JP2013203554A - Porous glass molded body and method for producing the same - Google Patents

Porous glass molded body and method for producing the same Download PDF

Info

Publication number
JP2013203554A
JP2013203554A JP2012070661A JP2012070661A JP2013203554A JP 2013203554 A JP2013203554 A JP 2013203554A JP 2012070661 A JP2012070661 A JP 2012070661A JP 2012070661 A JP2012070661 A JP 2012070661A JP 2013203554 A JP2013203554 A JP 2013203554A
Authority
JP
Japan
Prior art keywords
glass
phase
molded body
porous glass
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070661A
Other languages
Japanese (ja)
Inventor
Yosuke Shoji
陽介 庄司
Toshiyuki Oguchi
敏之 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2012070661A priority Critical patent/JP2013203554A/en
Publication of JP2013203554A publication Critical patent/JP2013203554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous glass molded body that has thermal resistance, rigidity, and a lightweight property and is transparent in the visible light region.SOLUTION: In a porous glass molded body, a compound phase of SiOmain ingredient is a three-dimensional skeleton and there are a number of penetrating fine pores whose pore size is 30 nm or less. The main material includes 40-75 wt.% of SiOand 10-30 wt.% of BO. Glass as a raw material is obtained by adding 0-10 wt.% of AlO, 0-5 wt.% of CaO, 0-10 wt.% of NaO and 0-15 wt.% of KO to the main material. The raw material is subjected to heat treatment at a temperature of 510-640°C for 0.5-20 hours to obtain phase-separated glass composed of a compound phase and a soluble phase whose main ingredient are SiO. Molded glass is obtained by molding the phase-separated glass. The porous glass molded body is produced by making the molded glass subjected to acid and alkali processing to make the soluble phase eluted.

Description

本発明は、多孔質ガラスの成形体とその作製方法に関するものである。   The present invention relates to a molded body of porous glass and a method for producing the same.

透明な材料としてガラス材と樹脂材がある。ガラス材は、耐熱性があり、また変形し難い剛性を有する長所がある。しかし、ガラス材は、重いという欠点がある。例えば、光学ガラスでは、比重が2.52g/cm3であり、合成石英ガラスでは比重が2.2g/cm3である。一方、樹脂材は、軽いという長所がある。例えば光学樹脂材では、比重が1.07〜1.41g/cm3である。しかし、樹脂材は、耐熱性や剛性に劣り、傷付き易いという欠点がある。 There are glass materials and resin materials as transparent materials. Glass materials have the advantage of having heat resistance and rigidity that is difficult to deform. However, glass materials have the disadvantage of being heavy. For example, optical glass has a specific gravity of 2.52 g / cm 3 , and synthetic quartz glass has a specific gravity of 2.2 g / cm 3 . On the other hand, the resin material has an advantage of being light. For example, an optical resin material has a specific gravity of 1.07 to 1.41 g / cm 3 . However, the resin material is inferior in heat resistance and rigidity and has a drawback of being easily damaged.

多孔質ガラスは、こうした一般的なガラス材や樹脂材と比較して耐熱性、剛性を有すると共に、軽量であり、ガラス材と樹脂材双方の長所を併せ持つ。   Porous glass has heat resistance and rigidity as compared with such general glass materials and resin materials, is lightweight, and has the advantages of both glass materials and resin materials.

しかし、従来の多孔質ガラス成形体では、一般的なガラス材や樹脂材の特徴を持ち合わせるものの、多孔質を構成する孔径が50nm以上であり、これにより細孔内部での光の散乱が発生するために白濁して透明性が得られないものであった。なお、多孔質ガラスに関する特許文献を下記に挙げることができる。   However, although the conventional porous glass molded body has the characteristics of general glass materials and resin materials, the pore diameter of the porous material is 50 nm or more, which causes light scattering inside the pores. Therefore, it became cloudy and transparency was not obtained. In addition, the patent document regarding porous glass can be mentioned below.

これらの特許文献のいずれも、多孔質ガラスを加熱により分相処理し、次いで、酸処理しガラス層の厚みが1〜100μmで多孔化した成形体を得る技術が開示されている。しかし、得られた成形体が焼結法による孔径0.1〜5.0μmの多孔質セラミックスと多孔質ガラスの複合材であるため、多孔質ガラスの孔径に関わらず、多孔質セラミックスの細孔内部の光の散乱により透明な材料とはならなかった。   Each of these patent documents discloses a technique for obtaining a molded body in which porous glass is subjected to phase separation treatment by heating, and then acid-treated to make the glass layer porous with a thickness of 1 to 100 μm. However, since the obtained molded body is a composite material of porous ceramics and porous glass having a pore diameter of 0.1 to 5.0 μm by a sintering method, the pores of the porous ceramics are independent of the pore diameter of the porous glass. It was not a transparent material due to internal light scattering.

特開2007−169110号公報JP 2007-169110 A 特開2007−169111号公報JP 2007-169111 A

本発明においては、耐熱性、剛性、軽量性を有し、可視光領域において透明な多孔質ガラス成形体を提供することを解決すべき課題としている。   In the present invention, it is an object to be solved to provide a porous glass molded body having heat resistance, rigidity and light weight and transparent in the visible light region.

本発明による多孔質ガラス成形体は、SiO2主成分の化合物相を三次元骨格とし、孔径30nm以下の多数の貫通した細孔を有する、ことを特徴とするものである。 The porous glass molded article according to the present invention is characterized in that the compound phase mainly composed of SiO 2 has a three-dimensional skeleton and has a large number of through-holes having a pore diameter of 30 nm or less.

前記成形体は、40〜75wt%のSiO2と10〜30wt%のB23とを主材料とし、この主材料に0〜10wt%のAl23と、0〜5wt%のCaOと、0〜10wt%のNa2Oと、0〜15wt%のK2Oを添加してなるガラスを原材料とし、この原材料に対して、熱処理温度510〜640℃で熱処理時間0.5〜20時間で熱処理を施すことにより、SiO2主成分の化合物相とB23−Al23−CaO−Na2O−K2Oの可溶相とからなる分相ガラスを得、次いで、この分相ガラスを成形加工し、その成形加工により得られた成形体を酸処理後、アルカリ処理して、当該成形体から前記可溶相を溶出させたことにより作製されたものであることを特徴とする。 The molded body is mainly composed of 40 to 75 wt% SiO 2 and 10 to 30 wt% B 2 O 3, and 0 to 10 wt% Al 2 O 3 and 0 to 5 wt% CaO are included in the main material. , 0 to 10 wt% Na 2 O and 0 to 15 wt% K 2 O added glass is used as a raw material, and the heat treatment temperature is 510 to 640 ° C. and the heat treatment time is 0.5 to 20 hours. To obtain a phase-separated glass consisting of a compound phase composed mainly of SiO 2 and a soluble phase of B 2 O 3 —Al 2 O 3 —CaO—Na 2 O—K 2 O. It is produced by forming a phase-separated glass and subjecting the molded body obtained by the molding process to acid treatment and then alkali treatment to elute the soluble phase from the molded body. And

本発明による多孔質ガラス成形体の作製方法は、40〜75wt%のSiO2と10〜30wt%のB23とを主材料とし、この主材料に0〜10wt%のAl23と、0〜5wt%のCaOと、0〜10wt%のNa2Oと、0〜15wt%のK2Oを添加してなるガラスを原材料とし、この原材料に対して、熱処理温度510〜640℃で熱処理時間0.5〜20時間で熱処理を施すことにより、SiO2主成分の化合物相とB23−Al23−CaO−Na2O−K2Oの可溶相とからなる分相ガラスを得、前記分相ガラスを成形加工して成形ガラスを得、前記成形ガラスを酸処理後、アルカリ処理して、当該成形ガラスから前記可溶相を溶出させて、多孔質ガラスを作製することを特徴とする。 The method for producing a porous glass molded body according to the present invention comprises 40 to 75 wt% SiO 2 and 10 to 30 wt% B 2 O 3 as main materials, and 0 to 10 wt% Al 2 O 3 and the main material. Glass made by adding 0 to 5 wt% CaO, 0 to 10 wt% Na 2 O, and 0 to 15 wt% K 2 O is used as a raw material, and the heat treatment temperature is 510 to 640 ° C. by heat treatment in the heat treatment time from 0.5 to 20 hours, and a SiO 2 compound phase composed mainly and B 2 O 3 -Al 2 O 3 -CaO-Na 2 O-K 2 O in the soluble phase min A phase glass is obtained, and the phase-separated glass is molded to obtain a shaped glass. The shaped glass is acid-treated and then alkali-treated to elute the soluble phase from the shaped glass to produce a porous glass. It is characterized by doing.

本発明の多孔質ガラス成形体は、ガラス材料の長所である耐熱性、剛性と樹脂材の長所である軽量性を供えると共に、従来の多孔質ガラスでは得られなかった高い透明性を有する。   The porous glass molded body of the present invention provides heat resistance, which is an advantage of a glass material, rigidity, and lightness, which is an advantage of a resin material, and has high transparency that cannot be obtained with conventional porous glass.

図1(a)は、成形体全面にスポンジ状の貫通穴を有する状態を示す多孔質ガラス成形体のSEM写真、図1(b)は、孔径30nm以下の多孔質ガラス成形体のSEM写真を示す図である。FIG. 1 (a) is an SEM photograph of a porous glass molded body showing a state having sponge-like through holes on the entire surface of the molded body, and FIG. 1 (b) is an SEM photograph of a porous glass molded body having a pore diameter of 30 nm or less. FIG. 図2は、図1(b)のSEM写真の矩形領域を概念的かつ模式的に示す図である。FIG. 2 is a diagram conceptually and schematically showing a rectangular area of the SEM photograph of FIG. 図3は、孔径50nmと30nmの多孔質ガラス成形体において可視光領域での光透過率を示す図である。FIG. 3 is a diagram showing light transmittance in the visible light region in a porous glass molded body having a pore diameter of 50 nm and 30 nm. 図4は、前記多孔質ガラス成形体の作製過程を示す図である。FIG. 4 is a diagram showing a production process of the porous glass molded body. 図5(a)は、孔径30nmの板状多孔質ガラス成形体の透明性を模式的に示す図、図5(b)は孔径50nmの板状多孔質ガラス成形体の透明性を模式的に示す図、図5(c)は孔径200nmの板状多孔質ガラス成形体の透明性を模式的に示す図である。5A schematically shows the transparency of a plate-like porous glass molded body having a pore diameter of 30 nm, and FIG. 5B schematically shows the transparency of the plate-like porous glass molded body having a pore diameter of 50 nm. FIG. 5C schematically shows the transparency of the plate-like porous glass molded body having a pore diameter of 200 nm.

以下、添付した図面を参照して、本発明の実施の形態に係る多孔質ガラス成形体とその作製方法を説明する。   Hereinafter, a porous glass molded body and a method for producing the same according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の多孔質ガラス成形体1は、実施形態では、図1(a)のSEM写真で示す成形体全面にスポンジ状の貫通穴を有する状態である。細孔の状態は図1(b)で示す孔径30nm以下の状態である。図2は、図1(b)のSEM写真の短形領域を概念的かつ模式的に示す図であり、SiO2主成分の化合物相2を三次元骨格とし、その骨格内に孔径30nm以下の多数の細孔3を有している。当該多孔質ガラス成形体1の作製方法は、ホウ珪酸ガラスを2つの相に分相させて作製する、いわゆる分相法によるものである。これらの2つの相が絡み合う構造(スピノーゲル構造)であるため、多数の細孔3同士も三次元に連結し、多孔質ガラス成形体1全体を貫通している。 In the embodiment, the porous glass molded body 1 of the present invention has a sponge-like through hole on the entire surface of the molded body shown in the SEM photograph of FIG. The state of the pores is a state having a pore diameter of 30 nm or less as shown in FIG. FIG. 2 is a diagram conceptually and schematically showing the short region of the SEM photograph of FIG. 1 (b). The SiO 2 main component compound phase 2 is a three-dimensional skeleton, and the pore diameter is 30 nm or less in the skeleton. It has a large number of pores 3. The porous glass molded body 1 is produced by a so-called phase separation method in which a borosilicate glass is divided into two phases. Since these two phases are intertwined with each other (spinogel structure), a large number of pores 3 are also connected in three dimensions and penetrate the entire porous glass molded body 1.

前記多数の細孔3は、互いに連結することで多孔質ガラス成形体1を貫通しているが、ここでの前記「連結」は、成形体1の全体における細孔3のすべてが互いに連結していることに限定しない。なお、図1(b)のSEM写真からは、それら多数の細孔3がほぼ均等に分布して存在し、立体的に連結していることが明らかに示されている。また、図1のSEM写真の一部を図2で平面的に示した多孔質ガラス成形体1においては、ハッチングがSiO2主成分の化合物相2であり、白抜き部分が細孔3を示している。 The large number of pores 3 penetrate each other through the porous glass molded body 1 by being connected to each other. However, here, the “connection” means that all the pores 3 in the entire molded body 1 are connected to each other. It is not limited to being. In addition, from the SEM photograph of FIG. 1B, it is clearly shown that the large number of pores 3 are distributed almost evenly and are three-dimensionally connected. Further, the planar porous glass shaped body 1 of a part of the SEM photograph in FIG. 2 in FIG. 1, hatching is compound phase 2 of SiO 2 principal components, white portions indicate the pores 3 ing.

ただし、本発明の多孔質ガラス成形体1は、成形体全体にわたり、すべての細孔3が均等に分布して存在することに限定する趣旨ではない。   However, the porous glass molded body 1 of the present invention is not limited to the fact that all the pores 3 are evenly distributed over the entire molded body.

この多孔質ガラス成形体1は、主材料をSiO2とB23とし、この主材料にAl23とCaOとNa2OとK2Oとを添加材としてなるホウ珪酸ガラスを用いて、分相法により作製したものである。さらに詳しくは、前記成形体1は、40〜75wt%のSiO2と10〜30wt%のB23とを主材料とし、この主材料に0〜10wt%のAl23と、0〜5wt%のCaOと、0〜10wt%のNa2Oと、0〜15wt%のK2Oを添加してなるガラスを原材料とし、この原材料に対して、熱処理温度510〜640℃で熱処理時間0.5〜20時間で熱処理を施すことにより、SiO2主成分の化合物相とB23−Al23−CaO−Na2O−K2Oの可溶相とからなる分相ガラスを得、次いで、この分相ガラスを成形加工し、その成形加工により得られた成形体を酸処理後、アルカリ処理して、当該成形体から前記可溶相を溶出させたことにより作製されたものである。 This porous glass molded body 1 uses borosilicate glass whose main materials are SiO 2 and B 2 O 3, and whose main materials are Al 2 O 3 , CaO, Na 2 O and K 2 O as additives. Thus, it was produced by the phase separation method. More specifically, the molded body 1 is composed mainly of 40 to 75 wt% SiO 2 and 10 to 30 wt% B 2 O 3, and 0 to 10 wt% Al 2 O 3 and 0 to Glass made by adding 5 wt% CaO, 0 to 10 wt% Na 2 O, and 0 to 15 wt% K 2 O is used as a raw material, and the heat treatment temperature is 510 to 640 ° C. and the heat treatment time is 0. by heat treatment at .5~20 hours, the phase-separated glass consisting of a compound phase of SiO 2 major and B 2 O 3 -Al 2 O 3 -CaO-Na 2 O-K 2 O in the soluble phase Obtained, and then, this phase-separated glass was molded, and the molded body obtained by the molding process was acid-treated and then alkali-treated, and the soluble phase was eluted from the molded body. It is.

本発明の多孔質ガラス成形体1の細孔を構成する孔径は30nm以下である。孔径が30nm以下の場合、可視光領域における細孔内部の光の散乱がほとんど生じず透明性が極めて高くなる。SiO2主成分の化合物相2を三次元骨格とするため、耐熱性、剛性、軽量性を備えることを可能としている。 The pore diameter constituting the pores of the porous glass molded body 1 of the present invention is 30 nm or less. When the pore diameter is 30 nm or less, light is hardly scattered inside the pores in the visible light region, and the transparency becomes extremely high. Since the compound phase 2 composed mainly of SiO 2 has a three-dimensional skeleton, it is possible to provide heat resistance, rigidity, and lightness.

図3は、従来と本発明の多孔質ガラス成形体を、板厚0.3mmの平板状とした場合の光透過率を比較して示すものである。図3の横軸は光波長、縦軸は光透過率を示す。(a)は従来の孔径50nmの板状多孔質ガラス成形体の光透過率特性、(b)は本発明の孔径30nmの板状多孔質ガラス成形体の光透過率特性を示す。   FIG. 3 shows a comparison of light transmittance in the case where the conventional porous glass molded body of the present invention is formed into a flat plate shape having a plate thickness of 0.3 mm. The horizontal axis in FIG. 3 indicates the light wavelength, and the vertical axis indicates the light transmittance. (A) shows the light transmittance characteristics of a conventional plate-like porous glass molded article having a pore diameter of 50 nm, and (b) shows the light transmittance characteristics of the plate-like porous glass molded article having a pore diameter of 30 nm of the present invention.

図3で示すように、従来の多孔質ガラス成形体(a)では、可視光領域における光透過率が90%以下の部分が存在するのに対して、本発明の多孔質ガラス成形体(b)では、可視光領域全域にわたり、その光透過率が90%以上である。以上から本発明の多孔質ガラス成形体1は、孔径が30nm以下であるため、図3に示す孔径30nmの多孔質ガラス成形体以上に、より透明性が極めて高いことが伺える。尚、図3の光透過率の測定には、以下の機種の測定器械等を用いた。   As shown in FIG. 3, the conventional porous glass molded body (a) has a portion having a light transmittance of 90% or less in the visible light region, while the porous glass molded body (b) of the present invention (b) ) Has a light transmittance of 90% or more over the entire visible light region. From the above, since the porous glass molded body 1 of the present invention has a pore diameter of 30 nm or less, it can be seen that the transparency is much higher than that of the porous glass molded body having a pore diameter of 30 nm shown in FIG. For the measurement of the light transmittance in FIG. 3, the following types of measuring instruments and the like were used.

測定機種:日本分光(秩)製の分光光度計V−570型、
同 :日本分光(秩)製の積分球装置INS−470型、
標準反射板:米国ラブスフェア製のスペクトラロンTM、
測定波長範囲:250−2000nm、
リファレンス:空気(拡散透過率測定)スペクトラロンTM(拡散反射率測定)
次に、図4を参照して、本発明の多孔質ガラス成形体の作製例を説明する。
Measurement model: Spectrophotometer V-570 manufactured by JASCO (Chichi)
Same as above: Integral sphere device INS-470 manufactured by JASCO (Chichi)
Standard reflector: Spectralon TM manufactured by Lovesphere, USA
Measurement wavelength range: 250-2000 nm,
Reference: Air (diffuse transmittance measurement) Spectralon TM (diffuse reflectance measurement)
Next, with reference to FIG. 4, the preparation example of the porous glass molded object of this invention is demonstrated.

本発明では、分相法により多孔質ガラス成形体を作製した。   In the present invention, a porous glass molded body was produced by a phase separation method.

図4(a)は、多孔質ガラス成形体の原材料を示す。図4(b)は、熱処理による分相工程、図4(c)は、成形工程、図4(d)は、酸処理工程、図4(e)は、アルカリ処理工程を示す。   Fig.4 (a) shows the raw material of a porous glass molded object. 4B shows a phase separation step by heat treatment, FIG. 4C shows a forming step, FIG. 4D shows an acid treatment step, and FIG. 4E shows an alkali treatment step.

原材料:
図4(a)に示す本発明の多孔質ガラスの原材料はホウ珪酸ガラス4である。このホウ珪酸ガラス4は、40〜75wt%のSiO2と10〜30wt%のB23とを主材料とし、この主材料に0〜10wt%のAl23と、0〜5wt%のCaOと、0〜10wt%のNa2Oと、0〜15wt%のK2Oを添加して構成されている。なお、Al23、CaO、Na2O、K2Oのうち少なくとも1つの材料は添加するものとする。したがって、主材料であるSiO2、B23の合計wt%で100%にはならない。
raw materials:
The raw material of the porous glass of the present invention shown in FIG. 4 (a) is borosilicate glass 4. This borosilicate glass 4 is mainly composed of 40 to 75 wt% SiO 2 and 10 to 30 wt% B 2 O 3, and 0 to 10 wt% Al 2 O 3 and 0 to 5 wt% of this main material. CaO, 0 to 10 wt% Na 2 O, and 0 to 15 wt% K 2 O are added. Incidentally, Al 2 O 3, CaO, is at least one material of Na 2 O, K 2 O is assumed to be added. Therefore, the total wt% of the main materials SiO 2 and B 2 O 3 is not 100%.

I、熱処理:
熱処理工程では、前記原材料であるホウ珪酸ガラス4に対し、510〜640℃の温度の下で、0.5〜20時間の間、熱処理をする。この熱処理の条件により、多孔質ガラスの細孔の孔径を30nm以下に制御することができる。
I, heat treatment:
In the heat treatment step, the borosilicate glass 4 as the raw material is heat treated at a temperature of 510 to 640 ° C. for 0.5 to 20 hours. Depending on the conditions of this heat treatment, the pore diameter of the porous glass can be controlled to 30 nm or less.

この熱処理により、図4(b)で示す分相ガラス5を得る。図4(b)において、分相ガラス5は、黒塗りで示すSiO2主成分の化合物相6と、ハッチングで示すB23−Al23−CaO−Na2O−K2Oの可溶相7とからなる。この分相の原理は周知であるので、説明を略する。 By this heat treatment, a phase separation glass 5 shown in FIG. 4B is obtained. In FIG. 4B, the phase-separated glass 5 is composed of a compound phase 6 composed mainly of SiO 2 indicated by black coating and B 2 O 3 —Al 2 O 3 —CaO—Na 2 O—K 2 O indicated by hatching. It consists of a soluble phase 7. Since the principle of phase separation is well known, the description thereof is omitted.

II、成形:
前記分相ガラス5を、所望の形状、例えば板状に成形し、図4(c)で示す成形体8を得る。この加工には、切断、研磨等の各種加工を含む。
II, molding:
The phase-separated glass 5 is formed into a desired shape, for example, a plate shape to obtain a formed body 8 shown in FIG. This processing includes various processing such as cutting and polishing.

III、酸処理:
前記ガラス成形体8に対して、70℃以上に加温したHCL,H2SO4,HNO3等により酸処理を施すことにより可溶相7が溶出される。その結果、図4(d)で示すように、三次元骨格をなす前記SiO2主成分の化合物相6と、可溶相7が溶出した跡のSiO2ゲル9とからなるSiO2ゲル含有多孔質ガラス成形体10を得る。前記SiO2ゲル9は、可溶相7の溶出残りで、SiO2を主成分として存在するものである。
III, acid treatment:
The soluble phase 7 is eluted by subjecting the glass molded body 8 to acid treatment with HCL, H 2 SO 4 , HNO 3 or the like heated to 70 ° C. or higher. As a result, as shown in FIG. 4 (d), the SiO 2 gel-containing porous material comprising the compound phase 6 of the SiO 2 main component forming a three-dimensional skeleton and the SiO 2 gel 9 of the trace of the soluble phase 7 eluted. A glassy compact 10 is obtained. The SiO 2 gel 9 is the elution residue of the soluble phase 7 and contains SiO 2 as a main component.

IV、アルカリ処理:
SiO2ゲル含有多孔質ガラス成形体10に対してNa2CO3、NaHCO3、NaOH等によりアルカリ処理することにより、前記SiO2ゲル9を溶出させ、この溶出した跡が孔径30nm以下の細孔11となって、本発明の多孔質ガラス成形体12を得る。なお、酸処理からアルカリ処理への移行に際しては、洗浄の後、ウェットまたはドライの状態で移行する。
IV, alkali treatment:
By subjecting the SiO 2 gel-containing porous glass molded body 10 to alkali treatment with Na 2 CO 3 , NaHCO 3 , NaOH or the like, the SiO 2 gel 9 is eluted, and the eluted traces are pores having a pore diameter of 30 nm or less. 11 to obtain the porous glass molded body 12 of the present invention. In the transition from the acid treatment to the alkali treatment, the transition is performed in a wet or dry state after washing.

図5(a)〜(c)に、板状に成形されかつ孔径が30nm、50nm、200nmの多孔質ガラス成形体13、14、15それぞれをカラー写真16上に載置した場合のカラー写真の見え方の違いによって、各多孔質ガラス成形体13、14、15の光透過性を模式的に示す。多孔質ガラス成形体13は本発明のものであり、多孔質ガラス成形体14、15は従来のものである。カラー写真16は概念的に白抜きで示す。   FIGS. 5A to 5C show color photographs when the porous glass molded bodies 13, 14, and 15 formed in a plate shape and having pore diameters of 30 nm, 50 nm, and 200 nm are placed on the color photograph 16. The light transmittance of each porous glass molded body 13, 14, 15 is schematically shown by the difference in appearance. The porous glass molded body 13 is that of the present invention, and the porous glass molded bodies 14 and 15 are conventional. The color photograph 16 is conceptually shown in white.

図5(a)に示すように、本発明の孔径30nmの多孔質ガラス成形体13は、その透明性が高いので、それで覆われたカラー写真部分を明瞭に視認することができる。多孔質ガラス成形体13は、その透明性を示すため、白抜きで示す。   As shown in FIG. 5A, the porous glass molded body 13 having a pore diameter of 30 nm according to the present invention has high transparency, so that the color photographic part covered with the porous glass molded body 13 can be clearly seen. In order to show the transparency, the porous glass molded body 13 is shown in white.

図5(b)に示すように、従来の孔径50nmの多孔質ガラス成形体14は細孔内部での光の散乱が発生するため、白濁した状態となるため、それで覆われたカラー写真部分は視認しにくい。その視認状態をハッチングで示す。   As shown in FIG. 5 (b), the conventional porous glass molded body 14 having a pore diameter of 50 nm is clouded because light is scattered inside the pores. Hard to see. The visual recognition state is indicated by hatching.

図5(c)に示すように、従来の孔径200nmの多孔質ガラス成形体15は不透明であるため、多孔質ガラス成形体15で覆われたカラー写真部分は視認することができない。多孔質ガラス成形体15は不透明であることを示すため、クロスハッチングで示す。   As shown in FIG.5 (c), since the conventional porous glass molded object 15 with the hole diameter of 200 nm is opaque, the color photographic part covered with the porous glass molded object 15 cannot be visually recognized. In order to show that the porous glass molded body 15 is opaque, it is shown by cross hatching.

以上説明したように本発明の多孔質ガラス成形体は、SiO2主成分の化合物相を三次元骨格とするので、耐熱性、剛性、軽量性を備え、また、その細孔の孔径は、30nm以下であるので、細孔内部での光の散乱がほとんど生じず、結果、高い透明性を有した成形体となっている。 As described above, the porous glass molded body of the present invention has a heat-resistant, rigid, lightweight because the compound phase composed mainly of SiO 2 has a three-dimensional skeleton, and the pore diameter is 30 nm. Since it is the following, light scattering within the pores hardly occurs, and as a result, the molded body has high transparency.

1 多孔質ガラス成形体
2 SiO2主成分の化合物相
3 細孔
4 ホウ珪酸ガラス
5 分相ガラス
6 SiO2主成分の化合物相
7 可溶相
8 ガラス成形体
9 SiO2ゲル
10 SiO2ゲル含有多孔質ガラス成形体
11 細孔
12 多孔質ガラス成形体
1 porous glass shaped body 2 SiO 2 composed mainly of compound phase 3 pore 4 borosilicate glass 5 minutes phase glass 6 SiO 2 composed mainly of compound phases 7 soluble phase 8 glass shaped body 9 SiO 2 gel 10 SiO 2 gel containing Porous glass molded body 11 Pore 12 Porous glass molded body

Claims (3)

SiO2主成分の化合物相を三次元骨格とし、孔径30nm以下の多数の貫通した細孔を有する、ことを特徴とする多孔質ガラス成形体。 A porous glass molded body characterized in that a compound phase mainly composed of SiO 2 has a three-dimensional skeleton and has a large number of through-holes having a pore diameter of 30 nm or less. 当該多孔質ガラスは、
40〜75wt%のSiO2と10〜30wt%のB23とを主材料とし、この主材料に0〜10wt%のAl23と、0〜5wt%のCaOと、0〜10wt%のNa2Oと、0〜15wt%のK2Oを添加してなるガラスを原材料とし、
この原材料に対して、熱処理温度510〜640℃で熱処理時間0.5〜20時間で熱処理を施すことにより、SiO2主成分の化合物相とB23−Al23−CaO−Na2O−K2Oの可溶相とからなる分相ガラスを得、
前記分相ガラスを成形加工して成形ガラスを得、
前記成形ガラスを酸およびアルカリ処理して、当該成形ガラスから前記可溶相を溶出させたことにより、作製されたものである、請求項1に記載の多孔質ガラス成形体。
The porous glass is
40 to 75 wt% SiO 2 and 10 to 30 wt% B 2 O 3 are used as main materials, and 0 to 10 wt% Al 2 O 3 , 0 to 5 wt% CaO, and 0 to 10 wt% are used as the main materials. and Na 2 O of the glass obtained by addition of K 2 O of 0 to 15 wt% and raw materials,
By subjecting this raw material to heat treatment at a heat treatment temperature of 510 to 640 ° C. and a heat treatment time of 0.5 to 20 hours, a SiO 2 main component compound phase and B 2 O 3 —Al 2 O 3 —CaO—Na 2 are obtained. Obtaining a phase-separated glass comprising a soluble phase of O-K 2 O;
Molding the phase-separated glass to obtain a molded glass;
The porous glass molded body according to claim 1, which is produced by treating the molded glass with an acid and an alkali to elute the soluble phase from the molded glass.
40〜75wt%のSiO2と10〜30wt%のB23とを主材料とし、この主材料に0〜10wt%のAl23と、0〜5wt%のCaOと、0〜10wt%のNa2Oと、0〜15wt%のK2Oを添加してなるガラスを原材料とし、
この原材料に対して、熱処理温度510〜640℃で熱処理時間0.5〜20時間で熱処理を施すことにより、SiO2主成分の化合物相とB23−Al23−CaO−Na2O−K2Oの可溶相とからなる分相ガラスを得、
前記分相ガラスを成形加工して成形ガラスを得、
前記成形ガラスを酸処理後、アルカリ処理して、当該成形ガラスから前記可溶相を溶出させて、多孔質ガラスを作製することを特徴とする多孔質ガラス成形体の作製方法。
40 to 75 wt% SiO 2 and 10 to 30 wt% B 2 O 3 are used as main materials, and 0 to 10 wt% Al 2 O 3 , 0 to 5 wt% CaO, and 0 to 10 wt% are used as the main materials. and Na 2 O of the glass obtained by addition of K 2 O of 0 to 15 wt% and raw materials,
By subjecting this raw material to heat treatment at a heat treatment temperature of 510 to 640 ° C. and a heat treatment time of 0.5 to 20 hours, a SiO 2 main component compound phase and B 2 O 3 —Al 2 O 3 —CaO—Na 2 are obtained. Obtaining a phase-separated glass comprising a soluble phase of O-K 2 O;
Molding the phase-separated glass to obtain a molded glass;
A method for producing a porous glass molded body, which comprises subjecting the shaped glass to an acid treatment and an alkali treatment to elute the soluble phase from the shaped glass to produce a porous glass.
JP2012070661A 2012-03-27 2012-03-27 Porous glass molded body and method for producing the same Pending JP2013203554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070661A JP2013203554A (en) 2012-03-27 2012-03-27 Porous glass molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070661A JP2013203554A (en) 2012-03-27 2012-03-27 Porous glass molded body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013203554A true JP2013203554A (en) 2013-10-07

Family

ID=49523062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070661A Pending JP2013203554A (en) 2012-03-27 2012-03-27 Porous glass molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013203554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029803A1 (en) * 2013-08-29 2015-03-05 国立大学法人神戸大学 Glass body for compression molding, method for manufacturing same, microfabricated glass body, and method for manufacturing same
JP2018052079A (en) * 2016-09-30 2018-04-05 株式会社環境レジリエンス Individual authentication medium, creation method thereof and authentication system using the same
JP2018111629A (en) * 2017-01-11 2018-07-19 日本電気硝子株式会社 Glass member and manufacturing method therefor
WO2022014268A1 (en) * 2020-07-13 2022-01-20 日本電気硝子株式会社 Porous glass member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029803A1 (en) * 2013-08-29 2015-03-05 国立大学法人神戸大学 Glass body for compression molding, method for manufacturing same, microfabricated glass body, and method for manufacturing same
JPWO2015029803A1 (en) * 2013-08-29 2017-03-02 国立大学法人神戸大学 GLASS BODY FOR PRESSURE MOLDING AND ITS MANUFACTURING METHOD
JP2018052079A (en) * 2016-09-30 2018-04-05 株式会社環境レジリエンス Individual authentication medium, creation method thereof and authentication system using the same
JP7048064B2 (en) 2016-09-30 2022-04-05 株式会社環境レジリエンス Individual authentication system using individual authentication medium
JP2018111629A (en) * 2017-01-11 2018-07-19 日本電気硝子株式会社 Glass member and manufacturing method therefor
WO2022014268A1 (en) * 2020-07-13 2022-01-20 日本電気硝子株式会社 Porous glass member

Similar Documents

Publication Publication Date Title
TW201429885A (en) Method of making three dimensional glass ceramic article
JP2013203554A (en) Porous glass molded body and method for producing the same
KR20160021747A (en) Decorative porous inorganic layer compatible with ion exchange processes
JPH0422871B2 (en)
TW201040120A (en) Method for forming an opal glass
JP2004131371A (en) Method for forming glass or glass ceramic
JPS6140841A (en) Porous moulded product of glass and its preparation
JP2014519470A5 (en)
Song et al. Fabrication of a Porous Bioactive Glass–Ceramic Using Room‐Temperature Freeze Casting
CN103253865B (en) A kind of containing the exquisite glaze of crystal frit and the manufacture craft of exquisite product
JP2012193101A (en) Method for producing porous glass, and method for producing optical member
JP2022506640A (en) Manufacturing method of 3D glass ceramic articles
JP2012072048A (en) Porous glass, and optical member
Zhang et al. Effect of Al2O3 addition on the flexural strength and light‐transmission properties of bone china
RU2016100768A (en) TRANSPARENT DIFFUSING SUBSTRATE FOR ORGANIC LEDS AND METHOD FOR PRODUCING SUCH SUBSTRATE
EP3408237A1 (en) Photosensitive glasses and glass ceramics and composite glass materials made therefrom
JP2011102199A (en) Paste for translucent pottery, and translucent pottery
WO2016190012A1 (en) Material for dental prosthesis, block body for producing dental prosthesis, and dental prosthesis
KR101579055B1 (en) Manufacturing method of detal ceramic-resin hybrid block
CN107207330A (en) The method of glassware of the production with shape
RU2015153822A (en) TRANSPARENT DIFFUSING SUBSTRATE FOR ORGANIC LEDS AND METHOD FOR PRODUCING SUCH SUBSTRATE
JP2010265164A5 (en)
CN103922701A (en) Preparation method of shadow-carving ceramic product
JP2013535527A (en) How to create a fluorescent powder layer
JP5661479B2 (en) Crystallized glass articles with patterns