JP6954510B2 - コイル部品および、これを含むフィルタ回路 - Google Patents

コイル部品および、これを含むフィルタ回路 Download PDF

Info

Publication number
JP6954510B2
JP6954510B2 JP2021540017A JP2021540017A JP6954510B2 JP 6954510 B2 JP6954510 B2 JP 6954510B2 JP 2021540017 A JP2021540017 A JP 2021540017A JP 2021540017 A JP2021540017 A JP 2021540017A JP 6954510 B2 JP6954510 B2 JP 6954510B2
Authority
JP
Japan
Prior art keywords
wiring pattern
coil
via conductor
wiring
wiring patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021540017A
Other languages
English (en)
Other versions
JPWO2021085002A1 (ja
Inventor
淳 東條
淳 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2021158302A priority Critical patent/JP7322934B2/ja
Priority to JP2021158299A priority patent/JP7238937B2/ja
Application granted granted Critical
Publication of JP6954510B2 publication Critical patent/JP6954510B2/ja
Publication of JPWO2021085002A1 publication Critical patent/JPWO2021085002A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1708Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Description

本開示は、コイル部品および、これを含むフィルタ回路に関する。
電子機器では、フィルタ回路を用いたノイズ対策がよく行われる。ノイズ対策に用いるフィルタ回路には、例えばEMI(Electro-Magnetic Interference)除去フィルタなどがあり、導体を流れる電流のうち必要な成分を通して不要な成分を除去する。また、フィルタ回路は、キャパシタンス素子であるコンデンサを用いるため、当該コンデンサの寄生インダクタンスである等価直列インダクタンス(ESL:Equivalent Series Inductance)によりノイズ抑制効果が低下することが知られている。
コンデンサの等価直列インダクタンスESLを、二つのコイルを磁気結合することで生じる負のインダクタンスで打ち消し、フィルタ回路のノイズ抑制効果を広帯域化する技術が知られている(例えば、特許文献1)。
特開2001−160728号公報
フィルタ回路は、二つのコイルの磁気結合による相互インダクタンスMを利用して、コンデンサの等価直列インダクタンスESLを打ち消すので、当該相互インダクタンスMの値を安定して製造することが重要になる。相互インダクタンスMの値は、二つのコイルの各々のインダクタンスの値と、コイル間の結合係数によって決まる。そして、結合係数は、二つのコイル間の距離やズレ量によって決まる。
しかし、配線パターンを積み重ねて多層構造で二つのコイルを形成する場合、製造工法上、積層する際に層間で積みズレが生じる可能性がある。積みズレが生じた場合、各コイルのインダクタンスの値、コイル間の結合係数が大きくばらつくことになり、相互インダクタンスMの値を安定してコイル部品および、これを含むフィルタ回路を製造することができない。
そこで、本開示の目的は、相互インダクタンスMの値を安定して製造することができるコイル部品および、これを含むフィルタ回路を提供することである。
本開示の一形態に係るコイル部品は、第1コイルと第2コイルとを磁気結合させたコイル部品であって、複数の積層されたセラミック層からなり、互いに対向する1対の主面と主面間を結ぶ側面とを有する、セラミック素体と、セラミック素体の内部に積み重ねられ、第1コイルの少なくとも一部を構成する少なくとも1つの第1配線パターンと、第1配線パターンの上層に積み重ねられ、第2コイルの少なくとも一部を構成する少なくとも1つの第2配線パターンと、第1配線パターンと第2配線パターンとの間に積み重ねられ、第1コイルの一部を構成する部分と第2コイルの一部を構成する部分とを含む少なくとも1つの第3配線パターンと、を備え、第1コイルは、複数の第1配線パターンの間を第1ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、複数の第1配線パターンから複数の第3配線パターンまでを貫く第2ビア導体および第3ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、を含み、第2コイルは、複数の第2配線パターンの間を第4ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、複数の第2配線パターンから複数の第3配線パターンまでを貫く第5ビア導体および第6ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、を含み、セラミック素体は、第1配線パターンと電気的に接続する第1電極と、第2配線パターンと電気的に接続する第2電極と、複数の配線パターンの間を第7ビア導体で電気的に接続した第3配線パターンと電気的に接続する第3電極と、を含み、第1配線パターンおよび第2配線パターンのそれぞれの形状は、矩形であり、第1コイルおよび第2コイルの少なくとも一方のコイルは、主面方向から見て対応する辺どうしが交差する交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含む。
本開示の一形態に係るフィルタ回路は、上記のコイル部品と、コイル部品の第1コイルと第2コイルとの間の電極に接続するコンデンサとを備える。
本開示の一形態によれば、コイルは、主面方向から見て対応する辺どうしが交差する交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含むので、積層する際に層間で積みズレが生じても、相互インダクタンスMの値の変動を小さくすることができ、安定して製造することができる。
本実施の形態1に係るコイル部品の斜視図である。 本実施の形態1に係るコイル部品の配線パターンの構造を説明するための斜視図である。 本実施の形態1に係るコイル部品の配線パターン間のズレを説明するための斜視図である。 本実施の形態1に係るコイル部品の構成を示す分解平面図である。 本実施の形態1に係るコイル部品を含むフィルタ回路の回路図である。 本実施の形態1に係るコイル部品の等価回路図である。 コイル部品を含むフィルタ回路の周波数に対する伝送特性を示すグラフである。 本実施の形態2に係るコイル部品の配線パターン間のズレを説明するための斜視図である。 本実施の形態2に係るコイル部品の構成を示す分解平面図である。 主面方向から見た積層体と配線パターンとの位置関係を説明するための図である。 配線パターンの大きさを説明するための図である。 配線パターンの大きさと配線パターンが交差する角度との関係を説明するための図である。 角部を削った配線パターンの形状を説明するための図である。 電源回路のノイズフィルタの回路構成を説明するための図である。 コイル部品を適用した場合の電源回路のノイズフィルタの回路構成を説明するための図である。 コイル部品を適用した場合の電源回路のノイズフィルタの周波数に対する伝送特性を示すグラフである。
以下に、本実施の形態に係るコイル部品およびこれを含むフィルタ回路について説明する。
<実施の形態1>
まず、本実施の形態1に係るコイル部品について図面を参照しながら説明する。図1は、本実施の形態1に係るコイル部品の斜視図である。図2は、本実施の形態1に係るコイル部品の配線パターンの構造を説明するための斜視図である。図3は、本実施の形態1に係るコイル部品の配線パターン間のズレを説明するための斜視図である。図4は、本実施の形態1に係るコイル部品の構成を示す分解平面図である。図5は、本実施の形態1に係るコイル部品を含むフィルタ回路の回路図である。ここで、図1〜図3では、コイル部品1の短辺方向をX方向、長辺方向をY方向、高さ方向をZ方向としている。また、基板の積層方向はZ方向で、矢印の向きが上層方向を示している。なお、図3では、配線パターン間のズレを図示しているが、図1および図2では、説明を簡単にするため配線パターン間のズレについては図示していない。
フィルタ回路100は、例えば、EMI除去フィルタであり、3次のT型LCフィルタ回路である。このフィルタ回路100にコイル部品1が用いられている。なお、以下の実施の形態1では、フィルタ回路100の構成として3次のT型LCフィルタ回路を用いて説明するが、5次のT型LCフィルタ回路や、より高次のT型LCフィルタ回路に対しても同様の構成のコイル部品を適用することができる。まず、フィルタ回路100は、図5に示すように、コンデンサC1、電極4a,4b,4c、コイルL1(第1コイル)、およびコイルL2(第2コイル)を備えている。
コンデンサC1は、図5に示すように一方の端部を電極4cに接続し、他方の端部をGND配線に接続している。なお、コンデンサC1は、BaTiO3(チタン酸バリウム)を主成分とした積層セラミックコンデンサだけでなく、他の材料を主成分とした積層セラミックコンデンサでも、積層セラミックコンデンサでない、例えばアルミ電解コンデンサなどの他の種類のコンデンサでもよい。コンデンサC1は、寄生インダクタンス(等価直列インダクタンス(ESL))としてインダクタL3を有しており、インダクタL3がキャパシタC1aに直列に接続された回路構成と等価である。なお、コンデンサC1は、さらに寄生抵抗(等価直列抵抗(ESR))がインダクタL3およびキャパシタC1aに直列に接続された回路構成と等価であるとしてもよい。
電極4cには、コンデンサC1の他にコイルL1およびコイルL2が接続されている。コイルL1とコイルL2とは磁気結合しており、負のインダクタンス成分を生じている。この負のインダクタンス成分を用いて、コンデンサC1の寄生インダクタンス(インダクタL3)を打ち消すことができ、コンデンサC1のインダクタンス成分を見かけ上小さくすることができる。コンデンサC1、コイルL1およびコイルL2で構成されるフィルタ回路100は、コイルL1とコイルL2との相互インダクタンスによる負のインダクタンス成分で、コンデンサC1の寄生インダクタンスを打ち消すことにより、高周波帯のノイズ抑制効果を向上させることができる。
コイル部品1は、図1〜図4に示すようにコイルの配線を形成した基板(セラミックグリーンシート)が複数枚積層されたセラミック層の積層体3(セラミック素体)で構成されている。積層体3は、互いに対向する1対の主面と主面間を結ぶ側面とを有している。積層体3の主面に対して平行に、複数の第1配線パターン10と、複数の第3配線パターン30と、複数の第2配線パターン20とが下から順に積み重ねられ、コイルL1およびコイルL2を形成している。そのため、コイルL1とコイルL2との磁気結合の変動を、第1配線パターン10〜第3配線パターン30の積みズレの精度で制御することができる。
さらに、本実施の形態1に係るコイル部品1では、製造バラツキにより積みズレが生じた場合でも、各コイルのインダクタンスの値、コイル間の結合係数が大きくばらつくことがないように、図3に示すように配線パターンをずらして積層している。図3では、配線パターン30a〜30cを配線パターン10a〜10c,20a〜20cに対してずらして積層してある。配線パターン30a〜30cと配線パターン10a〜10c,20a〜20cとで最大、長さDだけずれている。
本実施の形態1では、設計時点から積層する配線パターンを図3のようにずらして積層してある。図3に示すコイル部品1では、配線パターン10a〜10cをずらすことなく積層し、配線パターン10aに対して配線パターン30a〜30cをずらして積層している。さらに、コイル部品1では、配線パターン30a〜30cに対して配線パターン20cをずらして積層している。なお、コイル部品1では、配線パターン10a〜10cに対して配線パターン20a〜20cをずらすことなく積層している。つまり、コイル部品1では、同じグループの配線パターン(第1配線パターン10、第2配線パターン20、第3配線パターン30)をずらすことなく積層し、異なるグループの配線パターンに対してずらして積層している。
ここで、設計時点から配線パターンをずらして積層することで、各コイルのインダクタンスの値、コイル間の結合係数の大きさが、積みズレに対して影響を受けにくくなる点について説明する。まず、各コイルのインダクタンスの値、コイル間の結合係数の大きさは、配線パターン間の磁気結合によって決まり、配線パターン間の距離に依存することになる。
そのため、配線パターンをずらすことなく積層した場合、2つの配線パターンは、主面方向から見て配線パターンの対応する辺どうしが交差することなく平行に配置されることになる。図3では、例えば配線パターン10aと配線パターン10bとが平行に配置されており、配線パターン10aと配線パターン10bとがX方向にずれる積みズレが生じた場合、配線パターン10aの長辺と配線パターン10bの長辺との距離が長くなり、配線パターン間の磁気結合が大きく変化することになる。
一方、配線パターンをずらして積層した場合、2つの配線パターンは、主面方向から見て配線パターンの対応する辺どうしが交差する交差部を有して配置されることになる。図3では、例えば配線パターン20cと配線パターン30aとが交差部を有して配置されており、配線パターン20cと配線パターン30aとがX方向にずれる積みズレが生じた場合でも、配線パターン20cの長辺と配線パターン30aの長辺と交差部の位置が変化するだけで、2つの配線パターン間の距離に大きな変化がなく、配線パターン間の磁気結合に大きく影響を与えない。そのため、設計時点から配線パターンをずらして積層すること、つまり、交差部を有して配線パターンを配置することで、コイル部品1は、各コイルのインダクタンスの値、コイル間の結合係数の大きさが、積みズレに対して影響を受けにくくなる。なお、配線パターン間の容量結合についても、配線パターン間の距離に依存することになるので、同様に、設計時点から配線パターンをずらして積層すること、つまり、交差部を有して配線パターンを配置することで、コイル部品1は、コイル間の容量結合の大きさも積みズレに対して影響を受けにくくなる。
図1に戻って、積層体3の側面は、長辺側の第1の側面(電極4a(第1電極)を形成した側面)および第2の側面(電極4b(第2電極)を形成した側面)と、短辺側の第3の側面(電極4c(第3電極)を形成した側面)および第4の側面(電極4dを形成した側面)と有している。
コイル部品1は、図2に示すように、コイルL1,L2を構成する配線パターン10a〜10c(第1配線パターン10)、配線パターン20a〜20c(第2配線パターン20)および配線パターン30a〜30c(第3配線パターン30)が積層体3の内部に配置されている。配線パターン30a〜30cは、一部がコイルL1を構成し、残りがコイルL2を構成している。つまり、配線パターン30a〜30cは、コイルL1,L2を構成する共通部分である。第3配線パターン30のように、コイルL1,L2の共通部分を持つことで、コイルL1とコイルL2との磁気結合の変動を低減することができる。コイルL1,L2のコイル形状は、電極4cに対しほぼ線対称の形状である。
下層に積層されている第1配線パターン10のうち、最下層の配線パターン10cの端部11が電極4aと電気的に接続される。他の配線パターン10a,10bは、配線パターン10cとビア導体51(第1ビア導体)を介して電気的に接続されている。なお、ビア導体51は、1つのビア導体で形成しても、複数のビア導体で形成してもよい。複数の第1配線パターン10のうち、少なくとも1つの第1配線パターン(例えば、配線パターン10c)が電極4aと電気的に接続していればよい。複数の第1配線パターン10のすべてが電極4aと電気的に接続すれば、ビア導体51を設けて複数の第1配線パターン10の間を電気的に接続する必要はない。ただし、複数の第1配線パターン10のすべてを電極4aと電気的に接続させると製造する際に割れが生じやすくなる。つまり、複数の第1配線パターン10のすべてに電極4aと電気的に接続するための端部11を設けると、複数の第1配線パターン10を積み重ねて押し固める際に割れが生じやすくなる。もちろん、製造する際に割れが生じにくいのであれば、複数の第1配線パターン10のすべてを電極4aと電気的に接続させてビア導体51自体を設けない構成であってもよい。
電極4aと電気的に接続する第1配線パターン10の数は、複数の第1配線パターン10の数より少なくすることが、製造する際の割れを考慮すると望ましく、特に、複数の第1配線パターン10のうち1つの第1配線パターン(例えば、配線パターン10c)で電極4aと電気的に接続する構成が望ましい。複数の第1配線パターン10を電極4aに接続する場合、電極4aと電気的に接続する一の第1配線パターン10と他の第1配線パターン10との間には、電極4aと電気的に接続しない第1配線パターン10の層を少なくとも1層含む構成でもよい。具体的に、複数の第1配線パターン10が、図2に示すように配線パターン10a〜10cを含む場合、配線パターン10a,10cに電極4aと電気的に接続するための端部11を設け、配線パターン10bに電極4aと電気的に接続するための端部11を設けない。
中層に積層されている第3配線パターン30のうち、最下層の配線パターン30cの端部31が電極4cと電気的に接続される。他の配線パターン30a,30bは、配線パターン30cとビア導体57(第7ビア導体)を介して電気的に接続されている。なお、ビア導体57は、1つのビア導体で形成しても、複数のビア導体で形成してもよい。複数の第3配線パターン30のうち、少なくとも1つの第3配線パターン(例えば、配線パターン30c)が電極4cと電気的に接続していればよい。複数の第3配線パターン30のすべてが電極4cと電気的に接続すれば、ビア導体57を設けて複数の第3配線パターン30の間を電気的に接続する必要はない。ただし、複数の第3配線パターン30のすべてを電極4cと電気的に接続させると製造する際に割れが生じやすくなる。
そこで、電極4cと電気的に接続する第3配線パターン30の数は、複数の第3配線パターン30の数より少なくすることが、製造することを考慮すると望ましく、特に、複数の第3配線パターン30のうち1つの第3配線パターン(例えば、配線パターン30c)で電極4cと電気的に接続する構成が望ましい。複数の第3配線パターン30を電極4cに接続する場合、電極4cと電気的に接続する一の第3配線パターン30と他の第3配線パターン30との間には、電極4cと電気的に接続しない第3配線パターン30の層を少なくとも1層含む構成でもよい。具体的に、複数の第3配線パターン30が、図2に示すように配線パターン30a〜30cを含む場合、配線パターン30a,30cに電極4cと電気的に接続するための端部31を設け、配線パターン30bに電極4cと電気的に接続するための端部31を設けない。もちろん、製造する際に割れが生じにくいのであれば、複数の第3配線パターン30のすべてを電極4cと電気的に接続させてビア導体57自体を設けない構成であってもよい。
中層に積層されている第3配線パターン30は、ビア導体52,53を介して下層の第1配線パターン10と電気的に接続されている。なお、ビア導体52,53は、それぞれ1つのビア導体で形成しても、それぞれ複数のビア導体で形成してもよい。ビア導体52,53は、第1配線パターン10の配線パターン10a〜10c、および第3配線パターン30の配線パターン30a〜30cのそれぞれと電気的に接続されている。また、ビア導体52(第2ビア導体)を設ける第1配線パターン10と、ビア導体53(第3ビア導体)を設ける第1配線パターン10とは、積層体3の異なる側面側にある。具体的に、ビア導体52を設ける第1配線パターン10は、図4に示すように長辺側の第1の側面側(図4では、ビア導体52と接続する接続部52g〜52iが図示してある)になり、ビア導体53を設ける第1配線パターン10の短辺側の第4の側面側(図4では、ビア導体53と接続する接続部53g〜53iが図示してある)と異なる。
つまり、ビア導体52とビア導体53とは、第1配線パターン10の一つの角を跨いで形成されている。ビア導体51とビア導体53との間で、3つの配線パターン10a〜10cの一部が並列に接続され、3つのインダクタが並列接続した構成となる。また、ビア導体52とビア導体53との間でも、3つの配線パターン10a〜10cの一部が並列に接続され、3つのインダクタが並列接続した構成となる。さらに、ビア導体52,53は、第3配線パターン30の配線パターン30a〜30cにも形成される。そのため、ビア導体52とビア導体53との間には、3つの配線パターン30a〜30cの一部が並列に接続され、3つのインダクタが並列接続した構成となり、配線パターン10a〜10cの部分と合わせて6つのインダクタが並列接続した構成となる。図6は、本実施の形態1に係るコイル部品の等価回路図である。図6に示すように、コイルL1は、ビア導体51とビア導体53との間に並列接続の3つのインダクタ、ビア導体52とビア導体53との間に並列接続の6つのインダクタ、ビア導体52とビア導体57との間に並列接続の3つのインダクタで構成される。このような構成にすることでビア導体52とビア導体53との間、およびビア導体55とビア導体56との間を構成する配線が倍となって抵抗値が下がることで発熱が抑制される。
ビア導体52とビア導体53との間の形成される6つのインダクタは、ビア導体52とビア導体53との間の距離によりインダクタンスを調整することができる。特に、ビア導体52を設ける位置とビア導体53を設ける位置との距離は、積層体3の短辺側の第4の側面(一の側面)の長さの半分と長辺側の第1の側面(一の側面と直交する他の側面)の長さとの合計値より短い範囲で調整することができる。コイルL1を構成する並列接続の6つのインダクタのインダクタンスを調整することで、二つのコイルL1,L2の相互インダクタンスを適切に調整することができる。
上層に積層されている第2配線パターン20のうち、最下層の配線パターン20cの端部21が電極4bと電気的に接続される。他の配線パターン20a,20bは、配線パターン20cとビア導体54(第4ビア導体)を介して電気的に接続されている。なお、ビア導体54は、1つのビア導体で形成しても、複数のビア導体で形成してもよい。複数の第2配線パターン20のうち、少なくとも1つの第2配線パターン(例えば、配線パターン20c)が電極4bと電気的に接続していればよい。複数の第2配線パターン20のすべてが電極4bと電気的に接続すれば、ビア導体54を設けて複数の第2配線パターン20の間を電気的に接続する必要はない。ただし、複数の第2配線パターン20のすべてを電極4bと電気的に接続させると製造する際に割れが生じやすくなる。つまり、複数の第2配線パターン20のすべてに電極4bと電気的に接続するための端部21を設けると、複数の第2配線パターン20を積み重ねて押し固める際に割れが生じやすくなる。もちろん、製造する際に割れが生じにくいのであれば、複数の第2配線パターン20のすべてを電極4bと電気的に接続させてビア導体54自体を設けない構成であってもよい。
電極4bと電気的に接続する第2配線パターン20の数は、複数の第2配線パターン20の数より少なくすることが、製造する際の割れを考慮すると望ましい。特に、複数の第2配線パターン20のうち1つの第2配線パターン(例えば、配線パターン20c)で電極4bと電気的に接続する構成が望ましい。複数の第2配線パターン20を電極4bに接続する場合、電極4bと電気的に接続する一の第2配線パターン20と他の第2配線パターン20との間には、電極4bと電気的に接続しない第2配線パターン20の層を少なくとも1層含む構成でもよい。具体的に、複数の第2配線パターン20が、図2に示すように配線パターン20a〜20cを含む場合、配線パターン20a,20cに電極4bと電気的に接続するための端部21を設け、配線パターン20bに電極4bと電気的に接続するための端部21を設けない。
上層に積層されている第2配線パターン20は、ビア導体55,56を介して中層の第2配線パターン20と電気的に接続されている。なお、ビア導体55,56は、それぞれ1つのビア導体で形成しても、それぞれ複数のビア導体で形成してもよい。ビア導体55,56は、第2配線パターン20の配線パターン20a〜20c、および第3配線パターン30の配線パターン30a〜30cのそれぞれと電気的に接続されている。また、ビア導体55(第5ビア導体)を設ける第2配線パターン20と、ビア導体56(第6ビア導体)を設ける第2配線パターン20とは、積層体3の異なる側面側にある。具体的に、ビア導体55を設ける第2配線パターン20は、図4に示すように長辺側の第2の側面側(図4では、ビア導体55と接続する接続部55a〜55cが図示してある)になり、ビア導体56を設ける第2配線パターン20の短辺側の第4の側面側(図4では、ビア導体56と接続する接続部56a〜56cが図示してある)と異なる。
つまり、ビア導体55とビア導体56とは、第2配線パターン20の一つの角を跨いで形成されている。ビア導体54とビア導体56との間で、3つの配線パターン20a〜20cの一部が並列に接続され、3つのインダクタが並列接続した構成となる。また、ビア導体55とビア導体56との間でも、3つの配線パターン20a〜20cの一部が並列に接続され、3つのインダクタが並列接続した構成となる。さらに、ビア導体55,56は、第3配線パターン30の配線パターン30a〜30cにも形成される。そのため、ビア導体55とビア導体56との間には、3つの配線パターン30a〜30cの一部が並列に接続され、3つのインダクタが並列接続した構成となり、配線パターン20a〜20cの部分と合わせて6つのインダクタが並列接続した構成となる。図6に示すように、コイルL2は、ビア導体54とビア導体56との間に並列接続の3つのインダクタ、ビア導体55とビア導体56との間に並列接続の6つのインダクタ、ビア導体55とビア導体57との間に並列接続の3つのインダクタで構成される。
ビア導体55とビア導体56との間の形成される6つのインダクタは、ビア導体55とビア導体56との間の距離によりインダクタンスを調整することができる。特に、ビア導体55を設ける位置とビア導体56を設ける位置との距離は、積層体3の短辺側の第4の側面(一の側面)の長さの半分と長辺側の第2の側面(一の側面と直交する他の側面)の長さとの合計値より短い範囲で調整することができる。コイルL2を構成する並列接続の6つのインダクタのインダクタンスを調整することで、二つのコイルL1,L2の相互インダクタンスを適切に調整することができる。
第1配線パターン10、第2配線パターン20および第3配線パターン30の各々は、図4に示すように、基板であるセラミックグリーンシート3a〜3iに、導電性ペースト(Niペースト)をスクリーン印刷法により印刷して配線パターンを形成する。セラミックグリーンシート3aには、配線パターン20aが形成されている。配線パターン20aは、セラミックグリーンシート3aの図中下側の長辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。また、配線パターン20aは、始端にビア導体54と接続する接続部54a、図中左側の短辺にビア導体56と接続する接続部56a、終端にビア導体55と接続する接続部55aをそれぞれ設けている。さらに、配線パターン20aは、セラミックグリーンシート3aの長辺に対して配線パターン20aの長辺が約5度傾くように、セラミックグリーンシート3aに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
セラミックグリーンシート3bには、配線パターン20bが形成されている。配線パターン20bは、セラミックグリーンシート3aに形成されている配線パターン20aと同じ形状であり、セラミックグリーンシート3bに対する配置をあらかじめ時計回り方向に回転させてずらしてある。また、配線パターン20bは、始端にビア導体54と接続する接続部54b、図中左側の短辺にビア導体56と接続する接続部56b、終端にビア導体55と接続する接続部55bをそれぞれ設けている。
セラミックグリーンシート3cには、配線パターン20cが形成されている。配線パターン20cは、セラミックグリーンシート3cの図中下側の長辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。さらに、配線パターン20cは、始端に電極4bと接続するための端部21を設けている。また、配線パターン20cは、始端にビア導体54と接続する接続部54c、図中左側の短辺にビア導体56と接続する接続部56c、終端にビア導体55と接続する接続部55cをそれぞれ設けている。さらに、配線パターン20cは、セラミックグリーンシート3cの長辺に対して配線パターン20cの長辺が約5度傾くように、セラミックグリーンシート3cに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
このセラミックグリーンシート3a〜3cの3枚を積層することで、図1に示す第2配線パターン20を構成している。
セラミックグリーンシート3dには、配線パターン30aが形成されている。配線パターン30aは、セラミックグリーンシート3dの図中左側の短辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。また、配線パターン30aは、始端にビア導体56と接続する接続部56d、図中下側の長辺にビア導体55と接続する接続部55d、図中右側の短辺にビア導体57と接続する接続部57a、図中上側の長辺にビア導体52と接続する接続部52d、終端にビア導体53と接続する接続部53dをそれぞれ設けている。さらに、配線パターン30aは、セラミックグリーンシート3dの長辺に対して配線パターン30aの長辺が約−5度傾くように、セラミックグリーンシート3dに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。
セラミックグリーンシート3eには、配線パターン30bが形成されている。配線パターン30bは、セラミックグリーンシート3dに形成されている配線パターン30aと同じ形状であり、セラミックグリーンシート3eに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。また、配線パターン30bは、始端にビア導体56と接続する接続部56e、図中下側の長辺にビア導体55と接続する接続部55e、図中右側の短辺にビア導体57と接続する接続部57b、図中上側の長辺にビア導体52と接続する接続部52e、終端にビア導体53と接続する接続部53eをそれぞれ設けている。
セラミックグリーンシート3fには、配線パターン30cが形成されている。配線パターン30cは、セラミックグリーンシート3fの図中左側の短辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。さらに、配線パターン30cは、図中右側の短辺の真中に電極4cと接続するための端部31を設けている。また、配線パターン30cは、始端にビア導体56と接続する接続部56f、図中下側の長辺にビア導体55と接続する接続部55f、図中右側の短辺にビア導体57と接続する接続部57c、図中上側の長辺にビア導体52と接続する接続部52f、終端にビア導体53と接続する接続部53fをそれぞれ設けている。さらに、配線パターン30cは、セラミックグリーンシート3fの長辺に対して配線パターン30cの長辺が約−5度傾くように、セラミックグリーンシート3fに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。
このセラミックグリーンシート3d〜3fの3枚を積層することで、図1に示す第3配線パターン30を構成している。
セラミックグリーンシート3gには、配線パターン10aが形成されている。配線パターン10aは、セラミックグリーンシート3gの図中上側の長辺の真中から各辺に沿って図中右回りに1周するように形成され、始端と終端との間に隙間が形成されている。また、配線パターン10aは、始端にビア導体51と接続する接続部51a、図中左側の短辺にビア導体53と接続する接続部53g、終端にビア導体52と接続する接続部52gをそれぞれ設けている。さらに、配線パターン10aは、セラミックグリーンシート3gの長辺に対して配線パターン10aの長辺が約5度傾くように、セラミックグリーンシート3gに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
セラミックグリーンシート3hには、配線パターン10bが形成されている。配線パターン10bは、セラミックグリーンシート3gに形成されている配線パターン10aと同じ形状であり、セラミックグリーンシート3hに対する配置をあらかじめ時計回り方向に回転させてずらしてある。また、配線パターン10bは、始端にビア導体51と接続する接続部51b、図中左側の短辺にビア導体53と接続する接続部53h、終端にビア導体52と接続する接続部52hをそれぞれ設けている。
セラミックグリーンシート3iには、配線パターン10cが形成されている。配線パターン10cは、セラミックグリーンシート3iの図中上側の長辺の真中から各辺に沿って図中右回りに1周するように形成され、始端と終端との間に隙間が形成されている。さらに、配線パターン10cは、始端に電極4aと接続するための端部11を設けている。また、配線パターン10cは、始端にビア導体51と接続する接続部51c、図中左側の短辺にビア導体53と接続する接続部53i、終端にビア導体52と接続する接続部52iをそれぞれ設けている。さらに、配線パターン10cは、セラミックグリーンシート3iの長辺に対して配線パターン10cの長辺が約5度傾くように、セラミックグリーンシート3iに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
このセラミックグリーンシート3g〜3iの3枚を積層することで、図1に示す第1配線パターン10を構成している。
コイル部品1では、図4に示した複数のセラミックグリーンシート3a〜3iの各々を少なくとも1枚積層するとともに、その上下両面側に配線パターンが印刷されていないセラミックグリーンシート(ダミー層)を複数積層する。ダミー層を含め複数のセラミックグリーンシートを圧着することにより、未焼成の積層体3(セラミック素体)を形成する。形成した積層体3を焼成し、焼成した積層体3の外部に、配線パターンと導通するように銅電極を焼き付けて電極4a〜4dを形成する。
コイル部品1では、コイルL1,L2を構成する第1配線パターン10、第2配線パターン20および第3配線パターン30の配線を形成したセラミックグリーンシートを複数積層している。そのため、コイル部品1では、第1配線パターン10と第3配線パターン30とが主面方向から見て配線パターンの対応する辺どうしが交差する交差部を有するように配置される。第1配線パターン10と第3配線パターン30とが交差する角度(鋭角側の角度、以下同じ)は、第1配線パターン10が積層体3の長辺に対して約5度、第3配線パターン30が積層体3の長辺に対して約−5度それぞれ傾くように回転してあるので、約10度となる。同様に、コイル部品1では、第2配線パターン20と第3配線パターン30とが主面方向から見て配線パターンの対応する辺どうしが交差する交差部を有するように配置される。第2配線パターン20と第3配線パターン30とが交差する角度は、第2配線パターン20が積層体3の長辺に対して約5度、第3配線パターン30が積層体3の長辺に対して約−5度それぞれ傾くように回転してあるので、約10度となる。これにより、コイル部品1では、積みズレに対して第1配線パターン10と第3配線パターン30との磁気結合、および第2配線パターン20と第3配線パターン30との磁気結合の変動を低減することができる。
前述したようにコイル部品1は、金属部分の配線パターンとセラミック部分のセラミックグリーンシートとを複数積層し、加圧すること形成される。しかし、金属部分とセラミック部分とでは展延性が異なるため、加圧時に金属部分とセラミック部分との圧縮率の差で積層体3に割れが生じる恐れがある。前述したようにコイル部品1は、加圧した後に焼成が行われるので、焼成時の金属部分とセラミック部分との熱収縮率の差で積層体3に割れが生じる恐れがある。
そこで、本実施の形態1に係るコイル部品1では、製造時に割れが生じ難くするために、第1配線パターン10のうち電極4aと接続するための端部11を設ける配線パターンの数を減らす。同様に、コイル部品1では、第2配線パターン20のうち電極4bと接続するための端部21を設ける配線パターンの数を減らしても、第3配線パターン30のうち電極4cと接続するための端部31を設ける配線パターンの数を減らしてもよい。
図7は、コイル部品を含むフィルタ回路の周波数に対する伝送特性を示すグラフである。図7(a)に示すグラフは、図3に示すように主面方向から見て交差部を有するように配線パターンを配置したコイル部品1を含むフィルタ回路に対して回路シミュレーションを行い、周波数に対する伝送特性を示した結果である。なお、配線パターンと配線パターンとが交差する角度は約10度である。図7(b)に示すグラフは、主面方向から見て交差部を有しないように配線パターンを配置したコイル部品を含むフィルタ回路に対して回路シミュレーションを行い、周波数に対する伝送特性を示した結果である。図7に示すグラフは、横軸を周波数Freq(GHz)とし、縦軸を伝送特性S21(dB)としている。
図7に示すグラフでは、積みズレが生じていない場合の伝送特性を示した結果を破線で示している、また、図7に示すグラフでは、第1配線パターン10および第2配線パターン20に対して第3配線パターン30がX方向に30μmの積みズレが生じた場合の伝送特性を示した結果を実線で示している。図7(a)に示すグラフと、図7(b)に示すグラフとを比較して分かるように、0.010GHz〜0.400GHzのあたりで、コイル部品1を含むフィルタ回路の方が積みズレに対する影響が小さくなっていることが分かる。なお、0.010GHz〜0.400GHzあたりの伝送特性は、コイルL1およびコイルL2の負のインダクタンス成分でコンデンサC1の寄生インダクタンスを打ち消す領域である。そのため、図7(a)からコイル部品1を含むフィルタ回路は、積みズレが生じたことによるコイルL1とコイルL2との磁気結合への影響が小さいことが分かる。
以上のように、本実施の形態1に係るコイル部品1では、コイルL1とコイルL2とを磁気結合させたコイル部品であって、第1コイルと第2コイルとを磁気結合させたコイル部品であって、積層体3と、少なくとも1つの第1配線パターン10と、少なくとも1つの第2配線パターン20と、を備える。積層体3は、複数の積層されたセラミック層からなり、互いに対向する1対の主面と主面間を結ぶ側面とを有する。少なくとも1つの第1配線パターン10は、積層体3の内部に積み重ねられ、コイルL1の少なくとも一部を構成する。少なくとも1つの第2配線パターン20は、第1配線パターン10の上層に積み重ねられ、コイルL2の少なくとも一部を構成する。第1配線パターン10および第2配線パターン20のそれぞれの形状は、矩形である。コイルL1およびコイルL2の少なくとも一方のコイルは、主面方向から見て対応する辺どうしが交差する交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含む。
これにより、本実施の形態1に係るコイル部品1は、コイルL1およびコイルL2の少なくとも一方のコイルが、主面方向から見て対応する辺どうしが交差する交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含むので、積層する際に層間で積みズレが生じても、相互インダクタンスMの値の変動を小さくすることができ、安定して製造することができる。
また、第1配線パターン10と第2配線パターン20との間に積み重ねられ、コイルL1の一部を構成する部分とコイルL2の一部を構成する部分とを含む少なくとも1つの第3配線パターン30をさらに備えてもよい。これにより、本実施の形態1に係るコイル部品1は、第3配線パターン30を介してコイルL1とコイルL2とを磁気結合することができ、相互インダクタンスMの値を大きくすることができる。なお、本実施の形態1に係るコイル部品1では、第3配線パターン30を設ける説明をしたが、第3配線パターン30を設けずに第1配線パターン10と第2配線パターン20とでコイルL1とコイルL2とを構成してもよい。
さらに、交差部を有するように互いにずらして積層した第1配線パターン10と第3配線パターン30との組み合わせを含むことが好ましい。本実施の形態1に係るコイル部品1では、図3に示すように配線パターン10aと配線パターン30cとが交差部を有しており、積みズレが生じても、相互インダクタンスMの値の変動を小さくすることができ、安定して製造することができる。
また、交差部を有するように互いにずらして積層した第2配線パターン20と第3配線パターン30との組み合わせを含むことが好ましい。本実施の形態1に係るコイル部品1では、図3に示すように配線パターン20cと配線パターン30aとが交差部を有しており、積みズレが生じても、相互インダクタンスMの値の変動を小さくすることができ、安定して製造することができる。
さらに、コイルL1は、複数の第1配線パターン10の間をビア導体51で電気的に接続して複数の配線パターンを並列接続する部分と、複数の第1配線パターン10から複数の第3配線パターン30までを貫くビア導体52およびビア導体53で電気的に接続して複数の配線パターンを並列接続する部分と、を含む。コイルL2は、複数の第2配線パターン20の間をビア導体54で電気的に接続して複数の配線パターンを並列接続する部分と、複数の第2配線パターン20から複数の第3配線パターン30までを貫くビア導体55およびビア導体56で電気的に接続して複数の配線パターンを並列接続する部分と、を含む。積層体3は、第1配線パターン10と電気的に接続する電極4aと、第2配線パターン20と電気的に接続する電極4bと、複数の配線パターンの間をビア導体57で電気的に接続した第3配線パターン30と電気的に接続する電極4cと、を含むことが好ましい。
これにより、本実施の形態1に係るコイル部品1は、ビア導体52およびビア導体53で複数の第1配線パターン10と複数の第3配線パターン30とを、ビア導体55およびビア導体56で複数の第2配線パターン20と複数の第3配線パターン30とをそれぞれ電気的に接続するので、コイルの配線で電流の集中を抑え、二つのコイルの相互インダクタンスを適切に調整することができ、複数個所でインダクタンスの並列接続を形成してコイルL1,L2の発熱を抑制する。
また、コイル部品1は、ビア導体52を設ける第1配線パターン10と、ビア導体53を設ける第1配線パターン10とは、積層体3の異なる側面側にあり、ビア導体55を設ける第2配線パターン20と、ビア導体56を設ける第2配線パターン20とは、積層体3の異なる側面側にあってもよい。これにより、コイル部品1は、第1配線パターン10または第2配線パターン20の角で電流の集中を抑えることができる。
さらに、フィルタ回路100は、上記のコイル部品1と、コイル部品1において磁気結合させた複数のコイルL1,L2の一端(コイルL1とコイルL2との間の電極4c)に接続するコンデンサC1とを備える。これにより、フィルタ回路100は、寄生インダクタンスを打ち消すように、コイル部品1に含まれる二つのコイルの相互インダクタンスを適切に調整することができ、積みズレが生じても、相互インダクタンスMの値の変動を小さくすることができ、安定して製造することができる。
<実施の形態2>
本実施の形態1では、同じグループの配線パターン(例えば、配線パターン10a〜10cを含む第1配線パターン10)をずらすことなく積層し、異なるグループの配線パターン(例えば、配線パターン10aと配線パターン20c)に対してずらして積層している。つまり、コイル部品1では、図3に示すように配線パターン10aと配線パターン30cとが交差部を有し、配線パターン20cと配線パターン30aとが交差部を有している。しかし、コイル部品は、これに限定されず、同じグループの配線パターン(例えば、配線パターン10a〜10cを含む第1配線パターン10)をずらして積層してもよい。本実施の形態2では、積層している配線パターンのそれぞれをずらして積層している構成について説明する。
図8は、本実施の形態2に係るコイル部品の配線パターン間のズレを説明するための斜視図である。なお、図8に示すコイル部品1aでは、実施の形態1に係るコイル部品1と配線パターンのずらし方が異なる以外同じであるため、同じ構成について同じ符号を用いて詳しい説明を繰返さない。本実施の形態2に係るコイル部品1aでは、製造バラツキにより積みズレが生じた場合でも、各コイルのインダクタンスの値、コイル間の結合係数が大きくばらつくことがないように、図8に示すように各々の配線パターンをずらして積層する。つまり、本実施の形態2では、設計時点から積層する配線パターンを図8のように1層ずつずらして積層してある。
図8に示すコイル部品1aでは、配線パターン10a〜10c(第1配線パターン10)の各々をずらして積層し、配線パターン10aに対して配線パターン30cをずらして積層している。さらに、コイル部品1aでは、配線パターン30a〜30c(第3配線パターン30)の各々をずらして積層し、配線パターン30aに対して配線パターン20cをずらして積層している。なお、コイル部品1aでは、配線パターン20a〜20c(第2配線パターン20)の各々もずらして積層している。つまり、コイル部品1aでは、同じグループの配線パターン(例えば、配線パターン10a〜10cを含む第1配線パターン10)の各々をずらして積層し、異なるグループの配線パターンに対してもずらして積層している。
図9は、本実施の形態2に係るコイル部品1aの構成を示す分解平面図である。第1配線パターン10、第2配線パターン20および第3配線パターン30の各々は、図9に示すように、基板であるセラミックグリーンシート3a〜3iに、導電性ペースト(Niペースト)をスクリーン印刷法により印刷して配線パターンを形成する。セラミックグリーンシート3aには、配線パターン20aが形成されている。配線パターン20aは、セラミックグリーンシート3aの図中下側の長辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。また、配線パターン20aは、始端にビア導体54と接続する接続部54a、図中左側の短辺にビア導体56と接続する接続部56a、終端にビア導体55と接続する接続部55aをそれぞれ設けている。さらに、配線パターン20aは、セラミックグリーンシート3aの長辺に対して配線パターン20aの長辺が約5度傾くように、セラミックグリーンシート3aに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
セラミックグリーンシート3bには、配線パターン20bが形成されている。配線パターン20bは、セラミックグリーンシート3aに形成されている配線パターン20aと同じ形状であるが、セラミックグリーンシート3bに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。つまり、配線パターン20bは、セラミックグリーンシート3bの長辺に対して配線パターン20bの長辺が約−5度傾くように、セラミックグリーンシート3bに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。また、配線パターン20bは、始端にビア導体54と接続する接続部54b、図中左側の短辺にビア導体56と接続する接続部56b、終端にビア導体55と接続する接続部55bをそれぞれ設けている。
セラミックグリーンシート3cには、配線パターン20cが形成されている。配線パターン20cは、セラミックグリーンシート3cの図中下側の長辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。さらに、配線パターン20cは、始端に電極4bと接続するための端部21を設けている。また、配線パターン20cは、始端にビア導体54と接続する接続部54c、図中左側の短辺にビア導体56と接続する接続部56c、終端にビア導体55と接続する接続部55cをそれぞれ設けている。さらに、配線パターン20cは、セラミックグリーンシート3cの長辺に対して配線パターン20cの長辺が約5度傾くように、セラミックグリーンシート3cに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
このセラミックグリーンシート3a〜3cの3枚を積層することで、図8に示す第2配線パターン20を構成している。
セラミックグリーンシート3dには、配線パターン30aが形成されている。配線パターン30aは、セラミックグリーンシート3dの図中左側の短辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。また、配線パターン30aは、始端にビア導体56と接続する接続部56d、図中下側の長辺にビア導体55と接続する接続部55d、図中右側の短辺にビア導体57と接続する接続部57a、図中上側の長辺にビア導体52と接続する接続部52d、終端にビア導体53と接続する接続部53dをそれぞれ設けている。さらに、配線パターン30aは、セラミックグリーンシート3dの長辺に対して配線パターン30aの長辺が約−5度傾くように、セラミックグリーンシート3dに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。
セラミックグリーンシート3eには、配線パターン30bが形成されている。配線パターン30bは、セラミックグリーンシート3dに形成されている配線パターン30aと同じ形状であるが、セラミックグリーンシート3eに対する配置をあらかじめ時計回り方向に回転させてずらしてある。つまり、配線パターン30bは、セラミックグリーンシート3eの長辺に対して配線パターン30bの長辺が約5度傾くように、セラミックグリーンシート3eに対する配置をあらかじめ時計回り方向に回転させてずらしてある。また、配線パターン30bは、始端にビア導体56と接続する接続部56e、図中下側の長辺にビア導体55と接続する接続部55e、図中右側の短辺にビア導体57と接続する接続部57b、図中上側の長辺にビア導体52と接続する接続部52e、終端にビア導体53と接続する接続部53eをそれぞれ設けている。
セラミックグリーンシート3fには、配線パターン30cが形成されている。配線パターン30cは、セラミックグリーンシート3fの図中左側の短辺の真中から各辺に沿って図中左回りに1周するように形成され、始端と終端との間に隙間が形成されている。さらに、配線パターン30cは、図中右側の短辺の真中に電極4cと接続するための端部31を設けている。また、配線パターン30cは、始端にビア導体56と接続する接続部56f、図中下側の長辺にビア導体55と接続する接続部55f、図中右側の短辺にビア導体57と接続する接続部57c、図中上側の長辺にビア導体52と接続する接続部52f、終端にビア導体53と接続する接続部53fをそれぞれ設けている。さらに、配線パターン30cは、セラミックグリーンシート3fの長辺に対して配線パターン30cの長辺が約−5度傾くように、セラミックグリーンシート3fに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。
このセラミックグリーンシート3d〜3fの3枚を積層することで、図8に示す第3配線パターン30を構成している。
セラミックグリーンシート3gには、配線パターン10aが形成されている。配線パターン10aは、セラミックグリーンシート3gの図中上側の長辺の真中から各辺に沿って図中右回りに1周するように形成され、始端と終端との間に隙間が形成されている。また、配線パターン10aは、始端にビア導体51と接続する接続部51a、図中左側の短辺にビア導体53と接続する接続部53g、終端にビア導体52と接続する接続部52gをそれぞれ設けている。さらに、配線パターン10aは、セラミックグリーンシート3gの長辺に対して配線パターン10aの長辺が約5度傾くように、セラミックグリーンシート3gに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
セラミックグリーンシート3hには、配線パターン10bが形成されている。配線パターン10bは、セラミックグリーンシート3gに形成されている配線パターン10aと同じ形状であるが、セラミックグリーンシート3hに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。つまり、配線パターン10bは、セラミックグリーンシート3hの長辺に対して配線パターン10bの長辺が約−5度傾くように、セラミックグリーンシート3hに対する配置をあらかじめ反時計回り方向に回転させてずらしてある。また、配線パターン10bは、始端にビア導体51と接続する接続部51b、図中左側の短辺にビア導体53と接続する接続部53h、終端にビア導体52と接続する接続部52hをそれぞれ設けている。
セラミックグリーンシート3iには、配線パターン10cが形成されている。配線パターン10cは、セラミックグリーンシート3iの図中上側の長辺の真中から各辺に沿って図中右回りに1周するように形成され、始端と終端との間に隙間が形成されている。さらに、配線パターン10cは、始端に電極4aと接続するための端部11を設けている。また、配線パターン10cは、始端にビア導体51と接続する接続部51c、図中左側の短辺にビア導体53と接続する接続部53i、終端にビア導体52と接続する接続部52iをそれぞれ設けている。さらに、配線パターン10cは、セラミックグリーンシート3iの長辺に対して配線パターン10cの長辺が約5度傾くように、セラミックグリーンシート3iに対する配置をあらかじめ時計回り方向に回転させてずらしてある。
このセラミックグリーンシート3g〜3iの3枚を積層することで、図8に示す第1配線パターン10を構成している。
コイル部品1aでは、図8に示した複数のセラミックグリーンシート3a〜3iの各々を少なくとも1枚積層するとともに、その上下両面側に配線パターンが印刷されていないセラミックグリーンシート(ダミー層)を複数積層する。ダミー層を含め複数のセラミックグリーンシートを圧着することにより、未焼成の積層体3(セラミック素体)を形成する。形成した積層体3を焼成し、焼成した積層体3の外部に、配線パターンと導通するように銅電極を焼き付けて電極4a〜4dを形成する。
コイル部品1aでは、コイルL1,L2を構成する第1配線パターン10、第2配線パターン20および第3配線パターン30の配線を形成したセラミックグリーンシートを複数積層している。そのため、コイル部品1aでは、セラミックグリーンシートに対する配置をあらかじめ時計回り方向に回転させてずらしてある配線パターンと、あらかじめ反時計回り方向に回転させてずらしてある配線パターンとが交互に積層されている。コイル部品1aでは、各々の配線パターンが主面方向から見て配線パターンの対応する辺どうしが交差する交差部を有するように配置される。各々の配線パターンが交差する角度は約10度となる。これにより、コイル部品1aでは、積みズレに対して各々の配線パターンに対する磁気結合の変動を低減することができる。
以上のように、本実施の形態2に係るコイル部品1aでは、各々の配線パターンが主面方向から見て配線パターンの対応する辺どうしが交差する交差部を有するように配置される。しかし、各々の配線パターンのずらし方は、図8に示したコイル部品1aのずらし方に限定されない。コイル部品は、コイルL1が、複数の第1配線パターンを含み、交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含んでも、コイルL2が、複数の第2配線パターン20を含み、交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含んでもよい。また、コイル部品は、コイルL1およびコイルL2のそれぞれに、交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含んでもよい。
これにより、本実施の形態2に係るコイル部品1aは、積層する際に層間で積みズレが生じても、相互インダクタンスMの値の変動を小さくすることができ、安定して製造することができる。
<実施の形態3>
本実施の形態1および2では、一方の配線パターンをあらかじめ約5度(時計回り方向)回転させてずらし、他方の配線パターンをあらかじめ約−5度(反時計回り方向)回転させてずらしているので、各々の配線パターンが交差する角度が約10度となると説明した。しかし、コイル部品は、これに限定されず、各々の配線パターンが交差する角度が約10度以外でもよい。本実施の形態3では、各々の配線パターンが交差する角度について説明する。なお、本実施の形態3では、各々の配線パターンが交差する角度以外、実施の形態1のコイル部品1または実施の形態2のコイル部品1aと同じであるため、詳細な説明は繰り返さない。
積みズレの影響は、配線パターンが交差する角度を大きくするほど抑えられるが、角度を大きくするほど配線パターンで構成するコイルのインダクタンスの値が低下する。なお、配線パターンが交差する角度は、90度になると配線パターン間での結合が理論的には0(ゼロ)になる。しかし、図1のように配線パターンでループ状のコイルを構成する場合、配線パターンが交差する角度が90度になると例えば長辺側の配線パターンと短辺側の配線パターンとが結合することになるので、配線パターンが交差する角度は、45度以下となる。
しかし、ある大きさの積層体内に、配線パターンが交差するように各々の配線パターンを配置する場合、配線パターンが交差する角度が大きくなると、配線パターンの角部が積層体から飛び出すことになる。
図10は、主面方向から見た積層体と配線パターンとの位置関係を説明するための図である。図10(a)では、配線パターンP1と配線パターンP2とが交差する角度が小さく、配線パターンP1および配線パターンP2が積層体3内に納まっている。しかし、図10(b)では、配線パターンP1と配線パターンP2とが交差する角度が大きく、配線パターンP1および配線パターンP2が積層体3内に納まっていない。なお、配線パターンP1および配線パターンP2は、積層体3において異なる層にそれぞれ形成されており、図10では、主面方向から見て配線パターンP1および配線パターンP2を平面視している。
四角い積層体3内に配線パターンで構成するコイルを配置するには、大きな径のコイルにできず、所望の相互インダクタンスMの値を得ることができない場合が考えられる。つまり、積層体3内において、コイルに寄与しない配線パターンの部分が多くなり、小型化が難しくなる。そこで、図10に示すように、積層体3内に配線パターンP1および配線パターンP2が納まる範囲で、配線パターンP1,P2が交差する角度が5度〜30度であることが望ましい。
図11は、配線パターンの大きさを説明するための図である。図12は、配線パターンの大きさと配線パターンが交差する角度との関係を説明するための図である。配線パターンP1,P2を積層体3内に納めて形成する場合、まず、図11(a)に示すように、積層体3に対して配置をずらさない配線パターンとして図面の横方向に長さX、図面の縦方向に長さYの配線パターンPを設定する。この横方向の長さX、縦方向の長さYの配線パターンPを時計方向または反時計方向に回して配置をずらした場合、配線パターンPの範囲内に収めるには、図11(b)に示すように、横方向の長さを長さX1(<X)、縦方向の長さを長さY1(<Y)と短くした配線パターンP1,P2とする必要がある。つまり、図11(c)に示すように、横方向の長さX、縦方向の長さYの配線パターンPの範囲内に、横方向の長さX1、縦方向の長さY1の配線パターンP1,P2を納めることになる。
配線パターンP1,P2が交差する角度を角度θとした場合、配線パターンP1,P2の横方向の長さX、縦方向の長さYの変化は、図12に示すようになる。配線パターンP1,P2の横方向の長さXは、角度θの変化に対して大きく変化していないが、配線パターンP1,P2の縦方向の長さYは、角度θの変化に対して大きく変化している。配線パターンP1,P2が重なる面積とコイルのインダクタンスの値との間には相関があるため、少なくとも配線パターンP1,P2が重なる面積が元の面積の半分以上となる範囲に配線パターンP1,P2が交差する角度を制限する必要がある。そのため、配線パターンP1,P2が交差する角度は、図12から分かるように30度以下が好ましい。
以上のように、本実施の形態3に係るコイル部品では、配線パターンが交差する交差部が、主面方向から見て対応する辺どうしが5度〜30度の角度で交差することが好ましい。これにより、本実施の形態3に係るコイル部品は、相互インダクタンスMの値の変動を小さくすることができるとともに、小型化が可能となる。
(変形例)
これまで説明したコイル部品では、各々の配線パターンが積層体3内に納まるように各々の配線パターンを配置する構成について説明した。しかし、各々の配線パターンの配置によっては、配線パターンの角部が積層体3から飛び出す場合があり、この場合、積層体3から飛び出した配線パターンの角部を削ってもよい。図13は、角部を削った配線パターンの形状を説明するための図である。図13に示すように交差部を有するように互いにずらして積層した配線パターンP1,P2は、積層体3の側面側に近い部分Rを一部削った形状である。これにより、コイル部品は、配線パターンP1,P2が交差する角度を大きくしても、積層体3の主面における配線パターンの専有面積を抑えることができる。なお、配線パターンP1および配線パターンP2は、積層体3において異なる層にそれぞれ形成されており、図13では、主面方向から見て配線パターンP1および配線パターンP2を平面視している。
本開示のコイル部品は、層ごとに配線パターンをずらす方向を交互に変えてもよいし、磁気結合の影響が大きい層だけ配線パターンをずらしてもよい。また、本開示のコイル部品は、配線パターンの形状が矩形である場合に限定されず、楕円や多角形の形状であってもよい。
本開示のコイル部品は、相互インダクタンスMの値の変動を小さくすることができる以外に、二つコイルL1,L2間での浮遊容量の変動についても積みズレの影響を受けにくくするメリットがある。つまり、配線パターンが交差するようにずらしてある場合、配線パターン間で生じる容量は交差するポイントだけになり、容量の変動は小さくなる。
本開示のコイル部品は、図1に示すXY方向に積みズレが生じる場合以外に、XY面内で回転する方向に角度ズレが生じる場合がある。しかし、セラミックグリーンシートに複数の配線パターンを形成して積層し、多数のコイル部品を形成する製造方法では、セラミックグリーンシート自体が大きいため、角度ズレが生じたとしても0.1度以下と小さく、相互インダクタンスMの値の変動に対する影響は小さい。
本開示のコイル部品を含むフィルタ回路は、例えば、電源回路のノイズフィルタとして用いることができる。図14は、電源回路のノイズフィルタの回路構成を説明するための図である。図14(a)に示す回路は、IC素子に電力を供給する経路に設けられるノイズフィルタの一例であり、コンデンサCa、インダクタであるコイルLa、コンデンサCbで構成されるパイ型のフィルタ回路と、当該フィルタ回路に接続されるコンデンサCcおよびコンデンサCdとを含んでいる。パイ型のフィルタ回路では、主に電源から供給される電力に含まれる低周波ノイズをカットし、コンデンサCcおよびコンデンサCdは、主に電源から供給される電力に含まれる高周波ノイズをカットしている。
コンデンサCcおよびコンデンサCdは、高周波ノイズをカットするローパスフィルタ(LPF)回路として機能している。このローパスフィルタ回路を構成するコンデンサの数を増やすことで高周波ノイズをカットしつつ、寄生インダクタンス(等価直列インダクタンス(ESL))を低減している。なお、図14(a)に示す回路に含まれるコンデンサCeは、IC素子に供給される電流が不足した場合に当該IC素子に供給するための電荷を蓄積する役割を有し、当該IC素子との間にインダクタンス成分が入らないように当該IC素子の直近に配置されている。
本開示のコイル部品1,1aを図14(a)に適用すると、ローパスフィルタ回路と同様の役割を果たせるため、当該ローパスフィルタ回路を構成するコンデンサCcおよびコンデンサCdを図14(b)に示すように削減することができる。
次に、電源回路のノイズフィルタにコイル部品1,1aを適用した場合の構成を、図を用いて説明する。図15は、コイル部品1,1aを適用した場合の電源回路のノイズフィルタの回路構成を説明するための図である。図15(a)に示す回路では、コンデンサCbにコイル部品1,1aを適用している。コンデンサCbにコイル部品1,1aを適用した場合、電源回路のノイズフィルタは、コンデンサCa、コイルLa+コイルL1、コンデンサCb、コイルL2、コンデンサC5で構成される5次のT型LCフィルタ回路(ローパスフィルタ(LPF)回路)となる。
図15(a)に示すフィルタ回路では、IC素子(負荷)と電源との間に並列に接続されるコンデンサCa(第1コンデンサ)およびコンデンサCb(第2コンデンサ)と、コンデンサCa(第1コンデンサ)とコンデンサCb(第2コンデンサ)との間に直列に接続されるコイルLa(インダクタ)と、コンデンサCb(第2コンデンサ)とコイルLa(インダクタ)と間にコイルL1(第1コイル)が直列に接続されるように設けたコイル部品1,1aと、を備える。そのため、図15(a)に示すフィルタ回路では、少ない部品点数で良好なフィルタ特性を得ることができる。なお、コイル部品1,1aを電源回路のノイズフィルタに適用する場合、コンデンサCa,Cb,Ceのどの寄生インダクタンス(等価直列インダクタンス(ESL))を低減するかにより設ける位置が異なる。しかし、コイル部品1,1a自体がインダクタンス成分を有するため、コンデンサCeにコイル部品1,1aを適用した場合、コンデンサCeとIC素子との間にインダクタンス成分が入ることになり、コンデンサCeによる電荷供給性能が落ちることになる。そのため、コンデンサCeにコイル部品1,1aを適用することは避けるべきである。
コンデンサCbにコイル部品1,1aを適用する以外に、コンデンサCaコイル部品1,1aを適用することができる。図15(b)示す回路では、コンデンサCaにコイル部品1,1aを適用している。コンデンサCaにコイル部品1,1aを適用した場合、電源回路のノイズフィルタは、コイルL1、コンデンサCa、コイルL2+コイルLa、コンデンサCbで構成される4次のT型LCフィルタ回路(ローパスフィルタ(LPF)回路)となる。
また、コンデンサCbとコンデンサCeとの間にコンデンサCcを設けるのであれば、図15(c)示すように、コンデンサCcにコイル部品1,1aを適用できる。コンデンサCcにコイル部品1,1aを適用した場合、電源回路のノイズフィルタは、コンデンサCa、コイルLa、コンデンサCb、コイルL1、コンデンサCc、コイルL2、コンデンサC5で構成される7次のT型LCフィルタ回路(ローパスフィルタ(LPF)回路)となる。図15(c)に示すフィルタ回路では、IC素子(負荷)と電源との間に並列に接続されるコンデンサCa(第1コンデンサ)およびコンデンサCc(第2コンデンサ)と、コンデンサCa(第1コンデンサ)とコンデンサCc(第2コンデンサ)との間に直列に接続されるコイルLa(インダクタ)と、コンデンサCc(第2コンデンサ)とコイルLa(インダクタ)と間にコイルL1(第1コイル)が直列に接続されるように設けたコイル部品1,1aと、を備える。さらに、図15(c)に示すフィルタ回路では、コンデンサCa(第1コンデンサ)に対して並列に接続され、コイルLa(インダクタ)とコイルL1(第1コイル)との間に設けたコンデンサCb(第3コンデンサ)を備える。そのため、図15(c)に示すフィルタ回路では、少ない部品点数で良好なフィルタ特性を得ることができる。
電源回路のノイズフィルのノイズフィルタ効果は、高次のフィルタ回路の方が高いので、コイル部品1,1aを適用する場合、高次のフィルタ回路となる位置に設けることが好ましい。
図16は、コイル部品1,1aを適用した場合の電源回路のノイズフィルタの周波数に対する伝送特性を示すグラフである。図16に示すグラフでは、図15(a)に示す5次のT型LCフィルタ回路、および図15(b)に示す4次のT型LCフィルタ回路に対して回路シミュレーションを行った結果が示されている。なお、図15(a)に示す5次のT型LCフィルタ回路、および図15(b)に示す4次のT型LCフィルタ回路において、コイルLaは10μH、コンデンサCa,Cb,Ceは1μF、コイルL1,L2は10nH、寄生インダクタンス(等価直列インダクタンス(ESL))は1nHとして回路シミュレーションを行った。図16から分かるように、5次のT型LCフィルタ回路の結果(実線)の方が、4次のT型LCフィルタ回路の結果(破線)に比べて高い周波数で大きな減衰量を得ることができる。
これまで説明したコイル部品では、第1配線パターン、第2配線パターンおよび第3配線パターンの各々は、3つの配線パターンを積層して構成されていると説明したが、2つ以上の配線パターンを積層させた構成であればよい。
また、これまで説明したコイル部品1では、ビア導体53およびビア導体56が複数の第3配線パターン30のすべての配線パターンと電気的に接続すると説明したが、すべての配線パターンと電気的に接続していなくてもよい。つまり、ビア導体53およびビア導体56は、複数の第3配線パターン30のうち少なくとも1つの配線パターンと接続していればよい。コイル部品1は、ビア導体53およびビア導体56が電気的に接続する配線パターンの数によっても、二つのコイルの相互インダクタンスを適切に調整することができる。
また、これまで説明したコイル部品1では、複数枚積層されたセラミック層の積層体3(セラミック素体)で構成されていると説明したが、誘電体の多層構造であればよい。
また、これまで説明したコイル部品1では、第1配線パターン、第2配線パターンおよび第3配線パターンの各々の配線パターンの厚みが同じであることを前提に説明したが、各々の配線パターンで厚みが異なってもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 コイル部品、4a,4b,4c 電極、10,20,30 配線パターン、51〜57 ビア導体、100 フィルタ回路、C1 コンデンサ。

Claims (11)

  1. 第1コイルと第2コイルとを磁気結合させたコイル部品であって、
    複数の積層されたセラミック層からなり、互いに対向する1対の主面と前記主面間を結ぶ側面とを有する、セラミック素体と、
    前記セラミック素体の内部に積み重ねられ、前記第1コイルの少なくとも一部を構成する少なくとも1つの第1配線パターンと、
    前記第1配線パターンの上層に積み重ねられ、前記第2コイルの少なくとも一部を構成する少なくとも1つの第2配線パターンと、
    前記第1配線パターンと前記第2配線パターンとの間に積み重ねられ、前記第1コイルの一部を構成する部分と前記第2コイルの一部を構成する部分とを含む少なくとも1つの第3配線パターンと、を備え、
    前記第1コイルは、
    複数の前記第1配線パターンの間を第1ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、
    複数の前記第1配線パターンから複数の前記第3配線パターンまでを貫く第2ビア導体および第3ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、を含み、
    前記第2コイルは、
    複数の前記第2配線パターンの間を第4ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、
    複数の前記第2配線パターンから複数の前記第3配線パターンまでを貫く第5ビア導体および第6ビア導体で電気的に接続して複数の配線パターンを並列接続する部分と、を含み、
    前記セラミック素体は、
    前記第1配線パターンと電気的に接続する第1電極と、
    前記第2配線パターンと電気的に接続する第2電極と、
    複数の配線パターンの間を第7ビア導体で電気的に接続した前記第3配線パターンと電気的に接続する第3電極と、を含み
    前記第1配線パターンおよび前記第2配線パターンのそれぞれの形状は、矩形であり、
    前記第1コイルおよび前記第2コイルの少なくとも一方のコイルは、前記主面方向から見て対応する辺どうしが交差する交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含む、コイル部品。
  2. 前記第1コイルは、複数の前記第1配線パターンを含み、前記交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含む、請求項1に記載のコイル部品。
  3. 前記第2コイルは、複数の前記第2配線パターンを含み、前記交差部を有するように互いにずらして積層した配線パターンの組み合わせを少なくとも一組含む、請求項1または請求項2に記載のコイル部品。
  4. 前記交差部を有するように互いにずらして積層した前記第1配線パターンと前記第3配線パターンとの組み合わせを含む、請求項1〜請求項3のいずれか1項に記載のコイル部品。
  5. 前記交差部を有するように互いにずらして積層した前記第2配線パターンと前記第3配線パターンとの組み合わせを含む、請求項1〜請求項4のいずれか1項に記載のコイル部品。
  6. 前記第2ビア導体を設ける前記第1配線パターンと、前記第3ビア導体を設ける前記第1配線パターンとは、前記セラミック素体の異なる側面側にあり、
    前記第5ビア導体を設ける前記第2配線パターンと、前記第6ビア導体を設ける前記第2配線パターンとは、前記セラミック素体の異なる側面側にある、請求項1〜請求項5のいずれか1項に記載のコイル部品。
  7. 前記交差部は、前記主面方向から見て対応する辺どうしが5度〜30度の角度で交差する、請求項1〜請求項のいずれか1項に記載のコイル部品。
  8. 前記交差部を有するように互いにずらして積層した配線パターンは、前記セラミック素体の側面側に近い部分を一部削った形状である、請求項1〜請求項のいずれか1項に記載のコイル部品。
  9. 請求項1〜請求項のいずれか1項に記載の前記コイル部品と、
    前記コイル部品の前記第1コイルと前記第2コイルとの間の電極に接続するコンデンサと、を備える、フィルタ回路。
  10. 負荷と電源との間に並列に接続される第1コンデンサおよび第2コンデンサと、
    前記第1コンデンサと前記第2コンデンサとの間に直列に接続されるインダクタと、
    前記第2コンデンサと前記インダクタと間に前記第1コイルが直列に接続されるように設けた請求項1〜請求項のいずれか1項に記載の前記コイル部品と、を備える、フィルタ回路。
  11. 前記第1コンデンサに対して並列に接続され、前記インダクタと前記第1コイルとの間に設けた第3コンデンサをさらに備える、請求項10に記載のフィルタ回路。
JP2021540017A 2019-10-30 2020-09-28 コイル部品および、これを含むフィルタ回路 Active JP6954510B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021158302A JP7322934B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路
JP2021158299A JP7238937B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019197531 2019-10-30
JP2019197531 2019-10-30
PCT/JP2020/036649 WO2021085002A1 (ja) 2019-10-30 2020-09-28 コイル部品および、これを含むフィルタ回路

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021158302A Division JP7322934B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路
JP2021158299A Division JP7238937B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路

Publications (2)

Publication Number Publication Date
JP6954510B2 true JP6954510B2 (ja) 2021-10-27
JPWO2021085002A1 JPWO2021085002A1 (ja) 2021-11-25

Family

ID=75714645

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021540017A Active JP6954510B2 (ja) 2019-10-30 2020-09-28 コイル部品および、これを含むフィルタ回路
JP2021158299A Active JP7238937B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路
JP2021158302A Active JP7322934B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021158299A Active JP7238937B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路
JP2021158302A Active JP7322934B2 (ja) 2019-10-30 2021-09-28 コイル部品および、これを含むフィルタ回路

Country Status (4)

Country Link
US (1) US20210407728A1 (ja)
JP (3) JP6954510B2 (ja)
CN (2) CN217590767U (ja)
WO (1) WO2021085002A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102335426B1 (ko) * 2020-01-07 2021-12-06 삼성전기주식회사 코일 부품
WO2022137678A1 (ja) * 2020-12-24 2022-06-30 株式会社村田製作所 コイル部品および、これを含むフィルタ回路
CN117957767A (zh) * 2021-09-21 2024-04-30 株式会社村田制作所 功率分配器
JPWO2023090181A1 (ja) * 2021-11-22 2023-05-25
JPWO2023233966A1 (ja) * 2022-06-01 2023-12-07
WO2023233883A1 (ja) * 2022-06-01 2023-12-07 株式会社村田製作所 コイル部品、およびこれを含むフィルタ回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130115A (ja) * 1994-10-31 1996-05-21 Fuji Elelctrochem Co Ltd 電子チップ部品
JPH08130117A (ja) * 1994-10-31 1996-05-21 Kyocera Corp 積層インダクタ
JPH11273954A (ja) * 1998-03-20 1999-10-08 Murata Mfg Co Ltd 積層型インダクタ
JP5617635B2 (ja) * 2008-09-22 2014-11-05 パナソニック株式会社 積層型電子部品
JP5459301B2 (ja) * 2011-12-19 2014-04-02 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
WO2013146568A1 (ja) * 2012-03-27 2013-10-03 株式会社村田製作所 電子部品
CN209168856U (zh) * 2016-07-15 2019-07-26 株式会社村田制作所 高频变压器以及移相器
KR101843283B1 (ko) * 2016-09-20 2018-03-28 삼성전기주식회사 코일 전자 부품
JP6729839B2 (ja) * 2018-03-27 2020-07-22 株式会社村田製作所 コイル部品および、これを含むフィルタ回路

Also Published As

Publication number Publication date
WO2021085002A1 (ja) 2021-05-06
JP2022008602A (ja) 2022-01-13
JPWO2021085002A1 (ja) 2021-11-25
JP2022008603A (ja) 2022-01-13
JP7322934B2 (ja) 2023-08-08
JP7238937B2 (ja) 2023-03-14
CN216162684U (zh) 2022-04-01
US20210407728A1 (en) 2021-12-30
CN217590767U (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6954510B2 (ja) コイル部品および、これを含むフィルタ回路
JP6733856B1 (ja) コイル部品および、これを含むフィルタ回路
JP2008071811A (ja) 積層コンデンサ及び電子機器
US20110187486A1 (en) Electronic component
WO2022070888A1 (ja) コイル部品、これを含むフィルタ回路、および電子機器
JP7020569B2 (ja) コイル部品および、これを含むフィルタ回路
JP6729839B2 (ja) コイル部品および、これを含むフィルタ回路
WO2021117393A1 (ja) 回路装置、およびフィルタ回路
JP6500989B2 (ja) 回路基板、これを用いたフィルタ回路およびキャパシタンス素子
US10284164B2 (en) Circuit substrate, filter circuit, and capacitance element
WO2018070105A1 (ja) 積層型lcフィルタアレイ
WO2022137678A1 (ja) コイル部品および、これを含むフィルタ回路
WO2005060093A1 (ja) 積層セラミック電子部品
JP6981584B2 (ja) 多層基板、回路装置、およびフィルタ回路基板
KR20130112241A (ko) 적층형 인덕터

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210708

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6954510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150