JP5564680B2 - Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam - Google Patents
Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam Download PDFInfo
- Publication number
- JP5564680B2 JP5564680B2 JP2009170391A JP2009170391A JP5564680B2 JP 5564680 B2 JP5564680 B2 JP 5564680B2 JP 2009170391 A JP2009170391 A JP 2009170391A JP 2009170391 A JP2009170391 A JP 2009170391A JP 5564680 B2 JP5564680 B2 JP 5564680B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- foam
- glass foam
- phosphoric acid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims description 362
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title claims description 142
- 239000006260 foam Substances 0.000 title claims description 137
- 229910000147 aluminium phosphate Inorganic materials 0.000 title claims description 71
- 239000003463 adsorbent Substances 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 230000008635 plant growth Effects 0.000 title claims description 8
- 239000001963 growth medium Substances 0.000 title claims description 7
- 239000011148 porous material Substances 0.000 claims description 43
- 239000011575 calcium Substances 0.000 claims description 25
- 239000005361 soda-lime glass Substances 0.000 claims description 24
- 229910019142 PO4 Inorganic materials 0.000 claims description 23
- 239000010452 phosphate Substances 0.000 claims description 23
- 239000000843 powder Substances 0.000 claims description 22
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 21
- 229910052788 barium Inorganic materials 0.000 claims description 21
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052791 calcium Inorganic materials 0.000 claims description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 239000003513 alkali Substances 0.000 claims description 16
- 239000005388 borosilicate glass Substances 0.000 claims description 16
- 238000010304 firing Methods 0.000 claims description 14
- 239000004088 foaming agent Substances 0.000 claims description 11
- 239000010459 dolomite Substances 0.000 claims description 10
- 229910000514 dolomite Inorganic materials 0.000 claims description 10
- 238000005187 foaming Methods 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- HHSPVTKDOHQBKF-UHFFFAOYSA-J calcium;magnesium;dicarbonate Chemical compound [Mg+2].[Ca+2].[O-]C([O-])=O.[O-]C([O-])=O HHSPVTKDOHQBKF-UHFFFAOYSA-J 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 57
- 239000002245 particle Substances 0.000 description 35
- 238000001179 sorption measurement Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 31
- 238000010521 absorption reaction Methods 0.000 description 24
- 238000002156 mixing Methods 0.000 description 24
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 20
- 241000196324 Embryophyta Species 0.000 description 18
- 239000002699 waste material Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 15
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000004065 wastewater treatment Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 239000002351 wastewater Substances 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000004064 recycling Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000003911 water pollution Methods 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000010840 domestic wastewater Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012851 eutrophication Methods 0.000 description 3
- 239000010842 industrial wastewater Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052567 struvite Inorganic materials 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000030609 dephosphorylation Effects 0.000 description 2
- 238000006209 dephosphorylation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002686 phosphate fertilizer Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FNDXFUBHPXBGMD-UHFFFAOYSA-N OP(O)O.OP(O)(O)=O Chemical compound OP(O)O.OP(O)(O)=O FNDXFUBHPXBGMD-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- FPWJLQXCGHQXLL-UHFFFAOYSA-N [P].OP(O)(O)=O Chemical compound [P].OP(O)(O)=O FPWJLQXCGHQXLL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Landscapes
- Cultivation Of Plants (AREA)
- Water Treatment By Sorption (AREA)
- Glass Compositions (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、排水処理に用いるガラス発泡体及び該ガラス発泡体の製造方法に関し、特に排水中のリン酸を回収するのに適した高いリン酸吸着能を有し、且つ排水処理に使用後のガラス発泡体の植物栽培への利用を容易にするため、植物に利用可能な水を保持できる孔隙に富むガラス発泡体、ガラス発泡体を含むリン酸吸着剤、ガラス発泡体を含む植物育成用培地及びガラス発泡体の製造方法に関する。 The present invention relates to a glass foam used for wastewater treatment and a method for producing the glass foam, and particularly has high phosphoric acid adsorption ability suitable for recovering phosphoric acid in wastewater, and after use for wastewater treatment. In order to facilitate the use of glass foam in plant cultivation, a glass foam rich in pores capable of holding water that can be used in plants, a phosphate adsorbent containing glass foam, and a plant growth medium containing glass foam And a method for producing a glass foam.
近年、人類の産業活動が活発化することで地球規模の環境問題が起こっており、地球環境保護の観点から大気や水域における有害物質の排出規制がなされ、大気や水域の浄化が早急に必要とされている。例えば、水域に関しては、生活排水や産業排水、その他畜産排泄物等に由来するリン酸は、水質汚濁や水系の富栄養化の要因物質であり、生態系の著しい変化や食物連鎖の崩壊等の深刻な問題を引き起こす。この問題に対処するために、水質汚濁防止法や湖沼水質保全特別措置法などが制定され、リン酸の排出基準が定められている。近年、このような水質汚濁をさらに厳しく規制するため、第6次水質総量規制(東京湾に流入する汚濁負荷量の削減目標を定めたものである)では、排水中のリン酸濃度のさらなる低減が要求されている。 In recent years, global environmental problems have occurred as a result of increased human industrial activities. From the viewpoint of protecting the global environment, regulations on the release of harmful substances in the atmosphere and water have been made, and there is an urgent need for purification of the atmosphere and water. Has been. For example, with regard to water areas, phosphoric acid derived from domestic wastewater, industrial wastewater, and other livestock excreta is a cause of water pollution and eutrophication of water systems, such as significant changes in ecosystems and disruption of food chains. Causes serious problems. In order to deal with this problem, the Water Pollution Control Law, the Lake Water Quality Special Measures Law, etc. have been enacted, and phosphoric acid emission standards have been established. In recent years, in order to more strictly regulate such water pollution, the 6th Total Water Quality Regulation (which sets a target for reducing the pollution load flowing into Tokyo Bay) has further reduced the concentration of phosphoric acid in wastewater. Is required.
排水中のリン酸濃度を低減する方法として、嫌気・好気法のような生物処理法、凝集沈殿法、晶析脱リン酸法、吸着法などがある。
嫌気・好気法についてはリン酸の除去効率が高いが、設備導入コストが高額であるという問題がある。また、凝集沈殿法については簡便・安価であるが、リン酸と凝集剤との反応効率が低く、スラッジや汚泥が大量に発生するため、その処理が問題である。
Examples of methods for reducing the concentration of phosphoric acid in wastewater include biological treatment methods such as anaerobic and aerobic methods, coagulation precipitation methods, crystallization dephosphorylation methods, and adsorption methods.
The anaerobic / aerobic method has high phosphoric acid removal efficiency, but has the problem of high equipment installation costs. The coagulation sedimentation method is simple and inexpensive, but the reaction efficiency is low because phosphoric acid and the coagulant have a low reaction efficiency, and a large amount of sludge and sludge are generated.
そして、晶析脱リン酸法については、リン酸の除去効率が高いが、設備導入コスト、反応条件の調整やスケール除去のための維持管理コストが高額であり、更に、吸着法はリン酸の除去効率が高く、簡便であるが、排水処理に使用後の吸着剤の処分が問題となっている。これは既往の吸着剤がリン酸を強く吸着しているために肥料としての利用が困難であったためである。 As for the crystallization dephosphorylation method, the removal efficiency of phosphoric acid is high, but the equipment introduction cost, the adjustment of reaction conditions and the maintenance management cost for removing the scale are expensive. Although the removal efficiency is high and simple, disposal of the adsorbent after use for wastewater treatment is a problem. This is because the existing adsorbent strongly adsorbs phosphoric acid, making it difficult to use it as a fertilizer.
上述のように、近年排水の水質規制が強化され、排水中のリン酸濃度の更なる低減が要求されている。しかし、実際の排水(原水)のリン酸濃度は一事業所についてみても大きく変動する場合があり、上記のいずれかの処理法を用いたとしても処理水中のリン酸濃度についても原水中のリン酸濃度に連動して大きく変動する。
その結果、一過的に規制値(基準値)を超過することが懸念されるため、このような一過的な規制値超過に対応するために、既設の排水処理設備の後段で用いられるような簡便でリン酸の除去効率の高い処理法が求められている。
As described above, water quality regulations on wastewater have been strengthened in recent years, and further reduction of the phosphoric acid concentration in the wastewater has been demanded. However, the concentration of phosphoric acid in the actual wastewater (raw water) may fluctuate greatly even at one establishment. Even if one of the above treatment methods is used, the concentration of phosphoric acid in the treated water Fluctuates greatly with acid concentration.
As a result, it is feared that the regulation value (reference value) may be exceeded temporarily, so that it will be used in the subsequent stage of the existing wastewater treatment facility in order to cope with such a transient regulation value excess. There is a need for a simple and simple treatment method with high phosphoric acid removal efficiency.
この処理法として上記吸着法の適用が考えられ、下記特許文献3には、リン酸の吸着剤として、アルミニウム、第1鉄、第2鉄若しくはカルシウムの硫酸塩及び塩化物から選ばれる1種以上を含む母核と、その周囲に形成された被覆層とからなり、粒径が0.5〜40mmの範囲である水質浄化用粒剤が開示されている。 As this treatment method, application of the above adsorption method is conceivable, and in Patent Document 3 below, as an adsorbent for phosphoric acid, one or more selected from aluminum, ferrous iron, ferric iron or calcium sulfate and chloride There is disclosed a water-purifying granule that has a mother nucleus containing water and a coating layer formed around the core and has a particle diameter in the range of 0.5 to 40 mm.
上記吸着法によれば、既存の吸着剤は吸着したリン酸の脱離・再生のために0.2N程度と濃度の高い硫酸で処理する必要があり、発生する廃液の処分が問題である。例えば、上記特許文献3によれば、リン酸の金属塩が捕捉された濾過材の再利用には、0.5%程度の希硫酸又は希塩酸に約2分間浸漬することにより、リン酸の金属塩を除去できることが記載されている。
リン酸は水質汚濁や水系の富栄養化を引き起こす要因物質でもあるが、植物の生育に欠かせない必須元素であり、植物栽培の肥料としても利用価値がある。リン酸肥料の原料であるリン鉱石は枯渇の危機にある希少資源であり、近年、資源価格が急騰している。そのため、リン酸の効率的な回収・再資源化の必要性が高まりつつある。したがって、吸着したリン酸をリン酸肥料として再資源化するためには、容易に再生・脱離されるような吸着剤であることが望ましい。また、環境問題の点からも再生利用(リサイクル)できる吸着剤であることが好ましい。
According to the above adsorption method, the existing adsorbent must be treated with sulfuric acid having a high concentration of about 0.2 N in order to desorb and regenerate the adsorbed phosphoric acid, and disposal of the generated waste liquid is a problem. For example, according to Patent Document 3, for reuse of a filter medium in which a metal salt of phosphoric acid is captured, the metal of phosphoric acid is immersed in about 0.5% dilute sulfuric acid or dilute hydrochloric acid for about 2 minutes. It is described that salt can be removed.
Phosphoric acid is a causative substance that causes water pollution and eutrophication of water systems, but is an essential element indispensable for plant growth and is also useful as a fertilizer for plant cultivation. Phosphate ore, the raw material for phosphate fertilizer, is a scarce resource that is in danger of being exhausted, and in recent years resource prices have soared. Therefore, the need for efficient recovery and recycling of phosphoric acid is increasing. Therefore, in order to recycle the adsorbed phosphoric acid as phosphate fertilizer, it is desirable that the adsorbent be easily regenerated / desorbed. Also, from the viewpoint of environmental problems, an adsorbent that can be recycled (recycled) is preferable.
一方、一般家庭や事業所から排出されるガラスを粉砕し、高温において気体を発生させる資材を混合、焼成させることで製造されたガラス発泡体がガラスリサイクル品として販売されている。このガラス発泡体は、その軽量性・多孔質性・断熱性などを生かし、主に土木・建築資材として利用されている。
そして、本発明者らは、以前、ガラス発泡体がリン酸を吸着できる吸着剤である(以下、リン酸吸着能を有するという場合がある)ことを明らかにした(上記特許文献2)。しかし、既存のガラス発泡体のリン酸吸着能力は低く、排水処理に適用できるものではなかった。この方法は、ガラス粉末に発泡剤として炭酸カルシウムを混合し、加熱して冷却させる工程を経るものである。これは既存のガラス発泡体が土木、建築等の軽量資材の用途に限ったものであり、リン酸吸着という観点からは、未だ不十分なものであった。
On the other hand, glass foam manufactured by pulverizing glass discharged from ordinary households and business establishments, mixing and firing materials that generate gas at high temperatures, is sold as a recycled glass product. This glass foam is mainly used as civil engineering and building materials, taking advantage of its light weight, porosity and heat insulation.
And the present inventors previously revealed that the glass foam is an adsorbent capable of adsorbing phosphoric acid (hereinafter sometimes referred to as having a phosphate adsorbing ability) (Patent Document 2). However, phosphoric acid adsorption ability of existing glass foams is low, and it was not applicable to wastewater treatment. In this method, glass powder is mixed with calcium carbonate as a foaming agent and heated and cooled. This is because the existing glass foam is limited to the use of lightweight materials such as civil engineering and construction, and is still insufficient from the viewpoint of phosphate adsorption.
また、上記特許文献1には、排水中のリン酸イオンを結晶として除去回収するMAP(リン酸マグネシウムアンモニウム)法の改良として、ガラス粉粒体とマグネシウム成分を含む粉粒体と発泡剤を混合して加熱する焼成工程と、焼成物を冷やす急冷工程によって粒径の細かい発泡ガラス材を効率的に製造する技術が開示されている。そして、上記特許文献1記載の発明は、発泡ガラス材の表面及び空隙内壁面にマグネシウム成分を露出させることで被処理水のリン(リン酸)を吸着させるものである。 In Patent Document 1, as an improvement of the MAP (magnesium ammonium phosphate) method for removing and collecting phosphate ions in waste water as crystals, glass powder, a powder containing a magnesium component, and a foaming agent are mixed. A technique for efficiently producing a foamed glass material having a small particle diameter is disclosed by a firing step of heating and a rapid cooling step of cooling the fired product. And the invention of the said patent document 1 is made to adsorb | suck the phosphorus (phosphoric acid) of to-be-processed water by exposing a magnesium component to the surface of a foam glass material, and a space | gap inner wall surface.
MAP法は、リン酸をアンモニウムとマグネシウムとの複塩として沈殿させる方法であり、処理効率は高い反面、反応条件を調整するための処理装置を導入する必要があるため初期コストがかかり、また、装置の維持管理にもコストがかかるという問題がある。上記特許文献1記載の発明では、吸着剤上に実際にリン酸が担持され、その吸着したリン酸を解離・回収できるかについては確認されていない。
また、粒径の細かい発泡ガラス材によっても、発泡ガラス材内部が十分に多孔質化されていなければリン(リン酸)は表面に吸着されるのみで、リンの吸着能(リン酸吸着能)の向上はあまり望めない。
The MAP method is a method of precipitating phosphoric acid as a double salt of ammonium and magnesium. Although the processing efficiency is high, it is necessary to introduce a processing device for adjusting the reaction conditions, and therefore it takes an initial cost. There is a problem that the maintenance of the apparatus is also expensive. In the invention described in Patent Document 1, it has not been confirmed whether phosphoric acid is actually supported on the adsorbent and the adsorbed phosphoric acid can be dissociated and recovered.
In addition, even if the inside of the foamed glass material is not sufficiently porous, phosphorous acid (phosphoric acid) is only adsorbed on the surface, even if the foamed glass material has a small particle size. I cannot expect much improvement.
また、省エネルギー化の観点からも、リン酸吸着のみならず、それ以外の用途にも利用可能な多機能性のガラス発泡体であれば、より望ましい。内部に孔隙を有するというガラス発泡体の特性を活かして、例えば、屋上緑化等における植物栽培への利用などが考えられる。この場合、通気性、透水性等、植物の根の伸長を促進するため、吸水性の高いガラス発泡体が望まれる。 Also, from the viewpoint of energy saving, it is more desirable if it is a multifunctional glass foam that can be used not only for phosphate adsorption but also for other uses. Taking advantage of the characteristics of the glass foam having pores inside, for example, utilization for plant cultivation in rooftop greening and the like can be considered. In this case, a glass foam having high water absorption is desired to promote the elongation of plant roots such as air permeability and water permeability.
本発明の課題は、上記問題点を解決することであり、排水処理に適用できるガラス発泡体及びその製造方法を提供することである。また、本発明の課題は、リン酸吸着能を付与したガラス発泡体及びその製造方法を提供することである。更に、本発明の課題は、植物栽培に適用できるガラス発泡体及びその製造方法を提供することである。 The subject of this invention is solving the said problem, and providing the glass foam which can be applied to waste water treatment, and its manufacturing method. Moreover, the subject of this invention is providing the glass foam which provided the phosphate adsorption ability, and its manufacturing method. Furthermore, the subject of this invention is providing the glass foam which can be applied to plant cultivation, and its manufacturing method.
本発明は、具体的には以下のような構成を採用することにより達成できる。
請求項1記載の発明は、軟化温度の異なる二種類以上のガラスからなるガラス発泡体であって、少なくとも一種類のガラスに、該ガラスよりも軟化温度の高いガラスが粒子状に分散しており、且つカルシウム成分を含むガラス発泡体である。
請求項2記載の発明は、細孔径(μm)と細孔容積(cm 3 /g)との関係を示す細孔径分布について細孔径が0.1〜2μmの領域に単一の極大値を有し、該極大値が0.1cm3/g以上である請求項1に記載のガラス発泡体である。
Specifically, the present invention can be achieved by adopting the following configuration.
The invention according to claim 1 is a glass foam made of two or more kinds of glasses having different softening temperatures, and glass having a softening temperature higher than that of the glass is dispersed in at least one kind of glass. And a glass foam containing a calcium component.
The invention according to
請求項3記載の発明は、請求項1又は2に記載のガラス発泡体を含み、被処理水溶液中に含まれるリン酸又はリン酸根を吸着するためのリン酸吸着剤である。
請求項4記載の発明は、請求項2に記載のガラス発泡体を含む植物育成用培地である。 請求項5記載の発明は、(a)軟化温度の異なる2種以上のガラス粉末と、(b)発泡剤である炭酸カルシウムマグネシウム又はドロマイトを混合して、前記各ガラスの軟化温度のうち最も低い温度以上で、且つ最も高い温度を超えない温度を最高温度として焼成、発泡させるガラス発泡体の製造方法である。
請求項6記載の発明は、前記ガラス粉末のうち、最も低い軟化温度のガラスとしてソーダ石灰ガラスを使用し、最も高い軟化温度のガラスとしてアルミナホウケイ酸ガラス又はアルカリバリウムガラスを使用する請求項5記載のガラス発泡体の製造方法である。
The invention described in claim 3 is a phosphate adsorbent for adsorbing phosphoric acid or phosphate radicals contained in the aqueous solution to be treated, including the glass foam according to
Invention of Claim 4 is a culture medium for plant growth containing the glass foam of
Invention of Claim 6 uses soda-lime glass as glass with the lowest softening temperature among the glass powder, and uses alumina borosilicate glass or alkali barium glass as glass with the highest softening temperature. It is a manufacturing method of this glass foam.
(作用)
生活排水や産業排水などに含まれ、処理対象となる有害物質として、例えば水質汚濁や水系の富栄養化の要因物質となるリン酸は代表的なものである。
従来のリン酸の吸着法によれば、吸着したリン酸の脱離・再生のためには0.2N程度と濃度の高い硫酸で処理する必要があり、発生する廃液の処分が問題であった。これはリン酸の吸着が吸着剤表面のアルミニウムや鉄による化学吸着に起因するものであり、これらの元素とリン酸を強固に吸着しているため、解離させるのに高濃度の硫酸を要するためであると考えられる。
(Function)
As a harmful substance that is contained in domestic wastewater and industrial wastewater and is a treatment target, for example, phosphoric acid, which is a causative substance for water pollution and aqueous eutrophication, is representative.
According to the conventional method of adsorbing phosphoric acid, it is necessary to treat with about 0.2 N sulfuric acid in order to desorb and regenerate the adsorbed phosphoric acid, and disposal of the generated waste liquid is a problem. . This is because the adsorption of phosphoric acid is due to the chemical adsorption of aluminum and iron on the surface of the adsorbent, and these elements and phosphoric acid are strongly adsorbed, so a high concentration of sulfuric acid is required to dissociate. It is thought that.
しかし、リン酸と吸着反応する元素としてはアルミニウムや鉄のほかにカルシウムがある。化学的には、アルミニウム、鉄、カルシウムの各金属イオンとのリン酸塩の溶解度を比較すると、リン酸カルシウムは約10−7mol/リットル、リン酸鉄は約10−8mol/リットル、リン酸アルミニウムは約10−11mol/リットルの順で大きくなり、アルミニウム、鉄、カルシウムの順序でリン酸と強く結合しているものと考えられる。この溶解度の関係は、水溶液中における各金属イオンとリン酸との相互作用についての現象であるが、これらの金属が吸着剤表面に存在している場合も概ね同様の現象が起きているものと推察される。 However, in addition to aluminum and iron, calcium is an element that reacts with phosphoric acid. Chemically, when the solubility of phosphate with each metal ion of aluminum, iron, and calcium is compared, calcium phosphate is about 10 −7 mol / liter, iron phosphate is about 10 −8 mol / liter, aluminum phosphate Is increased in the order of about 10 −11 mol / liter, and is considered to be strongly bonded to phosphoric acid in the order of aluminum, iron, and calcium. This solubility relationship is a phenomenon related to the interaction between each metal ion and phosphoric acid in an aqueous solution, but when these metals are present on the surface of the adsorbent, the same phenomenon occurs. Inferred.
したがって、カルシウムはアルミニウムや鉄とは異なり、リン酸と緩やかに吸着することで、廃液処理が容易な低濃度の酸によって解離できるのではないかと本発明者らは考えた。そして、本発明者らは、カルシウム成分を表面に富化したガラス発泡体の吸着剤を作製できれば上記の吸着剤を用いた排水処理の問題が解決できると考え、吸着剤の多孔質化により吸着剤の表面積を増やすことでカルシウム成分を表面に富化させる方法を鋭意研究した。 Therefore, the present inventors thought that calcium, unlike aluminum and iron, could be dissociated by a low concentration acid that can be easily treated with a waste liquid, by adsorbing slowly with phosphoric acid. The inventors of the present invention believe that the problem of wastewater treatment using the above adsorbent can be solved if a glass foam adsorbent enriched with a calcium component on the surface can be solved. We have intensively studied how to enrich the calcium component on the surface by increasing the surface area of the agent.
すなわち、本発明者らは、吸着剤の性能は吸着剤表面の反応基(カルシウム)の存在量と、表面積とによって規定されると推測した。
例えば、カルシウムを含有する炭酸カルシウムやドロマイトなどの炭酸塩とガラス粉末を混合して加熱・焼成すると、炭酸カルシウムは高温域において二酸化炭素を放出し、軟化したガラス中をその気泡が通過することで孔、空隙が形成される。発泡剤として代表的な炭酸カルシウムやドロマイトを使用するガラス発泡体の製造方法は、ガラス粉末に炭酸カルシウム(又はドロマイト)を混合し、加熱して冷却させる工程を経るものである。
That is, the present inventors speculated that the performance of the adsorbent is defined by the abundance of reactive groups (calcium) on the adsorbent surface and the surface area.
For example, when calcium carbonate containing calcium carbonate or dolomite is mixed with glass powder and heated and fired, calcium carbonate releases carbon dioxide at high temperatures, and the bubbles pass through the softened glass. Holes and voids are formed. The manufacturing method of the glass foam which uses typical calcium carbonate and dolomite as a foaming agent goes through the process of mixing calcium carbonate (or dolomite) with glass powder, and heating and cooling.
そして、本発明者らは、ガラス発泡体の原料となるガラス(ガラス粉末)について、更なる検討を行った。上述のように、リン酸吸着能は、ガラス発泡体の表面積によって規定されると推測し、まずガラス発泡体の表面積を増やす方法を鋭意研究した。
そこで、本発明者らは、複数の種類のガラスを使用して、少なくとも一種類のガラスの内部や表面に他の種類のガラスの粒子を付着、分散させることで、ガラス発泡体の表面積が増やせることを見出した。すなわち、複数種類の均一なガラスの層を重ねた多層構造とするのではなく、軟化して均一化したガラス表面や内部に、軟化していない粒子形状を保った別のガラスが分散していることで、ガラス発泡体の表面積を増やすことができる。
And the present inventors performed further examination about the glass (glass powder) used as the raw material of a glass foam. As described above, it was presumed that the phosphate adsorption capacity was defined by the surface area of the glass foam, and first, a method for increasing the surface area of the glass foam was studied.
Therefore, the present inventors can increase the surface area of the glass foam by attaching and dispersing particles of other types of glass inside or on the surface of at least one type of glass using a plurality of types of glass. I found out. In other words, instead of a multi-layered structure in which multiple types of uniform glass layers are stacked, another glass having a non-softened particle shape is dispersed on the softened and uniformized glass surface and inside. Thus, the surface area of the glass foam can be increased.
従来、ガラス発泡体の原料として使用されるガラスは一種類である。それは、種類の異なるガラスを混合して焼成、発泡させた場合、その後の冷却工程を経る間に両ガラスの熱収縮程度の違いによって生成したガラス発泡体の強度が落ち、質の低下が起こるためである。ガラス発泡体は多孔質性であるが故に、それ自体の強度不足が問題となる。したがって、複数種類のガラスを使用することで、更に強度が低下すると、土木・建築資材などとしての利用が難しくなる。 Conventionally, there is one kind of glass used as a raw material for glass foam. That is, when different types of glass are mixed and fired and foamed, the strength of the glass foam produced by the difference in the degree of thermal shrinkage between the two glasses decreases during the subsequent cooling step, resulting in deterioration of quality. It is. Since glass foam is porous, lack of strength itself becomes a problem. Accordingly, if the strength is further reduced by using a plurality of types of glass, it becomes difficult to use the glass as a civil engineering / building material.
上述の複数の種類のガラスによって多層構造を形成させる場合は、生成するガラス発泡体の強度、質の低下が懸念されるが、本発明者らは、軟化したガラスに別のガラスが軟化せず、粒子状に分散する状態では、ガラス発泡体の強度、質の低下という問題が解決されることを見出し、本発明を完成させるに至った。
更に、省エネルギー化の観点からも、リン酸吸着のみならず、それ以外の用途にも利用可能な多機能性のガラス発泡体であれば、より望ましい。内部に孔隙を有するというガラス発泡体の特性を活かして、例えば、屋上緑化等における植物栽培への利用などが考えられる。
In the case where a multilayer structure is formed by the above-described plurality of types of glass, there is a concern that the strength and quality of the generated glass foam may be deteriorated, but the present inventors do not soften another glass to the softened glass. In the state of being dispersed in the form of particles, the inventors have found that the problem of deterioration of the strength and quality of the glass foam is solved, and have completed the present invention.
Furthermore, from the viewpoint of energy saving, a multifunctional glass foam that can be used not only for phosphoric acid adsorption but also for other uses is more desirable. Taking advantage of the characteristics of the glass foam having pores inside, for example, utilization for plant cultivation in rooftop greening and the like can be considered.
ガラス発泡体に含有されるカルシウムはリン酸と緩やかに吸着するため、廃液処理が容易な低濃度の酸によって解離、再生が可能である。そして、このように再生した後又はガラス発泡体にリン酸を保持させたまま再生させずにガラス発泡体を植物栽培に利用しようとする場合、一般的に孔径分布が均一であったほうがより吸水が促進されると推測されるため、より細孔径分布の均一な孔隙の形成も望まれる。更にこのような均一な孔隙の細孔容積は大きい方がより吸水性が高まる。 Since calcium contained in the glass foam is adsorbed slowly with phosphoric acid, it can be dissociated and regenerated by a low-concentration acid that can be easily treated with waste liquid. And when it tries to utilize a glass foam for plant cultivation after reproducing | regenerating in this way or without making it regenerate with the phosphoric acid holding | maintaining to a glass foam, it is generally more water-absorbing that the pore size distribution is uniform. Therefore, the formation of pores with a more uniform pore size distribution is also desired. Furthermore, the larger the pore volume of such uniform pores, the higher the water absorption.
また、ガラス発泡体の表面積は発泡反応によって生成された空隙の量と密接な関わりがある。
軟化温度の異なる二種類以上のガラス粉末を混合し、焼成、発泡させると、まず軟化温度の最も低いガラスが軟化して均一化した層を形成する。このとき、そのガラスよりも軟化温度の高いガラスはまだ軟化せずに、軟化温度の最も低いガラス内部又は表面上に粒子状に分散した状態である。
Further, the surface area of the glass foam is closely related to the amount of voids generated by the foaming reaction.
When two or more types of glass powders having different softening temperatures are mixed, baked and foamed, the glass having the lowest softening temperature is first softened to form a uniform layer. At this time, the glass having a softening temperature higher than that of the glass is not yet softened and is in a state of being dispersed in the form of particles inside or on the glass having the lowest softening temperature.
更に最高温度を軟化温度の最も高いガラスの軟化温度を超えない温度まで上げた後、冷却することで、最高温度とほぼ同じ又は最高温度よりも軟化温度の高いガラスは最高温度よりも軟化温度の低いガラス内部又は表面上に粒子状に分散した状態のまま、これらの熱収縮程度の違いから、これらガラスの境界面に空隙が生じる。そして、この空隙がガラス発泡体の表面積を増大させると共に、ガラス発泡体の多孔質化、リン酸吸着能の向上、吸水率の向上に寄与することが期待される。また、この際形成される空隙のサイズはガラス粒径を管理しておけば、ほぼ使用するガラスの熱特性にのみ規定されるために比較的均一な細孔径分布となることも期待された。 Furthermore, by raising the maximum temperature to a temperature that does not exceed the softening temperature of the glass having the highest softening temperature and then cooling, a glass having a softening temperature that is substantially the same as the maximum temperature or higher than the maximum temperature has a softening temperature higher than the maximum temperature. Due to the difference in the degree of thermal shrinkage, the voids are generated at the boundary surfaces of these glasses while being dispersed in the form of particles in the low glass interior or on the surface. And while this space | gap increases the surface area of a glass foam, it is anticipated that it contributes to the porosity improvement of a glass foam, the improvement of a phosphoric acid adsorption ability, and the improvement of a water absorption rate. Further, since the size of the voids formed at this time is controlled only by the thermal characteristics of the glass to be used if the glass particle size is controlled, it is expected that a relatively uniform pore size distribution is obtained.
一方、液晶パネルガラス、プラズマテレビガラスに用いられているガラス(FPDガラスという)は省電力、省資源が可能であり、画質の飛躍的向上などから需要が拡大しており、廃棄量も急増しているため、リサイクルの取り組みが行われている。
リサイクルの例として、FPDガラスを製品から分離し、ガラスカレットにしてセメントや塗料と混合し、非透水性の土木用軽量資材に利用されている。
On the other hand, glass (FPD glass) used for liquid crystal panel glass and plasma television glass can save power and resources, and demand is expanding due to dramatic improvements in image quality. Therefore, recycling efforts are being carried out.
As an example of recycling, FPD glass is separated from a product, made into glass cullet, mixed with cement and paint, and used as a non-permeable lightweight material for civil engineering.
本発明者らは、これらFPDガラスが通常、一般家庭から排出されるガラス容器(廃ガラス、ビンガラス)と比べて高軟化点であることに着目した。すなわち、軟化点の相違という、このような特徴の異なるFPDガラス及びビンガラスを混合、焼成した場合、図1に示すようなメカニズムが考えられる。図1には、本発明のガラス発泡体の製造方法の概念図を示している。 The present inventors paid attention to the fact that these FPD glasses usually have a higher softening point than glass containers (waste glass, bottle glass) discharged from ordinary households. That is, when FPD glass and bottle glass having different characteristics, such as a difference in softening point, are mixed and fired, a mechanism as shown in FIG. 1 can be considered. In FIG. 1, the conceptual diagram of the manufacturing method of the glass foam of this invention is shown.
ビンガラスの粒子1及びFPDガラスの粒子2を混合、焼成すると、軟化温度の低いビンガラスが軟化する。そして、軟化したソーダ石灰ガラス(ビンガラスとして一般的なガラス)3の中を軟化していないFPDガラスの粒子2が分散した状態となり、一種類のガラスを用いた場合に比べてガラス発泡体の表面積が増大する。その後、冷却することで、両者の熱収縮程度の違いから、両者の境界面に空隙4が生じ、この空隙4が更にガラス発泡体の表面積を増大させると共に多孔質化、リン酸吸着能の向上、吸水率の向上に寄与することが期待される。また、この際形成される空隙4のサイズはガラス粒径を管理しておけば、ほぼ両種ガラスの熱特性にのみ規定されるために比較的均一な細孔径分布となることも期待された。
FPDガラスとしては、液晶パネルガラス(LCDと言う)として使用されるアルミナホウケイ酸ガラス(アルミノホウケイ酸ガラスとも言う)やプラズマテレビガラス(PDPと言う)として使用されるアルカリバリウムガラスがある。
When the bin glass particles 1 and the
Examples of the FPD glass include alumina borosilicate glass (also referred to as aluminoborosilicate glass) used as liquid crystal panel glass (referred to as LCD) and alkali barium glass used as plasma television glass (referred to as PDP).
ソーダ石灰ガラスの軟化温度は720〜740℃、アルミナホウケイ酸ガラスの軟化温度は900〜980℃、アルカリバリウムガラスの軟化温度は850℃以下であり((社)電子情報技術産業協会、(財)家電製品協会の「テレビのリサイクルに関する諸課題について」第9頁「I−3.(1)ブラウン管ガラスの特殊性」(2007年4月27日)より抜粋)、アルミナホウケイ酸ガラスやアルカリバリウムガラスの軟化温度はソーダ石灰ガラスの軟化温度よりも100℃〜200℃程度高いため、軟化温度の高いガラスとしてアルミナホウケイ酸ガラスやアルカリバリウムガラスを使用し、軟化温度の低いガラスとしてソーダ石灰ガラスを使用すればよい。
また、アルミナホウケイ酸ガラスやアルカリバリウムガラスはバリウム成分を含む。バリウムはカルシウムと同じアルカリ土類金属であることから、リン酸を吸着する反応基が増え、更にリン酸吸着能が高まると考えられる。
The softening temperature of soda-lime glass is 720-740 ° C., the softening temperature of alumina borosilicate glass is 900-980 ° C., and the softening temperature of alkali barium glass is 850 ° C. or less (Japan Electronics and Information Technology Industries Association, Japan). “Excerpts from“ Issues on TV Recycling ””, page 9 “I-3. (1) Specificity of CRT glass” (April 27, 2007) by the Home Appliances Association), alumina borosilicate glass and alkali barium glass Since the softening temperature of the soda lime glass is about 100 to 200 ° C. higher than the softening temperature of soda lime glass, alumina borosilicate glass or alkali barium glass is used as the high softening temperature, and soda lime glass is used as the low softening temperature glass. do it.
Alumina borosilicate glass and alkali barium glass contain a barium component. Since barium is the same alkaline earth metal as calcium, it is considered that the number of reactive groups that adsorb phosphoric acid increases and the phosphate adsorbing ability further increases.
請求項1記載の発明によれば、少なくとも一種類のガラスに、該ガラスよりも軟化温度の高いガラスが粒子状に分散していることで、ガラス発泡体の表面積が増える。このように、カルシウムが存在するガラス発泡体の表面積が増えることで、Ca成分に吸着可能な物質の吸着性能が向上する作用がある。リン酸以外の吸着対象物質としては、Ca成分に吸着可能な有機態リン酸や亜リン酸、ポリリン酸などが考えられる。
請求項2記載の発明によれば、上記請求項1に記載の発明の作用に加えて、単一の極大値を有し、該極大値の値が比較的大きい細孔径分布のガラス発泡体であるため、極大値の細孔径によって吸着対象物質を含有した被処理水がよりガラス発泡体の内部に侵入しやすくなり、細孔径内のカルシウムに吸着されやすくなると共に、吸水性も向上する。
According to invention of Claim 1, the surface area of a glass foam increases because the glass whose softening temperature is higher than this glass is disperse | distributed to at least 1 type of glass. Thus, there exists an effect | action which the adsorption | suction performance of the substance which can adsorb | suck to Ca component improves because the surface area of the glass foam in which calcium exists increases. As the substance to be adsorbed other than phosphoric acid, organic phosphoric acid, phosphorous acid, polyphosphoric acid and the like that can be adsorbed to the Ca component are conceivable.
According to the invention of
請求項3記載の発明によれば、上記請求項1又は2に記載された、カルシウムを含有し、表面積の大きい(又は吸水性の高い)ガラス発泡体を含むリン酸吸着剤であるため、被処理水溶液中に含まれるリン酸又はリン酸根を効率よく吸着できる。
請求項4記載の発明によれば、上記請求項2に記載された、植物が吸水可能な水分を保持することができる孔隙を有するガラス発泡体により、植物育成用培地として保水性、透水性、通気性などを良好に保持できる。
According to the invention described in claim 3, since it is a phosphate adsorbent containing calcium and containing a glass foam having a large surface area (or high water absorption) as described in
According to the invention described in claim 4, the glass foam having pores capable of retaining moisture that can be absorbed by the plant according to
請求項5記載の発明によれば、軟化温度の異なる2種以上のガラスを、これらのガラスの軟化温度のうち最も低い温度以上で、且つ最も高い温度を超えない温度を最高温度として焼成、発泡させることで、軟化温度の低いガラスに軟化温度の高いガラスが粒子状に分散する状態を形成できる。したがって、ガラス発泡体の表面積を増やすことができ、反応基(カルシウム)に効率よくリン酸などの吸着物質が吸着する。
請求項6記載の発明によれば、上記請求項5記載の発明の作用に加えて、軟化温度の高いガラスとしてアルミナホウケイ酸ガラスやアルカリバリウムガラスを使用し、軟化温度の低いガラスとしてソーダ石灰ガラスを使用することで、軟化したソーダ石灰ガラスの相に、アルミナホウケイ酸ガラスやアルカリバリウムガラスが粒子状に分散する。また、アルミナホウケイ酸ガラスやアルカリバリウムガラスはバリウム成分を含むことから、リン酸吸着の反応基が増えて、更に効率よくリン酸が吸着する。
According to the invention of
According to the invention described in claim 6, in addition to the action of the invention described in
本発明は、生活排水や産業排水などに含まれる有害物質の吸着、除去に有効であり、具体的には以下の効果を有する。
請求項1記載の発明によれば、ガラス発泡体の表面積を大きくすることが可能となり、ガラス発泡体に含まれるカルシウムに、効果的に吸着物質が吸着して、吸着性能が向上する。
請求項2記載の発明によれば、上記請求項1に記載の発明の効果に加えて、吸着対象物質を含有した被処理水がよりガラス発泡体の内部に侵入しやすくなって、細孔径内のカルシウムに吸着されやすくなり、より一層リン酸の吸着性能が向上すると共に、吸水性も向上する。
The present invention is effective in adsorbing and removing harmful substances contained in domestic wastewater and industrial wastewater, and specifically has the following effects.
According to the first aspect of the present invention, the surface area of the glass foam can be increased, and the adsorbing substance is effectively adsorbed on the calcium contained in the glass foam to improve the adsorption performance.
According to the invention described in
請求項3記載の発明によれば、被処理水溶液中のリン酸を効率よく吸着できるため、強化されつつあるリン酸の水質規制(排水中のリン酸の濃度規制)に簡便に対応することができる。
請求項4記載の発明によれば、請求項2記載のガラス発泡体の孔隙により植物育成用培地として植物が吸水可能な水分を保持することができ、屋上緑化や土壌改良剤として優良な資材となる。
According to invention of Claim 3, since phosphoric acid in to-be-processed aqueous solution can be adsorb | sucked efficiently, it can respond easily to the water quality regulation (concentration regulation of the phosphoric acid in waste water) of the phosphoric acid being strengthened. it can.
According to invention of Claim 4, the water | moisture content which a plant can absorb as a culture medium for plant growth can be hold | maintained by the hole of the glass foam of
請求項5記載の発明によれば、軟化温度の異なる無機粉粒体発泡剤を混合、さらに発泡剤として炭酸カルシウムマグネシウム又はドロマイトを使用することで、容易、安価に吸着性能の優れるガラス発泡体を製造できる。
請求項6記載の発明によれば、請求項5記載の発明の効果に加えて、低軟化温度のガラスとしてソーダ石灰ガラス、高軟化温度のガラスとしてアルミナホウケイ酸ガラスやアルカリバリウムガラスなどを使用することで、FPDガラスのリサイクルを促進し、循環型社会の形成にも貢献する。また、Ba成分に吸着可能な物質の吸着性能が向上するガラス発泡体を製造できる。
According to the invention of
According to the invention described in claim 6, in addition to the effect of the invention described in
本発明の実施例を図面と共に説明する。
ガラス発泡体の原料となるガラスの一例として、ソーダ石灰ガラス粉末及びFPDガラス粉末を用いてガラス発泡体を作製した。なお、ガラスの種類としては、例えば石英ガラス、96%シリカガラス、鉛アルカリケイ酸ガラス、ほうけい酸ガラス、アルミノけい酸ガラスなどがあるが、これらの種類に限られない。また、廃ガラスを原料とすれば、ガラスの再利用を促進し、循環型社会形成にも貢献する。
Embodiments of the present invention will be described with reference to the drawings.
A glass foam was produced using soda lime glass powder and FPD glass powder as an example of glass used as a raw material for the glass foam. Examples of the glass include quartz glass, 96% silica glass, lead alkali silicate glass, borosilicate glass, and aluminosilicate glass, but are not limited to these types. Moreover, if waste glass is used as a raw material, it promotes the reuse of glass and contributes to the formation of a recycling-oriented society.
そして、これらの中から軟化温度の異なる組み合わせとなるようにガラスの種類を選択すればよい。軟化温度の最も低いガラスと軟化温度の最も高いガラスの軟化温度の差は、100℃〜200℃程度であることが好ましい。軟化温度の差が小さいと、軟化温度の最も高いガラスも軟化してしまい、粒子状態を保持できなくなる。また、軟化温度の差が大きいと、軟化温度の最も高いガラスが焼結しにくくなって発泡が不十分となり、軟化温度の最も高いガラスの混合割合を高めることができなくなる。 And what is necessary is just to select the kind of glass from these so that it may become a combination from which softening temperature differs. The difference between the softening temperatures of the glass having the lowest softening temperature and the glass having the highest softening temperature is preferably about 100 ° C to 200 ° C. When the difference in softening temperature is small, the glass having the highest softening temperature is also softened and the particle state cannot be maintained. If the difference in softening temperature is large, the glass with the highest softening temperature is difficult to sinter and foaming becomes insufficient, and the mixing ratio of the glass with the highest softening temperature cannot be increased.
そして、ガラス発泡体の製造工程は、ガラス容器や廃FPDガラスからの異物除去工程、粉砕工程(粗粉砕、微粉細)、ドロマイト(又は炭酸カルシウムマグネシウム)などの混合工程、焼成工程に大きく分けられる。なお、ドロマイトとは、カルシウムとマグネシウムの複炭酸塩CaMg(CO3)2、又はこれを主成分とする岩石のことを言う(出典 化学辞典普及版 森北出版株式会社 第881頁 1985年1月26日発行)。
本実施例及び下記比較例で用いたガラス粉末(ガラス粉砕物)の調製方法及びガラス発泡体の作製方法について以下に示す。
And the manufacturing process of a glass foam is divided roughly into mixing processes, such as a foreign material removal process from a glass container or waste FPD glass, a grinding | pulverization process (coarse grinding | pulverization, fine powder), a dolomite (or calcium magnesium carbonate), and a baking process. . Dolomite means calcium and magnesium double carbonate CaMg (CO 3 ) 2 or rocks containing this as a main component (Source: Chemical Dictionary Popular Edition, Morikita Publishing Co., Ltd., page 881, January 1985) Issued on the day).
A method for preparing a glass powder (glass pulverized product) and a method for producing a glass foam used in this example and the following comparative examples are shown below.
ガラス粉末の原料として、一般家庭から排出されるガラス容器(ソーダ石灰ガラス)及び廃FPDガラスを用いた。これらガラス容器や廃FPDガラスからラベル、金属冠などの異物を除去し、水洗、乾燥後、ハンマーを用いて粒径10mm程度に粗粉砕した。
なお、廃FPDガラスの場合は、偏向板、放熱板などの部材を剥離したものを使用し、廃FPDガラスとして、廃液晶パネルガラス(LCD)(アルミナホウケイ酸ガラス)と廃プラズマディスプレイガラス(PDP)(アルカリバリウムガラス)を用いた。
As a raw material for the glass powder, a glass container (soda lime glass) and waste FPD glass discharged from a general household were used. Foreign substances such as labels and metal crowns were removed from these glass containers and waste FPD glass, washed with water, dried, and then roughly pulverized to a particle size of about 10 mm using a hammer.
In the case of waste FPD glass, a member obtained by peeling off members such as a deflecting plate and a heat sink is used. As waste FPD glass, waste liquid crystal panel glass (LCD) (alumina borosilicate glass) and waste plasma display glass (PDP) are used. ) (Alkali barium glass).
上述のように各ガラスを粗粉砕した後、高速スタンプミル(日陶科学株式会社 ANS143(アルミナうす、アルミナハンマー))を用いて、粒径1000μm以下に粉砕した。調製したソーダ石灰ガラス(ビンガラス)の粒径組成は、1000〜500μmが16.3%、500〜250μmが22.0%、250〜150μmが14.9%、150〜90μmが11.3%、90μm以下が35.5%であった。ソーダ石灰ガラスの成分組成を蛍光エックス線分析法(装置名:走査型蛍光X線分析装置 (株)リガク製 型式ZSX PrimusII)により測定したところ、SiO2:68.9%、Na2O:13.6%、CaO:13.3%、Al2O3:1.96%、K2O:1.42%、その他の成分が0.82%であった。なお、特に断り書きがない限り、成分の%は重量%を表している。 After roughly pulverizing each glass as described above, the glass was pulverized to a particle size of 1000 μm or less using a high-speed stamp mill (ANSC 143 (alumina thin, alumina hammer)). The particle size composition of the prepared soda-lime glass (bin glass) is 16.3% of 1000 to 500 μm, 22.0% of 500 to 250 μm, 14.9% of 250 to 150 μm, 11.3% of 150 to 90 μm, 90 μm or less was 35.5%. The component composition of soda-lime glass was measured by a fluorescent X-ray analysis method (apparatus name: scanning type X-ray fluorescence analyzer, manufactured by Rigaku Co., Ltd., model ZSX Primus II). SiO 2 : 68.9%, Na 2 O: 13. 6%, CaO: 13.3%, Al 2 O 3 : 1.96%, K 2 O: 1.42%, and other components were 0.82%. In addition, unless otherwise indicated,% of a component represents weight%.
また、廃液晶パネルガラス(LCD)(アルミナホウケイ酸ガラス)の組成はSiO2:58.1%、Al2O3:17.8%、B2O3:10.7%、CaO:8.4%、SrO:2.1%、MgO:1.7%、BaO:0.3%、その他の成分が0.9%であった。粒度分布は100μm未満で中心粒径(粒度分布のピーク)が約50μmであった。
また、廃プラズマディスプレイガラス(PDP)(アルカリバリウムガラス)の組成はSiO2:50.1%、BaO:9.3%、SrO:9.2%、K2O:7.6%、Al2O3:7.6%、ZrO2:4.7%、Na2O:4.1%、CaO:2.5%、MgO:2.0%、その他の成分が2.9%であった。粒度分布は100μm未満で中心粒径が約50μmであった。
The composition of waste liquid crystal panel glass (LCD) (alumina borosilicate glass) is SiO 2 : 58.1%, Al 2 O 3 : 17.8%, B 2 O 3 : 10.7%, CaO: 8. 4%, SrO: 2.1%, MgO: 1.7%, BaO: 0.3%, and other components were 0.9%. The particle size distribution was less than 100 μm and the center particle size (peak of particle size distribution) was about 50 μm.
The composition of waste plasma display glass (PDP) (alkali barium glass) is SiO 2 : 50.1%, BaO: 9.3%, SrO: 9.2%, K 2 O: 7.6%, Al 2 O 3 : 7.6%, ZrO 2 : 4.7%, Na 2 O: 4.1%, CaO: 2.5%, MgO: 2.0%, and other components were 2.9%. . The particle size distribution was less than 100 μm and the center particle size was about 50 μm.
炭酸塩であるドロマイト(株式会社 火の国製 苦土石灰)と上記ガラス粉砕物とを均一に混合し、混合物をアルミナ容器に移し、電気炉であるマッフル炉((株)YAMATO製 型式FO710)に入れて焼成した。
なお、ビンガラス、LCDガラス、PDPガラス、発泡剤を表1(LCDガラス)及び表2(PDPガラス)に示す割合により混合した。
The dolomite carbonate (Made in Fire Country, limestone lime) and the above ground glass are uniformly mixed, the mixture is transferred to an alumina container, and the electric furnace is a muffle furnace (model FO710 manufactured by YAMATO). And baked.
In addition, bottle glass, LCD glass, PDP glass, and a foaming agent were mixed by the ratio shown in Table 1 (LCD glass) and Table 2 (PDP glass).
焼成条件は、昇温速度10℃/分、最高温度850℃で20分間、降温速度10℃/分とした。そして室温に冷却後、焼成品の焼結及び発泡の有無を目視により確認した。焼成時の最高温度を850℃としたのは、ソーダ石灰ガラスの軟化温度が720〜740℃、アルミナホウケイ酸ガラスの軟化温度が900〜980℃、アルカリバリウムガラスの軟化温度が850℃以下であるため、軟化温度の低いソーダ石灰ガラスの軟化温度よりも高く、軟化温度の高いアルミナホウケイ酸ガラス及びアルカリバリウムガラスの軟化温度を超えない温度としたものである。 The firing conditions were a temperature increase rate of 10 ° C./min, a maximum temperature of 850 ° C. for 20 minutes, and a temperature decrease rate of 10 ° C./min. And after cooling to room temperature, the presence or absence of sintering and foaming of a baked product was confirmed visually. The reason why the maximum temperature during firing was 850 ° C. is that the softening temperature of soda-lime glass is 720-740 ° C., the softening temperature of alumina borosilicate glass is 900-980 ° C., and the softening temperature of alkali barium glass is 850 ° C. or less. Therefore, the temperature is higher than the softening temperature of soda lime glass having a low softening temperature and does not exceed the softening temperature of alumina borosilicate glass and alkali barium glass having a high softening temperature.
図2(a)〜(c)にはLCDガラスを混合したガラス発泡体の外観写真を示し、図3(a)〜(d)にはPDPガラスを混合したガラス発泡体の外観写真を示し、図11には比較例としてビンガラス(及び発泡体)のみのガラス発泡体の外観写真を示す。また、目視による確認結果を表3及び表4に示す。
図2からも分かるように、LCDガラス混合割合30%以上では焼結せず指触により容易にその構造は崩壊した。また、図3からも分かるように、PDPガラスを混合した場合では、混合割合100%でも焼結・発泡が確認されたが、100%PDPガラスを原料とした場合では発泡は不十分であった。
FIGS. 2 (a) to (c) show an appearance photograph of a glass foam mixed with LCD glass, and FIGS. 3 (a) to (d) show an appearance photograph of a glass foam mixed with PDP glass, In FIG. 11, the external appearance photograph of the glass foam only of a bottle glass (and foam) is shown as a comparative example. Tables 3 and 4 show the results of visual confirmation.
As can be seen from FIG. 2, when the mixing ratio of the LCD glass is 30% or more, the structure does not sinter and the structure easily collapses by touch. Further, as can be seen from FIG. 3, when PDP glass was mixed, sintering / foaming was confirmed even at a mixing ratio of 100%, but foaming was insufficient when 100% PDP glass was used as a raw material. .
また、本実施例によるガラス発泡体において数mm単位の粗な空隙、すなわち通気性、透水性等、植物根の伸長にかかわる空隙の生成が目視により確認された。したがって、本実施例によるガラス発泡体の製造条件では、LCDガラスは重量比20%まで、PDPガラスは同じく75%まで混合可能である。そして、このようにFPDガラスの混合割合を調整することで、充分な強度と質を有するガラス発泡体が作製できる。 Further, in the glass foam according to the present example, the formation of rough voids of several mm units, that is, voids related to plant root elongation such as air permeability and water permeability was confirmed by visual observation. Therefore, in the manufacturing conditions of the glass foam according to the present embodiment, the LCD glass can be mixed up to 20% by weight and the PDP glass can be mixed up to 75%. And the glass foam which has sufficient intensity | strength and quality can be produced by adjusting the mixing ratio of FPD glass in this way.
LCDガラスの方がPDPガラスと比較して混合重量比が低い理由としては、LCDガラスの軟化温度(軟化点)がPDPガラスの軟化温度と比べてもビンガラスの軟化温度よりかなり高いため、混合割合が高くなると焼結しにくくなるためと推察される。
PDPガラスの場合は、軟化温度がLCDガラスと比べればビンガラスの軟化温度に近いため、高い混合割合でも焼結・発泡したものと推察される。
The reason why LCD glass has a lower mixing weight ratio than PDP glass is that the softening temperature (softening point) of LCD glass is much higher than the softening temperature of bottle glass compared to the softening temperature of PDP glass. This is presumed to be because sintering becomes difficult as the value increases.
In the case of PDP glass, the softening temperature is close to the softening temperature of bottle glass compared to LCD glass, so it is presumed that the glass was sintered and foamed even at a high mixing ratio.
次に、上記実施例1の結果から、LCDガラスの混合割合を5%と10%、PDPガラスの混合割合を25%と50%と75%の条件に絞り、実施例1と比べて原料の使用量を増やして大型のトンネル炉を使用し、ベルトコンベアでガラス粉末と発泡剤の混合物を流し、流しながらガスバーナーで焼成する方法により、FPDガラスが混合するガラス発泡体の試作を行った。 Next, from the results of Example 1 above, the mixing ratio of LCD glass was limited to 5% and 10%, and the mixing ratio of PDP glass was limited to 25%, 50%, and 75%. Using a large tunnel furnace with an increased amount of use, a glass foam mixed with FPD glass was manufactured by a method of pouring a mixture of glass powder and a foaming agent on a belt conveyor and firing with a gas burner while flowing.
材料は、実施例1のLCDガラス及びPDPガラスを高速スタンプミル(日陶科学株式会社製ANS143)を用いて粉砕し、90μm以下にふるい分けしたものを使用した。 ビンガラスについては実施例1と同様に一般家庭から排出されるガラス容器を破砕したものを用いた。
発泡剤については前述のドロマイトを使用した。焼成条件は、前記トンネル炉において850℃、20分の焼成条件により調製した。原料の混合条件を表5に示す。
As the material, the LCD glass and PDP glass of Example 1 were pulverized using a high-speed stamp mill (ANS143 manufactured by Nissho Science Co., Ltd.) and sieved to 90 μm or less. About the bottle glass, what crushed the glass container discharged | emitted from a general household similarly to Example 1 was used.
As the foaming agent, the above-described dolomite was used. Firing conditions were prepared in the above-mentioned tunnel furnace under 850 ° C. for 20 minutes. Table 5 shows the mixing conditions of the raw materials.
図4及び図5には本実施例の試作品の外観を示す。図4(a)〜(b)にはLCDガラスを混合したガラス発泡体の試作品の外観写真を示し、図5(a)〜(c)にはPDPガラスを混合したガラス発泡体の試作品の外観写真を示している。また、図12には比較例としてビンガラス(及び発泡体)のみのガラス発泡体の試作品の外観写真を示す。図4及び図5から、いずれの場合でも焼結・発泡が確認された。PDPガラスを混合した場合では混合率が高くなるにつれて、褐色化し容積も小さくなることが認められた。 4 and 5 show the appearance of the prototype of this embodiment. 4 (a) to 4 (b) show photographs of the appearance of glass foam mixed with LCD glass, and FIGS. 5 (a) to 5 (c) show prototypes of glass foam mixed with PDP glass. The appearance photograph is shown. In addition, FIG. 12 shows a photograph of the appearance of a glass foam prototype made only of bottle glass (and foam) as a comparative example. From FIG. 4 and FIG. 5, sintering and foaming were confirmed in any case. In the case of mixing PDP glass, it was recognized that the mixture became brown and the volume decreased as the mixing rate increased.
上記方法により調製したガラス発泡体をハンマーにより破砕し、2〜4mmにふるい分けしたものをリン酸吸着能の評価に用いた。ガラス発泡体1gに対して20mLの1mgPO4−P/リットルのリン酸水溶液(KH2PO4にて調製)に浸漬、室温において24時間静置後の上清中のリン酸濃度をモリブデン青吸光光度法(JIS K0102に準じた)により測定(比色定量)した。液中リン酸が100%吸着した場合はリン酸吸着率100%と表記した。
The glass foam prepared by the above method was crushed with a hammer and sieved to 2 to 4 mm, and used for evaluation of phosphate adsorption capacity. The phosphoric acid concentration in the supernatant after immersion in 20 mL of 1 mg PO 4 -P / liter phosphoric acid aqueous solution (prepared with KH 2 PO 4 ) per 1 g of glass foam and left at room temperature for 24 hours is the molybdenum blue absorbance. Measurement (colorimetric determination) was performed by a photometric method (according to JIS K0102). When 100% of phosphoric acid in the liquid was adsorbed, it was expressed as phosphoric
また、調製したガラス発泡体を3g程度になるようにダイヤモンドソー(株式会社テクソー製 V−19)により切断したものを吸水率の評価に用いた。超純水100mL中に調製試料を沈め、室温において24時間静置後、試料を引き上げ軽く付着水を払い落とし、重量を測定した。水浸漬前の重量もあらかじめ測定しておき、その重量の変化率を吸水率として次式(1)により算出した。
吸水率(%)=(吸水後重量−吸水前重量)/吸水前重量×100(%)(1)
Moreover, what cut | disconnected the prepared glass foam with the diamond saw (V-19 by Tecso Co., Ltd.) so that it might be set to about 3 g was used for the water absorption evaluation. The prepared sample was submerged in 100 mL of ultrapure water and allowed to stand at room temperature for 24 hours. The weight before water immersion was also measured in advance, and the change rate of the weight was calculated by the following formula (1) as the water absorption rate.
Water absorption rate (%) = (weight after water absorption−weight before water absorption) / weight before water absorption × 100 (%) (1)
図6には、FPDガラス発泡体のリン酸吸着率を示し、図7には、FPDガラス発泡体の吸水率を示す。なお、各図とも(a)にはLCDガラスを混合した場合のガラス発泡体の測定値を示し、(b)にはPDPガラスを混合した場合のガラス発泡体の測定値を示している。また、各測定値は平均値±標準偏差を示している。
リン酸吸着能(図6)に関しては、ビンガラスのみを原料とした場合と比べ、LCDガラス及びPDPガラスの混合によって上昇した。混合割合についてみると、LCDガラス5%及び10%の間ではリン酸吸着能に差異は認められなかった。PDPガラスを混合した場合は混合率25%の場合に最もリン酸吸着能が高かった。このように吸着されたリン酸はガラス発泡体中のカルシウムやバリウム(LCDガラス及びPDPガラス由来)と結合しており、希硫酸によって溶出し、容易に回収・再資源化できるものと考えられる。
FIG. 6 shows the phosphoric acid adsorption rate of the FPD glass foam, and FIG. 7 shows the water absorption rate of the FPD glass foam. In each figure, (a) shows the measured value of the glass foam when the LCD glass is mixed, and (b) shows the measured value of the glass foam when the PDP glass is mixed. Each measured value represents an average value ± standard deviation.
Phosphoric acid adsorption ability (FIG. 6) was increased by mixing of LCD glass and PDP glass as compared with the case of using only bottle glass as a raw material. As for the mixing ratio, no difference was observed in phosphate adsorption capacity between 5% and 10% of LCD glass. When PDP glass was mixed, the phosphate adsorption capacity was highest when the mixing rate was 25%. The phosphoric acid adsorbed in this way is bound to calcium and barium (derived from LCD glass and PDP glass) in the glass foam, and is considered to be easily eluted and recovered by dilute sulfuric acid.
図1に示すように、焼成時の最高温度(850℃)よりも軟化温度が低いことから軟化して均一化したビンガラス(ソーダ石灰ガラス)3表面や内部に、焼成時の最高温度とほぼ同じか焼成温度よりも軟化温度が高い、軟化していない粒子形状を保ったLCDガラス2やPDPガラス2が分散していることで、ビンガラスのみを用いる場合と比べてガラス発泡体の表面積を増やすことができる。したがって、リン酸が吸着基であるカルシウムやバリウムに効果的に吸着されることで、リン酸吸着能が向上したものと考えられる。
As shown in FIG. 1, since the softening temperature is lower than the highest temperature (850 ° C.) during firing, the surface of the bottle glass (soda lime glass) 3 softened and made uniform is almost the same as the highest temperature during firing. The surface area of the glass foam is increased compared to the case of using only bottle glass by dispersing the
吸水率(図7)については、LCDガラスを混合した場合は混合率が高くなるにつれて上昇する傾向が認められた。PDPガラスを混合した場合については混合率25%で最適となり、ビンガラスのみの場合と比べてみても高かった。一方、PDPガラスの混合率50%、75%ではかえって吸水率は低下した。
ガラス発泡体のリン酸吸着能は、発泡体と被処理水との接触の程度と発泡体表面の吸着基の量によって規定されるものと推察される。吸着基の量がリン酸と反応しうる元素、Ca(発泡剤由来)、Ba等のアルカリ土類金属の量に規定され、且ついずれの試験条件も吸着基となるCa成分の由来となる発泡剤の添加量に差異はないので、以下、発泡体と被処理水との接触の程度の観点からFPDガラスの添加によるリン酸吸着能向上メカニズムについて考察する。
As for the water absorption rate (FIG. 7), when LCD glass was mixed, a tendency to increase as the mixing rate increased was observed. When the PDP glass was mixed, it was optimum at a mixing rate of 25%, which was higher than when only the bottle glass was used. On the other hand, when the mixing ratio of PDP glass was 50% and 75%, the water absorption ratio was rather lowered.
It is surmised that the phosphate adsorption capacity of the glass foam is defined by the degree of contact between the foam and the water to be treated and the amount of adsorbing groups on the surface of the foam. The amount of adsorbing group is defined by the amount of alkaline earth metal such as Ca (derived from foaming agent), Ba, etc., which can react with phosphoric acid, and any test condition is the foaming derived from the Ca component that becomes the adsorbing group Since there is no difference in the addition amount of the agent, the mechanism for improving the phosphate adsorption capacity by adding FPD glass will be discussed below from the viewpoint of the degree of contact between the foam and the water to be treated.
まず、図7の吸水率の結果によれば、LCDガラス5%、 10%、PDPガラス25%の添加によって吸水率が向上していることが分かる。リン酸吸着能(図6)に関しても、LCDガラスの混合率5%、 10%、PDPガラスの混合率25%の場合が他の場合に比べて向上した。このことによって、被処理水がガラス発泡体の内部にまで侵入し、発泡体表面のリン酸吸着基とリン酸との反応が促進されることが予想される。さらに、FPDガラスの添加により吸水率が高まるメカニズムを明らかにするため、ガラス発泡体の細孔径分布及び空隙率を測定した。 First, according to the result of the water absorption rate in FIG. 7, it can be seen that the water absorption rate is improved by adding 5%, 10% of LCD glass and 25% of PDP glass. Regarding the phosphate adsorption capacity (FIG. 6), the cases where the mixing ratio of LCD glass was 5% and 10% and the mixing ratio of PDP glass was 25% were improved as compared with the other cases. As a result, it is expected that the water to be treated penetrates into the inside of the glass foam, and the reaction between the phosphate adsorption group on the foam surface and phosphoric acid is promoted. Furthermore, in order to clarify the mechanism of increasing the water absorption rate by adding FPD glass, the pore size distribution and the porosity of the glass foam were measured.
測定装置としてAutoPoreIV9500(micromertics社製)を用い、測定条件は、接触角140°、表面張力485dynes/cmとした。その結果を図8に示す。図8(a)にはLCDガラスを混合した場合のガラス発泡体の測定値を示し、図8(b)にはPDPガラスを混合した場合のガラス発泡体の測定値を示している。
図8に示すように、LCDガラスを混合した場合では、添加量の増加にともない、細孔径1μm程度の孔隙の分布が増加している。PDPガラスを混合した場合では、25%添加した場合についてのみ細孔径1μm程度の孔隙の増加が認められたが、50%及び75%添加したものでは認められなかった。
AutoPore IV9500 (manufactured by micrometrics) was used as a measuring device, and the measurement conditions were a contact angle of 140 ° and a surface tension of 485 dynes / cm. The result is shown in FIG. FIG. 8A shows measured values of the glass foam when the LCD glass is mixed, and FIG. 8B shows measured values of the glass foam when the PDP glass is mixed.
As shown in FIG. 8, when the LCD glass is mixed, the distribution of pores having a pore diameter of about 1 μm increases as the addition amount increases. When PDP glass was mixed, an increase in pores having a pore diameter of about 1 μm was observed only when 25% was added, but not when 50% or 75% was added.
空隙率(下記表6)についても同様の傾向が認められ、LCD5%、10%添加、PDP25%添加によって、ビンガラスのみを原料とした場合と比べて空隙率が増加していた。したがって、細孔径が1μm程度の孔隙の増加が空隙率の増加、それによる吸水率の増加を引き起こしているものと考えられる。
そして、細孔径が0.1〜2μm付近の領域の極大値が従来のビンガラスのみを用いた場合の細孔容積よりも大きい0.1cm3/g以上であることで、吸水率に優れるガラス発泡体が得られると考えられる。
The same tendency was observed with respect to the porosity (Table 6 below), and the porosity increased with the addition of 5% LCD, 10% addition, and 25% PDP compared to the case of using only bottle glass as a raw material. Therefore, it is considered that an increase in pores having a pore diameter of about 1 μm causes an increase in porosity and an increase in water absorption.
And the glass foam which is excellent in water absorption is that the maximum value in the region where the pore diameter is around 0.1 to 2 μm is 0.1 cm 3 / g or more, which is larger than the pore volume when only the conventional bottle glass is used. It is thought that a body is obtained.
次に、LCDガラスやPDPガラスの添加が細孔径1μm程度の孔隙の増加をもたらす原因を考察する。LCDガラスやPDPガラスの特徴はビンガラスに代表されるソーダ石灰ガラスと比べ、軟化温度が高く、熱収縮程度が小さい点である。このような特徴の異なるガラスを混合、焼成した場合、焼成過程の高温条件においては、図1に示すように軟化したソーダ石灰ガラス3の中を軟化していないFPDガラスの粒子2が分散していることになる。その後、冷却することで、両者の熱収縮程度の違いから、ソーダ石灰ガラスの相の収縮程度がFPDガラス粒子の相のそれより大きくなるので、両者の境界面に空隙4が生じる結果となる。そして、この空隙4がガラス発泡体の表面積を増大させると共に、ガラス発泡体の多孔質化、リン酸吸着能の向上、吸水率の向上に寄与することが期待される。このような効果は、FPDガラス粒子2の周辺をソーダ石灰ガラス3の相で取り囲んでいる状態で発生するので、FPDガラスの添加量がソーダ石灰ガラスのそれと同等以上の条件、すなわち、PDP50%、 75%添加条件では、細孔径1μm程度の孔隙の増加はもたらされなかったものと推察した。
Next, the reason why the addition of LCD glass or PDP glass causes an increase in pores with a pore diameter of about 1 μm will be considered. The characteristics of LCD glass and PDP glass are that the softening temperature is higher and the degree of thermal shrinkage is smaller than soda lime glass represented by bottle glass. When glass having different characteristics is mixed and fired, under high-temperature conditions in the firing process, unsoftened
一方、ガラス発泡体に含有されるカルシウムはリン酸と緩やかに吸着するため、リン酸吸着後のガラス発泡体は、廃液処理が容易な低濃度の酸によって、解離、再生が可能である。そして、省エネルギー化の観点からも、リン酸を保持したままのガラス発泡体や再生後のガラス発泡体を屋上緑化等における植物栽培に利用できればガラス発泡体の用途も広まる。
ガラス発泡体を植物栽培に利用する場合、農業的な観点から本実施例のガラス発泡体の特性を評価する。植物根が土壌中の水分を吸水しようとする際、径が0.6〜3μm程度の均一な毛管が望ましいと考えられている(「土壌」、東京農業大学社会通信教育部、第109〜114頁、1990年4月1日改訂第二版第二刷)。これは、この孔径範囲を超えた場合に孔隙の毛管圧が重力より小さいため、短期間のうちに土壌下層へ水分が流亡してしまい、植物はその水分を利用できないことによる。上記孔径範囲より細い場合は、植物根の表面組織の水の吸引力より毛管圧のほうが大きいため、植物はその水分を吸収して利用することができない。
On the other hand, since calcium contained in the glass foam is slowly adsorbed with phosphoric acid, the glass foam after the phosphoric acid adsorption can be dissociated and regenerated by a low-concentration acid that can be easily treated with waste liquid. And also from a viewpoint of energy saving, if the glass foam with phosphoric acid retained and the glass foam after regeneration can be used for plant cultivation in rooftop greening or the like, the use of the glass foam is widened.
When using a glass foam for plant cultivation, the characteristic of the glass foam of a present Example is evaluated from an agricultural viewpoint. When plant roots try to absorb water in the soil, uniform capillaries with a diameter of about 0.6 to 3 μm are considered desirable (“Soil”, Department of Social Communication Education, Tokyo University of Agriculture, 109-114). Page, second edition, second edition, revised April 1, 1990). This is because when the pore diameter range is exceeded, the capillary pressure in the pores is smaller than gravity, so that water is lost to the lower soil layer in a short period of time, and the plant cannot use the moisture. When the pore diameter is narrower than the above range, the capillary pressure is higher than the water suction force of the surface tissue of the plant root, so that the plant cannot absorb and use the moisture.
本実施例のLCD5%、 10%添加、PDP25%添加した場合のガラス発泡体の細孔径分布は1μmを極大とし0.1〜2μm付近の比較的狭い範囲に分布しており、且つ上記の植物が吸水可能な孔径分布領域に近い。ある毛管が水を吸水しようとする場合、その径は、より均一であることが望ましい。これは一旦細い径の毛管で吸水された水分が、その毛管に連続している、より径の大きい毛管に移動することが困難であるためである。 この点、本実施例のガラス発泡体が前記孔径領域に1個の極大値(図8に矢印で示す)を有していることから本実施例のガラス発泡体は植物の吸水能に適合した保水材としても有望である。そして、0.1〜2μm付近の領域の単一の極大値が従来のビンガラスのみを用いた場合の細孔容積よりも大きい0.1cm3/g以上であることで、吸水率に優れるガラス発泡体が得られると考えられる。したがって、このガラス発泡体を再生の有無に関わりなく(保水材としての利用はリン酸保持の有無に関係のない性能であるため)、植物育成用培地として使用すれば、保水性、透水性、通気性などを良好に保持できる。 The pore diameter distribution of the glass foam when adding 5% LCD, 10% LCD and 25% PDP in this example is 1 μm as a maximum and is distributed in a relatively narrow range around 0.1 to 2 μm. Is close to the pore size distribution region where water can be absorbed. When a certain capillary tries to absorb water, it is desirable that its diameter is more uniform. This is because it is difficult for the water once absorbed by the capillary having a small diameter to move to the capillary having a larger diameter that is continuous with the capillary. In this respect, since the glass foam of this example has one maximum value (indicated by an arrow in FIG. 8) in the pore diameter region, the glass foam of this example was suitable for the water absorption capacity of plants. It is also promising as a water retention material. And the glass maximum which is excellent in a water absorption is because the single maximum value of the area | region of 0.1-2 micrometers vicinity is 0.1 cm < 3 > / g or more larger than the pore volume at the time of using only the conventional bottle glass. It is thought that a body is obtained. Therefore, regardless of whether this glass foam is regenerated or not (because its use as a water retention material is a performance not related to whether or not phosphoric acid is retained), if used as a plant growth medium, water retention, water permeability, Good air permeability can be maintained.
図9には、LCDガラスを5%添加したガラス発泡体表面で確認された非軟化ガラス粉粒体の電子顕微鏡像(×4000、(株)日立ハイテクノロジーズ製 miniscope TM−1000、加速電圧15kV)、図10にはPDPガラスを75%した添加したガラス発泡体表面で確認された非軟化ガラス粉粒体の電子顕微鏡像(×2000)を示す。
図9及び図10から、添加したFPDガラスの粒子(粉粒体)がガラス発泡体において軟化しない状態で残存している可能性を示している。なお、PDPガラス(アルカリバリウムガラス)の軟化点は850℃以下とされており、焼成温度とほぼ同じであるが、顕微鏡観察したところ軟化せずに残余していた。
FIG. 9 shows an electron microscopic image of a non-softened glass powder particle confirmed on the surface of a glass foam added with 5% LCD glass (× 4000, miniscope TM-1000 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 15 kV). FIG. 10 shows an electron microscopic image (× 2000) of the non-softened glass particles confirmed on the surface of the glass foam added with 75% PDP glass.
FIG. 9 and FIG. 10 indicate the possibility that the added FPD glass particles (powder particles) remain in the glass foam without being softened. In addition, although the softening point of PDP glass (alkali barium glass) is 850 degrees C or less and is substantially the same as a calcination temperature, when it observed with the microscope, it remained without softening.
また、本実施例では、二種類のガラスを混合した場合の例を示したが、3種類以上のガラスを使用しても良い。この場合は、焼成時の最高温度とほぼ同じ又は焼成時の最高温度よりも軟化温度の高いガラスの粒子が焼成時の最高温度よりも軟化温度が低く、軟化したガラスの内部や表面に分散することで、同様な効果を奏することができる。 Moreover, although the example at the time of mixing two types of glass was shown in the present Example, you may use 3 or more types of glass. In this case, glass particles whose softening temperature is almost the same as the highest temperature during firing or higher than the highest temperature during firing have a softening temperature lower than the highest temperature during firing and are dispersed in the interior or surface of the softened glass. Thus, the same effect can be achieved.
本発明は、排水処理を必要とする事業所の排水処理設備の後段処理に活用、利用可能性がある。また、リン酸を保持したガラス発泡体や再生後のガラス発泡体は屋上緑化資材としても利用可能性があり、排水処理以外の環境分野や建築分野等、様々な技術分野での利用可能性がある。 INDUSTRIAL APPLICABILITY The present invention can be utilized and used for the subsequent treatment of wastewater treatment facilities at business establishments that require wastewater treatment. In addition, glass foam that retains phosphoric acid and recycled glass foam can be used as rooftop greening materials, and can be used in various technical fields such as environmental fields and construction fields other than wastewater treatment. is there.
1 ビンガラス(ソーダ石灰ガラス)の粒子
2 FPDガラスの粒子
3 軟化したソーダ石灰ガラス
4 空隙
1 Particles of bottle glass (soda lime glass) 2 Particles of FPD glass 3 Softened soda lime glass 4 Void
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009170391A JP5564680B2 (en) | 2009-07-21 | 2009-07-21 | Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009170391A JP5564680B2 (en) | 2009-07-21 | 2009-07-21 | Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011026141A JP2011026141A (en) | 2011-02-10 |
JP5564680B2 true JP5564680B2 (en) | 2014-07-30 |
Family
ID=43635344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009170391A Expired - Fee Related JP5564680B2 (en) | 2009-07-21 | 2009-07-21 | Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5564680B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2502686C2 (en) * | 2011-12-14 | 2013-12-27 | Юлия Алексеевна Щепочкина | Method of foamed glass production |
JP5989334B2 (en) * | 2011-12-26 | 2016-09-07 | 地方独立行政法人東京都立産業技術研究センター | Granulated body, granulated body manufacturing method, water purification device, phosphate fertilizer, and soil improvement material |
RU2522606C1 (en) * | 2013-07-08 | 2014-07-20 | Юлия Алексеевна Щепочкина | Method of production of foam glass |
JP6173184B2 (en) * | 2013-11-19 | 2017-08-02 | 株式会社大貴 | Water absorption treatment material |
US10052623B2 (en) * | 2015-06-29 | 2018-08-21 | Industrial Technology Research Institute | Inorganic material for removing harmful substance from wastewater and method of preparing the same, and method for wastewater treatment |
WO2017022450A1 (en) | 2015-07-31 | 2017-02-09 | ソニー株式会社 | Pinhole camera, electronic apparatus, and manufacturing method |
JP6805935B2 (en) * | 2017-03-31 | 2020-12-23 | 住友大阪セメント株式会社 | How to reuse phosphorus adsorbent in environmental water |
JP6805934B2 (en) * | 2017-03-31 | 2020-12-23 | 住友大阪セメント株式会社 | Phosphorus adsorbent in environmental water and its manufacturing method, quality control method of phosphorus adsorbent, and method of removing phosphorus in environmental water using phosphorus adsorbent |
JP2022097783A (en) * | 2020-12-21 | 2022-07-01 | 矢崎エナジーシステム株式会社 | Foam glass body, heat insulator using the same, and method for manufacturing foam glass body |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156481A (en) * | 1983-02-26 | 1984-09-05 | Satoru Imamura | Advanced purification of waste water from living system |
JPH0230296B2 (en) * | 1985-03-29 | 1990-07-05 | Kogyo Gijutsuin | RINJOKYOZAI |
JPS62148336A (en) * | 1985-12-24 | 1987-07-02 | Central Glass Co Ltd | Porous body comprising alumino phosphosilicate glass ceramic and its preparation |
JP4088930B2 (en) * | 2003-10-08 | 2008-05-21 | 鳥取県 | Foamed glass manufacturing method and foamed glass |
JP4951799B2 (en) * | 2005-01-11 | 2012-06-13 | 宮崎県 | Porous glass having phase-separated glass as precursor and method for producing the same |
JP4467530B2 (en) * | 2006-02-27 | 2010-05-26 | 日本建設技術株式会社 | Method for producing foamed glass material containing porcelain powder |
-
2009
- 2009-07-21 JP JP2009170391A patent/JP5564680B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011026141A (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5564680B2 (en) | Glass foam, phosphoric acid adsorbent containing glass foam, plant growth medium containing glass foam, and method for producing glass foam | |
Wu et al. | Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment | |
JP4920007B2 (en) | Method for producing glass foam, glass foam and method for regenerating glass foam | |
CN114053991B (en) | Three-dimensional petal-shaped lanthanum-iron composite adsorption material and preparation method and application thereof | |
CN103721667B (en) | A kind of dephosphorization adsorbent and preparation method efficiently | |
CN108440013A (en) | A kind of biological aerated filter ceramic grain filter and preparation method thereof | |
CN109231842A (en) | A kind of foamed glass material and preparation method thereof reducing water quality total phosphorus index | |
CN106390927A (en) | Preparation method of bio-char composite adsorbing material for removing phosphates in surface water | |
Gu et al. | Phosphorus and Nitrogen Removal Using Novel Porous Bricks Incorporated with Wastes and Minerals. | |
JP6263233B2 (en) | Inorganic material for removing harmful substances in wastewater, method for producing the same, and wastewater treatment method | |
CN102600796B (en) | Denitrification filter material for absorbing ammonia and nitrogen and regenerating method thereof | |
CN113000025B (en) | Phosphorus removal adsorbent and preparation method and application thereof | |
CN117263716B (en) | Preparation method and application of supported bi-metal oxide sludge-based mesoporous ceramsite | |
CN111790348B (en) | Method for preparing spherical particle adsorbent by using Bayer process red mud and electrolytic manganese slag | |
CN107175069B (en) | Modified diatomite water purifying agent and preparation method thereof | |
CN110575812B (en) | Environment-friendly adsorbing material for efficient phosphorus removal of argil/pyrolusite and preparation method thereof | |
CN105541089A (en) | Eco-friendly pumice for sponge-type city construction and preparation method thereof | |
CN106334517A (en) | Method for preparation of carbon dioxide adsorbent through modification of sediment simultaneously by rare earth and microwave heating | |
CN105503248A (en) | Biological serpentine filter material and preparation method thereof | |
CN115739017B (en) | Preparation method and application of mesoporous lanthanum modified mineral-based efficient dephosphorization ceramsite | |
CN106824049A (en) | A kind of dephosphorization filler and preparation method thereof | |
CN111001376A (en) | SiO for efficiently adsorbing copper ions2-Al2O3Preparation method of-CaO-MgO quaternary system adsorbent | |
CN110759696A (en) | Preparation method of porous light ceramsite by taking phosphorus solid waste as raw material | |
CN106045058A (en) | Method for treating landfill leachate by utilizing photocatalysis biological adsorbent | |
CN111675425B (en) | Constructed wetland filler and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5564680 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |