JP6941737B2 - Flake-shaped sealing resin composition and semiconductor device - Google Patents

Flake-shaped sealing resin composition and semiconductor device Download PDF

Info

Publication number
JP6941737B2
JP6941737B2 JP2020533411A JP2020533411A JP6941737B2 JP 6941737 B2 JP6941737 B2 JP 6941737B2 JP 2020533411 A JP2020533411 A JP 2020533411A JP 2020533411 A JP2020533411 A JP 2020533411A JP 6941737 B2 JP6941737 B2 JP 6941737B2
Authority
JP
Japan
Prior art keywords
resin composition
sealing resin
flake
shaped sealing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533411A
Other languages
Japanese (ja)
Other versions
JPWO2020026818A1 (en
Inventor
須藤 信博
信博 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020026818A1 publication Critical patent/JPWO2020026818A1/en
Application granted granted Critical
Publication of JP6941737B2 publication Critical patent/JP6941737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本開示は、フレーク状の半導体封止用樹脂組成物、および半導体装置に関する。 The present disclosure relates to a flake-shaped resin composition for encapsulating a semiconductor and a semiconductor device.

トランジスタ、IC(Integrated Circuit)、LSI(Large Scale Integration)等の半導体装置における封止材料は、エポキシ樹脂に硬化剤および/又は硬化促進剤、シリカ粉末等の無機充填材、着色剤等を配合した樹脂組成物が用いられている。
従来、このような封止材料を用いた封止プロセスは、トランスファ成形が一般的であった。しかし、近年、電子部品のプリント配線板への高密度実装化に伴い、半導体装置の主流はピン挿入型のパッケージから表面実装型のパッケージに移っている。さらに、表面実装型パッケージは薄型化・小型化が進んでいる。薄型化・小型化された表面実装型パッケージでは、半導体素子のパッケージに対する占有体積も大きくなり、半導体素子を覆う封止樹脂の肉厚は薄くなる。また、半導体素子の多機能化、大容量化に伴い、チップ面積の増大、多ピン化が進んでいる。さらには電極パッド数の増加によって、パッドピッチ、パッドサイズの縮小化、いわゆる狭パッドピッチ化も進んでいる。
For sealing materials in semiconductor devices such as transistors, ICs (Integrated Circuits), and LSIs (Large Scale Integration), a curing agent and / or a curing accelerator, an inorganic filler such as silica powder, a coloring agent, etc. are mixed with an epoxy resin. A resin composition is used.
Conventionally, transfer molding has been generally used as a sealing process using such a sealing material. However, in recent years, with the high-density mounting of electronic components on printed wiring boards, the mainstream of semiconductor devices has shifted from pin-insertion type packages to surface mount type packages. Furthermore, surface mount packages are becoming thinner and smaller. In the thin and miniaturized surface mount type package, the occupied volume of the semiconductor element with respect to the package is also large, and the wall thickness of the sealing resin covering the semiconductor element is thin. Further, with the increase in the number of functions and the capacity of semiconductor elements, the chip area and the number of pins are increasing. Furthermore, as the number of electrode pads increases, the pad pitch and pad size are reduced, that is, the so-called narrow pad pitch is being reduced.

一方、半導体素子を搭載する基板は、半導体素子ほどの電極パッドの狭ピッチ化ができない。そのため、半導体素子から引き出すボンディングワイヤを長くしたり、細線化したりすることにより多端子化に対応している。しかしながら、ワイヤが細くなると、後の樹脂封止工程でワイヤが樹脂の注入圧力により流されやすくなる。特に、サイドゲート方式のトランスファ成形ではこの傾向が著しい。 On the other hand, in the substrate on which the semiconductor element is mounted, the pitch of the electrode pads cannot be narrowed as much as that of the semiconductor element. Therefore, the number of terminals can be increased by lengthening or thinning the bonding wire drawn from the semiconductor element. However, when the wire becomes thin, the wire is easily flown by the injection pressure of the resin in the subsequent resin sealing step. This tendency is particularly remarkable in the side gate type transfer molding.

そこで、トランスファ成形に代わる封止プロセスとして、圧縮成形法が用いられるようになってきている(例えば、特許文献1参照)。この方法は、被封止物(例えば、半導体素子を実装した基板等)を上型に吸着させる一方、これに対向させるように、下型に粉粒状樹脂(封止材料)を供給し、下型を上昇させながら、被封止物と封止材料を加圧して封止成形するものである。圧縮成形法によれば、溶融した封止材料が被封止物の主面と略平行な方向に流動するため、流動量を少なくすることができ、樹脂の流れによる被封止物(例えば、半導体素子を実装した基板におけるワイヤや配線等)の変形・破損を低減させることが期待できる。 Therefore, a compression molding method has come to be used as a sealing process instead of transfer molding (see, for example, Patent Document 1). In this method, an object to be sealed (for example, a substrate on which a semiconductor element is mounted) is adsorbed on the upper mold, while a powdery granular resin (encapsulating material) is supplied to the lower mold so as to face the upper mold, and the lower mold is used. While raising the mold, the object to be sealed and the sealing material are pressed and molded. According to the compression molding method, since the molten sealing material flows in a direction substantially parallel to the main surface of the object to be sealed, the amount of flow can be reduced, and the object to be sealed due to the flow of the resin (for example, It can be expected to reduce deformation / damage of wires, wiring, etc. on a substrate on which a semiconductor element is mounted.

しかしながら、従来のトランスファ成形に用いる封止材料を圧縮成形法に適用しても、その充填性の低さ等から、上記のような所期の効果を十分に得ることはできなかった。圧縮成形法に適した封止材料としては、例えば、特許文献2にはエポキシ樹脂、硬化剤、硬化促進剤、無機充填材等を含有し、粒径100μm〜3mmの粒子が85質量%以上である粒度分布を有する粉粒状の樹脂組成物が開示されている。特許文献3には、圧縮度を6〜11%の範囲内に設定することにより、ホッパ等への付着や架橋現象を防止し、流動性の安定化、計量精度の向上を図った粉粒状半導体封止材料が開示されている。特許文献4には固めかさ密度を0.8g/cm以上、1.1g/cm以下とすることにより、搬送性や秤量精度等を向上させた顆粒状の樹脂組成物が開示されている。However, even if the sealing material used for the conventional transfer molding is applied to the compression molding method, the desired effect as described above cannot be sufficiently obtained due to its low filling property and the like. As a sealing material suitable for the compression molding method, for example, Patent Document 2 contains an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and the like, and particles having a particle size of 100 μm to 3 mm are 85% by mass or more. A powdery resin composition having a certain particle size distribution is disclosed. In Patent Document 3, by setting the degree of compression within the range of 6 to 11%, adhesion to a hopper or the like and cross-linking phenomenon are prevented, fluidity is stabilized, and measurement accuracy is improved. Encapsulating materials are disclosed. Patent Document 4 discloses a granular resin composition having improved transportability, weighing accuracy, and the like by setting the bulk density to 0.8 g / cm 3 or more and 1.1 g / cm 3 or less. ..

特開2008−279599号公報Japanese Unexamined Patent Publication No. 2008-279599 特開2011−153173号公報Japanese Unexamined Patent Publication No. 2011-153173 特開2000−232188号公報Japanese Unexamined Patent Publication No. 2000-232188 特開2008−303366号公報Japanese Unexamined Patent Publication No. 2008-303366

しかしながら、上記特許文献2〜4に記載の封止材料は、いずれも封止樹脂厚が薄く、また、細くかつ長いボンディングワイヤによって接続された半導体素子を封止する材料として十分なものではない。特に、ワイヤの変形・破損(ワイヤ流れ)の低減や成形性の改善等の点で十分ではなかった。
さらに、半導体装置の大容量化、および高機能化に伴い、半導体素子を複数積層する場合も増加している。半導体素子を複数積層すると、半導体素子上の封止材の肉厚が薄くなるため、半導体素子上に未充填部分が生じる。また、半導体素子を完全に樹脂成形物で封止しないと、信頼性試験で十分な特性を確保することができない。
However, none of the sealing materials described in Patent Documents 2 to 4 has a thin sealing resin thickness, and is not sufficient as a material for sealing a semiconductor element connected by a thin and long bonding wire. In particular, it was not sufficient in terms of reducing wire deformation / breakage (wire flow) and improving moldability.
Further, as the capacity and functionality of semiconductor devices increase, the number of cases where a plurality of semiconductor elements are laminated is increasing. When a plurality of semiconductor elements are laminated, the wall thickness of the sealing material on the semiconductor element becomes thin, so that an unfilled portion is formed on the semiconductor element. Further, unless the semiconductor element is completely sealed with a resin molded product, sufficient characteristics cannot be ensured in the reliability test.

本開示は、圧縮成形法に使用でき、成形時のワイヤ流れを十分に低減し、かつ成形性を十分に向上させることができるフレーク状封止用樹脂組成物、及び当該封止用樹脂組成物を用いて封止された高い信頼性を有する半導体装置を提供する。 The present disclosure is a flake-shaped sealing resin composition that can be used in a compression molding method, can sufficiently reduce wire flow during molding, and can sufficiently improve moldability, and the sealing resin composition. Provided is a semiconductor device having high reliability sealed by using.

本発明者らは、封止用樹脂組成物が後述するような特定の形状を有すると、圧縮成形法におけるワイヤ流れの低減や良好な成形性が得られることを見出した。 The present inventors have found that when the sealing resin composition has a specific shape as described later, reduction of wire flow and good moldability in the compression molding method can be obtained.

すなわち、本開示は、以下の[1]〜[5]を提供する。
[1](A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、および(D)無機充填材を含有するフレーク状封止用樹脂組成物であって、
前記フレーク状封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離が150〜1000μmである平行面含有樹脂組成物であり、
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物が5質量%以下であるフレーク状封止用樹脂組成物。
[2]前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmを超え1mm以下の篩を通過するフレーク状封止用樹脂組成物が20質量%以上である上記[1]に記載のフレーク状封止用樹脂組成物。
[3]下記式(1)で表される隙間率が60%以下である上記[1]又は[2]に記載のフレーク状封止用樹脂組成物。
隙間率(%)={1−(樹脂供給面積/キャビティ面積)}×100・・・式(1)
(ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表し、キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。)
[4]上記[1]乃至[3]のいずれかに記載のフレーク状封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなる半導体装置。
[5]前記半導体装置の半導体素子上の封止材の厚みが200μm以下である上記[4]に記載の半導体装置。
That is, the present disclosure provides the following [1] to [5].
[1] A flake-shaped sealing resin composition containing (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) an inorganic filler.
More than 80% by mass of the flake-shaped sealing resin composition is a parallel plane-containing resin composition having a pair of parallel planes and a distance between the pair of planes of 150 to 1000 μm.
By classification using a JIS standard sieve contained in the flake-shaped sealing resin composition, the amount of the flake-shaped sealing resin composition passing through a sieve having a nominal opening of 150 μm is 5% by mass or less, and the nominal opening is nominally opened. A flake-shaped sealing resin composition in which the amount of the flake-shaped sealing resin composition that does not pass through a 2 mm sieve is 5% by mass or less.
[2] By classification using a JIS standard sieve contained in the flake-shaped sealing resin composition, 20 mass of flake-shaped sealing resin composition passes through a sieve having a nominal opening of more than 150 μm and 1 mm or less. % Or more, the flake-shaped sealing resin composition according to the above [1].
[3] The flake-shaped sealing resin composition according to the above [1] or [2], wherein the gap ratio represented by the following formula (1) is 60% or less.
Gap ratio (%) = {1- (resin supply area / cavity area)} x 100 ... Equation (1)
(Here, the gap ratio represents the area ratio not covered with the sealing resin composition when the sealing resin composition is supplied into the cavity, and the cavity area is the effective area of the bottom of the molding mold. The resin supply area indicates the area covered with the sealing resin composition.)
[4] A semiconductor device for sealing a semiconductor element by compression molding using the flake-shaped sealing resin composition according to any one of the above [1] to [3].
[5] The semiconductor device according to the above [4], wherein the thickness of the sealing material on the semiconductor element of the semiconductor device is 200 μm or less.

本開示によれば、圧縮成形法に用いられ、成形時のワイヤ流れを十分に低減し、かつ成形性を十分に向上させることができるフレーク状封止用樹脂組成物、及び当該封止用樹脂組成物を用いて封止された高い信頼性を有する半導体装置を提供することができる。 According to the present disclosure, a flake-shaped sealing resin composition used in a compression molding method, which can sufficiently reduce wire flow during molding and sufficiently improve moldability, and the sealing resin. It is possible to provide a semiconductor device having high reliability sealed by using the composition.

本開示の一実施形態の半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device of one Embodiment of this disclosure. 実施例1の隙間率を算出した際の二値化画像である。It is a binarized image when the gap ratio of Example 1 was calculated. 比較例3の隙間率を算出した際の二値化画像である。It is a binarized image when the gap ratio of Comparative Example 3 was calculated.

以下、本開示について、一実施形態であるフレーク状封止用樹脂組成物、半導体装置及び半導体装置の製造方法を参照しながら詳細に説明する。
[フレーク状封止用樹脂組成物]
本実施形態のフレーク状封止用樹脂組成物(以下、単に封止用樹脂組成物ともいう)は、(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、および(D)無機充填材を含有するフレーク状封止用樹脂組成物であって、
前記フレーク状封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離が150〜1000μmである平行面含有樹脂組成物であり、
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物が5質量%以下である。
Hereinafter, the present disclosure will be described in detail with reference to an embodiment of a flake-shaped sealing resin composition, a semiconductor device, and a method for manufacturing the semiconductor device.
[Flake-shaped sealing resin composition]
The flake-shaped sealing resin composition of the present embodiment (hereinafter, also simply referred to as a sealing resin composition) includes (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, and ( D) A flake-shaped sealing resin composition containing an inorganic filler.
More than 80% by mass of the flake-shaped sealing resin composition is a parallel plane-containing resin composition having a pair of parallel planes and a distance between the pair of planes of 150 to 1000 μm.
By classification using a JIS standard sieve contained in the flake-shaped sealing resin composition, the amount of the flake-shaped sealing resin composition passing through a sieve having a nominal opening of 150 μm is 5% by mass or less, and the nominal opening is nominally opened. The amount of the flake-shaped sealing resin composition that does not pass through the 2 mm sieve is 5% by mass or less.

ここで、「フレーク状」とは扁平状、薄片状、鱗片状等の形状を含む。本実施形態のフレーク状封止用樹脂組成物は、当該封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離(以下、厚みともいう)が150〜1000μmである平行面含有樹脂組成物である。
ここで、「平行」とは個々の封止用樹脂組成物の平均厚みに対する当該封止用樹脂組成物の最大厚みと最小厚みとの差の割合が5%以下であることを意味する。
上記封止用樹脂組成物の厚みが150μm未満では静電気の影響を受け凝集しやすくなる。凝集した封止用樹脂組成物は、熱が均一に伝わりにくく溶け性が低下するおそれがある。また、当該封止用樹脂組成物の厚みが1000μmを超えると熱が均一に伝わりにくく溶け性が低下するおそれがある。このような観点から、封止用樹脂組成物の厚みは、150〜700μmであってもよく、150〜500μmであってもよく、200〜400μmであってもよい。
なお、上記フレーク状封止用樹脂組成物の厚みは、例えば、光学顕微鏡(倍率:200倍)を用いて50個の封止用樹脂組成物の厚みを測定し、その平均値として求めることができる。
Here, the "flake-like" includes shapes such as flat, flaky, and scaly. In the flake-shaped sealing resin composition of the present embodiment, 80% by mass or more of the sealing resin composition has a pair of parallel planes, and the distance between the pair of planes (hereinafter, also referred to as thickness). ) Is a parallel plane-containing resin composition having a size of 150 to 1000 μm.
Here, "parallel" means that the ratio of the difference between the maximum thickness and the minimum thickness of the sealing resin composition to the average thickness of each sealing resin composition is 5% or less.
If the thickness of the sealing resin composition is less than 150 μm, it is easily aggregated due to the influence of static electricity. The agglomerated sealing resin composition does not easily transfer heat uniformly, and the solubility may decrease. Further, if the thickness of the sealing resin composition exceeds 1000 μm, heat may not be transferred uniformly and the solubility may decrease. From such a viewpoint, the thickness of the sealing resin composition may be 150 to 700 μm, 150 to 500 μm, or 200 to 400 μm.
The thickness of the flake-shaped sealing resin composition can be determined as an average value by measuring the thickness of 50 sealing resin compositions using, for example, an optical microscope (magnification: 200 times). can.

また、本実施形態のフレーク状封止用樹脂組成物中に含まれる上述の形状を有する封止用樹脂組成物(平行面含有樹脂組成物)の割合は、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
なお、本実施形態のフレーク状封止用樹脂組成物は、フレーク状ではない樹脂組成物、上述の形状を有さない樹脂組成物を含んでもよい。本実施形態のフレーク状封止用樹脂組成物がフレーク状ではない樹脂組成物、上述の形状を有さない樹脂組成物を含む場合、その含有量は、当該フレーク状封止用樹脂組成物全量に対し20質量%以下であってもよく、10質量%以下であってもよく、5質量%以下であってもよく、含まなくてもよい。
Further, the proportion of the sealing resin composition (parallel surface-containing resin composition) having the above-mentioned shape contained in the flake-shaped sealing resin composition of the present embodiment may be 90% by mass or more. , 95% by mass or more, or 100% by mass.
The flake-shaped sealing resin composition of the present embodiment may include a non-flake-shaped resin composition and a resin composition having no above-mentioned shape. When the flake-shaped sealing resin composition of the present embodiment contains a non-flake-shaped resin composition and a resin composition having no above-mentioned shape, the content thereof is the total amount of the flake-shaped sealing resin composition. It may be 20% by mass or less, 10% by mass or less, 5% by mass or less, or may not be contained.

本実施形態のフレーク状封止用樹脂組成物中に含まれる、JIS標準篩(JIS Z8801−1:2006規定)を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物(以下、封止用樹脂組成物aともいう)が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物(以下、封止用樹脂組成物bともいう)が5質量%以下である。封止用樹脂組成物aの含有量が5質量%を超えると、圧縮成形用金型に供給する際に、当該封止用樹脂組成物aが舞い上がりやすく、飛散した当該封止用樹脂組成物aによる汚染や、計量不良等が生ずるおそれがある。このような観点から、フレーク状封止用樹脂組成物中に含まれる封止用樹脂組成物aは、3質量%以下であってもよく、2質量%以下であってもよい。また、封止用樹脂組成物bの含有量が5質量%を超えると、成形時にワイヤの変形および破損が生じるおそれがあり、また、硬化物にボイドが発生するおそれがある。このような観点から、フレーク状封止用樹脂組成物中に含まれる封止用樹脂組成物bは、3質量%以下であってもよく、2質量%以下であってもよい。 A flake-shaped sealing resin that passes through a sieve with a nominal opening of 150 μm by classification using a JIS standard sieve (JIS Z8801-1: 2006 specification) contained in the flake-shaped sealing resin composition of the present embodiment. A flake-shaped sealing resin composition (hereinafter, also referred to as a sealing resin composition b) in which the composition (hereinafter, also referred to as a sealing resin composition a) does not pass through a sieve having a nominal opening of 2 mm and 5% by mass or less. Is 5% by mass or less. When the content of the sealing resin composition a exceeds 5% by mass, the sealing resin composition a tends to fly up when supplied to the compression molding die, and the sealing resin composition is scattered. There is a risk of contamination by a and improper measurement. From such a viewpoint, the sealing resin composition a contained in the flake-shaped sealing resin composition may be 3% by mass or less, or 2% by mass or less. Further, if the content of the sealing resin composition b exceeds 5% by mass, the wire may be deformed or broken during molding, and voids may be generated in the cured product. From such a viewpoint, the sealing resin composition b contained in the flake-shaped sealing resin composition may be 3% by mass or less, or 2% by mass or less.

また、本実施形態のフレーク状封止用樹脂組成物は、JIS標準篩(JIS Z8801−1:2006規定)を用いた分級により、公称目開き150μmを超え2mm以下の篩を通過するフレーク状封止用樹脂組成物を含んでもよく、JIS標準篩(JIS Z8801−1:2006規定)を用いた分級により、公称目開き150μmを超え1mm以下の篩を通過するフレーク状封止用樹脂組成物(以下、封止用樹脂組成物cともいう)を含んでもよい。ここで、公称目開き150μmを超え1mm以下の篩を通過するフレーク状封止用樹脂組成物とは、公称目開き150μmの篩を通過せず、公称目開き1mmの篩を通過するフレーク状封止用樹脂組成物のことである。封止用樹脂組成物cの含有量としては、20質量%以上であってもよく、40質量%以上であってもよく、60質量%以上であってもよい。封止用樹脂組成物cを20質量%以上含有すると充填性が良好となり、硬化物にボイド等の発生を低減することができる。また、上限値は特に限定されず、100質量%であってもよく、90質量%であってもよい。 Further, the flake-shaped sealing resin composition of the present embodiment is classified into a flake-shaped seal using a JIS standard sieve (JIS Z8801-1: 2006 specification) and passes through a sieve having a nominal opening of more than 150 μm and 2 mm or less. A resin composition for flake sealing may contain a resin composition for stopping, and is passed through a sieve having a nominal opening of more than 150 μm and 1 mm or less by classification using a JIS standard sieve (JIS Z8801-1: 2006 standard). Hereinafter, it may also contain a sealing resin composition c). Here, the flake-shaped sealing resin composition that passes through a sieve having a nominal opening of more than 150 μm and 1 mm or less is a flake-shaped seal that does not pass through a sieve having a nominal opening of 150 μm but passes through a sieve having a nominal opening of 1 mm. It is a resin composition for stopping. The content of the sealing resin composition c may be 20% by mass or more, 40% by mass or more, or 60% by mass or more. When the sealing resin composition c is contained in an amount of 20% by mass or more, the filling property is improved and the generation of voids and the like in the cured product can be reduced. The upper limit is not particularly limited, and may be 100% by mass or 90% by mass.

本実施形態のフレーク状封止用樹脂組成物中に含まれる、JIS標準篩(JIS Z8801−1:2006規定)を用いた分級により、公称目開き1mmを超え2mm以下の篩を通過するフレーク状封止用樹脂組成物(以下、封止用樹脂組成物dともいう)の含有量は、充填性を高め、ボイドの発生を低減する観点から、10〜75質量%であってもよく、15〜50質量%であってもよく、18〜40質量%であってもよい。 Flakes that pass through a sieve with a nominal opening of more than 1 mm and 2 mm or less by classification using a JIS standard sieve (JIS Z8801-1: 2006 standard) contained in the flake-shaped sealing resin composition of the present embodiment. The content of the sealing resin composition (hereinafter, also referred to as the sealing resin composition d) may be 10 to 75% by mass from the viewpoint of improving the filling property and reducing the generation of voids. It may be ~ 50% by mass, or 18-40% by mass.

〔(A)エポキシ樹脂〕
本実施形態で用いられる(A)成分のエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものであれば、分子構造、分子量等に制限されることなく一般に電子部品の封止材料として使用されているものを広く用いることができる。
(A)成分のエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂等の複素環型エポキシ樹脂、スチルベン型二官能エポキシ樹脂、ナフタレン型エポキシ樹脂、縮合環芳香族炭化水素変性エポキシ樹脂、脂環型エポキシ樹脂などが挙げられる。なかでも、ビフェニル型エポキシ樹脂であってもよい。
これらのエポキシ樹脂は1種を使用してもよく、2種以上を混合して使用してもよい。
[(A) Epoxy resin]
As long as the epoxy resin of the component (A) used in the present embodiment has two or more epoxy groups in one molecule, it is generally a sealing material for electronic components without being limited by the molecular structure, molecular weight, etc. Can be widely used.
Examples of the epoxy resin of the component (A) include biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and dicyclopentadiene. Heterocyclic epoxy resin such as type epoxy resin, triphenol methane type epoxy resin, triazine nucleus-containing epoxy resin, stillben type bifunctional epoxy resin, naphthalene type epoxy resin, condensed ring aromatic hydrocarbon modified epoxy resin, alicyclic epoxy Examples include resin. Among them, a biphenyl type epoxy resin may be used.
One type of these epoxy resins may be used, or two or more types may be mixed and used.

(A)成分のエポキシ樹脂の軟化点は、封止用樹脂組成物のハンドリング性、および成形時の溶融粘度の観点から、40〜130℃であってもよく、50〜110℃であってもよい。
なお、本明細書における軟化点とは、「環球式軟化点」を指し、ASTM D36に準拠して測定された値をいう。
The softening point of the epoxy resin of the component (A) may be 40 to 130 ° C. or 50 to 110 ° C. from the viewpoint of the handleability of the sealing resin composition and the melt viscosity at the time of molding. good.
The softening point in the present specification refers to a "ring-ball type softening point" and means a value measured in accordance with ASTM D36.

(A)成分のエポキシ樹脂の市販品を例示すると、例えば、三菱ケミカル(株)製のYX−4000(エポキシ当量185、軟化点105℃)、同YX−4000H(エポキシ当量193、軟化点105℃)、日本化薬(株)製のNC−3000(エポキシ当量273、軟化点58℃)、同NC−3000H(エポキシ当量288、軟化点91℃)(以上、いずれも商品名)等が挙げられる。 Examples of commercially available products of the epoxy resin of the component (A) include YX-4000 (epoxy equivalent 185, softening point 105 ° C.) and YX-4000H (epoxy equivalent 193, softening point 105 ° C.) manufactured by Mitsubishi Chemical Corporation. ), NC-3000 manufactured by Nippon Kayaku Co., Ltd. (epoxy equivalent 273, softening point 58 ° C), NC-3000H (epoxy equivalent 288, softening point 91 ° C) (all of which are trade names) and the like. ..

〔(B)フェノール樹脂硬化剤〕
本実施形態で用いられる(B)成分のフェノール樹脂硬化剤は、1分子当たり2個以上のフェノール性水酸基を有し、上記(A)成分のエポキシ樹脂を硬化させることができるものである。電子部品の封止材料として一般に用いられるものであれば特に制限されることなく使用できる。
(B)成分のフェノール樹脂硬化剤としては、具体的には、フェノール、アルキルフェノール等のフェノール類とホルムアルデヒド又はパラホルムアルデヒドを反応させて得られるフェノールノボラック樹脂やクレゾールノボラック樹脂等のノボラック型フェノール樹脂、これらのノボラック型フェノール樹脂をエポキシ化又はブチル化した変性ノボラック型フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、パラキシレン変性フェノール樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールアルカン型フェノール樹脂、多官能型フェノール樹脂などが挙げられる。なかでも、フェノールアラルキル樹脂、フェノールノボラック樹脂、ビフェニルアラルキル樹脂が好ましい。これらのフェノール樹脂硬化剤は1種を使用してもよく、2種以上を混合して使用してもよい。
[(B) Phenol resin curing agent]
The phenolic resin curing agent of the component (B) used in the present embodiment has two or more phenolic hydroxyl groups per molecule and can cure the epoxy resin of the component (A). Any material that is generally used as a sealing material for electronic components can be used without particular limitation.
Specific examples of the phenol resin curing agent as the component (B) include novolac-type phenol resins such as phenol novolac resin and cresol novolac resin obtained by reacting phenols such as phenol and alkylphenol with formaldehyde or paraformaldehyde. Modified novolac-type phenol resin, dicyclopentadiene-modified phenol resin, paraxylene-modified phenol resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, triphenol alkane-type phenol resin, Examples include polyfunctional phenolic resins. Of these, phenol aralkyl resin, phenol novolac resin, and biphenyl aralkyl resin are preferable. One type of these phenol resin curing agents may be used, or two or more types may be mixed and used.

(B)成分のフェノール樹脂硬化剤の含有量は、上記(A)成分のエポキシ樹脂が有するエポキシ基数(a)に対する(B)成分のフェノール樹脂硬化剤が有するフェノール性水酸基数(b)の比(b)/(a)が0.3以上1.5以下となる範囲であってもよく、0.5以上1.2以下となる範囲であってもよい。比(b)/(a)が0.3以上であると硬化物の耐湿信頼性が向上し、1.5以下であると硬化物の強度が向上する。 The content of the phenol resin curing agent of the component (B) is the ratio of the number of phenolic hydroxyl groups (b) of the phenol resin curing agent of the component (B) to the number of epoxy groups (a) of the epoxy resin of the component (A). (B) / (a) may be in the range of 0.3 or more and 1.5 or less, or may be in the range of 0.5 or more and 1.2 or less. When the ratio (b) / (a) is 0.3 or more, the moisture resistance reliability of the cured product is improved, and when it is 1.5 or less, the strength of the cured product is improved.

また、封止用樹脂組成物中における(A)成分のエポキシ樹脂及び(B)成分のフェノール樹脂硬化剤の合計含有量は、5〜20質量%であってもよく、10〜15質量%であってもよい。 The total content of the epoxy resin of the component (A) and the phenol resin curing agent of the component (B) in the sealing resin composition may be 5 to 20% by mass, and may be 10 to 15% by mass. There may be.

〔(C)硬化促進剤〕
本実施形態で用いられる(C)成分の硬化促進剤は、(A)成分のエポキシ樹脂と、(B)成分のフェノール樹脂硬化剤との硬化反応を促進する成分である。(C)成分の硬化促進剤は、上記作用を奏するものであれば、特に制限されることなく公知の硬化促進剤を使用することができる。
[(C) Curing accelerator]
The curing accelerator of the component (C) used in the present embodiment is a component that promotes the curing reaction between the epoxy resin of the component (A) and the phenol resin curing agent of the component (B). As the curing accelerator of the component (C), a known curing accelerator can be used without particular limitation as long as it exhibits the above-mentioned action.

(C)成分の硬化促進剤としては、具体的には、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−ウンデシルイミダゾール、1,2−ジメチルイミダゾール、2,4−ジメチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2−フェニル−4−ヒドロキシメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール等のイミダゾール類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン、5,6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデセン−7等のジアザビシクロ化合物及びこれらの塩;トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2−ビス(ジフェニルホスフィノ)エタン等の有機ホスフィン化合物などが挙げられる。これらのなかでも、流動性及び成形性が良好であるという観点から、イミダゾール類であってもよい。これらの硬化促進剤は1種を使用してもよく、2種以上を混合して使用してもよい。 Specific examples of the curing accelerator for the component (C) include 2-methylimidazole, 2-ethyl imidazole, 2-isopropyl imidazole, 2-undecyl imidazole, 1,2-dimethyl imidazole, and 2,4-dimethyl imidazole. , 2-Phenylimidazole, 2-Phenyl-4-methylimidazole, 4-Methylimidazole, 4-Ethylimidazole, 2-Phenyl-4-hydroxymethylimidazole, 2-Ethyl-4-methylimidazole, 1-Cyanoethyl-2- Methyl imidazole, 2-phenyl-4-methyl-5-hydroxymethyl imidazole, 2-phenyl-4,5-dihydroxymethyl imidazole, 1-benzyl-2-methyl imidazole, 1-benzyl-2-phenyl imidazole, 1-cyanoethyl Imidazoles such as -2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) ), 1,5-diazabicyclo [4.3.0] nonene, 5,6-dibutylamino-1,8-diazabicyclo [5.4.0] undecene-7 and other diazabicyclo compounds and salts thereof; triethylamine, tri Tertiary amines such as ethylenediamine, benzyldimethylamine, α-methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; trimethylphosphine, triethylphosphine, tributylphosphine, diphenylphosphine, triphenylphosphine , Tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyldiphenylphosphine, dibutylphenylphosphine, tricyclohexylphosphine, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, etc. Examples include organic phosphine compounds. Among these, imidazoles may be used from the viewpoint of good fluidity and moldability. One type of these curing accelerators may be used, or two or more types may be mixed and used.

(C)成分の硬化促進剤の含有量は、封止用樹脂組成物全量に対し、0.1〜5質量%の範囲であってもよく、0.1〜1質量%の範囲であってもよい。(C)成分の硬化促進剤の含有量が0.1質量%以上であると硬化性の促進効果が得られ、5質量%以下であると成形時にワイヤの変形および破損を抑制し、充填性を良好にすることができる。 The content of the curing accelerator of the component (C) may be in the range of 0.1 to 5% by mass, or in the range of 0.1 to 1% by mass, based on the total amount of the sealing resin composition. May be good. When the content of the curing accelerator of the component (C) is 0.1% by mass or more, the curability promoting effect is obtained, and when it is 5% by mass or less, deformation and breakage of the wire during molding are suppressed, and the filling property Can be improved.

〔(D)無機充填材〕
本実施形態で用いられる(D)成分の無機充填材は、この種の樹脂組成物に一般的に使用されている公知の無機充填材であれば、特に制限されることなく使用することができる。
(D)成分の無機充填材としては、例えば、溶融シリカ、結晶シリカ、破砕シリカ、合成シリカ、アルミナ、酸化チタン、酸化マグネシウム等の酸化物粉末;水酸化アルミニウム、水酸化マグネシウム等の水酸化物粉末;窒化ホウ素、窒化アルミニウム、窒化ケイ素等の窒化物粉末などが挙げられる。これらの無機充填材は、1種を使用してもよく、2種以上を混合して使用してもよい。
[(D) Inorganic filler]
The inorganic filler of the component (D) used in the present embodiment can be used without particular limitation as long as it is a known inorganic filler generally used in this type of resin composition. ..
Examples of the inorganic filler of the component (D) include oxide powders such as molten silica, crystalline silica, crushed silica, synthetic silica, alumina, titanium oxide and magnesium oxide; and hydroxides such as aluminum hydroxide and magnesium oxide. Powder; Nitride powder such as boron nitride, aluminum oxide, silicon nitride and the like can be mentioned. One type of these inorganic fillers may be used, or two or more types may be mixed and used.

(D)成分の無機充填材は、本実施形態の封止用樹脂組成物の取り扱い性および成形性を高める観点から、上記例示したなかでもシリカ粉末であってもよく、溶融シリカであってもよく、球状溶融シリカであってもよい。また、溶融シリカと溶融シリカ以外のシリカを併用することもでき、その場合、溶融シリカ以外のシリカの割合はシリカ粉末全体の30質量%未満としてもよい。 The inorganic filler of the component (D) may be silica powder or molten silica among the above-exemplified examples from the viewpoint of improving the handleability and moldability of the sealing resin composition of the present embodiment. It may be spherical molten silica. Further, fused silica and silica other than fused silica can be used in combination, and in that case, the proportion of silica other than fused silica may be less than 30% by mass of the entire silica powder.

(D)成分の無機充填材は、平均粒径が0.5〜40μmであってもよく、1〜30μmであってもよく、5〜20μmであってもよい。また、(D)成分の無機充填材の最大粒径は55μm以下であってもよい。平均粒径が0.5μm以上であると、封止用樹脂組成物の流動性および成形性を向上させることができる。一方、平均粒径が40μm以下であると、封止用樹脂組成物を硬化して得られる成形品の反りが抑制され、寸法精度を向上させることができる。また、最大粒径が55μm以下であると、封止用樹脂組成物の成形性を向上させることができる。
なお、本明細書において、(D)成分の無機充填材の平均粒径は、例えば、レーザー回折式粒度分布測定装置により求めることができ、平均粒径は、同装置で測定された粒度分布において積算体積が50%になる粒径(d50)である。
The inorganic filler of the component (D) may have an average particle size of 0.5 to 40 μm, 1 to 30 μm, or 5 to 20 μm. Further, the maximum particle size of the inorganic filler of the component (D) may be 55 μm or less. When the average particle size is 0.5 μm or more, the fluidity and moldability of the sealing resin composition can be improved. On the other hand, when the average particle size is 40 μm or less, the warp of the molded product obtained by curing the sealing resin composition is suppressed, and the dimensional accuracy can be improved. Further, when the maximum particle size is 55 μm or less, the moldability of the sealing resin composition can be improved.
In the present specification, the average particle size of the inorganic filler of the component (D) can be determined by, for example, a laser diffraction type particle size distribution measuring device, and the average particle size is based on the particle size distribution measured by the device. It is a particle size (d50) at which the integrated volume becomes 50%.

(D)成分の無機充填材の含有量は、封止用樹脂組成物全量に対し、70〜95質量%の範囲であってもよく、75〜90質量%の範囲であってもよい。(D)成分の無機充填材の含有量が70質量%以上であると、封止用樹脂組成物の線膨張係数が増大しすぎることがなく、当該封止用樹脂組成物を硬化して得られる成形品の寸法精度、耐湿性、機械的強度等を向上させることができる。また、(D)成分の無機充填材の含有量が95質量%以下であると、封止用樹脂組成物を成形して得られる樹脂シートを割れにくくすることができる。また、封止用樹脂組成物の溶融粘度が増大しすぎることがなく、流動性および成形性を向上させることができる。 The content of the inorganic filler of the component (D) may be in the range of 70 to 95% by mass or 75 to 90% by mass with respect to the total amount of the sealing resin composition. When the content of the inorganic filler of the component (D) is 70% by mass or more, the linear expansion coefficient of the sealing resin composition does not increase too much, and the sealing resin composition is cured. It is possible to improve the dimensional accuracy, moisture resistance, mechanical strength, etc. of the molded product. Further, when the content of the inorganic filler of the component (D) is 95% by mass or less, the resin sheet obtained by molding the sealing resin composition can be made hard to crack. Further, the melt viscosity of the sealing resin composition does not increase too much, and the fluidity and moldability can be improved.

本実施形態の封止用樹脂組成物には、以上の各成分の他、本実施形態の効果を阻害しない範囲で、この種の樹脂組成物に一般に配合される成分、例えば、カップリング剤;合成ワックス、天然ワックス、高級脂肪酸、高級脂肪酸の金属塩等の離型剤;カーボンブラック、コバルトブルー等の着色剤;シリコーンオイル、シリコーンゴム等の低応力付与剤;ハイドロタルサイト類;イオン捕捉剤などを配合することができる。 In addition to the above components, the sealing resin composition of the present embodiment includes components generally blended in this type of resin composition, for example, a coupling agent, as long as the effects of the present embodiment are not impaired. Release agents such as synthetic waxes, natural waxes, higher fatty acids, metal salts of higher fatty acids; colorants such as carbon black and cobalt blue; low stress imparting agents such as silicone oil and silicone rubber; hydrotalcites; ion scavengers Etc. can be blended.

カップリング剤としては、エポキシシラン系、アミノシラン系、ウレイドシラン系、ビニルシラン系、アルキルシラン系、有機チタネート系、アルミニウムアルコレート系等のカップリング剤を使用することができる。これらのカップリング剤は1種を使用してもよく、2種以上を混合して使用してもよい。なかでも、成形性、難燃性、硬化性等の観点から、アミノシラン系カップリング剤が好ましく、特に、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−フェニルアミノプロピルトリメトキシシラン等が好ましい。 As the coupling agent, an epoxysilane-based, aminosilane-based, ureidosilane-based, vinylsilane-based, alkylsilane-based, organic titanate-based, aluminum alcoholate-based, or other coupling agent can be used. One of these coupling agents may be used, or two or more of these coupling agents may be mixed and used. Of these, aminosilane-based coupling agents are preferable from the viewpoints of moldability, flame retardancy, curability, etc., and in particular, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and γ-aminopropylmethyldimethoxysilane. , Γ-Aminopropylmethyldiethoxysilane, γ-phenylaminopropyltrimethoxysilane and the like are preferable.

カップリング剤の含有量は、封止用樹脂組成物全量に対し、0.01〜3質量%の範囲であってもよく、0.1〜1質量%の範囲であってもよい。カップリング剤の含有量が0.01質量%以上であると、封止用樹脂組成物の成形性を向上させることができ、3質量%以下であると封止用樹脂組成物の成形時に発泡が低減でき、成形品にボイド又は表面膨れ等の発生を低減することができる。 The content of the coupling agent may be in the range of 0.01 to 3% by mass or 0.1 to 1% by mass with respect to the total amount of the sealing resin composition. When the content of the coupling agent is 0.01% by mass or more, the moldability of the sealing resin composition can be improved, and when it is 3% by mass or less, foaming occurs during molding of the sealing resin composition. Can be reduced, and the occurrence of voids or surface swelling in the molded product can be reduced.

本実施形態の封止用樹脂組成物は、ブロッキングを抑制する観点から、溶剤を含まなくてもよい。また、当該封止用樹脂組成物が溶剤を含まない場合、半導体素子を封止する際に、溶剤残りによる信頼性低下を招くおそれがない。 The sealing resin composition of the present embodiment may not contain a solvent from the viewpoint of suppressing blocking. Further, when the sealing resin composition does not contain a solvent, there is no possibility that the reliability may be lowered due to the residual solvent when sealing the semiconductor element.

本実施形態の封止用樹脂組成物は、公知の封止用樹脂組成物の製造方法により得ることができ、例えば、次のように調製できる。まず、上記(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、(D)無機充填材、及び上述した必要に応じて配合される各種成分をミキサー等によって十分に混合(ドライブレンド)した後、熱ロール又はニーダ等の混練装置により溶融混練し、加圧部材間で圧縮してシート状に成形する。より具体的には、封止用樹脂組成物を加熱軟化させながらロールあるいは熱プレスにより150〜1000μmの厚みに圧延する。
なお、封止用樹脂組成物を圧延する際の加熱温度は、通常、60〜150℃程度である。加熱温度が60℃以上であると圧延しやすくなり、150℃以下であると硬化反応が適度に進行し、成形性を良好にすることができる。
The sealing resin composition of the present embodiment can be obtained by a known method for producing a sealing resin composition, and can be prepared, for example, as follows. First, the above-mentioned (A) epoxy resin, (B) phenol resin curing agent, (C) curing accelerator, (D) inorganic filler, and the above-mentioned various components to be blended as needed are sufficiently mixed by a mixer or the like. After (dry blending), it is melt-kneaded by a kneading device such as a hot roll or a kneader, compressed between the pressure members, and formed into a sheet. More specifically, the sealing resin composition is rolled to a thickness of 150 to 1000 μm by a roll or a hot press while being heated and softened.
The heating temperature when rolling the sealing resin composition is usually about 60 to 150 ° C. When the heating temperature is 60 ° C. or higher, rolling is easy, and when the heating temperature is 150 ° C. or lower, the curing reaction proceeds appropriately and the moldability can be improved.

次いで、得られたシートを冷却した後、適当な大きさに粉砕する。
シートの厚みは150〜1000μmであり、150〜700μmであってもよく、150〜500μmであってもよく、200〜400μmであってもよい。シートの厚みが上記範囲内であると、当該シートを粉砕することで、前述の特定の形状を有するフレーク状の封止用樹脂組成物を得ることができる。また、当該シートを粉砕した際に、JIS標準篩(JIS Z8801−1:2006規定)を用いた分級により、公称目開き150μmの篩を通過する微粉を生じにくくすることができる。本実施形態のフレーク状封止用樹脂組成物中に含まれる前述の封止用樹脂組成物aを5質量%以下に低減することができる。
なお、上記シートの厚みは、例えば、マイクロメーターを用いて当該シートの厚みを50点測定し、その平均値として求めることができる。
Then, the obtained sheet is cooled and then pulverized to an appropriate size.
The thickness of the sheet is 150 to 1000 μm, may be 150 to 700 μm, may be 150 to 500 μm, or may be 200 to 400 μm. When the thickness of the sheet is within the above range, the flake-shaped sealing resin composition having the above-mentioned specific shape can be obtained by pulverizing the sheet. Further, when the sheet is crushed, classification using a JIS standard sieve (JIS Z8801-1: 2006 standard) can make it difficult to generate fine powder that passes through a sieve having a nominal opening of 150 μm. The above-mentioned sealing resin composition a contained in the flake-shaped sealing resin composition of the present embodiment can be reduced to 5% by mass or less.
The thickness of the sheet can be obtained as an average value by measuring 50 points of the thickness of the sheet using a micrometer, for example.

粉砕方法は、特に制限されず、一般的な粉砕機、例えば、スピードミル、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインダーミル等を用いることができる。なかでも、スピードミルを用いることができる。
また、押出機を用いて封止用樹脂組成物を平紐状に成形し、カッター等で所定の長さに切断するホットカット法で粉砕してもよい。
粉砕物は、その後、篩い分級又はエアー分級等によって所定の粒度分布を持つフレーク状の集合体として、特性を整えて調製することができる。
The crushing method is not particularly limited, and a general crusher, for example, a speed mill, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grinder mill, or the like can be used. Among them, a speed mill can be used.
Alternatively, the sealing resin composition may be formed into a flat string using an extruder and crushed by a hot cutting method in which the resin composition is cut to a predetermined length with a cutter or the like.
The pulverized product can then be prepared by adjusting the characteristics as a flake-like aggregate having a predetermined particle size distribution by sieve classification, air classification, or the like.

このようにして得られるフレーク状封止用樹脂組成物は、下記式(1)で表される隙間率を60%以下とすることができ、50%以下とすることができ、40%以下とすることができる。
隙間率(%)={1−(樹脂供給面積/キャビティ面積)}×100・・・式(1)
ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表す。キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。
上記隙間率が60%以下であると、封止用樹脂組成物の溶け性が良好となり、充填性が向上し硬化物にボイド等の発生を低減することができる。また、ワイヤ流れを十分に低減することができる。
The flake-shaped sealing resin composition thus obtained can have a gap ratio represented by the following formula (1) of 60% or less, 50% or less, and 40% or less. can do.
Gap ratio (%) = {1- (resin supply area / cavity area)} x 100 ... Equation (1)
Here, the gap ratio represents the area ratio that is not covered with the sealing resin composition when the sealing resin composition is supplied into the cavity. The cavity area is the effective area of the bottom of the molding die, and the resin supply area indicates the area covered with the sealing resin composition.
When the gap ratio is 60% or less, the solubility of the sealing resin composition becomes good, the filling property is improved, and the generation of voids and the like in the cured product can be reduced. In addition, the wire flow can be sufficiently reduced.

[半導体装置]
本実施形態の半導体装置は、上記フレーク状封止用樹脂組成物を用いて圧縮成形により半導体素子を封止することにより製造することができる。以下、その方法の一例を説明する。
まず、圧縮成形用金型の上型に、半導体素子を実装した基板を供給した後、下型のキャビティ内に上記封止用樹脂組成物を供給する。次に、上型及び下型を所要の型締圧力にて型締めをし、下型キャビティで加熱溶融した封止用樹脂組成物に半導体素子を浸漬する。次に、下型キャビティ内の加熱溶融した封止用樹脂組成物をキャビティ底面部材で押圧し、減圧下で、所要の圧力を加えて圧縮成形する。成形条件は、温度120℃以上200℃以下、圧力2MPa以上20MPa以下とすることができる。
[Semiconductor device]
The semiconductor device of the present embodiment can be manufactured by sealing a semiconductor element by compression molding using the flake-shaped sealing resin composition. An example of the method will be described below.
First, the substrate on which the semiconductor element is mounted is supplied to the upper mold of the compression molding mold, and then the sealing resin composition is supplied into the cavity of the lower mold. Next, the upper mold and the lower mold are molded at a required mold clamping pressure, and the semiconductor element is immersed in the sealing resin composition heated and melted in the lower mold cavity. Next, the heat-melted sealing resin composition in the lower mold cavity is pressed by the cavity bottom surface member, and compression molding is performed by applying a required pressure under reduced pressure. The molding conditions can be a temperature of 120 ° C. or higher and 200 ° C. or lower, and a pressure of 2 MPa or higher and 20 MPa or lower.

図1は、このようにして得られた本開示の半導体装置の一例を示したものであり、銅フレーム等のリードフレーム1と半導体素子2の間に、接着剤層3が介在されてもよい。また、半導体素子2上の電極4とリードフレーム1のリード部5とがボンディングワイヤ6により接続されており、さらに、これらが本開示の封止用樹脂組成物の硬化物(封止樹脂)7により封止されている。 FIG. 1 shows an example of the semiconductor device of the present disclosure thus obtained, and an adhesive layer 3 may be interposed between a lead frame 1 such as a copper frame and a semiconductor element 2. .. Further, the electrode 4 on the semiconductor element 2 and the lead portion 5 of the lead frame 1 are connected by a bonding wire 6, and these are further cured products (sealing resin) 7 of the sealing resin composition of the present disclosure. Is sealed by.

本実施形態の半導体装置は、前述の特定の形状を有する封止用樹脂組成物により半導体素子が封止されているので、成形時のワイヤ流れ等の発生が低減される。また、成形性も向上して、高い信頼性を有する半導体装置とすることができる。
また、前述の特定の形状を有する封止用樹脂組成物を用いると、半導体装置の半導体素子上の封止材の厚みを200μm以下としてもよく、150μm以下としてもよく、100μm以下とすることができる。
In the semiconductor device of the present embodiment, since the semiconductor element is sealed by the sealing resin composition having the above-mentioned specific shape, the occurrence of wire flow and the like during molding is reduced. Further, the moldability is also improved, and a semiconductor device having high reliability can be obtained.
Further, when the sealing resin composition having the above-mentioned specific shape is used, the thickness of the sealing material on the semiconductor element of the semiconductor device may be 200 μm or less, 150 μm or less, or 100 μm or less. can.

さらに、封止用樹脂組成物として、前述の特定の形状を有するものを使用した場合には、封止用樹脂組成物を下型のキャビティに供給する際の飛散又は、減圧下で加熱溶融した樹脂が飛散する、いわゆる「樹脂漏れ」が低減されるため、高い信頼性を有する半導体装置を得ることができる。 Further, when a sealing resin composition having the above-mentioned specific shape is used, it is scattered when the sealing resin composition is supplied to the cavity of the lower mold, or it is heated and melted under reduced pressure. Since the so-called "resin leakage" in which the resin is scattered is reduced, a semiconductor device having high reliability can be obtained.

なお、本開示の半導体装置において封止される半導体素子は、特に限定されるものではなく、例えば、IC、LSI、ダイオード、サイリスタ、トランジスタ等が例示される。封止後の厚みが0.1mm以上1.5mm以下であるワイヤ流れの生じやすい半導体装置の場合に、本発明は有用である。 The semiconductor element sealed in the semiconductor device of the present disclosure is not particularly limited, and examples thereof include ICs, LSIs, diodes, thyristors, and transistors. The present invention is useful in the case of a semiconductor device having a thickness after sealing of 0.1 mm or more and 1.5 mm or less in which wire flow is likely to occur.

次に実施例により、本開示を具体的に説明するが、本開示はこれらの例によって何ら限定されるものではない。なお、表1中、空欄は配合なしを表す。 Next, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these examples. In Table 1, blanks indicate no compounding.

(実施例1〜7、及び比較例1〜4)
表1に記載の種類及び配合量の各成分を常温(25℃)でミキサーを用いて混合し、次いで、熱ロールを用いて80〜130℃で加熱混練した。樹脂温度60〜110℃において、ロールを用い圧延、冷却し、表1に示す厚みのシートを得た。
得られたシートを、スピードミルを用いて粉砕し、JIS標準篩(JIS Z8801−1:2006規定)3種類(目開き150μm、1mm、2mm)を用い封止用樹脂組成物を調製した。
さらに、得られた封止用樹脂組成物を用いて半導体チップの封止を行った。すなわち、50mm×50mm×0.54mmのFBGA(Fine pitch Ball Grid Array)を、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0MPa、硬化時間2分間の条件で圧縮成形した後、175℃、4時間の後硬化を行い、半導体装置を製造した。
(Examples 1 to 7 and Comparative Examples 1 to 4)
Each component of the type and blending amount shown in Table 1 was mixed at room temperature (25 ° C.) using a mixer, and then heated and kneaded at 80 to 130 ° C. using a hot roll. Rolled and cooled using a roll at a resin temperature of 60 to 110 ° C. to obtain a sheet having the thickness shown in Table 1.
The obtained sheet was pulverized using a speed mill, and a sealing resin composition was prepared using three types of JIS standard sieves (JIS Z8801-1: 2006 standard) (opening 150 μm, 1 mm, 2 mm).
Further, the semiconductor chip was sealed using the obtained sealing resin composition. That is, a 50 mm × 50 mm × 0.54 mm FBGA (Fine pitch Ball Grid Array) is compressed using a sealing resin composition under the conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 MPa, and a curing time of 2 minutes. After molding, it was cured at 175 ° C. for 4 hours to manufacture a semiconductor device.

〔粉砕前のシートの厚み(dave.)、最大厚み(dmax)、最小厚み(dmin)の測定〕
マイクロメーターを用いて得られたシートの厚みを50点測定し、最大厚み(dmax)、最小厚み(dmin)を求め、さらに、測定した50点の平均値をシートの厚み(dave.)とした。
また、シートの厚み(dave.)に対する当該シートの最大厚み(dmax)と最小厚み(dmin)との差の割合を算出した。
[Measurement of sheet thickness ( dave. ), Maximum thickness (d max ), and minimum thickness (d min) before crushing]
The thickness of the sheet obtained by using a micrometer was measured at 50 points, the maximum thickness (d max ) and the minimum thickness (d min ) were obtained, and the average value of the measured 50 points was calculated as the sheet thickness ( dave. ).
In addition, the ratio of the difference between the maximum thickness (d max ) and the minimum thickness (d min ) of the sheet to the thickness ( dave.) Of the sheet was calculated.

〔封止用樹脂組成物の厚みの測定〕
光学顕微鏡(倍率:200倍)を用いて得られた封止用樹脂組成物の厚みを50点測定し、測定した50点の平均値を封止用樹脂組成物の厚みとした。
また、実施例1〜7、及び比較例1、4で得られた封止用樹脂組成物50個を光学顕微鏡(倍率:200倍)により観察したところ、いずれも厚み方向に破断されており、当該封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離(厚み)が150〜1000μmの範囲内であることを確認した。
[Measurement of thickness of sealing resin composition]
The thickness of the sealing resin composition obtained by using an optical microscope (magnification: 200 times) was measured at 50 points, and the average value of the measured 50 points was taken as the thickness of the sealing resin composition.
Further, when 50 sealing resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 4 were observed with an optical microscope (magnification: 200 times), they were all broken in the thickness direction. It was confirmed that 80% by mass or more of the sealing resin composition had a pair of parallel planes, and the distance (thickness) between the pair of planes was within the range of 150 to 1000 μm.

封止用樹脂組成物の調製に使用した表1に記載の各成分の詳細は以下のとおりである。 Details of each component shown in Table 1 used for preparing the sealing resin composition are as follows.

(A)エポキシ樹脂
・エポキシ樹脂1:NC−3000(日本化薬(株)製、商品名;エポキシ当量:273、軟化点:58℃)
・エポキシ樹脂2:YX−4000H(三菱ケミカル(株)製、商品名;エポキシ当量:193、軟化点:105℃)
(A) Epoxy resin / epoxy resin 1: NC-3000 (manufactured by Nippon Kayaku Co., Ltd., trade name; epoxy equivalent: 273, softening point: 58 ° C.)
-Epoxy resin 2: YX-4000H (manufactured by Mitsubishi Chemical Corporation, trade name; epoxy equivalent: 193, softening point: 105 ° C)

(B)フェノール樹脂硬化剤
・フェノール樹脂1:MEH−7800M(明和化成(株)製、商品名;水酸基当量:175)
・フェノール樹脂2:BRG−557(昭和電工(株)製、商品名;水酸基当量:104)
(B) Phenol resin curing agent / phenol resin 1: MEH-7800M (manufactured by Meiwa Kasei Co., Ltd., trade name; hydroxyl group equivalent: 175)
-Phenol resin 2: BRG-557 (manufactured by Showa Denko KK, trade name; hydroxyl group equivalent: 104)

(C)硬化促進剤
・イミダゾール:2P4MHZ(四国化成(株)製、商品名)
(C) Hardening accelerator / imidazole: 2P4MHZ (manufactured by Shikoku Chemicals Corporation, trade name)

(D)無機充填材
・溶融シリカ1:MSR−8030((株)龍森製、商品名;平均粒径:12μm)
・溶融シリカ2:SC−4500SQ((株)アドマテックス製、商品名;平均粒径:1μm)
(D) Inorganic filler / fused silica 1: MSR-8030 (manufactured by Ryumori Co., Ltd., trade name; average particle size: 12 μm)
-Fused silica 2: SC-4500SQ (manufactured by Admatex Co., Ltd., trade name; average particle size: 1 μm)

(その他添加剤)
・シランカップリング剤:Z−6883(東レ・ダウコーニング(株)製、商品名;γ−フェニルアミノプロピルトリメトキシシラン)
・着色剤:MA−600(三菱ケミカル(株)製、商品名;カーボンブラック)
(Other additives)
-Silane coupling agent: Z-6883 (manufactured by Toray Dow Corning Co., Ltd., trade name; γ-phenylaminopropyltrimethoxysilane)
-Colorant: MA-600 (manufactured by Mitsubishi Chemical Corporation, trade name; carbon black)

また、上記各実施例及び各比較例で得られた封止用樹脂組成物及び半導体装置(製品)について、以下に示す方法で各種特性を評価した。その結果を表1に併せて示した。 In addition, various characteristics of the sealing resin composition and the semiconductor device (product) obtained in each of the above Examples and Comparative Examples were evaluated by the methods shown below. The results are also shown in Table 1.

<評価項目>
(封止用樹脂組成物)
(1)スパイラルフロー
EMMI規格に準じた金型を用いて、温度175℃、圧力9.8MPaでトランスファ成形し、測定した。
<Evaluation items>
(Resin composition for sealing)
(1) Spiral flow Using a mold conforming to the EMMI standard, transfer molding was performed at a temperature of 175 ° C. and a pressure of 9.8 MPa, and the measurement was performed.

(2)ゲルタイム
JIS C 2161(2010)の7.5.1に規定されるゲル化時間A法に準じて、約1gの封止用樹脂組成物を175℃の熱盤上に塗布し、かき混ぜ棒にてかき混ぜ、ゲル状になりかき混ぜられなくなるまでの時間を測定した。
(2) Gel time According to the gelation time A method specified in 7.5.1 of JIS C 2161 (2010), about 1 g of a sealing resin composition is applied onto a hot plate at 175 ° C. and stirred. It was stirred with a stick, and the time until it became a gel and could not be stirred was measured.

(成形性)
(1)隙間率
TOWA(株)製、圧縮成形機 PMC1040−Dを用い、66mm×232mmのキャビティ内に実施例及び比較例のフレーク状または粉粒状の封止用樹脂組成物3g(封止後素子上の樹脂厚み100μm相当)を0.3g/sの速度で供給し、封止用樹脂組成物表面を上部からキャビティ底面に向けデジタルカメラで撮影し画像化した。得られた画像を二値化し、封止用樹脂組成物の面積を計測し、隙間率を下記式(1)により算出した。
隙間率(%)=(1−(樹脂供給面積/キャビティ面積))×100・・・式(1)
ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表し、キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。
なお、実施例1の隙間率を算出した際の二値化画像を図2に、比較例3の隙間率を算出した際の二値化画像を図3に示す。
(Moldability)
(1) Gap ratio Using a compression molding machine PMC1040-D manufactured by TOWA Corporation, 3 g of flake-shaped or powder-granular sealing resin composition of Examples and Comparative Examples was used in a cavity of 66 mm × 232 mm (after sealing). The resin thickness on the element (corresponding to 100 μm) was supplied at a rate of 0.3 g / s, and the surface of the sealing resin composition was photographed from the upper part toward the bottom surface of the cavity with a digital camera and imaged. The obtained image was binarized, the area of the sealing resin composition was measured, and the gap ratio was calculated by the following formula (1).
Gap ratio (%) = (1- (resin supply area / cavity area)) x 100 ... Equation (1)
Here, the gap ratio represents the area ratio not covered with the sealing resin composition when the sealing resin composition is supplied into the cavity, and the cavity area is the effective area of the bottom of the molding mold. Yes, the resin supply area indicates the area covered with the sealing resin composition.
The binarized image when the gap ratio of Example 1 is calculated is shown in FIG. 2, and the binarized image when the gap ratio of Comparative Example 3 is calculated is shown in FIG.

(2)充填性
TOWA(株)製、圧縮成形機 PMC1040−Dを用い、66mm×232mmのキャビティ内に実施例及び比較例のフレーク状または粉粒状の封止用樹脂組成物3g(封止後素子上の樹脂厚み100μm相当)を0.3g/sの速度で供給し、金型温度175℃、成形圧力5.0MPa、硬化時間2分間で圧縮成形した後、得られた成形品の未充填の有無を目視で確認した。未充填部分が無いものを「良好」、未充填部分があるものを「未充填」と評価した。
(2) Fillability Using a compression molding machine PMC1040-D manufactured by TOWA Co., Ltd., 3 g of flake-shaped or powder-granular sealing resin composition of Examples and Comparative Examples was used in a cavity of 66 mm × 232 mm (after sealing). The resin thickness on the element (equivalent to 100 μm) was supplied at a rate of 0.3 g / s, and after compression molding at a mold temperature of 175 ° C., a molding pressure of 5.0 MPa, and a curing time of 2 minutes, the obtained molded product was not filled. The presence or absence of was visually confirmed. Those without unfilled portions were evaluated as "good", and those with unfilled portions were evaluated as "unfilled".

(3)ボイド
TOWA(株)製、圧縮成形機 PMC1040−Dを用い、66mm×232mmのキャビティ内に実施例及び比較例のフレーク状または粉粒状の封止用樹脂組成物3g(封止後素子上の樹脂厚み100μm相当)を0.3g/sの速度で供給し、金型温度175℃、成形圧力5.0MPa、硬化時間2分間で圧縮成形し成形品を得た。得られた成形品のボイドを超音波探傷装置(日立建機ファインテック(株)製、FS300II)で観察し、下記の基準によって評価した。
A:ボイドの発生なし
B:ボイドの数が5個未満
C:ボイドの数が5個以上
(3) Using a compression molding machine PMC1040-D manufactured by Void TOWA Co., Ltd., 3 g of flake-shaped or powder-granular sealing resin composition of Examples and Comparative Examples in a cavity of 66 mm × 232 mm (element after sealing). The above resin thickness (corresponding to 100 μm) was supplied at a rate of 0.3 g / s, and compression molding was performed at a mold temperature of 175 ° C., a molding pressure of 5.0 MPa, and a curing time of 2 minutes to obtain a molded product. The voids of the obtained molded product were observed with an ultrasonic flaw detector (FS300II manufactured by Hitachi Construction Machinery Finetech Co., Ltd.) and evaluated according to the following criteria.
A: No voids B: Number of voids is less than 5 C: Number of voids is 5 or more

(4)ワイヤ流れ率
50mm×50mm×0.54mmのFBGAを、封止用樹脂組成物を用いて、金型温度175℃、成形圧力8.0MPa、硬化時間2分間の条件で圧縮成形した後、得られた成形品(FBGA)内部の金ワイヤ(直径18μm、長さ5mm)をX線観察装置((株)島津製作所製、SMX−1000)で観察し、最大変形部のワイヤ流れ率(封止前のワイヤの位置と封止後のワイヤの位置との最大距離のワイヤの長さに対する比率(%))を求めた。
(4) After compression molding FBGA having a wire flow rate of 50 mm × 50 mm × 0.54 mm using a sealing resin composition under the conditions of a mold temperature of 175 ° C., a molding pressure of 8.0 MPa, and a curing time of 2 minutes. , The gold wire (18 μm in diameter, 5 mm in length) inside the obtained molded product (FBGA) was observed with an X-ray observation device (SMX-1000, manufactured by Shimadzu Corporation), and the wire flow rate of the maximum deformed part (SMX-1000) The ratio (%) of the maximum distance between the position of the wire before sealing and the position of the wire after sealing with respect to the wire length was determined.

(半導体装置(製品))
(1)耐リフロー性(MSL試験)
半導体装置に対し、85℃、85%RHにて72時間吸湿処理した後、260℃の赤外線リフロー炉中で90秒間加熱する試験(MSL試験:Level 3)を行い、不良(剥離及びクラック)の発生率を調べた(試料数=20)。
(Semiconductor device (product))
(1) Reflow resistance (MSL test)
The semiconductor device was subjected to a moisture absorption treatment at 85 ° C. and 85% RH for 72 hours, and then heated in an infrared reflow oven at 260 ° C. for 90 seconds (MSL test: Level 3). The incidence was examined (number of samples = 20).

(2)耐湿信頼性(プレッシャクッカー試験:PCT)
半導体装置を、プレッシャクッカー内で、127℃、0.25MPaの条件下、72時間吸水させた後、260℃、90秒間のベーパーリフローを行い、不良(オープン不良)の発生率を調べた(試料数=20)。
(2) Moisture resistance reliability (pressure cooker test: PCT)
The semiconductor device was allowed to absorb water in a pressure cooker under the conditions of 127 ° C. and 0.25 MPa for 72 hours, and then vapor reflow was performed at 260 ° C. for 90 seconds to examine the occurrence rate of defects (open defects) (sample). Number = 20).

(3)高温放置信頼性(高度加速寿命試験:HAST)
半導体装置を、180℃の恒温槽中に1000時間放置し、不良(オープン不良)の発生率を調べた(試料数=20)。
(3) High-temperature standing reliability (highly accelerated life test: HAST)
The semiconductor device was left in a constant temperature bath at 180 ° C. for 1000 hours, and the incidence of defects (open defects) was examined (number of samples = 20).


Figure 0006941737
Figure 0006941737

表1から明らかなように、本実施例の封止用樹脂組成物は、成形時の充填性が良好でワイヤ流れが極めて低かった。実施例と比較例においてスパイラルフローの値に差がないが、実施例は比較例よりも隙間率が低いことがわかる。なお、図2に実施例1の隙間率を算出した際の二値化画像を、図3に比較例3の隙間率を算出した際の二値化画像を示す。図2及び図3において白色部分はキャビティ内で封止用樹脂組成物により被覆されていない部分を示し、黒色部分はキャビティ内で封止用樹脂組成物により被覆されている部分を示す。図2及び図3から実施例1は比較例3よりもキャビティ内で封止用樹脂組成物が均一に充填されており隙間率が低いことがわかる。
本発明の封止用樹脂組成物は、フレーク形状のため金型内へ薄くかつ均一に供給することができるため、圧縮成形時の樹脂流動が少なくなり、良好な充填性と低いワイヤ流れ率を得られるものである。
また、当該封止用樹脂組成物を用いて製造された半導体装置は、MSL試験、プレッシャクッカー試験、高度加速寿命試験のいずれの試験においても良好な結果が得られており、樹脂封止型半導体装置として高い信頼性を有するものであることが確認できた。
As is clear from Table 1, the sealing resin composition of this example had good filling property at the time of molding and extremely low wire flow. Although there is no difference in the value of the spiral flow between the example and the comparative example, it can be seen that the gap ratio of the example is lower than that of the comparative example. Note that FIG. 2 shows a binarized image when the gap ratio of Example 1 is calculated, and FIG. 3 shows a binarized image when the gap ratio of Comparative Example 3 is calculated. In FIGS. 2 and 3, the white portion indicates a portion in the cavity that is not coated with the sealing resin composition, and the black portion indicates a portion in the cavity that is coated with the sealing resin composition. From FIGS. 2 and 3, it can be seen that in Example 1, the sealing resin composition is more uniformly filled in the cavity than in Comparative Example 3, and the gap ratio is lower.
Since the sealing resin composition of the present invention has a flake shape, it can be thinly and uniformly supplied into the mold, so that the resin flow during compression molding is reduced, and good filling property and low wire flow rate can be obtained. It is what you get.
Further, the semiconductor device manufactured by using the sealing resin composition has obtained good results in all of the MSL test, the pressure cooker test, and the highly accelerated life test, and the resin-sealed semiconductor. It was confirmed that the device has high reliability.

本発明の封止用樹脂組成物は、フレーク形状のため金型内へ薄くかつ均一に供給することができるため、成形性に優れるとともに成形時のワイヤ流れも低減される。したがって、封止樹脂厚が薄く、また、長くかつ細いワイヤによって接続された半導体素子の封止材料として有用であり、信頼性の高い樹脂封止型半導体装置を製造することができる。 Since the sealing resin composition of the present invention has a flake shape, it can be thinly and uniformly supplied into the mold, so that it is excellent in moldability and the wire flow during molding is also reduced. Therefore, the resin-sealed semiconductor device having a thin sealing resin thickness, useful as a sealing material for semiconductor elements connected by long and thin wires, and highly reliable resin-sealed semiconductor device can be manufactured.

1 リードフレーム
2 半導体素子
3 接着剤層
4 電極
5 リード部
6 ボンディングワイヤ
7 封止用樹脂組成物の硬化物(封止樹脂)
1 Lead frame 2 Semiconductor element 3 Adhesive layer 4 Electrode 5 Lead part 6 Bonding wire 7 Cured product of sealing resin composition (sealing resin)

Claims (5)

(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)硬化促進剤、および(D)無機充填材を含有するフレーク状封止用樹脂組成物であって、
前記フレーク状封止用樹脂組成物の80質量%以上が、平行な一対の平面を有し、当該一対の平面間の距離が150〜1000μmである平行面含有樹脂組成物であり、
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmの篩を通過するフレーク状封止用樹脂組成物が5質量%以下、及び公称目開き2mmの篩を通過しないフレーク状封止用樹脂組成物が5質量%以下であることを特徴とするフレーク状封止用樹脂組成物。
A flake-shaped sealing resin composition containing (A) an epoxy resin, (B) a phenol resin curing agent, (C) a curing accelerator, and (D) an inorganic filler.
More than 80% by mass of the flake-shaped sealing resin composition is a parallel plane-containing resin composition having a pair of parallel planes and a distance between the pair of planes of 150 to 1000 μm.
By classification using a JIS standard sieve contained in the flake-shaped sealing resin composition, the amount of the flake-shaped sealing resin composition passing through the sieve having a nominal opening of 150 μm is 5% by mass or less, and the nominal opening is nominally opened. A flake-shaped sealing resin composition, characterized in that the amount of the flake-shaped sealing resin composition that does not pass through a 2 mm sieve is 5% by mass or less.
前記フレーク状封止用樹脂組成物中に含まれる、JIS標準篩を用いた分級により、公称目開き150μmを超え1mm以下の篩を通過するフレーク状封止用樹脂組成物が20質量%以上であることを特徴とする請求項1に記載のフレーク状封止用樹脂組成物。 By classification using a JIS standard sieve contained in the flake-shaped sealing resin composition, 20% by mass or more of the flake-shaped sealing resin composition passes through a sieve having a nominal opening of more than 150 μm and 1 mm or less. The flake-shaped sealing resin composition according to claim 1, wherein the resin composition is provided. 下記式(1)で表される隙間率が60%以下であることを特徴とする請求項1又は2に記載のフレーク状封止用樹脂組成物。
隙間率(%)={1−(樹脂供給面積/キャビティ面積)}×100・・・式(1)
(ここで、隙間率はキャビティ内へ封止用樹脂組成物を供給した時の、当該封止用樹脂組成物により被覆されていない面積比率を表し、キャビティ面積は成形金型の底部の有効面積であり、樹脂供給面積は封止用樹脂組成物によって被覆されている面積を示す。)
The flake-shaped sealing resin composition according to claim 1 or 2, wherein the gap ratio represented by the following formula (1) is 60% or less.
Gap ratio (%) = {1- (resin supply area / cavity area)} x 100 ... Equation (1)
(Here, the gap ratio represents the area ratio not covered with the sealing resin composition when the sealing resin composition is supplied into the cavity, and the cavity area is the effective area of the bottom of the molding mold. The resin supply area indicates the area covered with the sealing resin composition.)
請求項1乃至3のいずれか1項に記載のフレーク状封止用樹脂組成物を用いて圧縮成形により半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device characterized in that a semiconductor element is sealed by compression molding using the flake-shaped sealing resin composition according to any one of claims 1 to 3. 前記半導体装置の半導体素子上の封止材の厚みが200μm以下であることを特徴とする請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the thickness of the sealing material on the semiconductor element of the semiconductor device is 200 μm or less.
JP2020533411A 2018-07-31 2019-07-17 Flake-shaped sealing resin composition and semiconductor device Active JP6941737B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018143674 2018-07-31
JP2018143674 2018-07-31
PCT/JP2019/028135 WO2020026818A1 (en) 2018-07-31 2019-07-17 Flaky resin composition for encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JPWO2020026818A1 JPWO2020026818A1 (en) 2021-08-12
JP6941737B2 true JP6941737B2 (en) 2021-09-29

Family

ID=69231067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533411A Active JP6941737B2 (en) 2018-07-31 2019-07-17 Flake-shaped sealing resin composition and semiconductor device

Country Status (5)

Country Link
JP (1) JP6941737B2 (en)
KR (1) KR102506974B1 (en)
CN (1) CN112424284B (en)
TW (1) TWI796507B (en)
WO (1) WO2020026818A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506543B2 (en) 2020-07-07 2024-06-26 株式会社巴川コーポレーション Element protection structure and manufacturing method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681883A (en) * 1996-03-05 1997-10-28 Advanced Ceramics Corporation Enhanced boron nitride composition and polymer based high thermal conductivity molding compound
TW452897B (en) * 1998-08-21 2001-09-01 Hitachi Chemical Co Ltd Paste composition, and protective film and semiconductor device both obtained with the same
JP4535213B2 (en) 1999-02-12 2010-09-01 日東電工株式会社 Powder semiconductor encapsulant
JP4314539B2 (en) * 1999-04-13 2009-08-19 日立化成工業株式会社 Method for producing granular epoxy resin encapsulant
JP2003155328A (en) * 2001-11-22 2003-05-27 Sumitomo Bakelite Co Ltd Tablet and semiconductor device
JP4232443B2 (en) * 2002-11-27 2009-03-04 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4634083B2 (en) * 2003-07-17 2011-02-16 日東電工株式会社 Manufacturing method of tablets for semiconductor encapsulation
JP2006216899A (en) * 2005-02-07 2006-08-17 Kyocera Chemical Corp Molding material for compression molding and resin-sealed semiconductor device
JP4855329B2 (en) 2007-05-08 2012-01-18 Towa株式会社 Electronic component compression molding method and apparatus
JP4973325B2 (en) 2007-06-11 2012-07-11 住友ベークライト株式会社 Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP2011148959A (en) * 2010-01-25 2011-08-04 Kyocera Chemical Corp Resin sheet for sealing semiconductor, and resin-sealed semiconductor device
JP5189606B2 (en) * 2010-01-26 2013-04-24 パナソニック株式会社 Epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP5663250B2 (en) * 2010-09-17 2015-02-04 京セラケミカル株式会社 Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP6351927B2 (en) * 2012-12-27 2018-07-04 京セラ株式会社 Resin composition for sealing and method for manufacturing semiconductor device
JP6321422B2 (en) * 2014-03-25 2018-05-09 京セラ株式会社 Resin composition for sealing, method for producing the same, and resin-sealed semiconductor device
JP6389382B2 (en) * 2014-06-26 2018-09-12 京セラ株式会社 Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
WO2016030985A1 (en) * 2014-08-27 2016-03-03 積水化学工業株式会社 White curable composition for photosemiconductor device, white tablet for photosemiconductor device, molding for photosemiconductor device, and photosemiconductor device
JP6880567B2 (en) * 2016-04-26 2021-06-02 住友ベークライト株式会社 Manufacturing method of epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6891639B2 (en) * 2016-07-14 2021-06-18 住友ベークライト株式会社 Semiconductor devices, manufacturing methods for semiconductor devices, epoxy resin compositions for encapsulating semiconductors, and resin sets
JP2018203839A (en) * 2017-05-31 2018-12-27 パナソニックIpマネジメント株式会社 Epoxy resin composition for encapsulation, manufacturing method of epoxy resin composition for encapsulation, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
TWI796507B (en) 2023-03-21
WO2020026818A1 (en) 2020-02-06
KR102506974B1 (en) 2023-03-07
KR20210021049A (en) 2021-02-24
CN112424284A (en) 2021-02-26
JPWO2020026818A1 (en) 2021-08-12
TW202012584A (en) 2020-04-01
CN112424284B (en) 2023-09-26

Similar Documents

Publication Publication Date Title
JP2019151685A (en) Resin composition for semiconductor sealing for transfer compression mold method and semiconductor device
JP6832193B2 (en) Resin composition and resin-sealed semiconductor device
JP2015036410A (en) High-dielectric constant epoxy resin composition and semiconductor device
JP4496786B2 (en) Epoxy resin composition and semiconductor device
JP6888870B2 (en) Resin composition for encapsulating semiconductors and semiconductor devices
JP6235969B2 (en) Powdered resin composition for compression molding and resin-encapsulated semiconductor device
JP6389382B2 (en) Semiconductor encapsulating resin sheet and resin encapsulating semiconductor device
JP2006216899A (en) Molding material for compression molding and resin-sealed semiconductor device
JP2019176023A (en) Semiconductor-sealing resin composition and semiconductor device
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JPWO2019131097A1 (en) Epoxy resin composition for sealing ball grid array packages, cured epoxy resin, and electronic component equipment
JP6941737B2 (en) Flake-shaped sealing resin composition and semiconductor device
WO2018150779A1 (en) Resin composition, resin sheet, semiconductor device and method for producing semiconductor device
JP2006008956A (en) Resin composition for sealing semiconductor and semiconductor device using the same
JP5407767B2 (en) Epoxy resin composition and semiconductor device
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
US11702537B2 (en) Tablet-type epoxy resin composition for sealing semiconductor device, and semiconductor device sealed using the same
JP7002866B2 (en) Resin composition for encapsulating powdered and granular semiconductors and semiconductor devices
JP2020139070A (en) Sealing resin composition and method for producing the same, and semiconductor device
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP6351927B2 (en) Resin composition for sealing and method for manufacturing semiconductor device
JP2005154717A (en) Epoxy resin composition and semiconductor device
JP7434794B2 (en) Manufacturing method of semiconductor device and epoxy resin composition for sealing
TWI692489B (en) Resin sheet, semiconductor device and method of manufacturing semiconductor device
JP5093977B2 (en) Area mounted semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150