JP6953652B1 - Refining method for chromium-containing molten steel - Google Patents

Refining method for chromium-containing molten steel Download PDF

Info

Publication number
JP6953652B1
JP6953652B1 JP2021541692A JP2021541692A JP6953652B1 JP 6953652 B1 JP6953652 B1 JP 6953652B1 JP 2021541692 A JP2021541692 A JP 2021541692A JP 2021541692 A JP2021541692 A JP 2021541692A JP 6953652 B1 JP6953652 B1 JP 6953652B1
Authority
JP
Japan
Prior art keywords
refining
gas
concentration
molten steel
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021541692A
Other languages
Japanese (ja)
Other versions
JPWO2022219793A1 (en
Inventor
辰 菊地
辰 菊地
田中 智昭
智昭 田中
隆二 中尾
隆二 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Application granted granted Critical
Publication of JP6953652B1 publication Critical patent/JP6953652B1/en
Publication of JPWO2022219793A1 publication Critical patent/JPWO2022219793A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

容器内を400torr超大気圧以下の範囲の圧力として酸素ガスを含むガスを吹き込む第1ステップと、容器内を200torr超400torr以下に減圧して酸素ガスを含むガスを吹き込む第2ステップと、容器内を200torr以下に減圧してガスを吹き込む第3ステップとを有し、減圧精錬終了時のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする含クロム溶鋼の精錬方法である。減圧精錬開始時、減圧精錬中においても上記スラグ成分を有していると好ましい。The first step of blowing a gas containing oxygen gas into the container as a pressure in the range of 400 torr or less, the second step of depressurizing the inside of the container to more than 200 torr and 400 torr or less and blowing the gas containing oxygen gas, and the inside of the container. It has a third step of reducing the pressure to 200 torr or less and blowing gas, and is characterized by adjusting the MgO concentration in the slag at the end of vacuum refining to 8 to 15% by mass and the chromium oxide concentration to 28 to 50% by mass. This is a refining method for chrome-containing molten steel. It is preferable to have the above-mentioned slag component at the start of vacuum refining and during vacuum refining.

Description

本発明は、精錬容器内で含クロム溶鋼中に酸素ガスを含むガスを吹き込んで精錬を行う、含クロム溶鋼の精錬方法に関する。 The present invention relates to a method for refining a chromium-containing molten steel, in which a gas containing oxygen gas is blown into the chromium-containing molten steel in a refining container to perform refining.

含クロム鋼、特にステンレス鋼のように11%以上のクロムを含むような含クロム鋼を精錬するに際しては、精錬容器内に収容した溶鋼中に酸素ガス又は酸素ガスと不活性ガスの混合ガスを吹き込むAOD法によって脱炭精錬を行う方法が広く用いられている。AOD法では、脱炭が進行して溶鋼中の[C]濃度が低下してくると[Cr]が酸化されやすくなることから、[C]濃度の低下にともない吹き込みガス中におけるArガス等の不活性ガスの比率を高くし、[Cr]の酸化を抑える方法がとられている。しかし、低[C]濃度域では脱炭速度が低下するために所望の[C]濃度に到達するのに長時間を要し、かつ吹き込みガス中の不活性ガスの比率を高くするため、高価な不活性ガスの消費量が大幅に増加することから、経済的にも不利となる。 When refining chrome-containing steel, especially chrome-containing steel containing 11% or more of chromium, such as stainless steel, oxygen gas or a mixed gas of oxygen gas and inert gas is mixed in the molten steel contained in the smelting container. A method of decarburizing and refining by the blowing AOD method is widely used. In the AOD method, when the decarburization progresses and the [C] concentration in the molten steel decreases, [Cr] is easily oxidized. Therefore, as the [C] concentration decreases, Ar gas or the like in the blown gas A method has been adopted in which the ratio of the inert gas is increased to suppress the oxidation of [Cr]. However, in the low [C] concentration range, the decarburization rate decreases, so that it takes a long time to reach the desired [C] concentration, and the ratio of the inert gas in the blown gas is increased, which is expensive. Since the consumption of the non-active gas is significantly increased, it is economically disadvantageous.

このような低[C]濃度域における脱炭を促進する方法として、真空精錬法の利用が挙げられる。特許文献1においては、吹き込みガスとして酸素ガスまたは酸素ガスと不活性ガスとの混合ガスを供給し、溶鋼中の[C]濃度が0.5質量%に低下するまでは大気圧下で脱炭処理し、[C]濃度がこの値以下に低下した後は、容器内を200torr以下に減圧して脱炭処理する方法が開示されている。これにより、比較的高[C]濃度より減圧下での処理を行うとともに、減圧下において酸素ガスとの混合ガスで脱炭処理を行うため、脱炭酸素効率が向上するために同一酸素供給量で脱炭速度の向上が図れ、還元用Si原単位および高価な不活性ガス原単位が低減するとともに、精錬時間を短縮することができる。減圧処理における容器内圧力を200torr以下とするのは、これより高い圧力では脱炭酸素効率が低下するからであるとしている。 As a method of promoting decarburization in such a low [C] concentration range, the use of a vacuum refining method can be mentioned. In Patent Document 1, oxygen gas or a mixed gas of oxygen gas and an inert gas is supplied as a blowing gas, and decarburization is performed under atmospheric pressure until the [C] concentration in the molten steel drops to 0.5% by mass. After the treatment and the [C] concentration drops to this value or less, a method of decarburizing the inside of the container by reducing the pressure to 200 torr or less is disclosed. As a result, the treatment is performed under reduced pressure from a relatively high [C] concentration, and the decarburization treatment is performed with a mixed gas with oxygen gas under reduced pressure. Therefore, the same oxygen supply amount is used to improve the decarbonizing efficiency. The decarburization rate can be improved, the Si basic unit for reduction and the expensive inert gas basic unit can be reduced, and the refining time can be shortened. It is said that the reason why the pressure inside the container in the depressurization treatment is 200 torr or less is that the decarboxylation efficiency decreases at a pressure higher than this.

特許文献2には、精錬容器内で含クロム溶鋼中に酸素ガスを含むガスを吹き込んで精錬を行う精錬方法において、容器内を400torr〜大気圧範囲の圧力として酸素ガスを含むガスを吹き込む第1ステップと、容器内を250torr〜400torrに減圧して酸素ガスを含むガスを吹き込む第2ステップと、容器内を250torr以下に減圧してガスを吹き込む第3ステップとを有することを特徴とする含クロム溶鋼の精錬方法が開示されている。中炭領域、特に[C]0.2〜0.5%の領域においては、溶鋼の強攪拌を行うことにより、250〜400torrの圧力でも高い脱炭酸素効率が得られる。さらに、減圧操業の圧力を従来のように200torr以下とするのではなく250〜400torrの範囲とすることにより、ダストの発生を抑えることができる。また、圧力を250〜400torrの範囲とすることにより、底吹きガス吹き込み量の増大を図ることができ、その結果精錬時間の短縮を図ることが可能になる。 Patent Document 2 describes, in a refining method in which a gas containing oxygen gas is blown into a chromium-containing molten steel in a refining container to perform refining, a gas containing oxygen gas is blown into the container as a pressure in the range of 400 torr to atmospheric pressure. It has a second step of depressurizing the inside of the container to 250 torr to 400 torr and blowing a gas containing oxygen gas, and a third step of depressurizing the inside of the container to 250 torr or less and blowing the gas. A method for refining molten steel is disclosed. In the medium coal region, particularly in the region of [C] 0.2 to 0.5%, high decarboxylation efficiency can be obtained even at a pressure of 250 to 400 torr by performing strong stirring of the molten steel. Further, the generation of dust can be suppressed by setting the pressure of the decompression operation to the range of 250 to 400 torr instead of the conventional pressure of 200 torr or less. Further, by setting the pressure in the range of 250 to 400 torr, the amount of bottom-blown gas blown can be increased, and as a result, the refining time can be shortened.

特許文献3には、大気圧下での脱炭処理後に真空下での脱炭処理を行う含クロム溶鋼の精錬方法において、真空下での脱炭処理の開始はスラグ中の(Cr)濃度が30mass%以下の条件とし、真空度は200Torr以下として、吹込みガスとして酸素ガスまたは酸素ガスと不活性ガスとの混合ガスを用い、[C]濃度低下後は吹込みガスとして不活性ガスのみを供給することを特徴とする含クロム溶鋼の減圧脱炭処理方法が開示されている。Patent Document 3 states that in a method for refining chromium-containing molten steel in which decarburization under atmospheric pressure is followed by decarburization under vacuum, the decarburization under vacuum is started during slag (Cr 2 O 3). ) The concentration is 30 mass% or less, the degree of vacuum is 200 Torr or less, oxygen gas or a mixed gas of oxygen gas and inert gas is used as the blowing gas, and [C] is inactive as the blowing gas after the concentration is lowered. A vacuum decarburization treatment method for chromium-containing molten steel, which is characterized by supplying only gas, is disclosed.

特開平6−287629号公報Japanese Unexamined Patent Publication No. 6-287629 特開2001−286694号公報Japanese Unexamined Patent Publication No. 2001-286694 特開平6−287628号公報Japanese Unexamined Patent Publication No. 6-287628

特許文献2に記載の発明により、中炭領域、特に[C]濃度が0.2〜0.5質量%の領域においては、溶鋼の強攪拌を行うことにより、250〜400torrの圧力でも高い脱炭酸素効率が得られる。さらに、減圧操業の圧力を従来のように200torr以下とするのではなく250〜400torrの範囲とすることにより、ダストの発生を抑えることができる。また、圧力を250〜400torrの範囲とすることにより、底吹きガス吹き込み量の増大を図ることができ、その結果精錬時間の短縮を図ることが可能になった。 According to the invention described in Patent Document 2, in the medium coal region, particularly in the region where the [C] concentration is 0.2 to 0.5% by mass, strong stirring of the molten steel results in high decarboxylation even at a pressure of 250 to 400 torr. Carbonate efficiency is obtained. Further, the generation of dust can be suppressed by setting the pressure of the decompression operation to the range of 250 to 400 torr instead of the conventional pressure of 200 torr or less. Further, by setting the pressure in the range of 250 to 400 torr, the amount of bottom-blown gas blown can be increased, and as a result, the refining time can be shortened.

さらに、耐火物溶損低減と還元材使用量削減を両立させることができれば、精錬コストを大幅に低減することができる。 Further, if the reduction of refractory melting damage and the reduction of the amount of reducing agent used can be achieved at the same time, the refining cost can be significantly reduced.

本発明は、精錬容器内を減圧にして含クロム溶鋼中に酸素ガスを含むガスを吹き込んで精錬を行う含クロム溶鋼の精錬方法において、耐火物溶損低減と還元材使用量削減を両立させることのできる精錬方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention achieves both reduction of refractory melting damage and reduction of the amount of reducing material used in a refining method for chrome-containing molten steel in which a gas containing oxygen gas is blown into the chrome-containing molten steel by reducing the pressure inside the smelting container. The purpose is to provide a refining method that can be used.

即ち、本発明の要旨とするところは、以下のとおりである。
(1)精錬容器内で含クロム溶鋼中に酸素ガスを含むガスを吹き込んで精錬を行う精錬方法において、
容器内を大気圧、及び/又は、400torr超大気圧未満の範囲の減圧圧力として酸素ガスを含むガスを吹き込む第1ステップと、容器内を200torr超400torr以下に減圧して酸素ガスを含むガスを吹き込む第2ステップと、容器内を200torr以下に減圧してガスを吹き込む第3ステップとを有し、その後容器内を大気圧とし、
溶鋼中の[C]濃度が1.5〜0.1質量%で第1ステップから第2ステップに切り替え、溶鋼中の[C]濃度が0.5〜0.1質量%で第2ステップから第3ステップに切り替え、
減圧精錬終了時のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする、
耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法。
(2)さらに、減圧精錬開始時のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする、
上記(1)に記載の耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法。
(3)さらに、減圧精錬中のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする、
上記(2)に記載の耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法。
That is, the gist of the present invention is as follows.
(1) In a refining method in which a gas containing oxygen gas is blown into a chromium-containing molten steel in a refining container to perform refining.
The first step of blowing a gas containing oxygen gas as a depressurizing pressure in the range of atmospheric pressure and / or a pressure less than 400 torr inside the container, and depressurizing the inside of the container to more than 200 torr and 400 torr or less and blowing a gas containing oxygen gas. It has a second step and a third step of depressurizing the inside of the container to 200 torr or less and blowing gas, and then the inside of the container is set to atmospheric pressure.
Switching from the first step to the second step when the [C] concentration in the molten steel is 1.5 to 0.1% by mass, and from the second step when the [C] concentration in the molten steel is 0.5 to 0.1% by mass. Switch to the third step,
The MgO concentration in the slag at the end of vacuum refining is adjusted to 8 to 15% by mass, and the chromium oxide concentration is adjusted to 28 to 50% by mass.
A refining method for chromium-containing molten steel that achieves both reduction of refractory melting damage and reduction of the amount of reducing agent used.
(2) Further, the MgO concentration in the slag at the start of vacuum refining is adjusted to 8 to 15% by mass, and the chromium oxide concentration is adjusted to 28 to 50% by mass.
A method for refining chromium-containing molten steel, which achieves both reduction in refractory erosion damage and reduction in the amount of reducing agent used as described in (1) above.
(3) Further, the MgO concentration in the slag during vacuum refining is adjusted to 8 to 15% by mass, and the chromium oxide concentration is adjusted to 28 to 50% by mass.
A method for refining chromium-containing molten steel, which achieves both reduction in refractory erosion damage and reduction in the amount of reducing agent used as described in (2) above.

本発明は、含クロム溶鋼の精錬方法において、炉内の圧力を第1ステップ〜第3ステップに分けて順次減圧していくことに加え、減圧精錬終了時、減圧精錬開始時さらには減圧精錬中のスラグ成分を調整することにより、耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法を実現することができる。 In the method for refining chromium-containing molten steel, the present invention divides the pressure in the furnace into the first step to the third step and sequentially reduces the pressure. By adjusting the slag component of the above, it is possible to realize a refining method for chrome-containing molten steel that achieves both reduction of refractory melting damage and reduction of the amount of reducing material used.

本発明の精錬容器の一例を示す図であり、減圧精錬時の状態を示す図である。It is a figure which shows an example of the refining container of this invention, and is the figure which shows the state at the time of decompression refining. 本発明の精錬容器の一例を示す図であり、大気圧精錬時の状態を示す図である。It is a figure which shows an example of the refining container of this invention, and is the figure which shows the state at the time of atmospheric pressure refining.

本発明は、精錬容器内で含クロム溶鋼中に酸素ガスを含むガスを吹き込んで精錬を行う精錬方法に関するものである。減圧精錬を行うに際しては例えば図1Aに示す精錬容器1が、大気圧精錬を行うに際しては例えば図1Bに示す精錬容器1が用いられる。精錬容器1内には溶鋼4が収容され、溶鋼4の上にスラグ6が形成され、精錬容器内で含クロム溶鋼中に底吹き羽口2を通して底吹きガス5を吹き込む。また、精錬容器1は着脱可能な排気フード3を有しており、減圧精錬時には図1Aに示すように精錬容器1に排気フード3を装着し、排気管7を経由してガス吸引を行うことにより精錬容器内を減圧する。大気圧精錬時には、図1Bに示すように排気フード3を装着しないので、吹き込みガスとしては、底吹き羽口2のみならず上吹きランス12を併用してガスを吹き込むことも可能である。以下、[C]濃度についての%は質量%を意味する。 The present invention relates to a refining method in which a gas containing oxygen gas is blown into a chromium-containing molten steel in a refining container to perform refining. For example, the refining vessel 1 shown in FIG. 1A is used when performing vacuum refining, and the refining vessel 1 shown in FIG. 1B is used, for example, when performing atmospheric pressure refining. The molten steel 4 is housed in the refining container 1, a slag 6 is formed on the molten steel 4, and the bottom blowing gas 5 is blown into the chromium-containing molten steel in the refining container through the bottom blowing tuyere 2. Further, the smelting container 1 has a removable exhaust hood 3, and during decompression smelting, the smelting container 1 is equipped with the exhaust hood 3 as shown in FIG. 1A, and gas is sucked through the exhaust pipe 7. The pressure inside the smelting container is reduced. Since the exhaust hood 3 is not attached as shown in FIG. 1B during atmospheric pressure refining, it is possible to blow the gas by using not only the bottom blowing tuyere 2 but also the top blowing lance 12. Hereinafter,% with respect to the [C] concentration means mass%.

本発明の含クロム溶鋼の精錬方法は、容器内を大気圧、及び/又は、400torr超大気圧未満の範囲の減圧圧力として酸素ガスを含むガスを吹き込む第1ステップと、容器内を200torr超400torr以下に減圧して酸素ガスを含むガスを吹き込む第2ステップと、容器内を200torr以下に減圧してガスを吹き込む第3ステップとを有する。溶鋼中の[C]濃度が1.5〜0.1%で第1ステップから第2ステップに切り替え、溶鋼中の[C]濃度が0.5〜0.1%で第2ステップから第3ステップに切り替える。第3ステップ終了後に容器内を大気圧に戻し、還元処理を行う。 In the method for refining a chromium-containing molten steel of the present invention, the first step of blowing a gas containing oxygen gas into the container as a depressurizing pressure in the range of atmospheric pressure and / or less than 400 torr, and the inside of the container of more than 200 torr and 400 torr or less. It has a second step of reducing the pressure and blowing a gas containing oxygen gas, and a third step of reducing the pressure inside the container to 200 torr or less and blowing the gas. Switching from the first step to the second step when the [C] concentration in the molten steel is 1.5 to 0.1%, and from the second step to the third step when the [C] concentration in the molten steel is 0.5 to 0.1%. Switch to step. After the completion of the third step, the inside of the container is returned to atmospheric pressure and a reduction treatment is performed.

第2ステップを中炭領域に配置し、同時に溶鋼を強攪拌することにより、この中炭領域における脱炭酸素効率を高い値に維持することができ、さらにダストの発生を抑制することが可能になる。第2ステップにおいて圧力200torr超400torr以下の範囲とすることにより、底吹きガス吹き込み量の増大を図ることができ、その結果精錬時間の短縮を図ることが可能になる。底吹きガス吹き込み速度は溶鋼トン当たり0.4Nm/min以上とすると好ましい。これにより、200torr超の圧力で高い脱炭酸素効率を得るための強攪拌を実現するとともに、精錬時間を短縮することができ、また、200torr超の圧力であれば底吹きガスの吹き込み速度が溶鋼トン当たり0.4Nm/min以上であってもダスト発生量を低位に抑えることが可能である。底吹きガス吹き込み速度は溶鋼トン当たり0.5Nm/min超とすると一層好ましい結果を得ることができる。By arranging the second step in the medium coal region and at the same time strongly stirring the molten steel, the decarboxylation efficiency in this medium coal region can be maintained at a high value, and the generation of dust can be further suppressed. Become. By setting the pressure in the range of more than 200 torr and 400 torr or less in the second step, the amount of bottom-blown gas blown can be increased, and as a result, the refining time can be shortened. The bottom blowing gas blowing speed is preferably 0.4 Nm 3 / min or more per ton of molten steel. As a result, strong stirring for obtaining high decarboxylation efficiency at a pressure of more than 200 tor can be realized, and the refining time can be shortened. At a pressure of more than 200 tor, the blowing speed of the bottom blowing gas is molten steel. Even if it is 0.4 Nm 3 / min or more per ton, the amount of dust generated can be suppressed to a low level. More preferable results can be obtained when the bottom blowing gas blowing speed is more than 0.5 Nm 3 / min per ton of molten steel.

精錬容器内の圧力が400torr超である第1ステップから圧力200torr超400torr以下の第2ステップに移行する時期としては、溶鋼中の[C]濃度が1.5〜0.1%において移行する。[C]濃度が1.5%より高い[C]領域においては、減圧精錬を行うにしても圧力を400torrより高い圧力に設定して酸素ガス吹き込み速度を増大した方が効率的に精錬を行えるからであり、あるいは大気圧精錬を行って上吹き酸素ガス吹き込みを併用した方が高い酸素ガス吹き込み速度を確保して効率的に精錬を行えるからである。一方、[C]濃度が0.1%より低い[C]領域まで400torrを超える圧力で精錬を継続すると、脱炭酸素効率の低下をきたし、精錬時間の延長につながるので好ましくない。 The time to shift from the first step in which the pressure in the smelting vessel is more than 400 torr to the second step in which the pressure is more than 200 torr and less than 400 torr is when the [C] concentration in the molten steel is 1.5 to 0.1%. In the [C] region where the [C] concentration is higher than 1.5%, even if decompression refining is performed, refining can be performed more efficiently by setting the pressure to a pressure higher than 400 torr and increasing the oxygen gas blowing rate. This is because it is possible to secure a high oxygen gas blowing rate and perform refining efficiently by performing atmospheric pressure refining and also using top-blown oxygen gas blowing. On the other hand, if refining is continued at a pressure exceeding 400 torr to the [C] region where the [C] concentration is lower than 0.1%, the decarboxylation efficiency is lowered and the refining time is extended, which is not preferable.

精錬容器内の圧力が200torr超400torr以下である第2ステップから圧力が200torr以下である第3ステップに移行する時期としては、溶鋼中の[C]濃度が0.5〜0.1%において移行する。[C]濃度が0.5%よりも高い[C]領域を第2ステップの200torr超400torr以下の圧力とすることにより、精錬能率の向上やダスト発生量の低減という本発明の効果を十分に発揮することができるからである。一方、[C]濃度が0.1%より低い[C]領域まで200torrを超える圧力で精錬を継続すると、脱炭酸素効率の低下をきたし、精錬時間の延長をきたすので好ましくない。 The time to shift from the second step where the pressure in the smelting vessel is more than 200 torr and 400 torr or less to the third step where the pressure is 200 torr or less is when the [C] concentration in the molten steel is 0.5 to 0.1%. do. By setting the [C] region where the [C] concentration is higher than 0.5% to a pressure of more than 200 torr and 400 torr or less in the second step, the effects of the present invention such as improvement of refining efficiency and reduction of dust generation can be sufficiently achieved. This is because it can be demonstrated. On the other hand, if refining is continued at a pressure exceeding 200 torr to the [C] region where the [C] concentration is lower than 0.1%, the decarboxylation efficiency is lowered and the refining time is extended, which is not preferable.

第1ステップにおいて、第1ステップの当初から大気圧未満の減圧精錬を行う場合は、第1ステップの開始時が減圧精錬開始時となる。第1ステップの当初は大気圧、第1ステップの途中から大気圧未満の減圧精錬を行う場合は、減圧精錬に移行するときが減圧精錬開始時となる。第1ステップの全体を大気圧とする場合は、第2ステップの開始時が減圧精錬開始時となる。
第3ステップの終了時が、減圧精錬終了時となる。
In the first step, when decompression refining below atmospheric pressure is performed from the beginning of the first step, the start time of the first step is the start time of decompression refining. Atmospheric pressure at the beginning of the first step, and when decompression refining below atmospheric pressure is performed from the middle of the first step, the transition to decompression refining is the start of decompression refining. When the entire first step is atmospheric pressure, the start time of the second step is the start time of decompression refining.
The end of the third step is the end of decompression refining.

本発明の含クロム溶鋼の精錬方法は、減圧精錬終了時のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする。これにより、耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法とすることができる。減圧精錬開始時においても上記スラグ成分を有していると好ましい。減圧精錬中においても上記スラグ成分を有しているとさらに好ましい。 The method for refining a chromium-containing molten steel of the present invention is characterized in that the MgO concentration in the slag at the end of vacuum refining is adjusted to 8 to 15% by mass and the chromium oxide concentration is adjusted to 28 to 50% by mass. As a result, it is possible to obtain a refining method for chromium-containing molten steel that achieves both reduction in refractory melting damage and reduction in the amount of reducing agent used. It is preferable to have the above-mentioned slag component even at the start of vacuum refining. It is more preferable to have the above slag component even during vacuum refining.

含クロム溶鋼の精錬において、副材として炉内にCaO、MgO、SiO、Alのいずれかを含む酸化物、あるいはCaFのうち、2種類以上を投入し、これらが精錬終了時のスラグの構成要素となる。また、溶鋼中のCr、Mn、Si、Alが酸素精錬によって酸化し、形成された酸化物が精錬終了時のスラグの構成要素となる。なおここで、クロム酸化物とは、Crをいう。In the refining of chrome-containing molten steel, two or more types of oxides containing CaO, MgO, SiO 2 , Al 2 O 3 or CaF 2 are charged into the furnace as auxiliary materials, and these are at the end of refining. It becomes a component of the slag. Further, Cr, Mn, Si, and Al in the molten steel are oxidized by oxygen refining, and the formed oxide becomes a component of slag at the end of refining. Here, the chromium oxide refers to Cr 2 O 3.

発明者らは、減圧精錬時のスラグ成分について、スラグ中のMgO濃度の増大を試みた。精錬中の炉内圧力の推移については、上記本発明の条件を適用した。スラグ中のMgO濃度の増大を目的として、精練中に精練容器内にMgO単体、あるいはMgOを含む酸化物のうち、いずれか1種類以上を添加した。その結果、少なくとも減圧精錬終了時のスラグ中のMgO濃度を8〜15質量%とすることにより、クロム酸化物濃度を28〜50質量%に調整することと相まって、耐火物溶損低減と還元材使用量削減が実現できることがわかった。
少なくとも減圧精錬終了時において、スラグ中のMgO濃度が8質量%以上であれば、溶融スラグによる耐火物損耗が低減するので、耐火物溶損低減を実現できる。スラグ中のMgO濃度が10質量%以上であればより好ましい。スラグ中のMgO濃度が12質量%以上であればさらに好ましい。一方、スラグ中のMgO濃度が15質量%を超えると、スラグの融点が上昇し、スラグの流動性が著しく低下することで、スラグ中のクロム酸化物を酸素源とした脱炭反応が阻害されるため、減圧精錬終了時においてスラグ中のMgO濃度上限を15質量%とした。
また、少なくとも減圧精錬終了時において、スラグ中のクロム酸化物濃度を28〜50質量%に調整する。クロム酸化物濃度が28質量%以上であれば、スラグの流動性が低下し、液相スラグの耐火物への浸潤を抑制することで、耐火物の損耗を抑制することができる。クロム酸化物濃度が30質量%以上であればより好ましい。一方、クロム酸化物濃度が50質量%以下であれば、酸素精錬後にクロム酸化物を還元するための還元材の使用量を低減することができる。クロム酸化物濃度が48質量%以下であればより好ましい。クロム酸化物濃度が45質量%以下であればさらに好ましい。
減圧精錬終了時において上記スラグ組成とすることによって還元材使用量削減をも実現することができる。
本発明において、減圧精練終了時のみならず、減圧精錬開始時においても上記スラグ成分を有していると好ましい。減圧精錬中においても上記スラグ成分を有しているとさらに好ましい。
The inventors attempted to increase the MgO concentration in the slag for the slag component during vacuum refining. The above conditions of the present invention were applied to the transition of the pressure in the furnace during refining. For the purpose of increasing the MgO concentration in the slag, one or more of MgO alone or an oxide containing MgO was added into the refining container during refining. As a result, at least by setting the MgO concentration in the slag at the end of decompression refining to 8 to 15% by mass, the chromium oxide concentration is adjusted to 28 to 50% by mass, and the refractory erosion loss is reduced and the reducing material is reduced. It was found that the usage amount can be reduced.
If the MgO concentration in the slag is 8% by mass or more at least at the end of decompression refining, the refractory wear due to the molten slag is reduced, so that the refractory melt loss can be reduced. It is more preferable that the MgO concentration in the slag is 10% by mass or more. It is more preferable that the MgO concentration in the slag is 12% by mass or more. On the other hand, when the MgO concentration in the slag exceeds 15% by mass, the melting point of the slag rises and the fluidity of the slag significantly decreases, so that the decarburization reaction using the chromium oxide in the slag as an oxygen source is inhibited. Therefore, the upper limit of MgO concentration in the slag was set to 15% by mass at the end of vacuum refining.
Further, at least at the end of vacuum refining, the chromium oxide concentration in the slag is adjusted to 28 to 50% by mass. When the chromium oxide concentration is 28% by mass or more, the fluidity of the slag is lowered, and the infiltration of the liquid phase slag into the refractory is suppressed, so that the wear of the refractory can be suppressed. It is more preferable that the chromium oxide concentration is 30% by mass or more. On the other hand, when the chromium oxide concentration is 50% by mass or less, the amount of the reducing agent used for reducing the chromium oxide after oxygen refining can be reduced. It is more preferable that the chromium oxide concentration is 48% by mass or less. It is more preferable that the chromium oxide concentration is 45% by mass or less.
By adopting the above slag composition at the end of decompression refining, it is possible to reduce the amount of reducing agent used.
In the present invention, it is preferable that the slag component is present not only at the end of vacuum refining but also at the start of vacuum refining. It is more preferable to have the above slag component even during vacuum refining.

減圧精錬の好ましい実施の形態について説明する。
第1ステップについては、その全体を大気圧下で精錬を行う場合、その全体を大気圧未満の減圧下で精錬を行う場合、当初大気圧下でその後減圧下で精錬を行う場合のいずれを採用しても良い。第1ステップにおいて大気圧下で精錬を行うに際しては、精錬容器の上に減圧精錬のための排気フード3を設置しないので、ガス吹き込みとして上吹きと底吹きを併用することができる。第1ステップにおいて大気圧下で精錬を行うに際しては、吹き込むガスとして酸素のみを用いることができる。第1ステップの精錬を当初大気圧下で行い、その後400torr超の圧力として減圧下で行うことができる。第1ステップの最初から減圧精錬を実施しても良い。
A preferred embodiment of vacuum refining will be described.
For the first step, either the case of refining the whole under atmospheric pressure, the case of refining the whole under reduced pressure below atmospheric pressure, or the case of initially refining under atmospheric pressure and then under reduced pressure is adopted. You may. When refining under atmospheric pressure in the first step, since the exhaust hood 3 for decompression refining is not installed on the refining container, both top blowing and bottom blowing can be used together as gas blowing. When refining under atmospheric pressure in the first step, only oxygen can be used as the gas to be blown. The first step of refining can be carried out initially under atmospheric pressure and then under reduced pressure at a pressure of over 400 torr. Decompression refining may be carried out from the beginning of the first step.

第2ステップにおける底吹きガスの吹き込みガス種としては、第2ステップの最初から酸素と不活性ガスの混合ガスとしても良いが、最初は酸素ガス単独吹き込みとし、第2ステップ内で順次不活性ガス比率を増大するパターンとしても良い。第2ステップ内における精錬容器内の圧力は、200torr超400torr以下の範囲内において一定の圧力を保持することもできるが、高い圧力から低い圧力に順次変化させていくパターンとしても良い。 The bottom-blown gas blown gas type in the second step may be a mixed gas of oxygen and an inert gas from the beginning of the second step, but the oxygen gas is blown alone at the beginning, and the inert gas is sequentially blown in the second step. It may be a pattern for increasing the ratio. The pressure in the smelting vessel in the second step can be maintained at a constant pressure within a range of more than 200 torr and 400 torr or less, but it may be a pattern in which the pressure is gradually changed from high pressure to low pressure.

第3ステップについては、容器内を200torr以下に減圧してガスを吹き込む。溶鋼中の[C]濃度が低下するほど、高い脱炭酸素効率を得るための最適な容器内圧力が低下するので、脱炭が進行した第3ステップにおいては第2ステップより低い圧力を採用することが好ましい。併せて、[C]濃度が低いほど脱炭反応に対する溶鋼攪拌の影響が大きくなる。同一のガス吹き込み速度では容器内圧力が低いほどガスの膨張代が大きくなり、溶鋼攪拌力が増大することから、第2ステップよりも低い圧力とすることが好ましい。第3ステップにおいては、溶鋼中の[C]濃度低下に伴って容器内の圧力を順次段階的に低下させると好ましい。第3ステップにおいては、[C]濃度が十分に低下しているので、吹き込みガスとして酸素ガスを用いずに不活性ガスのみを吹き込むこととしても良い。また、吹き込みガスとして酸素ガスと不活性ガスとの混合ガスを供給するに際し、さらに溶鋼中のC濃度低下に伴って混合ガス中の酸素ガスの比率を徐々に低下させると好ましい。 In the third step, the inside of the container is depressurized to 200 torr or less and gas is blown. As the [C] concentration in the molten steel decreases, the optimum pressure inside the vessel for obtaining high decarboxylation efficiency decreases. Therefore, in the third step in which decarboxylation progresses, a pressure lower than that in the second step is adopted. Is preferable. At the same time, the lower the concentration of [C], the greater the influence of molten steel stirring on the decarburization reaction. At the same gas blowing speed, the lower the pressure inside the container, the larger the expansion allowance of the gas and the larger the stirring force of the molten steel. Therefore, it is preferable to set the pressure lower than that of the second step. In the third step, it is preferable to gradually reduce the pressure in the container as the concentration of [C] in the molten steel decreases. In the third step, since the concentration of [C] is sufficiently lowered, only the inert gas may be blown without using oxygen gas as the blowing gas. Further, when supplying a mixed gas of an oxygen gas and an inert gas as a blowing gas, it is preferable to gradually reduce the ratio of the oxygen gas in the mixed gas as the C concentration in the molten steel decreases.

図1A、図1Bに示すような溶鋼量60トンのAOD炉において、SUS304ステンレス鋼(8質量%Ni−18質量%Cr)を溶製するに際して本発明を適用した。大気圧精錬においては、図1Bに示す態様にて上吹きは行わずに底吹きを行い、減圧精錬においては図1Aに示す態様にて精錬容器内を減圧した上で底吹きを行った。溶製開始時の溶鋼中[C]濃度は約1.7%であり、[C]0.03%まで脱炭精錬を行い、その後容器内圧力を大気圧まで戻しながら、脱炭中に酸化したクロムを還元するための還元剤としてFe−Si合金鉄を添加して、Arガスのみの吹き込みにより還元処理を行い、取鍋へ出鋼した。 The present invention was applied to melt SUS304 stainless steel (8% by mass Ni-18% by mass Cr) in an AOD furnace having a molten steel amount of 60 tons as shown in FIGS. 1A and 1B. In atmospheric pressure refining, bottom blowing was performed without top blowing in the manner shown in FIG. 1B, and in decompression refining, bottom blowing was performed after depressurizing the inside of the refining vessel in the manner shown in FIG. 1A. The [C] concentration in the molten steel at the start of melting is about 1.7%, and decarburization refining is performed to [C] 0.03%, and then oxidation is performed during decarburization while returning the pressure inside the container to atmospheric pressure. Fe—Si alloy iron was added as a reducing agent for reducing the resulting chromium, and the reduction treatment was carried out by blowing only Ar gas, and the steel was discharged to a pan.

「減圧精練実施」については、表1に示すパターンを採用して精錬を行った。第1ステップを大気圧精錬として底吹きを行った。[C]濃度0.8%〜0.2%を第2ステップとし、第2ステップ内で容器内圧力を400torrと200torrの2段階圧力とした。第3ステップは容器内圧力を50torr、40torrの2段階圧力とし、[C]濃度0.03%まで脱炭精錬を行った。第1ステップ、第2ステップ、及び第3ステップの圧力50torrまでは、いずれも底吹きガスとして酸素ガスとアルゴンガスを併用した。第3ステップの圧力40torrではArガス単独吹き込みとした。第2ステップ開始時が減圧精練開始時、第3ステップ終了時が減圧精練終了時となる。
第2ステップ開始時(減圧精練開始時)、第3ステップ開始時(減圧精練中)、第3ステップ終了時(減圧精練終了時)に、容器内のスラグを採取し、スラグ成分分析を行った。
「減圧精練未実施」については、表2に示すパターンを採用して精錬を行った。容器内圧力は常に大気圧とし、[C]濃度に応じて随時底吹き酸素ガス比率を低下させた。また、精錬の最終段階では底吹き酸素ガス比率を0とし、Arガス単独吹き込みとした。減圧精錬との比較のため、減圧精錬における第2ステップ開始時(減圧精練開始時)、第3ステップ開始時(減圧精練中)、第3ステップ終了時(減圧精練終了時)、それぞれに相当する[C]濃度で容器内のスラグを採取し、スラグ成分分析を行った。
表1、表2において、底吹きガス種については、表中に「A」と記載したガス種を吹き込み、「X」と記載したガス種は吹き込みを行っていない。
For "decompression refining", the pattern shown in Table 1 was adopted for refining. The first step was atmospheric pressure refining and bottom blowing was performed. [C] A concentration of 0.8% to 0.2% was set as the second step, and the pressure inside the container was set as a two-step pressure of 400 torr and 200 torr in the second step. In the third step, the pressure inside the vessel was set to a two-step pressure of 50 torr and 40 torr, and decarburization refining was performed to a [C] concentration of 0.03%. Up to the pressure of 50 torr in the first step, the second step, and the third step, oxygen gas and argon gas were used in combination as the bottom blowing gas. At the pressure of 40 torr in the third step, Ar gas was blown alone. The start of the second step is the start of decompression smelting, and the end of the third step is the end of decompression smelting.
At the start of the second step (at the start of vacuum refining), at the start of the third step (during vacuum refining), and at the end of the third step (at the end of vacuum refining), the slag in the container was collected and the slag component was analyzed. ..
For "decompression refining not performed", refining was performed by adopting the pattern shown in Table 2. The pressure inside the container was always atmospheric pressure, and the bottom-blown oxygen gas ratio was lowered at any time according to the [C] concentration. In the final stage of refining, the bottom-blown oxygen gas ratio was set to 0, and Ar gas was blown alone. For comparison with vacuum refining, it corresponds to the start of the second step (at the start of vacuum refining), the start of the third step (during vacuum refining), and the end of the third step (at the end of vacuum refining) in vacuum refining. The slag in the container was collected at the concentration of [C], and the slag component was analyzed.
In Tables 1 and 2, as for the bottom-blown gas type, the gas type described as "A" is blown in the table, and the gas type described as "X" is not blown.

Figure 0006953652
Figure 0006953652

Figure 0006953652
Figure 0006953652

Figure 0006953652
Figure 0006953652

スラグ中のMgO濃度の調整は、MgO単体、あるいはMgOを含む酸化物のうち、いずれか1種類以上を随時AOD炉内に投入して行った。減圧精練終了時のMgO濃度を8%以上とし、減圧精練開始時のMgO濃度は8%未満とする場合には、減圧精錬開始前にMgOを含まない酸化物を随時AOD炉内に投入するとともに、MgOを含む酸化物をAOD炉内に投入しないこととした。減圧精練終了時、減圧精練開始時のいずれもMgO濃度を8%以上とする場合には減圧精錬開始前にMgOを含む酸化物をAOD炉内に投入することとした。 The MgO concentration in the slag was adjusted by charging either one or more of MgO alone or an oxide containing MgO into the AOD furnace at any time. When the MgO concentration at the end of vacuum refining is 8% or more and the MgO concentration at the start of vacuum refining is less than 8%, oxides containing no MgO are added into the AOD furnace at any time before the start of vacuum refining. , It was decided not to put oxides containing MgO into the AOD furnace. When the MgO concentration was 8% or more at both the end of the reduced pressure smelting and the start of the reduced pressure smelting, an oxide containing MgO was put into the AOD furnace before the start of the reduced pressure smelting.

スラグ中のクロム酸化物濃度の調整は、底吹きしている酸素ガスと不活性ガスの混合比率を変化させ、溶鋼中のCrが酸素精錬によって酸化する量を制御して行った。減圧精練終了時のクロム酸化物濃度を28%以上とし、減圧精練開始時のクロム酸化物濃度は28%未満とする場合には、減圧精錬開始前の底吹きガスの酸素ガス比率を低下させ、クロム酸化物の生成を抑制した後、減圧精錬の初期に酸素ガス比率を増加させ、クロム酸化物の生成を促進することとした。減圧精練終了時、減圧精練開始時のいずれもクロム酸化物濃度を28%以上とする場合には減圧精錬開始前から底吹きガスの酸素ガス比率を増加させ、クロム酸化物の生成を促進することとした。 The concentration of chromium oxide in the slag was adjusted by changing the mixing ratio of the bottom-blown oxygen gas and the inert gas, and controlling the amount of Cr in the molten steel oxidized by oxygen refining. When the chromium oxide concentration at the end of vacuum refining is 28% or more and the chromium oxide concentration at the start of vacuum refining is less than 28%, the oxygen gas ratio of the bottom blowing gas before the start of vacuum refining is lowered. After suppressing the formation of chromium oxide, it was decided to increase the oxygen gas ratio at the initial stage of vacuum refining to promote the formation of chromium oxide. When the chromium oxide concentration is 28% or more at both the end of vacuum refining and the start of vacuum refining, the oxygen gas ratio of the bottom blowing gas should be increased before the start of vacuum refining to promote the production of chromium oxide. And said.

減圧精練時のスラグ成分の評価については、減圧精練開始時(第2ステップ開始時)、減圧精練中(第3ステップ開始時)、減圧精練終了時(第3ステップ終了時)に精練容器内からスラグを採取し、成分分析を行い、表3に示した。各水準において、還元剤としてのFe−Si合金鉄使用量を評価し、表3に示した。従来製法の一般的な例であるNo.5の還元材使用量を基準とし、それと同等程度、あるいはそれ以下の場合をA、それ以外をXとした。
精錬炉の耐火物溶損状況について、精錬終了後、底吹き羽口の外側から目盛付きの測定棒を差し込んで、その残寸を随時記録していくことにより評価を行った。耐火物の溶損量が少なく、経済的効果がある場合をA、著しい溶損あるいは局所的に偏溶損し、操業に支障をきたす場合をXとし、表3に示した。
操業評価について、還元材使用量の低減、および耐火物損耗状況の低減が両立されているか評価を行った。還元材使用量、および耐火物損耗状況のいずれも良好な結果であった場合をA、還元材使用量、あるいは耐火物損耗状況のいずれか一つ以上の結果が良好でない場合をXとし、表3に示した。表3において、本発明範囲から外れる項目に下線を付している。
Regarding the evaluation of the slag component during decompression smelting, from the inside of the scouring container at the start of decompression smelting (at the start of the second step), during decompression smelting (at the start of the third step), and at the end of decompression smelting (at the end of the third step). Slag was collected, component analysis was performed, and it is shown in Table 3. At each level, the amount of Fe—Si alloy iron used as a reducing agent was evaluated and shown in Table 3. No. which is a general example of the conventional manufacturing method. Based on the amount of reducing agent used in 5, A was used when the amount was equal to or less than that, and X was used in other cases.
The refractory erosion status of the refining furnace was evaluated by inserting a measuring rod with a scale from the outside of the bottom blowing tuyere after refining and recording the remaining dimensions as needed. Table 3 shows the case where the amount of refractory erosion is small and has an economic effect, and the case where the refractory is significantly eroded or locally unevenly eroded and interferes with the operation is designated as X.
Regarding the operation evaluation, it was evaluated whether the reduction of the amount of reducing agent used and the reduction of the state of wear of refractories were compatible. A is given when both the amount of reducing agent used and the state of wear of the refractory are good, and X is given when the result of any one or more of the amount of reducing material used or the state of wear of the refractory is not good. Shown in 3. In Table 3, items outside the scope of the present invention are underlined.

表3から明らかなように、本発明No.1〜5は、減圧精錬終了時のスラグ中のMgO濃度が8〜15質量%、クロム酸化物濃度が28〜50質量%の本発明条件を満たしており、結果として耐火物溶損低減と還元材使用量削減を両立させることができた。一方、比較例No.6は減圧精錬終了時のスラグ中のMgO濃度が低すぎ、比較例No.7は減圧精錬終了時のスラグ中のクロム酸化物濃度が低すぎ、いずれも耐火物損耗状況が不良であった。比較例No.8は、減圧精練が未実施であるとともに、精錬終了時のスラグ中のクロム酸化物濃度が高すぎ、還元材使用量が未達であった。 As is clear from Table 3, the present invention No. Nos. 1 to 5 satisfy the conditions of the present invention in which the MgO concentration in the slag at the end of vacuum refining is 8 to 15% by mass and the chromium oxide concentration is 28 to 50% by mass, and as a result, refractory erosion reduction and reduction are achieved. We were able to reduce the amount of material used at the same time. On the other hand, Comparative Example No. In No. 6, the MgO concentration in the slag at the end of vacuum refining was too low, and Comparative Example No. In No. 7, the chromium oxide concentration in the slag at the end of decompression refining was too low, and the refractory wear condition was poor in each case. Comparative Example No. In No. 8, decompression refining had not been carried out, and the chromium oxide concentration in the slag at the end of refining was too high, so that the amount of reducing agent used was not reached.

1 精錬容器
2 底吹き羽口
3 排気フード
4 溶鋼
5 底吹きガス
6 スラグ
7 排気管
12 上吹きランス
1 Refining container 2 Bottom blown tuyere 3 Exhaust hood 4 Molten steel 5 Bottom blown gas 6 Slag 7 Exhaust pipe 12 Top blown lance

Claims (3)

精錬容器内で含クロム溶鋼中に酸素ガスを含むガスを吹き込んで精錬を行う精錬方法において、
容器内を大気圧、及び/又は、400torr超大気圧未満の範囲の減圧圧力として酸素ガスを含むガスを吹き込む第1ステップと、容器内を200torr超400torr以下に減圧して酸素ガスを含むガスを吹き込む第2ステップと、容器内を200torr以下に減圧してガスを吹き込む第3ステップとを有し、その後容器内を大気圧とし、
溶鋼中の[C]濃度が1.5〜0.1質量%で第1ステップから第2ステップに切り替え、溶鋼中の[C]濃度が0.5〜0.1質量%で第2ステップから第3ステップに切り替え、
減圧精錬終了時のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする、
耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法。
In a refining method in which a gas containing oxygen gas is blown into a chromium-containing molten steel in a refining container to perform refining.
The first step of blowing a gas containing oxygen gas as a depressurizing pressure in the range of atmospheric pressure and / or a pressure less than 400 torr inside the container, and depressurizing the inside of the container to more than 200 torr and 400 torr or less and blowing a gas containing oxygen gas. It has a second step and a third step of depressurizing the inside of the container to 200 torr or less and blowing gas, and then the inside of the container is set to atmospheric pressure.
Switching from the first step to the second step when the [C] concentration in the molten steel is 1.5 to 0.1% by mass, and from the second step when the [C] concentration in the molten steel is 0.5 to 0.1% by mass. Switch to the third step,
The MgO concentration in the slag at the end of vacuum refining is adjusted to 8 to 15% by mass, and the chromium oxide concentration is adjusted to 28 to 50% by mass.
A refining method for chromium-containing molten steel that achieves both reduction of refractory melting damage and reduction of the amount of reducing agent used.
さらに、減圧精錬開始時のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする、
請求項1に記載の耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法。
Further, the MgO concentration in the slag at the start of vacuum refining is adjusted to 8 to 15% by mass, and the chromium oxide concentration is adjusted to 28 to 50% by mass.
The method for refining a chromium-containing molten steel according to claim 1, wherein both reduction of refractory melting damage and reduction of the amount of reducing agent used are achieved.
さらに、減圧精錬中のスラグ中のMgO濃度を8〜15質量%、クロム酸化物濃度を28〜50質量%に調整することを特徴とする、
請求項2に記載の耐火物溶損低減と還元材使用量削減を両立させた含クロム溶鋼の精錬方法。
Further, the MgO concentration in the slag during vacuum refining is adjusted to 8 to 15% by mass, and the chromium oxide concentration is adjusted to 28 to 50% by mass.
The method for refining a chromium-containing molten steel according to claim 2, wherein both reduction of refractory melting damage and reduction of the amount of reducing agent used are achieved.
JP2021541692A 2021-04-15 2021-04-15 Refining method for chromium-containing molten steel Active JP6953652B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015647 WO2022219793A1 (en) 2021-04-15 2021-04-15 Method for refining chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JP6953652B1 true JP6953652B1 (en) 2021-10-27
JPWO2022219793A1 JPWO2022219793A1 (en) 2022-10-20

Family

ID=78119280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021541692A Active JP6953652B1 (en) 2021-04-15 2021-04-15 Refining method for chromium-containing molten steel

Country Status (2)

Country Link
JP (1) JP6953652B1 (en)
WO (1) WO2022219793A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251737A (en) * 1997-03-14 1998-09-22 Kawasaki Steel Corp Method for refining chromium-containing molten steel in ladle
JP2003171714A (en) * 2001-12-07 2003-06-20 Nippon Steel Corp Molten steel refining method
JP2011516720A (en) * 2007-12-12 2011-05-26 ポスコ Method for producing ultra-low carbon ferritic stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251737A (en) * 1997-03-14 1998-09-22 Kawasaki Steel Corp Method for refining chromium-containing molten steel in ladle
JP2003171714A (en) * 2001-12-07 2003-06-20 Nippon Steel Corp Molten steel refining method
JP2011516720A (en) * 2007-12-12 2011-05-26 ポスコ Method for producing ultra-low carbon ferritic stainless steel

Also Published As

Publication number Publication date
WO2022219793A1 (en) 2022-10-20
JPWO2022219793A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
JP6953652B1 (en) Refining method for chromium-containing molten steel
JP3752892B2 (en) Method of adding titanium to molten steel
JP6921365B1 (en) Refining method for chromium-containing molten steel
JP2002256323A (en) Method for reforming roughly decarburized slag in molten stainless steel
JPH044388B2 (en)
US6676747B2 (en) Method for producing puzzolanic binders for the cement industry from steel slags using a reduction metal bath
WO2019102705A1 (en) Low/medium-carbon ferromanganese production method
JP7036993B2 (en) Method for producing low carbon ferromanganese
JP3486886B2 (en) Steelmaking method using two or more converters
KR20150044288A (en) Method for recovering chromium from slag in an electric-arc furnace
JP4895446B2 (en) Method for refining chromium-containing molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
KR900003374B1 (en) Making process for ferro-silicon alloy
KR100214832B1 (en) Refining method of high chromium containing steel
JPH0250165B2 (en)
JP2001032009A (en) Method for refining molten steel containing chromium
JP3902446B2 (en) Converter blowing method
JP3297997B2 (en) Hot metal removal method
JP3788392B2 (en) Method for producing high Cr molten steel
JP4923662B2 (en) Method for adjusting fluidity of slag in storage furnace
KR950012414B1 (en) Deoxidation method of low carbon ingot slag
SU1330168A1 (en) Method of melting steel in oxygen converter
CN116987840A (en) Method for smelting high-nitrogen steel by short-period converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210929

R150 Certificate of patent or registration of utility model

Ref document number: 6953652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150