably 5 to 10% by weight. K 2 O is usually 1 to 10% by weight, and preferably 2 to 5% by weight. When an appropriate amount of K 2 O is added together with B 2 O 3 , the phase separation speed is increased, and a porous glass having a large pore diameter or a membranous porous body thereof can be obtained. CaO is usually 5 to 30% by weight, and preferably 10 to 20% by weight.

分相性基礎ガラスは、単一の相から構成されていても良いし、あるいは分相速度が異なる複数の相から構成されていても良い。分相速度は、分相性基礎ガラスの組成を変えることにより制御することができる。例えば、Al23は分相速度を低下させる役割があり、K2O、CaO、B23等は分相速度を高める効果がある。これらを適宜組み合わせることにより、所望の分相速度を得ることができる。 The phase separation basic glass may be composed of a single phase, or may be composed of a plurality of phases having different phase separation speeds. The phase separation speed can be controlled by changing the composition of the phase separation base glass. For example, Al 2 O 3 has a role of decreasing the phase separation speed, and K 2 O, CaO, B 2 O 3 and the like have an effect of increasing the phase separation speed. By combining these appropriately, a desired phase separation speed can be obtained.

また、分相速度が異なる複数の相から構成されている場合は、複数の相がどのような形態で構成されていても良いが、特に層状に積層された形態(膜状多孔体)であることが望ましい。   In addition, when it is composed of a plurality of phases with different phase separation speeds, the plurality of phases may be configured in any form, but in particular, it is in a form laminated in layers (membrane porous body). It is desirable.

分相性基礎ガラスの製造方法は、上記組成となるように原料を調製するほかは、公知の方法を用いて製造することができる。例えば、各成分の供給源を含む原料を加熱溶融し、必要に応じて所望の形態に成形することにより製造することができる。加熱溶融する場合の加熱温度は、原料組成等により適宜設定すれば良いが、通常は1350〜1450℃(特に1380〜1430℃)の範囲とすることが好ましい。   The method for producing the phase separation basic glass can be produced using a known method except that the raw materials are prepared so as to have the above composition. For example, it can be produced by heating and melting a raw material containing a supply source of each component and forming it into a desired form as necessary. The heating temperature in the case of heating and melting may be appropriately set depending on the raw material composition or the like, but is usually preferably in the range of 1350 to 1450 ° C (particularly 1380 to 1430 ° C).

例えば、上記原料として炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、酸化マグネシウム、酸化アルミニウム、ホウ酸、酸化ジルコニウム及び二酸化珪素を均一に混合し、1350〜1450℃に加熱溶融すれば良い。この場合、原料は、前記のとおりNa2O、 K2O、CaO、Al23、B23、ZrO2及びSiO2の成分を含むものであればどのような原料を用いても良い。また、一般に、酸化物として重量百分率が1%未満の成分が混在しても、基礎ガラスの分相、分相ガラスの酸処理ならびに多孔質ガラスの性質には影響を及ぼさない。 For example, sodium carbonate, potassium carbonate, calcium carbonate, magnesium oxide, aluminum oxide, boric acid, zirconium oxide and silicon dioxide may be uniformly mixed as the raw material and heated and melted at 1350 to 1450 ° C. In this case, any raw material may be used as long as it contains the components Na 2 O, K 2 O, CaO, Al 2 O 3 , B 2 O 3 , ZrO 2 and SiO 2 as described above. good. In general, even when an oxide having a weight percentage of less than 1% is mixed, the phase separation of the base glass, the acid treatment of the phase separation glass, and the properties of the porous glass are not affected.

また、多孔質ガラスを所定の形状にする場合は、分相性基礎ガラスを合成した後、概ね1000〜1200℃の温度下で管状、板状、球状等の各種の形状に成形すれば良い。例えば、上記原料を溶融して分相性基礎ガラスを合成した後、溶融温度から温度を降下させて1000〜1200℃に維持した状態で成形する方法を好適に採用することができる。本発明では、前記のとおり、所定の組成を採用しているので、成形時における結晶性物質の生成を効果的に抑制ないしは防止することができ、所望の成形体をより確実に得ることができる。   Moreover, when making porous glass into a predetermined | prescribed shape, after synthesize | combining phase separation basic glass, what is necessary is just to shape | mold into various shapes, such as a tube shape, plate shape, and spherical shape, at the temperature of 1000-1200 degreeC. For example, after the above raw materials are melted to synthesize phase-separating basic glass, a method in which the temperature is lowered from the melting temperature and maintained at 1000 to 1200 ° C. can be suitably employed. In the present invention, as described above, since a predetermined composition is adopted, the generation of a crystalline substance during molding can be effectively suppressed or prevented, and a desired molded body can be obtained more reliably. .

上記原料の一部又は全部として、廃ガラス及び火山ガラスの少なくとも1種を含む原料を好適に用いることもできる。これにより、資源の有効利用を図れるとともに、製造コストを安くすることができる。廃ガラスとしては、例えばガラス瓶、窓ガラス、ガラスコップ等のソーダ石灰ガラスのほか、耐熱性ホウ珪酸ガラス等を挙げることができる。また、火山ガラスとして、シラスは、特にAl23、SiO2等の供給原として好適に用いることができる。 A raw material containing at least one of waste glass and volcanic glass can be suitably used as part or all of the raw material. As a result, the resources can be effectively used and the manufacturing cost can be reduced. Examples of the waste glass include soda-lime glass such as a glass bottle, window glass, and glass cup, and heat-resistant borosilicate glass. Further, as a volcanic glass, shirasu can be suitably used as a supply source of Al 2 O 3 , SiO 2 and the like.

分相速度が異なる複数の相から構成されているものを製造する場合は、例えば異なる組成をもつ2種以上の分相性基礎ガラスを溶融状態で積層すれば良い。   When manufacturing what consists of a plurality of phases with different phase separation speeds, for example, two or more types of phase separation basic glasses having different compositions may be laminated in a molten state.

熱処理工程
本発明の製造方法では、上記の分相性基礎ガラスを熱処理する。これにより、分相性基礎ガラスを分相させる。
Heat treatment step In the production method of the present invention, the phase separation base glass is heat treated. Thereby, a phase separation basic glass is phase-separated.

なお、本発明において「分相」とは、主として、Na2O−K2O−CaO−B23系ガラス相とAl23−ZrO2−SiO2系ガラス相に分離する状態をいう。この現象は、分相したガラスの目視による不透明化又はガラスの透過率測定(分光光度計等による測定)によって確認することができる。 In the present invention, the term “phase separation” mainly refers to a state of separation into a Na 2 O—K 2 O—CaO—B 2 O 3 glass phase and an Al 2 O 3 —ZrO 2 —SiO 2 glass phase. Say. This phenomenon can be confirmed by visually opacifying the phase-separated glass or measuring the transmittance of the glass (measurement with a spectrophotometer or the like).

熱処理温度は600〜800℃とし、好ましくは650〜750℃とする。かかる温度範囲内において、得られる多孔質ガラスの細孔径を制御することができる。   The heat treatment temperature is 600 to 800 ° C, preferably 650 to 750 ° C. Within such a temperature range, the pore diameter of the obtained porous glass can be controlled.

熱処理時間は、通常20〜60時間の範囲内において、得られる分相性基礎ガラスの所望の細孔径等に応じて適宜設定することができる。   The heat treatment time can be appropriately set in accordance with the desired pore diameter of the obtained phase-separating basic glass, usually within a range of 20 to 60 hours.

また、熱処理雰囲気は特に制限されないが、通常は大気中又は酸化性雰囲気中とすれば良い。   In addition, the heat treatment atmosphere is not particularly limited, but is usually in the air or in an oxidizing atmosphere.

酸処理工程
熱処理工程により得られる分相性ガラスを酸溶液と接触させることにより酸可溶成分を溶出除去する。
The acid -soluble component is eluted and removed by bringing the phase separation glass obtained by the heat treatment step into contact with an acid solution.

酸溶液と接触させる方法は特に限定されない。例えば、1)前記ガラスを酸溶液に浸漬する方法、2)前記ガラスに酸溶液を吹き付ける方法、3)前記ガラスに酸溶液を塗布する方法等のいずれであっても良い。特に、本発明では、酸溶液に浸漬する方法が好ましい。   The method of contacting with the acid solution is not particularly limited. For example, it may be any of 1) a method of immersing the glass in an acid solution, 2) a method of spraying an acid solution onto the glass, and 3) a method of applying an acid solution to the glass. In particular, in the present invention, a method of immersing in an acid solution is preferable.

酸溶液としては、例えば塩酸、硝酸等の無機酸等を好ましく用いることができる。   As the acid solution, for example, inorganic acids such as hydrochloric acid and nitric acid can be preferably used.

また、酸溶液は、通常は水を溶媒とした水溶液の形態で好適に使用することができる。酸溶液の濃度は、通常は0.2〜1規定の範囲内で適宜設定すれば良い。   The acid solution can be suitably used in the form of an aqueous solution usually using water as a solvent. What is necessary is just to set the density | concentration of an acid solution suitably in the range of 0.2-1 normal normally.

酸処理工程における温度(酸溶液の温度)は、特に限定的でないが、一般的には30〜75℃の範囲内とすれば良い。   The temperature in the acid treatment step (the temperature of the acid solution) is not particularly limited, but generally may be in the range of 30 to 75 ° C.

酸処理工程の時間は、対象となるガラスの組成、大きさ等に応じて適宜定めることができるが、通常は2〜10時間程度とすれば良い。   Although the time of an acid treatment process can be suitably determined according to a composition, a magnitude | size, etc. of object glass, Usually, what is necessary is just about 2 to 10 hours.

2.多孔質ガラス
本発明の多孔質ガラスは、前記の製造方法により得られるものである。
2. Porous glass The porous glass of the present invention is obtained by the production method described above.

多孔質ガラスの平均細孔径は、特に限定的でないが、1nm〜25μmの範囲、特に2nm〜20μmの範囲にあることが望ましい。   The average pore diameter of the porous glass is not particularly limited, but is desirably in the range of 1 nm to 25 μm, particularly in the range of 2 nm to 20 μm.

多孔質ガラスの気孔率は、通常は20〜80%、特に30〜70%であることが望ましい。   The porosity of the porous glass is usually 20 to 80%, preferably 30 to 70%.

多孔質ガラスの形状は、特に制限されず、例えば管状、板状等の膜状成形体が挙げられる。これらの形状は、多孔質ガラスの用途等に応じて適宜選択することができる。   The shape of the porous glass is not particularly limited, and examples thereof include a tubular or plate-like film-like molded body. These shapes can be appropriately selected according to the use of the porous glass.

本発明の多孔質ガラスのうち、特に分相速度が異なる複数の相から構成されている分相性基礎ガラスを前駆体として用いた場合には、異なる物性(気孔率、細孔径等)を兼ね備えた多孔質ガラスを得ることができる。例えば、前記のように、各層を構成する分相性基礎ガラスの分相速度を制御することにより、分相速度の異なる分相性基礎ガラスが層状に積層された膜状多孔体が得られる。この膜状多孔体は、各層が均一な細孔を維持しながら膜の厚み方向に細孔径の勾配ができる。例えば、3層からなる膜状多孔体の場合、第1層の平均細孔径が50nm、第2層の平均細孔径が100nm、第3層の平均細孔径が500nmという傾斜型膜状多孔体を構成することもできる。すなわち、積層順に平均細孔径が大きくなるような(又は小さくなるような)非対称構造を有する膜状多孔体をつくることが可能である。このような非対称構造を有する膜状多孔体は、膜抵抗を著しく低減する効果があるので、例えば膜分離、膜乳化等の用途に好適である。   Among the porous glasses of the present invention, particularly when a phase-separating basic glass composed of a plurality of phases having different phase separation speeds is used as a precursor, it has different physical properties (porosity, pore diameter, etc.). Porous glass can be obtained. For example, as described above, by controlling the phase separation speed of the phase separation basic glass constituting each layer, a film-like porous body in which phase separation basic glasses having different phase separation speeds are laminated in layers is obtained. This membranous porous body has a pore diameter gradient in the thickness direction of the membrane while each layer maintains uniform pores. For example, in the case of a three-layer membranous porous body, an inclined membranous porous body having an average pore diameter of the first layer of 50 nm, an average pore diameter of the second layer of 100 nm, and an average pore diameter of the third layer of 500 nm is used. It can also be configured. That is, it is possible to produce a membranous porous body having an asymmetric structure in which the average pore diameter increases (or decreases) in the order of lamination. Since the membranous porous body having such an asymmetric structure has the effect of significantly reducing the membrane resistance, it is suitable for applications such as membrane separation and membrane emulsification.

以下、実施例を示し、本発明を更に詳しく説明する。ただし、本発明の範囲は、実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to the examples.

実施例1
分相性ガラスの主要成分が、表1の組成となるように、二酸化珪素、ホウ酸、炭酸カルシウム、無水炭酸ナトリウム、酸化アルミニウム及び酸化ジルコニウムを調合し、1350℃で溶融して基礎ガラスを合成した。続いて、そのガラス溶融物の温度が1100℃に降下したところで、ダウンドロー式ガラス管曳き装置により直径10mm、肉厚0.5mm、長さ500mmの管状の分相性基礎ガラス(成形体)を得た。
Example 1
Silicon dioxide, boric acid, calcium carbonate, anhydrous sodium carbonate, aluminum oxide, and zirconium oxide were prepared so that the main components of the phase separation glass had the composition shown in Table 1, and the base glass was synthesized by melting at 1350 ° C. . Subsequently, when the temperature of the glass melt is lowered to 1100 ° C., a tubular phase-separating basic glass (molded body) having a diameter of 10 mm, a thickness of 0.5 mm, and a length of 500 mm is obtained by a downdraw type glass tube rolling device. It was.

Figure 0004951799
Figure 0004951799

次に、上記分相性基礎ガラスを、精密に温度保持できる炉の中で750℃、20時間、熱処理した後、30℃の0.5規定塩酸に8時間浸漬して酸に可溶なガラス相を溶出させて取り除いた。これを水洗、乾燥して目的とする管状多孔質ガラス膜を得た。   Next, after heat-treating the above phase-separating basic glass in a furnace capable of accurately maintaining the temperature at 750 ° C. for 20 hours, it is immersed in 0.5 N hydrochloric acid at 30 ° C. for 8 hours to dissolve the acid-soluble glass phase. Was removed by elution. This was washed with water and dried to obtain the desired tubular porous glass membrane.

得られた多孔質ガラス膜の水銀圧入法により求めた細孔分布のグラフを図1に示し、走査電子顕微鏡による観察結果を図2に示す。これらの図から、多孔質ガラス膜は、三次元的に絡み合った均一な細孔を有することが明らかである。   A graph of pore distribution obtained by mercury porosimetry of the obtained porous glass film is shown in FIG. 1, and the observation result by a scanning electron microscope is shown in FIG. From these figures, it is clear that the porous glass film has uniform pores that are entangled three-dimensionally.

試験例1
実施例1で得られた多孔質ガラスの耐アルカリ性を調べた。試験は、多孔質ガラスを水酸化ナトリウム水溶液(濃度1モル/L、温度30℃)に浸漬し、その重量減少量を求めた。その結果を図3に示す。なお、比較のため、市販の多孔質ガラス(Porous Vycor Glass)及び先行技術(特許第1518959号)の試験結果も図3に併せて示す。
Test example 1
The alkali resistance of the porous glass obtained in Example 1 was examined. In the test, the porous glass was immersed in an aqueous sodium hydroxide solution (concentration 1 mol / L, temperature 30 ° C.), and the weight loss was determined. The result is shown in FIG. For comparison, the test results of commercially available porous glass (Porous Vycor Glass) and the prior art (Japanese Patent No. 1518959) are also shown in FIG.

試験例2
実施例1における分相性基礎ガラスの成形時の結晶生成の有無について調べた。試験は、実施例1のガラス溶融物を1000℃に徐冷し、20時間保持した後の試料をX線回折分析することにより実施した。その結果を図4(b)に示す。なお、比較のため、先行技術(特許第1518959号)の試験結果も図4(a)に併せて示す。
Test example 2
The presence or absence of crystal formation during the molding of the phase-separating basic glass in Example 1 was examined. The test was performed by slowly cooling the glass melt of Example 1 to 1000 ° C. and holding the sample for 20 hours by X-ray diffraction analysis. The result is shown in FIG. For comparison, the test result of the prior art (Japanese Patent No. 1518959) is also shown in FIG.

比較例1
分相性基礎ガラスのZrO2の含有量を11.3重量%となるようにしたほかは、実施例1と同様にして多孔質ガラス(B)を製造した。得られた多孔質ガラスの細孔分布を測定した。その結果を図5に示す。なお、図5には、実施例1の多孔質ガラス(A)の細孔分布も併せて示す。
Comparative Example 1
Porous glass (B) was produced in the same manner as in Example 1 except that the content of ZrO 2 in the phase-separated basic glass was 11.3 wt%. The pore distribution of the obtained porous glass was measured. The result is shown in FIG. FIG. 5 also shows the pore distribution of the porous glass (A) of Example 1.

比較例2
分相性基礎ガラスのZrO2の含有量を15.2重量%となるようにしたほかは、実施例1と同様にして多孔質ガラス(C)を製造した。得られた多孔質ガラスの細孔分布を測定した。その結果を図5に示す。
Comparative Example 2
Porous glass (C) was produced in the same manner as in Example 1 except that the content of ZrO 2 in the phase separation base glass was 15.2% by weight. The pore distribution of the obtained porous glass was measured. The result is shown in FIG.

実施例1で得られた多孔質ガラス膜の細孔分布のグラフである。2 is a graph of pore distribution of the porous glass membrane obtained in Example 1. FIG. 実施例1で得られた管状多孔質ガラス膜の走査電子顕微鏡観察による結果(イメージ図)である。It is a result (image figure) by the scanning electron microscope observation of the tubular porous glass membrane obtained in Example 1. 試験例1の結果を示すグラフである。6 is a graph showing the results of Test Example 1. 実施例1における分相性基礎ガラス等のX線回折分析の結果を示す図である。It is a figure which shows the result of X-ray diffraction analysis, such as a phase separation basic glass in Example 1. FIG. 実施例1及び比較例1〜2で得られた多孔質ガラスの細孔分布を示す図である。It is a figure which shows the pore distribution of the porous glass obtained in Example 1 and Comparative Examples 1-2.

Claims (8)

SiO:40〜60重量%、ZrO:1〜10 重量%、B:15〜40 重量%、Al:6〜15重量%、NaO:1〜20重量%、KO:1〜10重量%及びCaO:10〜20重量%を含む分相性基礎ガラスを600〜800℃に熱処理した後、酸溶液と接触させることにより酸可溶成分を溶出除去することを特徴とする多孔質ガラスの製造方法。 SiO 2: 40 to 60 wt%, ZrO 2: 1 to 10 wt%, B 2 O 3: 15~40 wt%, Al 2 O 3: 6~15 wt%, Na 2 O: 1 to 20% by weight, The phase-separated basic glass containing K 2 O: 1 to 10 % by weight and CaO: 10 to 20 % by weight is heat-treated at 600 to 800 ° C., and then contacted with an acid solution to elute and remove acid-soluble components. A method for producing porous glass, which is characterized. 分相性基礎ガラスが、加熱下において成形して得られる成形体である、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose phase-separation basic glass is a molded object obtained by shape | molding under a heating. 分相性基礎ガラスが、分相速度が異なる分相性基礎ガラスの複数が層状に積層されたものである、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the phase-separating basic glass is obtained by laminating a plurality of phase-separating basic glasses having different phase separation speeds. 分相性基礎ガラスが、廃ガラス及び火山ガラスの少なくとも1種を含む原料を溶融することにより得られる、請求項1に記載の製造方法。 The manufacturing method of Claim 1 obtained by melt | dissolving the raw material containing at least 1 sort (s) of waste glass and volcanic glass for phase separation basic glass. 請求項1〜4のいずれかに記載の製造方法により得られる多孔質ガラス。 The porous glass obtained by the manufacturing method in any one of Claims 1-4. 平均細孔径が1nm〜25μmの範囲にある、請求項5に記載の多孔質ガラス。 The porous glass according to claim 5, wherein the average pore diameter is in the range of 1 nm to 25 μm. 管状又は板状の膜状多孔体である、請求項5又は6に記載の多孔質ガラス。 The porous glass according to claim 5 or 6, wherein the porous glass is a tubular or plate-like membranous porous body. 非対称構造を有する、請求項5〜7のいずれかに記載の多孔質ガラス。

The porous glass according to any one of claims 5 to 7, which has an asymmetric structure.

JP2005003830A 2005-01-11 2005-01-11 Porous glass having phase-separated glass as precursor and method for producing the same Active JP4951799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003830A JP4951799B2 (en) 2005-01-11 2005-01-11 Porous glass having phase-separated glass as precursor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003830A JP4951799B2 (en) 2005-01-11 2005-01-11 Porous glass having phase-separated glass as precursor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006193341A JP2006193341A (en) 2006-07-27
JP4951799B2 true JP4951799B2 (en) 2012-06-13

Family

ID=36799715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003830A Active JP4951799B2 (en) 2005-01-11 2005-01-11 Porous glass having phase-separated glass as precursor and method for producing the same

Country Status (1)

Country Link
JP (1) JP4951799B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564680B2 (en) * 2009-07-21 2014-07-30 地方独立行政法人東京都立産業技術研究センター Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam
JP2011063465A (en) * 2009-09-16 2011-03-31 Spg Techno Kk Container formed with porous glass membrane on surface thereof
JP2011241130A (en) 2010-05-20 2011-12-01 Canon Inc Phase-separated glass and porous glass
JP2011246334A (en) * 2010-05-28 2011-12-08 Spg Techno Kk Laminated porous glass membrane and method of manufacturing the same
JP5796936B2 (en) * 2010-06-01 2015-10-21 キヤノン株式会社 Method for producing porous glass
JP2012091996A (en) * 2010-09-30 2012-05-17 Canon Inc Method for producing porous glass
JP5882689B2 (en) 2011-11-18 2016-03-09 キヤノン株式会社 Optical member manufacturing method and imaging device manufacturing method
JP6049401B2 (en) * 2011-11-18 2016-12-21 キヤノン株式会社 OPTICAL MEMBER, IMAGING DEVICE, AND OPTICAL MEMBER MANUFACTURING METHOD
JP6016582B2 (en) 2011-12-15 2016-10-26 キヤノン株式会社 Manufacturing method of optical member
JP6211247B2 (en) * 2012-03-14 2017-10-11 学校法人五島育英会 Functional network structure
JP6010791B2 (en) * 2012-07-18 2016-10-19 エス・ピー・ジーテクノ株式会社 Manufacturing method of phase separation glass with high standard dimensional accuracy and its porous glass
JP6955190B2 (en) * 2017-01-11 2021-10-27 日本電気硝子株式会社 Glass member and its manufacturing method
JP7303480B2 (en) * 2018-06-25 2023-07-05 日本電気硝子株式会社 porous glass member
WO2021095545A1 (en) * 2019-11-11 2021-05-20 日本電気硝子株式会社 Method for producing porous glass member
US20230286853A1 (en) * 2020-07-13 2023-09-14 Nippon Electric Glass Co., Ltd. Porous glass member
CN114146578A (en) * 2021-12-08 2022-03-08 内蒙古工业大学 Glass porous membrane, preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106437A (en) * 1984-10-26 1986-05-24 Asahi Glass Co Ltd Glass composition for porosity and porous glass
JP2002160941A (en) * 2000-11-22 2002-06-04 Miyazaki Prefecture Double layer structure porous glass membrane and method for making the same
JP2004091270A (en) * 2002-08-30 2004-03-25 S P G Techno Kk Inorganic porous membrane having continuous asymmetrical pore diameter and its manufacturing method

Also Published As

Publication number Publication date
JP2006193341A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4951799B2 (en) Porous glass having phase-separated glass as precursor and method for producing the same
JP6081920B2 (en) Fusion molded, ion-exchanged glass ceramic
Kukizaki Large-scale production of alkali-resistant Shirasu porous glass (SPG) membranes: Influence of ZrO2 addition on crystallization and phase separation in Na2O–CaO–Al2O3–B2O3–SiO2 glasses; and alkali durability and pore morphology of the membranes
JP2011241130A (en) Phase-separated glass and porous glass
US7032412B2 (en) Methods of manufacturing glass sheets with reduced blisters
KR20200087863A (en) Black lithium silicate glass ceramic
JP7356787B2 (en) Lithium-containing aluminosilicate glass
JPS6366777B2 (en)
JP2013544229A5 (en)
US9359244B2 (en) Alumina-rich glasses and methods for making the same
JPH0360476A (en) Preparation of rorous layered sintered body
JP2012193101A (en) Method for producing porous glass, and method for producing optical member
CN113365957B (en) Ion-exchangeable opaque zinc spinel-spinel glass ceramics with high hardness and modulus
US3873329A (en) Glass-ceramic article
US20100139320A1 (en) Hollow porous-wall glass microspheres and composition and process for controlling pore size and pore volume
KR20210097746A (en) Black Beta-Spodumene Lithium Silicate Glass Ceramic
Fernandes et al. Structure–property relationships and densification-crystallization behaviours of simplified lithium disilicate glass compositions
JP2012091996A (en) Method for producing porous glass
JP2002160941A (en) Double layer structure porous glass membrane and method for making the same
EP3573934B1 (en) High refractive index titanium-niobium phosphate glass
JP3393063B2 (en) Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
JPH10158037A (en) Antimicrobial glass and its production
US9278882B2 (en) Method of producing glass
Kord et al. Effect of ZrO2 addition on crystallization behaviour, porosity and chemical–mechanical properties of a CaO–TiO2–P2O5 microporous glass ceramic
US20080248942A1 (en) Porous phosphorous glass compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110725

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

R150 Certificate of patent or registration of utility model

Ref document number: 4951799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250