JP6932994B2 - 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化 - Google Patents

異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化 Download PDF

Info

Publication number
JP6932994B2
JP6932994B2 JP2017101817A JP2017101817A JP6932994B2 JP 6932994 B2 JP6932994 B2 JP 6932994B2 JP 2017101817 A JP2017101817 A JP 2017101817A JP 2017101817 A JP2017101817 A JP 2017101817A JP 6932994 B2 JP6932994 B2 JP 6932994B2
Authority
JP
Japan
Prior art keywords
optical path
optical
superchannel
distance
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017101817A
Other languages
English (en)
Other versions
JP2017212736A (ja
Inventor
ヴァシリーヴァ・オルガ
キム・インウン
池内 公
公 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2017212736A publication Critical patent/JP2017212736A/ja
Application granted granted Critical
Publication of JP6932994B2 publication Critical patent/JP6932994B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0224Irregular wavelength spacing, e.g. to accommodate interference to all wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

[関連出願]
本出願は、米国仮出願番号第62/340,696号、2016年5月24日出願、名称「OPTIMIZATION OF NETWORKS CARRYING SUPER-CHANNELS WITH DIFFERENT MODULATION FORMATS」の優先権を主張する。
[技術分野]
本開示は、概して、光通信ネットワークに関し、より詳細には、異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化に関する。
電気通信システム、ケーブルテレビシステム、データ通信ネットワークは、光ネットワークを用いて、遠隔地点間で大量の情報を迅速に伝達する。光ネットワークでは、情報は、光ファイバを通じて光信号の形式で伝達され得る。光ネットワークは、増幅器、分散補償器、マルチプレクサ/デマルチプレクサフィルタ、波長選択スイッチ、カプラ、等のような、ネットワーク内で種々の動作を実行する種々のネットワークノードを有しても良い。
光スーパーチャネルは、チャネル毎に400Gb/s及び1Tb/sのデータレートでの信号の送信のための新たなソリューションであり、将来のより高いデータレートも期待できる。標準的なスーパーチャネルは、単一波長チャネルを形成するよう周波数多重化されるサブキャリアのセットを有する。次に、スーパーチャネルは、ネットワークエンドポイントに渡る単一チャネルとして、光ネットワークを通じて伝送され得る。スーパーチャネルの中のサブキャリアは、高いスペクトル効率を達成するためにしっかりパックされる。
一態様では、開示の方法は異なる変調フォーマットを有するスーパーチャネルを送信するためのものである。方法は、光ネットワークに渡る第1光経路及び第2光経路を識別するステップを有して良い。当該方法では、第1変調フォーマットの第1スーパーチャネルは、第1光経路に渡り送信されて良く、第2変調フォーマットの第2スーパーチャネルは、第2光経路に渡り送信されて良い。当該方法では、第1光経路及び第2光経路は、少なくとも2つのネットワークノードを共有して良く、第1光経路及び第2光経路は、距離Yに渡り共通光経路である。当該方法は、共通光経路に渡り第2スーパーチャネルと共伝搬する第1スーパーチャネルのためにデータベースからガードバンド(GB)を読み出すステップと、データベースから第1スーパーチャネルのための第1光パワー値セットを及び第2スーパーチャネルのための第2光パワー値セットを読み出すステップと、を更に有して良い。当該方法では、第1光パワー値セット及び第2光パワー値セットは、スーパーチャネルパワープリエンファシス(SPP)を実装するために、それぞれ第1スーパーチャネル及び第2スーパーチャネルの中の各々のサブキャリアのために光パワーを指定して良い。当該方法は、第1パワー値セットに従い第1経路に渡る第1スーパーチャネルの第1出射パワーを構成するステップと、第2パワー値セットに従い第2経路に渡る第2スーパーチャネルの第2出射パワーを構成するステップと、を更に有して良い。第1経路及び第2光経路のための所定ルールに基づき、当該方法は、ゼロGB又はGB値を、第1スーパーチャネルと第2スーパーチャネルとの間に、共通光経路の距離Yに渡り適用するステップを更に有して良い。
開示の実施形態のうちの任意のものにおいて、当該方法は、異なる種類のスーパーチャネルについてそれぞれGB値を予め計算するステップと、GB値をデータベースに格納するステップと、異なるスーパーチャネルについてそれぞれ各々のサブキャリアに対応するパワー値セットを予め計算するステップと、データベースにパワー値セットを格納するステップと、を更に有して良い。当該方法では、GB値及びパワー値セットは、異なる変調フォーマット、異なるサブキャリア数、及び距離Yの異なる値について、データベースの中でインデックス付けされて良い。
当該方法の開示の実施形態のうちの任意のものにおいて、第1変調フォーマットは、より高次の変調フォーマットであって良い第2変調フォーマットより大きな伝搬距離を有する、より低次の変調フォーマットであって良い。当該方法において、第1変調フォーマットは、QPSKフォーマットであって良く、前記第2変調フォーマットはm−QAMフォーマットであって良く、mは4より大きい。
当該方法の開示の実施形態のうちの任意のものにおいて、第1変調フォーマット及び前記第2変調フォーマットは、二偏波(DP)変調フォーマットであって良い。
当該方法の開示の実施形態のうちの任意のものにおいて、所定ルールは、第1光経路及び第2光経路が、第1光経路及び第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬するとき、距離Yが閾距離より小さい場合に、第1スーパーチャネルと第2スーパーチャネルとの間のGBをゼロに設定し、距離Yが閾距離より大きい又は等しい場合に、GBをGB値に設定する、ことを指定して良い。当該方法では、閾距離は900kmであって良い。
当該方法の開示の実施形態のうちの任意のものにおいて、所定ルールは、第1光経路及び第2光経路が、第1光経路及び第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬せず、第2光経路が距離Yに及び、第1光経路が距離Yより大きい距離Xに及ぶとき、第2光経路が第1光経路の始めから距離Z未満で開始し、距離Zは(X−Y)/2により与えられる場合、第1スーパーチャネルと第2スーパーチャネルとの間のGBをゼロに設定し、第2光経路が第1光経路の始めから距離Z以上から開始する場合、GBをGB値に設定する、ことを更に指定して良い。
追加の開示の態様は、異なる変調フォーマットを有するスーパーチャネルの送信を可能にするネットワーク管理システムを含み、ネットワーク管理システムは、プロセッサにより実行可能な命令を格納する非一時的コンピュータ可読メモリ媒体にアクセスするよう構成されるプロセッサを有する。一実施形態では、命令は、上述の態様における方法を実施するためにプロセッサにより実行可能であって良い。
本発明並びにその特徴及び利点のより完全な理解のため、添付の図と共に以下の説明を参照する。
光トランスポートネットワークの一実施形態の選択された要素のブロック図である。 スーパーチャネルパワースペクトルの一実施形態の選択された要素を示す。 スーパーチャネルサブキャリア監視のための光制御プレーンシステムの一実施形態の選択された要素のブロック図である。 汎用通信機及びROADMを有する光ネットワークの一実施形態の選択された要素のブロック図である。 スーパーチャネルパワースペクトルのプロットを示す。 スーパーチャネルパワースペクトルのプロットを示す。 スーパーチャネルパワースペクトルのプロットを示す。 異なるスーパーチャネルパワースペクトルの、OSNRペナルティ対GBのプロットを示す。 異なるスーパーチャネルパワースペクトルの、OSNRペナルティ対GBのプロットを示す。 異なるスーパーチャネルパワースペクトルの、到達距離L延長対GBのプロットを示す。 異なるスーパーチャネルパワースペクトルの、SE−L向上対GBのプロットを示す。 異なる変調フォーマットを有するスーパーチャネルの送信を最適化する方法の選択された要素のフローチャートである。 異なる変調フォーマットを有するスーパーチャネルの送信を最適化する方法の選択された要素のフローチャートである。
以下の説明では、開示の主題の議論を容易にするために例として詳細事項が説明される。しかしながら、当業者には、開示の実施形態が例示であること及び全ての可能な実施形態を網羅するものではないことが明らかである。
ここで用いられるように、ハイフンで結んだ形式の参照符号は、1つの要素の特定のインスタンスを表し、ハイフンを有しない形式の参照符号は、集合的又は総称的要素を表す。したがって、例えば、ウィジェット「72−1」は、ウィジェットクラスのインスタンスを表し、ウィジェット「72」として集合的に言及されて良く、それらのうちの任意のものがウィジェット「72」として一般的に言及されて良い。
電気通信システム、ケーブルテレビシステム、データ通信ネットワークは、光ネットワークを用いて、遠隔地点間で大量の情報を迅速に伝達する。光ネットワークでは、情報は、光ファイバを通じて光信号の形式で伝達され得る。光ネットワークは、増幅器、分散補償器、マルチプレクサ/デマルチプレクサフィルタ、波長選択スイッチ、カプラ、等のような、ネットワーク内で種々の動作を実行する種々のネットワークノードを有して良い。
図を参照すると、図1は、光通信システムを表し得る光トランスポートネットワーク(OTN)101の例示的な実施形態を示す。光トランスポートネットワーク101は、光ファイバ106を介して光信号を送信する装置を有して良い。情報は、波長に関する情報を符号化するために1又は複数の光の波長の変調により、光トランスポートネットワーク101を通じて送信及び受信されて良い。光ネットワークでは、光の波長は、光信号に含まれる「チャネル」とも称されて良い。各チャネルは、光トランスポートネットワーク101を通じて特定量の情報を伝達して良い。
光トランスポートネットワーク101は、光トランスポートネットワーク101のコンポーネントにより通信される1又は複数の光信号を運ぶために、1又は複数の光ファイバ106を有する。光トランスポートネットワーク101のネットワーク要素は、ファイバ106により互いに結合され、1又は複数の送信機(Tx)102、1又は複数のマルチプレクサ(MUX)104、1又は複数の光増幅器108、1又は複数の光アド/ドロップマルチプレクサ(optical add/drop multiplexer:OADM)110、及び1又は複数のデマルチプレクサ(DEMUX)105、及び1又は複数の受信機(Rx)112を有して良い。
光トランスポートネットワーク101は、端末ノードを有するポイントツーポイント型光ネットワーク、リング型光ネットワーク、メッシュ型光ネットワーク、又は任意の他の適切な光ネットワーク若しくは光ネットワークの組合せを有して良い。光トランスポートネットワーク101は、短距離都市域ネットワーク、長距離都市間ネットワーク、又は任意の他の適切なネットワーク若しくはネットワークの組合せの中で用いられて良い。光トランスポートネットワーク101の容量は、例えば、100Gbit/s、400Gbit/s、又は1Tbit/sを有して良い。光ファイバ106は、非常に低損失で長距離に渡り信号を伝達可能なガラスの細い紐を有して良い。光ファイバ106は、光伝送のために種々の異なるファイバから選択される適切な種類のファイバを有して良い。光ファイバ106は、標準的なSMF(Single-Mode Fiber)、E−LEAF(Enhanced Large Effective Area Fiber)、又はTW−RS(TrueWave(登録商標)Reduced Slope)ファイバのような任意の適切な種類のファイバを有して良い。
光トランスポートネットワーク101は、光ファイバ106を介して光信号を送信する装置を有して良い。情報は、波長に関する情報を符号化するために1又は複数の光の波長の変調により、光トランスポートネットワーク101を通じて送信及び受信されて良い。光ネットワークでは、光の波長は、光信号に含まれる「チャネル」とも称されて良い。各チャネルは、光トランスポートネットワーク101を通じて特定量の情報を伝達して良い。
光トランスポートネットワーク101の情報容量及び伝送能力を増大するために、複数のチャネルで送信される複数の信号は、単一の広帯域光信号に結合されて良い。複数のチャネルで情報を通信するプロセスは、光学的にWDM(wavelength division multiplexing)として言及される。CWDM(Coarse wavelength division multiplexing)は、通常20nmより大きく16個の波長より少ない、少ないチャネル数を有する広く間隔の開けられた波長の、1本のファイバへの多重化を表す。また、DWDM(dense wavelength division multiplexing)は、通常0.8nmより狭い間隔で40個より多い、多くのチャネル数を有する密な間隔の波長の、1本のファイバへの多重化を表す。WDM又は他の複数波長多重送信技術は、光ファイバ当たりの集約帯域幅を増大するために、光ネットワークで用いられる。WDM無しでは、光ネットワークにおける帯域幅は、たった1波長のビットレートに制限され得る。より大きな帯域幅により、光ネットワークは、より多くの情報を送信できる。光トランスポートネットワーク101は、WDM又は何らかの他の適切な多チャネル多重化技術を用いて異なるチャネルを送信し、多チャネル信号を増幅して良い。
DWDMにおける進歩は、複数の光キャリアを結合して所望の容量の合成光信号を生成することを可能にする。複数キャリア光信号のこのような一例は、100Gb/s、400Gb/s、1Tb/s以上の伝送レートを達成できる高スペクトル効率(spectral efficiency:SE)の一例であるスーパーチャネルである。スーパーチャネルでは、複数のサブキャリア(又はサブチャネル又はチャネル)は、固定帯域幅の帯域に密にパックされ、非常に高いデータレートで送信されて良い。さらに、スーパーチャネルは、例えば数百キロメートルのような非常に長い距離に及ぶ送信に良好に適し得る。標準的なスーパーチャネルは、光トランスポートネットワークを通じて1つのエンティティとして送信される単一チャネルを形成するために周波数多重化されたサブキャリアのセットを有しても良い。スーパーチャネルの中のサブキャリアは、高いスペクトル効率を達成するためにしっかりパックされて良い。
特定の実施形態では、N−WDM(Nyquist wavelength-division multiplexing)がスーパーチャネルで用いられて良い。N−WDMでは、ほぼ長方形スペクトルを有する光パルスは、ボー(Baud)レートに近付く帯域幅を有する周波数ドメインで一緒にパッキングされる(図2も参照)。
光トランスポートネットワーク101は、特定の波長又はチャネルで、光トランスポートネットワーク101を通じて光信号を送信する1又は複数の光送信機(Tx)102を有して良い。送信機102は、電気信号を光信号に変換し該光信号を送信するシステム、機器、又は装置を有して良い。例えば、送信機102は、それぞれ、レーザと、電気信号を受信し該電気信号に含まれる情報を特定の波長でレーザにより生成される光のビームに変調し光トランスポートネットワークを通じて信号を伝達するビームを送信する変調器と、を有して良い。幾つかの実施形態では、光送信機102は、光変調の間に送信されるべきデータのボーレートを決定するために使用されて良い。異なるボーレートを適用する送信機102の一例は、適応型レートトランスポンダである。さらに、前方誤り訂正(forward error correction:FEC)モジュールは、光送信機102に含まれて良く、光送信機102と関連して使用されて良い。FECモジュールは、誤り訂正符号を含めるために、送信されるべき情報又はデータを運ぶ電気信号を処理して良い。送信機102にあるFECモジュールは、さらに、光変調のために光送信機102へ送信されるべきデータを送信するボーレートを決定して良い。
マルチプレクサ104は、送信機102に結合されて良く、送信機102により、例えばそれぞれ個々の波長で送信される信号を、WDM信号に結合するシステム、機器又は装置であって良い。
光増幅器108は、光トランスポートネットワーク101の中の多チャネル信号を増幅して良い。光増幅器108は、特定長のファイバ106の前及び/又は後に置かれて良い。これは、「インライン増幅」と呼ばれる。光増幅器108は、光信号を増幅するシステム、機器又は装置を有して良い。例えば、光増幅器108は、光信号を増幅する光リピータを有して良い。この増幅は、光−電気又は電気−光変換により実行されて良い。幾つかの実施形態では、光増幅器108は、希土類元素をドープされた光ファイバを有し、ドープ光ファイバ増幅素子を形成して良い。信号がファイバを通過するとき、外部エネルギがポンプ信号の形式で印可され、光ファイバのドープされた部分の原子を励起し、光信号の強度を増大する。一例として、光増幅器108は、エルビウムドープファイバ増幅器(erbium-doped fiber amplifier:EDFA)を有して良い。しかしながら、半導体光増幅器(semiconductor optical amplifier:SOA)のような他の適切な増幅器が用いられて良い。
OADM110は、ファイバ106を介して光トランスポートネットワーク101に結合されて良い。OADM110は、ファイバ106から光信号を(つまり、個々の波長で)アッド又はドロップするシステム、機器又は装置を有しても良いアッド/ドロップモジュールを有して良い。OADM110を通過した後に、光信号は、ファイバ106に沿って宛先へと直接進んで良く、或いは、信号は、宛先に達する前に、1又は複数の追加OADM110及び/又は光増幅器108を通過して良い。このように、OADM110は、異なるリング及び異なる直線的スパンのような、異なる光トランスポートネットワークトポロジを一緒に接続することを可能にできる。
光トランスポートネットワーク101の特定の実施形態では、OADM110は、WDM信号の個々の又は複数の波長をアッド又はドロップできるROADM(reconfigurable OADM)を表して良い。個々の又は複数の波長は、例えば、ROADMに含まれ得るWSS(wavelength selective switch)(図示しない)を用いて光ドメインの中でアッド又はドロップされて良い。
多くの既存の光ネットワークは、OADMの従来の実装及びデマルチプレクサ105の従来の実装と互換性のある、固定グリッド間隔としても知られるITU(International Telecommunications Union)標準波長グリッドに従い50ギガヘルツ(GHz)のチャネル間隔を有し、10ギガビット毎秒(Gbps)又は40Gbps信号レートで動作する。しかしながら、データレートが100Gbpsを超えて増大すると、このような高データレート信号のより広いスペクトル要件は、益々チャネル間隔を増大することを要求する場合が多い。異なるレートの信号をサポートする伝統的な固定グリッドネットワークシステムでは、ネットワークシステム全体は、標準的に、最高レート信号に対応できる最も粗いチャネル間隔(100GHz、200GHz、等)で運用されなければならない。これは、低いレート信号及び低い全体的スペクトル利用に対して過度に準備されたチャネルスペクトルをもたらす場合がある。
したがって、特定の実施形態では、光トランスポートネットワーク101は、チャネル毎に特定の周波数スロットを指定可能な柔軟なグリッド光ネットワーキングと互換性のあるコンポーネントを利用して良い。例えば、WDM送信の各々の波長のチャネルは、少なくとも1つの周波数スロットを使用して割り当てられて良い。したがって、1つの周波数スロットは、シンボルレートの低い波長チャネルに割り当てられ、一方で、複数の周波数スロットは、シンボルレートの高い波長チャネルに割り当てられて良い。したがって、光トランスポートネットワーク101では、ROADM110は、光ドメインでアッド又はドロップされるべきデータチャネルを運ぶ、WDM、DWDM、又はスーパーチャネル信号の個々の又は複数の波長をアッド又はドロップすることが可能であって良い。特定の実施形態では、ROADM110は、WSS(wavelength selective switch)を含み又はそれに結合されて良い。
図1に示すように、光トランスポートネットワーク101は、ネットワーク101の1又は複数の宛先に、1又は複数のデマルチプレクサ105を有して良い。デマルチプレクサ105は、単一の合成WDM信号をそれぞれの波長において個々のチャネルに分離することによりデマルチプレクサとして動作するシステム、機器又は装置を有して良い。例えば、光トランスポートネットワーク101は、40チャネルDWDM信号を伝送して良い。デマルチプレクサ105は、40個の異なるチャネルに従って、信号、40チャネルDWDM信号を40個の別個の信号に分割して良い。理解されるように、種々の実施形態において、光トランスポートネットワーク101の中で、異なる数のチャネル又はサブキャリアが送信され逆多重化されて良い。
図1で、光トランスポートネットワーク101は、デマルチプレクサ105に結合される受信機112も有して良い。各受信機112は、特定の波長又はチャネルで送信される光信号を受信し、該光信号をそれらが含む情報(データ)を得る(復調する)ために処理して良い。したがって、ネットワーク101は、ネットワークの各チャネル毎に少なくとも1つの受信機112を有して良い。図示のように、受信機112は、送信機102により使用されるボーレートに従い、光信号を復調して良い。幾つかの実施形態では、受信機112は、受信したデータの完全性を調べるために誤り訂正符号を使用する前方誤り訂正(FEC)モジュールに含まれて良く、又はその後段にあって良い。FECモジュールは、さらに、誤り訂正符号に基づき、データの中の特定の誤りを訂正して良い。受信機112にあるFECモジュールは、さらに、上述のように、送信機102においてチャネル毎に定められた固有ボーレートで、データを復調して良い。
図1の光トランスポートネットワーク101のような光ネットワークは、光ファイバを介して光信号の中で情報を伝達するために、変調技術を用いて良い。このような変調方式は、変調技術の他の例の中でも特に、PSK(phase-shift keying)、FSK(frequency-shift keying)、ASK(amplitude-shift keying)、及びQAM(quadrature amplitude modulation)を有して良い。PSKでは、光信号により伝達される情報は、搬送波又は単にキャリアとしても知られる参照信号の位相を変調することにより変換されて良い。情報は、2レベル又はBPSK(binary phase-shift keying)、4レベル又はQPSK(quadrature phase-shift keying)、M−PSK(multi-level phase-shift keying)及びDPSK(differential phase-shift keying)を用いて信号自体の位相を変調することにより変換されて良い。QAMでは、光信号により運ばれる情報は、搬送波の振幅と位相の両方を変調することにより伝達されて良い。PSKは、QAMの一部であると考えられる。ここで、搬送波の振幅は、一定に維持される。
PSK及びQAM信号は、コンステレーション図上で実数軸及び虚数軸を有する複素平面を用いて表現できる。情報を運ぶシンボルを表すコンステレーション図上の点は、図の原点の周りに均一な角度で間隔を空けて位置付けられる。PSK及びQAMを用いて変調されるべきシンボルの数は増大し、したがって伝達できる情報が増加し得る。信号の数は、2の倍数で与えられ得る。追加シンボルが追加されると、それらは、元のシンボルの周りに均一に配置され得る。PSK信号は、コンステレーション図の上に円に配置される。これは、PSK信号が全てのシンボルに対して一定のパワーを有することを意味する。QAM信号は、PSK信号と同じ角度構成だが、異なる振幅構成を有して良い。QAM信号は、複数の円の周りに配置されるシンボルを有して良い。これは、QAM信号が異なるシンボルに対して異なるパワーを有することを意味する。この構成は、シンボルが可能な限り離されるとき、ノイズのリスクを低減し得る。したがって、シンボル数「m」が用いられ、「m−PSK」又は「m−QAM」と表す。
異なるシンボル数を有するPSK及びQAMの例は、コンステレーション図の上で0度及び180度(又は0及びπラジアン)の2つの位相を用いるBPSK(binary PSK又は2-PSK)、又は0度、90度、180度及び270度(又は0、π/2、π及び3π/2ラジアン)の4つの位相を用いるQPSK(quadrature PSK、4-PSK又は4-QAM)を含み得る。このような信号に含まれる位相は、オフセットされて良い。2−PSK及び4−PSK信号の各々は、コンステレーション図の上に配置され得る。特定のm−PSK信号は、DP−QPSK(dual-polarization QPSK)のような技術を用いて更に偏波されて良い。ここで、別個のm−PSK信号は、信号を直交偏波することにより多重化される。また、m−QAM信号は、DP−16−QAM(dual-polarization 16-QAM)のような技術を用いて偏波されて良い。ここで、別個のm−QAM信号は、信号を直交偏波することにより多重化される。
二重偏波技術は、PDM(polarization division multiplexing)とも呼ばれ、情報伝送のためにより大きなビットレートを達成可能にする。PDM伝送は、チャネルに関連付けられた光信号の種々の偏波成分への情報の同時変調を有し、それにより、偏波成分の数に応じて伝送レートを名目上増大する。光信号の偏波は、通常、光信号の振動方向を表し得る。用語「偏波」は、通常、光信号の伝搬方向に垂直な、空間内のある点における光信号の電場ベクトルの先端により追跡される経路を表し得る。
図1の光トランスポートネットワーク101のような光ネットワークでは、管理プレーン、制御プレーン、及びトランスポートプレーン(物理層と呼ばれることが多い)を言及することが通常である。中央管理ホスト(図示しない)は、管理プレーンに存在して良く、制御プレーンのコンポーネントを構成し管理して良い。管理プレーンは、トランスポートプレーン及び制御プレーンのエンティティ(例えば、ネットワーク要素)全てに渡る最終的な制御を有する。一例として、管理プレーンは、1又は複数の処理リソース、データ記憶コンポーネント、等を含む中央処理センタ(例えば、中央管理ホスト)を有して良い。管理プレーンは、制御プレーンの要素と電気的に通信して良く、トランスポートプレーンの1又は複数のネットワーク要素と電気的に通信して良い。管理プレーンは、システム全体の管理機能を実行し、ネットワーク要素、制御プレーン及びトランスポートプレーンの間の調整を提供して良い。例として、管理プレーンは、要素の観点から1又は複数のネットワーク要素を取り扱うEMS(element management system)、ネットワークの観点から多くの装置を取り扱うNMS(network management system)、又はネットワーク全体の動作を取り扱うOSS(operational support system)を有して良い。
本開示の範囲から逸脱することなく、光トランスポートネットワーク101に対し変更、追加又は省略が行われて良い。例えば、光トランスポートネットワーク101は、図1に示すものより多くの又は少ない要素を有して良い。また、上述のように、ポイントツーポイントネットワークとして図示されたが、光トランスポートネットワーク101は、リング、メッシュ、又は階層構造のネットワークトポロジのような光信号を送信する任意の適切なネットワークトポロジを有して良い。
光トランスポートネットワーク101のような光ネットワークは、高容量要求を満たすために、様々な変調フォーマット、データレート、及びチャネル間隔を有するフレキシブル且つ適応型ネットワークとして開発されている。このような光ネットワークの汎用通信機は、容量及び到達距離の利用を向上するために適応型変調を提供し得る。さらに、フレキシブルなグリッド光ネットワークは、利得が変調フォーマット及びチャネル間間隔に大きく依存する光帯域幅のより効率的使用を提供し得る。光ネットワーク容量を更に増大するために、スーパーチャネルが展開されて良い。しかしながら、密な間隔のサブキャリア同士の非線形相互作用は、特定のスーパーチャネルの送信距離を制限し得る。
例えば、スーパーチャネルの中の中央サブキャリアは、端にあるサブキャリアと比べて、より大きなOSNRペナルティを経験し得る。サブキャリアパワープリエンファシス(Subcarrier power pre-emphasis:SPP)技術は、全部のサブキャリアの性能を等化し、及び中央サブキャリアの到達距離を延長するために使用されて良い。さらに、同じ変調フォーマットの複数のスーパーチャネルがネットワークを通じて送信されるとき、全てのサブキャリアの性能は、近隣チャネル及びそれらの間のガードバンド(guard band:GB)により影響を受けることがある。12.5GHzの小さなGBと一緒に最適なSPPを使用すると、DP−16QAM及びDP−QPSKスーパーチャネルにより均一なトラフィックを運ぶ光ネットワークの最大SE到達性能が向上され得る。
しかしながら、ネットワーク容量を最大化するために、異なる変調フォーマット及びデータレートを有するスーパーチャネルが、ネットワーク全体を通じて隣り合って伝搬するだろう。したがって、これらのスーパーチャネルは、互いに異なる非線形(nonlinear:NL)相互作用を経験することがある。したがって、様々な構成のスーパーチャネルの間のNL相互作用の範囲が理解されるべきである。その後、このようなネットワークはそれらの相互利益のために最適化されるべきである。本開示では、従前の研究で実験に基づき確認された物理レイヤ最適化手順(O. Vassilieva et al., “Flexible grid network optimization for maximum spectral efficiency and reach”, Proc. ECOC, Tu.1.4.2, Valencia (2015)を参照)が、1Tb/s、5サブキャリア、DP−16QAM変調スーパーチャネル、及び400Gb/s、4サブキャリア、DP−QPSK変調スーパーチャネルを展開するフレキシブルグリッドネットワークに適用される。共伝搬するスーパーチャネルの間の異なるNL相互作用により、GBはDP−16QAMスーパーチャネルの到達距離Lを効率的に延長できると同時に、GBはDP−QPSKスーパーチャネルでは省略され得ることが示される。また、小さなGBと結合されるSPPは、各々のスーパーチャネルのSE性能及び到達距離Lを最大化し得ることが示される。
本願明細書に更に詳述するように、異なる変調フォーマットを有するスーパーチャネルを運ぶ、光トランスポートネットワーク101のような光ネットワークの最適化のための方法及びシステムが開示される。
図2を参照すると、スーパーチャネルの一実施形態の選択された要素が、5個のサブキャリアを示すスーパーチャネルパワースペクトル200として示される。スーパーチャネルパワースペクトル200のために使用されるデータは実際に測定された値ではないが、図示のパワースペクトルは、実際のスーパーチャネルの特徴であり得る。スーパーチャネルパワースペクトル200では、サブキャリアは、それぞれ、200Gb/s DP−16−QAM信号で変調されても良い。さらに、各々のサブキャリア帯域は、0.15のロールオフ(roll-off)係数を用いるルートレイズドコサイン方法を用いて、送信機において電気的ナイキストパルス成形を施されている。図2に示すように、BSCは、固定スーパーチャネル伝送帯域を表し、Δfは、サブキャリア周波数間隔を表す。特定の実施形態では、サブキャリア周波数間隔Δfは、35GHzであり、それぞれサブキャリアに対応する各々の中心周波数f、f、f、f、fの間で均一であって良い。サブキャリア周波数間隔Δfは、隣接サブキャリア間の有意な線形クロストークを防ぐために十分広くなるよう選択されて良い。各々のサブキャリアの光信号は、光カプラを用いて多重化され、例えば1Tb/sの集約データレートを有する固定伝送帯域BSCの中の単一のスーパーチャネルを形成して良い。留意すべきことに、固定スーパーチャネル伝送帯域BSC、サブキャリア周波数間隔Δf、及び全体集約データレートの異なる値は、スーパーチャネルパワースペクトル200をもたらし得る。図2には、一定パワーレベルPSCも示される。PSCは、5個のサブキャリアの各々と実質的に類似の又は等しいスーパーチャネルのパワーレベルである。したがって、PSCは、サブキャリアの各々の平均パワーレベルに対応し得る。
標準的なDWDMネットワークでは、システム性能は、各々の波長チャネルの波長グリッドへの割り当てに依存し得ることが知られている。したがって、長い波長チャネルは、短い波長チャネルに比べて、少ない非線形機能障害にしか遭わない。スーパーチャネルに基づくWDMシステムの例では、Cバンドのような伝送帯域に渡るサブキャリアエラーレートの波長依存性に加えて、個々のサブキャリアエラーレート(又は受信機におけるOSNR)のスーパーチャネルの中のサブキャリアのスペクトル割り当てへの依存性が、(クロストークのような)非線形機能障害の形で観察されている。線形クロストークは、2つの隣接サブキャリアの間(サブキャリア間)で観察され、隣接サブキャリアの周波数ドメインにおける重なり合いの程度又は範囲に依存し得る。ナイキストパルス成形の使用は、図2に示すように、少なくとも部分的には、周波数ドメインにおいて互いに実質的に重なり合わないナイキスト成形サブキャリア(スペクトルパルス)のほぼ垂直なエッジにより、隣接サブキャリア間の線形クロストークの最小レベルを維持する効果的な手段を提示し得る。非線形クロストークも、観察され、光ファイバ伝送中に非線形相互作用から生じ得る。
非線形相互作用は、特に、XPM(cross-phase modulation)、SPM(self-phase modulation)、及び4波混合、のような現象を含み得る。XPMは、1つのチャネルからの位相情報、振幅情報、又はそれら両者がスーパーチャネルの中の隣接チャネルに変調されるとき、生じ得る。SPMは、屈折率(又は屈折率の強度に対する依存性)の変動が各々のサブキャリアの中の位相シフトを生じるとき、生じ得る。4波混合では、3つの波長が相互作用して、サブキャリアの波長と一致する第4の波長を生成し、影響を受けるサブキャリアにおいてピークパワーの望ましくない変動又は他の種類の信号歪みを生じ得る。さらに、非線形クロストークは、サブキャリア間成分を有し得る。非線形相互作用はファイバ伝送中に生じ、サブキャリア周波数帯域の重なり合いの程度に依存しないので、ナイキストパルス成形は、スーパーチャネルにおける非線形クロストークに伴う特定の問題を解決するには非効果的であり得る。
図3を参照すると、例えば光トランスポートネットワーク101(図1を参照)におけるような光ネットワークにおける制御プレーン機能を実装するネットワーク管理システム300の一実施形態の選択された要素のブロック図が示される。制御プレーンは、ネットワーク知能及び制御のための機能を有して良く、更に詳細に記載するように発見、ルーティング、経路計算、及びシグナリングのためのアプリケーション又はモジュールを含むネットワークサービスを確立する能力をサポートするアプリケーションを有して良い。ネットワーク管理システム300により実行される制御プレーンアプリケーションは、光ネットワークの中でサービスを自動的に確立するために一緒に動作して良い。発見モジュール312は、近隣同士を接続するローカルリンクを発見して良い。ルーティングモジュール310は、データベース304を移植する(populate)間に、光ネットワークノードへローカルリンク情報をブロードキャストして良い。光ネットワークからのサービスに対する要求が受信されると、経路計算エンジン302は、データベース304を用いてネットワーク経路を計算するために呼び出されて良い。このネットワーク経路は、次に、要求されたサービスを確立するために、シグナリングモジュール306に提供されて良い。
図3に示すように、ネットワーク管理システム300は、プロセッサ308と、記憶媒体320とを有する。記憶媒体320は、記憶媒体320へのアクセスを有するプロセッサ308により実行可能な実行可能命令(つまり、実行可能コード)を格納して良い。プロセッサ308は、ネットワーク管理システム300に本願明細書に記載の機能及び動作を実行させる命令を実行して良い。本開示の目的のために、記憶媒体320は、少なくともある時間期間の間、データ及び命令を格納する非一時的コンピュータ可読媒体を含み得る。記憶媒体320は、永続的及び揮発性媒体、固定及び取り外し可能媒体、磁気及び半導体媒体を含み得る。記憶媒体320は、直接アクセス記憶装置(例えば、ハードディスクドライブ又はフロッピーディスク)、順次アクセス記憶装置(例えば、テープディスクドライブ)、CD(compact disk)、RAM(random access memory)、ROM(read-only memory)、CD−ROM、DVD(digital versatile disc)、EEPROM(electrically erasable programmable read-only memory)、及びフラッシュメモリのような記憶媒体、非一時的媒体、又はこれらの種々の組合せを有してもよいが、これらに限定されない。記憶媒体320は、命令、データ、又はそれらの両方を格納するよう動作する。図示のような記憶媒体320は、実行可能コンピュータプログラム、つまり経路計算エンジン302、シグナリングモジュール306、発見モジュール312、及びルーティングモジュール310を表し得る命令のセット又はシーケンスを有する。
図示のように、図3のネットワーク管理システム300には、ネットワークインタフェース314も含まれる。ネットワークインタフェース314は、プロセッサ308とネットワーク330との間のインタフェースとして機能するよう動作する適切なシステム、機器又は装置であって良い。ネットワークインタフェース314は、ネットワーク管理システム300が適切な送信プロトコル又は規格を用いてネットワーク330を介して通信することを可能にして良い。幾つかの実施形態では、ネットワークインタフェース314は、ネットワーク330を介してネットワーク記憶リソースに通信可能に結合されて良い。幾つかの実施形態では、ネットワーク330は、光トランスポートネットワーク101の少なくとも特定の部分を表す。ネットワーク330は、ガルバニック又は電子媒体を用いるネットワークの特定部分を有して良い。特定の実施形態では、ネットワーク330は、インターネットのような公共ネットワークの少なくとも特定部分を有して良い。ネットワーク330は、ハードウェア、ソフトウェア、又はそれらの種々の組合せを用いて実装されて良い。
特定の実施形態では、ネットワーク管理システム300は、人(ユーザ)と相互作用し、光信号送信経路に関するデータを受信するよう構成されて良い。例えば、ネットワーク管理システム300は、ユーザからの光信号送信経路に関するデータの受信を実現するために及びユーザに結果を出力するために、1又は複数の入力装置及び出力装置を有し又はそれらに結合されて良い。1又は複数の入力又は出力装置(図示しない)は、キーボード、マウス、タッチパッド、マイクロフォン、ディスプレイ、タッチスクリーンディスプレイ、オーディオスピーカ、等を有しても良いが、これらに限定されない。代替又は追加で、ネットワーク管理システム300は、例えばネットワーク330を介して、別のコンピューティング装置又はネットワーク要素のような装置から光信号送信経路に関するデータを受信するよう構成されて良い。
図3に示すように、幾つかの実施形態では、発見モジュール312は、光ネットワークにおける光信号送信経路に関するデータを受信するよう構成されて良く、近隣及び近隣同士の間のリンクの発見を担って良い。言い換えると、発見モジュール312は、発見プロトコルに従って発見メッセージを送信して良く、光信号送信経路に関するデータを受信して良い。幾つかの実施形態では、発見モジュール312は、特に、ファイバ種類、ファイバ長、コンポーネントの数及び種類、データレート、データの変調フォーマット、光信号の入力パワー、信号搬送波長(つまり、チャネル)の数、チャネル間隔、トラフィック要求、及びネットワークトポロジ、のような特徴を決定して良いが、これらに限定されない。
図3に示すように、ルーティングモジュール310は、光トランスポートネットワーク101のような光ネットワークの中の種々のノードにリンク接続性情報を伝搬することを担って良い。特定の実施形態では、ルーティングモジュール310は、リンク帯域幅可用性を含み得る、トラフィックエンジニアリングをサポートするためのリソース情報をデータベース304に移植して良い。したがって、データベース304は、ルーティングモジュール310により、光ネットワークのネットワークトポロジを決定するのに有用な情報を移植されて良い。
経路計算エンジン302は、光信号送信経路の送信特性を決定するために、ルーティングモジュール310によりデータベース304に提供される情報を用いるよう構成されて良い。光信号送信経路の送信特性は、特に、色分散(chromatic dispersion:CD)、非線形(nonlinear:NL)効果、偏光モード分散(polarization mode dispersion:PMD)及び偏光依存損失(polarization dependent loss:PDL)のような偏光効果、並びに自然放出雑音(amplified spontaneous emission:ASE)のような送信劣化因子が、光信号送信経路内で光信号にどれ位影響を与え得るかについての見識を提供して良い。光信号送信経路の送信特性を決定するために、経路計算エンジン302は、送信劣化因子の間の相互作用を検討して良い。種々の実施形態では、経路計算エンジン302は、特定の送信劣化因子の値を生成して良い。経路計算エンジン302は、光信号送信経路を記述するデータをデータベース304に更に格納して良い。
図3で、シグナリングモジュール306は、光トランスポートネットワーク101のような光ネットワークにおいてエンド−エンドネットワークサービスの設定、変更、及び取り壊しに関連する機能を提供して良い。例えば、光ネットワーク内のイングレスノードがサービス要求を受信すると、ネットワーク管理システム300は、シグナリングモジュール306を用いて、帯域幅、コスト、等のような異なる基準に従って最適化され得る経路計算エンジン302からのネットワーク経路を要求して良い。所望のネットワーク経路が識別されると、次に、シグナリングモジュール306は、要求されたネットワークサービスを確立するために、ネットワーク経路に沿って個々のノードと通信して良い。異なる実施形態では、シグナリングモジュール306は、ネットワーク経路に沿ってノードへ及びノードから後続の通信を伝搬するために、シグナリングプロトコルを用いて良い。
ネットワーク管理システム300の動作中、各々のサブキャリアのSPPのための光パワー調整量及びGBのスペクトル量及は、変調フォーマット、サブキャリア数、及び共伝搬距離(図12も参照)の様々な組合せについて、予め計算され、データベース304に格納されて良い。次に、例えばネットワークサービスについての顧客要求に応答して、特定スーパーチャネル構成について、ネットワーク経路が光ネットワークの中でプロビジョニングされて良い。次に、特定スーパーチャネル構成のための光変調フォーマットが決定されて良い。最後に、任意の適用可能GBを含むスペクトル帯域幅が、生じる各々の変調フォーマット及び共伝搬方式について、以下に詳述される特定ルールにより決定されて良い。この方法では、各々のスーパーチャネルの到達距離L及びSEは、光ネットワークの中で最適化され得る。
図4を参照すると、汎用通信機404及びROADM402を有する光ネットワーク400の一実施形態の選択された要素が示される。ネットワーク400は、種々の構成のスーパーチャネルの間の非線形性相互作用の範囲がどのように決定されるかを示すための例示的な実施形態の中で示される。図4では、汎用通信機404は、スーパーチャネルに所与の変調フォーマットを適用するようプログラミングされ又は再構成されて良い。図4は、概略図であり、実寸通り又は透視図ではない。図4で、汎用通信機404−1、404−2は、DP−QPSKスーパーチャネルを第1光経路406に沿って送信するとして示される。第1光経路406は、ROADM402−1、402−2、402−3、402−4、402−5、及び402−6に及ぶ。一方で、汎用通信機404−3、404−4は、DP−16QAMスーパーチャネルを第2光経路408に沿って送信するとして示される。第2光経路408は、ROADM402−4、402−5、及び402−6に及ぶ。
汎用通信機404は、より長い距離に渡りDP−QPSKスーパーチャネルを、及びより短い距離に渡りより高いスペクトル効率のDP−16QAMスーパーチャネルを送信するようプログラミングされ得る。DP−QPSKのような、より低次の変調フォーマットは、より高いOSNR耐性を有し、したがって、より長い距離(到達距離L)に渡り伝搬できる。一方で、DP−16QAMのような、より高次の変調フォーマットは、より低いOSNR耐性を有し、したがって、より短い距離を伝搬できる。このようなスーパーチャネルが光ネットワーク400を通じて共伝搬するとき、スーパーチャネルの中の全てのサブキャリアの性能は、共伝搬するチャネルの種類、及び共伝搬するスーパーチャネル間のGBに強く依存し得る。例えば、ROADM402−5において、両方のスーパーチャネルが共伝搬する。異なる変調フォーマットを有するチャネルは、異なるスーパーチャネル間及びスーパーチャネル内非線形性を与え得る。スーパーチャネル間のより大きなGBは、スーパーチャネル間非線形ノイズ及び通過帯域狭窄(passband narrowing:PBN)を効果的に低減できる。一方で、より小さなGBは、利用可能光スペクトルをより効率的に利用することにより、光ネットワーク400を高容量レベルに維持するために、非常に望ましい。他方で、スーパーチャネル内NLは、サブキャリア数に依存して良く、全てのサブキャリアが等しいパワーで出射されるとき、中央サブキャリアに大きなOSNRペナルティを与え得る。
図4では、DP−16QAM光信号は、ROADM402−6で終端する光経路の終わりで、DP−QPSK光信号と共伝搬する。DP−QPSK光信号が既に長距離に渡り伝搬しているとき、DP−16QAM光信号は、ROADM402−4で追加される。このような共伝搬の場合には、非線形性が距離と共に累積するので、DP−16QAM光信号に与えるDP−QPSK光信号の非線形(NL)の影響は大きい。DP−QPSK光信号の中の大きな累積非線形性は、大きな信号ピークパワーとして、したがって、大きなPAPR(peak-to-average-power ratio)変動において、明らかである。これは、一方で、DP−16QAM光信号において位相ノイズの増大を引き起こし得る。したがって、光ネットワーク400に示す共伝搬の例は、より深刻なNL影響を生じ、ガードバンドGB=12.5GHzが示され得る。しかしながら、DP−QPSK光信号とDP−16QAM光信号の両者が、それらの光経路の始めに一緒に共伝搬するとき(両者が同じノードから又は次の数個の近隣ノードから共通光経路に入る)、累積非線形性は低減される。初期共伝搬の本例では、相互干渉が小さいため、ガードバンドGB=0GHzが使用されて良い(以下の図13のステップ1312も参照)。
図5は、光ネットワーク400(図4を参照)に渡り送信される5サブキャリアのスーパーチャネルのような、スーパーチャネルパワースペクトルのプロット500、501を示す。プロット500では、出射パワーが全てのサブキャリアSC1、SC2、SC3、SC4、SC5について等価であるとき、チャネル間非線形ノイズからの比較的大きなOSNRペナルティが、中央サブキャリアSC2、SC3、SC4について観察される。プロット501では、SPP技術が示される。SPP技術では、エッジサブキャリアが中央サブキャリアに比べて低いパワーレベルで出射されるよう、エッジサブキャリアの出射パワーが変更される。プロット500に比べて、プロット501は、SPPが適用されるとき、OSNRペナルティの改善を示す。これは望ましい。プロット501に示すSPP技術は、OSNRペナルティを低減し、全てのサブキャリアの全体性能を等化するよう実験的に検証されている。したがって、GB及びSPPの注意深い最適化が、スーパーチャネル間及びスーパーチャネル内非線形ノイズ、PBNを最小化し、及びSE及び到達距離Lの観点で最適性能を提供できることが断定されている。
図6及び7は、それぞれ、スーパーチャネル送信の2つの例示的な構成を示すスペクトル600及びスペクトル700を示す。本開示では、400Gb/s、4サブキャリア、DP−QPSK変調スーパーチャネル、及び1Tb/s、5サブキャリア、DP−16QAM変調スーパーチャネルの送信は、GBの関数として、それらの相互干渉に関して分析される。次に、GB及びSPPは、最大SE及び到達距離Lの観点で、光ネットワーク性能を最適化するために決定される。この目的のために、スペクトル500及びスペクトル600は、2つの例示的な構成として示される。スペクトル600で、400Gb/s、4サブキャリア、DP−QPSK変調スーパーチャネルは、1Tb/s、5サブキャリア、DP−16QAM変調スーパーチャネルによりスペクトル的に囲まれている。スペクトル700では、1Tb/s、5サブキャリア、DP−16QAM変調スーパーチャネルは、400Gb/s、4サブキャリア、DP−QPSK変調スーパーチャネルによりスペクトル的に囲まれている。DP−16QAM変調スーパーチャネルのための固定スーパーチャネル送信帯(図2のBSCを参照)は、175GHzに設定され、DP−QPSK変調スーパーチャネルのための固定スーパーチャネル送信帯は150GHzに設定される(ITU−T DWDM周波数グリッド仕様に適合するために、スペクトルの片側で、140GHzスーパーチャネル送信帯に未使用GBの5GHを追加したものに対応する)。スーパーチャネルは、0GHzから87.5GHzまでの範囲の追加可変GBにより間隔を開けられて良い。スペクトル600及び700に示される例示的な構成の両者において、各々のサブキャリアは、32Gbaud、0.15ロールオフファクタでルートレイズドコサインフィルタにより成形され35GHzにより間隔を空けられるナイキスト(Nyquist)パルスで変調される。次に、スペクトル600及び700に対応するスーパーチャネルは、それぞれ、分散補償の無いSMFファイバを有する15スパン×60km(合計900km)に渡り送信された。
図6では、SPPを有しないスペクトル600の各々のサブキャリアのファイバ入力パワー(出射パワー)は、DP−16QAMでは0dBm/サブキャリアに、DP−QPSKでは4dBm/サブキャリアに設定された。DP−QPSKのファイバ入力パワーが高いほど、DP−16QAMに比べて高いOSNR及びNL耐性を反映する。したがって、このシナリオでは、DP−QPSKス―パーチャネルの送信到達距離は、DP−16QAMスーパーチャネルより約2.5倍長いと想定でき、ファイバ入力パワー0dBm/サブキャリアで2250km(2.5×900km)である。この条件は、より長く伝搬するDP−QPSKスーパーチャネルに与える、より短く伝搬するDP−16QAMスーパーチャネルのNL影響を推定することを助ける。
図7では、スペクトル700の全てのサブキャリアのファイバ入力パワーは、0dBm/サブキャリアに設定された。これは、より短い到達距離(900km)に渡り共伝搬する間に、DP−16QAMに与えるDP−QPSKのNL影響を評価するために使用された。さらに、各々のスーパーチャネルは、8.5次ガウスフィルタ、及びエッジサブキャリアに与えられるPBN影響を考慮するためにスーパーチャネル送信帯にGBを追加したもの程の広さの3dB帯域幅(BW)を有する4個のROADMノードを通じて送信された。送信線の端で、各々のサブキャリアの性能は、ローカル発振器周波数を特定サブキャリアに合わせることにより及びDSP処理を使用することにより、コヒーレント受信機により評価された。
図8は、光ネットワーク400(図4を参照)で送信されるとき、スペクトル600のビット誤り率(BER)=10−3で受信される、OSNRペナルティを示すプロット800を示す。図9は、光ネットワーク400で送信されるとき、スペクトル700のビット誤り率(BER)=10−3で受信される、OSNRペナルティを示すプロット900を示す。プロット800に示されるスペクトル600の中の4サブキャリアDP−QPSKスーパーチャネルのエッジサブキャリアは、GB=0GHzのとき、プロット800に示されるスペクトル700の中の5サブキャリアDP−16QAMスーパーチャネルのエッジサブキャリアより、PBNにより受ける影響が少ない。さらに、DP−16QAM変調は、スペクトル600のDP−QPSK変調において、無視できるほどのスーパーチャネル間NLペナルティしか生じない。これは、より大きなGBにより、OSNRペナルティの改善を生じない。一方で、スペクトル700のDP−16QAMスーパーチャネルに与えられるDP−QPSKスーパーチャネルのNL影響は、より大きなGBにより低減できる。さらに、大きなスーパーチャネル内NLに起因するスペクトル600及び700の両者における中央及びエッジサブキャリアの間の性能差が見られる。
さらに図8及び9では、それぞれ、SPPがスペクトル600及び700に適用されるときの、サブキャリアの間のパワー変動が、プロット800及び900の各々の差し込み図プロットに示されるスペクトル600及び700に適用される。SPP(点線で示される)により、差し込み図プロットに示されるサブキャリア当たりの最適パワーは、0.8乃至0.9dBのOSNR改善の追加に貢献でき、全てのサブキャリアの性能を等化し得る。したがって、注意深く最適化されたGB及びSPPは、スペクトル600及び700の呂法の構成の到達距離を延長できる。
図10は、スペクトル600及び700について、光ネットワーク400(図4を参照)で送信されるとき、SPPを伴う及びSPPを伴わない到達距離延長Lを%で示すプロット1000を示す。GBを有しない場合でも、スペクトル600で到達距離延長が観察され、より大きなGBはスペクトル700の到達距離延長を25%まで引き上げることができる。プロット1000は、SPPがスペクトル600及び700の両者に有効であり、スペクトル600では21%、スペクトル700では15%の追加だけ更に到達距離を延長できることを実証する。プロット1000は、光ネットワークは容量制約がないと仮定して、所望の最大システム到達距離のための特定GBの選択の指針として使用されて良い。
図11は、スペクトル600及び700について、光ネットワーク400(図4を参照)の中で送信されるとき、SPPを伴う及び伴わない、GBに対するSE−L改善のプロット1100を示し、容量制約される光ネットワークが最大SE−L性能のためにどのように最適化され得るかを示す。プロット1100では、SEはSE=2×M×N×SR/Δfとして定められ、ここで2は偏波数、Mはコンステレーションの中のシンボル当たりのビット数、Nはスーパーチャネルの中のサブキャリア数、SRはシンボルレート、ΔfはGBを含むスーパーチャネルの送信帯である。各々のスーパーチャネルのGB及びBW Δfの定義は、それぞれ図6及び7のスペクトル600及び700に示される。
図11では、プロット1100は、SPPが単独でスペクトル600の場合に13%だけSE−L積を向上できること、一方で、SPPは25GHz GBとの組み合わせで、スペクトル700の場合に最大SE−L性能を13%だけ向上できることを実証する。したがって、プロット1100は、GB単独の適用がスペクトル600及び700の両方の場合に光ネットワークを最適化するためには十分でないことを示す。しかしながら、DP−16QAM及びDP−QPSKスーパーチャネルの混合を展開する光ネットワーク全体を考慮すると、SPP及びGB=12.5GHzの組合せは、各々のスーパーチャネルの最大SE−L性能を提供し得る(12.5GHz GBにおける垂直の黒い点線として示す)。したがって、SPP及びGB=12.5GHzの組合せは、スペクトル600及び700の両方に相互利益を提供し得る。
図6〜11に関して上述したように、1Tb/s 5sc−DP−16QAM及び400Gb/s 4sc−DP−QPSKスーパーチャネルの混合を展開する動的且つフレキシブルグリッド光ネットワークの最適化は、数値的に詳しく調べられる。SPPとGBの組合せは、最大到達距離L又は最大SE−L積のためにネットワークを最適化するために用いられる。共伝搬するDP−QPSKスーパーチャネルからのより小さな影響のお陰で、GBはDP−16QAMスーパーチャネルの到達距離を25%だけ延長できることが示される。GBはDP−16QAMスーパーチャネルに囲まれるDP−QPSKスーパーチャネルでは省略されて良いことも示される。SPPは、両方の種類のスーパーチャネルの場合に、到達距離を更に延長できることが示される。さらに、GB単独の利用は最大SE−L積を達成するには十分でない場合があり、最大SE−L積は、両方の種類のスーパーチャネルの相互利益のためにSE−L積を最大化し得る、SPPと12.5GHz(1周波数スロットのみ)の小さなGBとの組合せを用いて達成され得ることも実証される。
図12を参照すると、本願明細書で記載されるような、異なる変調フォーマットのスーパーチャネルの送信を最適化する方法1200の一実施形態の選択された要素のフローチャートが示される。方法1200は、上述のように光トランスポートネットワーク101の中の種々のコンポーネントと通信し得るネットワーク管理システム300により光トランスポートネットワーク101を用いて実行されて良い。留意すべきことに、方法1200で記載される特定の動作は、異なる実施形態では任意であっても良く或いは再配置されても良い。方法1200は、データベース304のようなデータベースにインデックス付けされて格納され及び後に方法1300で読み出され得る基準値を生成するために、方法1300(図13を参照)の前に実行され得る事前計算動作を示す。
方法1200は、ステップ1202で、異なるスーパーチャネルのガードバンド(GB)値をそれぞれ事前に計算することにより開始し、GB値をデータベースに格納して良い。ステップ1204で、各々のサブキャリアに対応するパワー値セットが、異なるスーパーチャネルについてそれぞれ事前に計算される。パワー値セットはデータベースに格納される。GB値及びパワー値セットは、インデックス付け基準の中でも特に、異なる変調フォーマット、異なるサブキャリア数、及び距離Yの異なる値について、データベースの中でインデックス付けされて良い。この方法では、例えば、ネットワーク管理システム300は、異なる変調フォーマットを有する別のスーパーチャネルと共に光経路に渡り共伝搬するスーパーチャネルについての任意の特定の要求に対応するGB値及びパワー値セットを、光経路及び両方のスーパーチャネルの特性に基づき、読み出して良い。
図13を参照すると、本願明細書で記載されるような、異なる変調フォーマットのスーパーチャネルの送信を最適化する方法1300の一実施形態の選択された要素のフローチャートが示される。方法1300は、上述のように光トランスポートネットワーク101の中の種々のコンポーネントと通信し得るネットワーク管理システム300により光トランスポートネットワーク101を用いて実行されて良い。留意すべきことに、方法1300で記載される特定の動作は、異なる実施形態では任意であっても良く或いは再配置されても良い。方法1300は、上述の方法1200(図12を参照)で参照されたデータベースから特定の事前計算された値を読み出して良い。
方法1300は、ステップ1302で、光ネットワークに渡る第1光経路及び第2光経路を識別することにより開始して良い。ここで、第1変調フォーマットの第1スーパーチャネルは第1光経路に渡り送信され、第2変調フォーマットの第2スーパーチャネルは第2光経路に渡り送信され、第1光経路及び第2光経路は少なくとも2つのネットワークノードを共有し、第1光経路及び第2光経路は距離Yに渡り共通光経路である。ステップ1302で、第1変調フォーマットは、より高次の変調フォーマットであって良い第2変調フォーマットより大きな伝搬距離を有する、より低次の変調フォーマットであって良い。ステップ1304で、ガードバンド(GB)値は、共通光経路に渡り第2スーパ―チャネルと共伝搬している第1スーパーチャネルについて、データベースから読み出される。ステップ1306で、第1光パワー値セットは第1スーパーチャネルのためにデータベースから読み出され、第2光パワー値セットは第2スーパーチャネルのためにデータベースから読み出される。ここで、第1光パワー値セット及び第2光パワー値セットは、スーパーチャネルパワープリエンファシス(SPP)を実装するために、それぞれ第1スーパーチャネル及び第2スーパーチャネルの中の各々のサブキャリアの光パワーを指定する。ステップ1308で、第1光経路に渡る第1スーパーチャネルの第1出射パワーは、第1パワー値セットに従い構成される。第1出射パワーは、汎用通信機のような、第1経路の適切な送信機において構成されて良い。ステップ1310で、第2光経路に渡る第2スーパーチャネルの第2出射パワーは、第2パワー値セットに従い構成される。第2出射パワーは、汎用通信機のような、第2経路の適切な送信機において構成されて良い。ステップ1312で、第1経路及び第2光経路のための所定ルールに基づき、ゼロGB又はGB値が、第1スーパーチャネルと第2スーパーチャネルとの間に、共通光経路の距離Yに渡り適用される。
特に、ステップ1312の所定ルールは、GBが第1スーパーチャネルと第2スーパーチャネルとの間で使用されるか否かを定めて良い。第1光経路及び第2光経路が、第1光経路及び第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬するとき、所定ルールは、距離Yが閾距離より小さい場合に、第1スーパーチャネルと第2スーパーチャネルとの間のGBをゼロに設定し、距離Yが閾距離より大きい又は等しい場合に、GBをGB値に設定する、ことを指定して良い。種々の実施形態において、閾距離は、他の例示的な値の中でも特に、900km、1000km、又は1100km、又は1500km、又は500km、又は750km、であって良い。第1光経路及び第2光経路が、第1光経路及び第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬せず、第2光経路が距離Yに及び、第1光経路が距離Yより大きい距離Xに及ぶとき、所定ルールは、第2光経路が第1光経路の始めから距離Z未満で開始し、距離Zは(X−Y)/2により与えられる場合、第1スーパーチャネルと第2スーパーチャネルとの間のGBをゼロに設定し、第2光経路が第1光経路の始めから距離Z以上から開始する場合、GBをGB値に設定する、ことを更に指定して良い。
本願明細書に開示のように、異なる変調フォーマットを有するスーパーチャネルの送信を最適化する方法及びシステムは、スーパーチャネル間のガードバンド(GB)値と、サブキャリアパワープリエンファシス(SPP)を実装するためにサブキャリアのパワー値セットと、を予め計算するステップを有して良い。光経路に対する要求がネットワーク管理システムにおいて受信されると、GBを含む各々のスーパーチャネルのスペクトル割り当ては、異なる変調フォーマットを有するスーパーチャネルの共伝搬に基づき、予め指定されたルールに従い決定される。
本願明細書の主題は1又は複数の例示的な実施形態に関連して記載されたが、これは、いずれの請求項も前述の特定の形式に限定されるものではない。反対に、本開示を対象とするいずれの請求項も、このような代替、変更、及び等価物を、本開示の精神及び範囲の中に含まれるものとして包含するものとする。
以上の実施形態に加え、更に以下の付記を開示する。
(付記1) 異なる変調フォーマットを有するスーパーチャネルを送信する方法であって、前記方法は、
光ネットワークに渡る第1光経路と第2光経路とを識別するステップであって、第1変調フォーマットの第1スーパーチャネルは前記第1光経路に渡り送信され、第2変調フォーマットの第2スーパーチャネルは前記第2光経路に渡り送信され、前記第1光経路及び前記第2光経路は、少なくとも2つのネットワークノードを共有し、前記第1光経路及び前記第2光経路は、距離Yに渡り共通光経路である、ステップと、
前記共通光経路に渡り前記第2スーパーチャネルと共伝搬する前記第1スーパーチャネルのために、データベースからガードバンド(GB)値を読み出すステップと、
前記データベースから前記第1スーパーチャネルのために第1光パワー値セットを及び前記第2スーパーチャネルのために第2光パワー値セットを読み出すステップであって、前記第1光パワー値セット及び前記前記第2光パワー値セットは、スーパーチャネルパワープリエンファシス(SPP)を実装するために、それぞれ前記第1スーパーチャネル及び前記第2スーパーチャネルの中の各々のサブキャリアの光パワーを指定する、ステップと、
前記第1光パワー値セットに従い、前記第1光経路に渡る前記第1スーパーチャネルの第1出射パワーを構成するステップと、
前記第2光パワー値セットに従い、前記第2光経路に渡る前記第2スーパーチャネルの第2出射パワーを構成するステップと、
前記第1光経路及び前記第2光経路のための所定ルールに基づき、前記共通光経路の前記距離Yに渡り前記第1スーパーチャネルと前記第2スーパーチャネルとの間にゼロGB又は前記GB値を適用するステップと、
を有する方法。
(付記2) 異なる種類のスーパーチャネルについて、それぞれ、前記GB値を予め計算し、前記GB値を前記データベースに格納するステップと、
異なるスーパーチャネルについて、それぞれ、各々のサブキャリアに対応するパワー値セットを予め計算し、前記パワー値セットを前記データベースに格納するステップと、
を更に有し、
前記GB値及び前記パワー値セットは、異なる変調フォーマット、異なるサブキャリア数、及び前記距離Yの異なる値について、前記データベースの中でインデックス付けされる、
付記1に記載の方法。
(付記3) 前記第1変調フォーマットは、より高次の変調フォーマットである前記第2変調フォーマットより大きな伝搬距離を有する、より低次の変調フォーマットである、付記1に記載の方法。
(付記4) 前記第1変調フォーマットは、QPSKフォーマットであり、前記第2変調フォーマットはm−QAMフォーマットであり、mは4より大きい、付記3に記載の方法。
(付記5) 前記第1変調フォーマット及び前記第2変調フォーマットは、二偏波(DP)変調フォーマットである、付記3に記載の方法。
(付記6) 前記所定ルールは、
前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬するとき、
前記距離Yが閾距離より小さい場合に、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
前記距離Yが前記閾距離より大きい又は等しい場合に、前記GBを前記GB値に設定する、
ことを指定する、付記1に記載の方法。
(付記7) 前記閾距離は900kmである、付記6に記載の方法。
(付記8) 前記所定ルールは、
前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬せず、前記第2光経路が前記距離Yに及び、前記第1光経路が前記距離Yより大きい距離Xに及ぶとき、
前記第2光経路が前記第1光経路の始めから距離Z未満で開始し、前記距離Zは(X−Y)/2により与えられる場合、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
前記第2光経路が前記第1光経路の始めから前記距離Z以上から開始する場合、前記GBを前記GB値に設定する、
ことを更に指定する、付記6に記載の方法。
(付記9) 異なる変調フォーマットを有するスーパーチャネルの送信を可能にするネットワーク管理システムであって、前記ネットワーク管理システムは命令を格納する非一時的コンピュータ可読記憶媒体にアクセスするよう構成されるプロセッサを有し、前記命令は、該プロセッサにより実行可能であり、
光ネットワークに渡る第1光経路と第2光経路とを識別し、第1変調フォーマットの第1スーパーチャネルは前記第1光経路に渡り送信され、第2変調フォーマットの第2スーパーチャネルは前記第2光経路に渡り送信され、前記第1光経路及び前記第2光経路は、少なくとも2つのネットワークノードを共有し、前記第1光経路及び前記第2光経路は、距離Yに渡り共通光経路であり、
前記共通光経路に渡り前記第2スーパーチャネルと共伝搬する前記第1スーパーチャネルのために、データベースからガードバンド(GB)値を読み出し、
前記データベースから前記第1スーパーチャネルのために第1光パワー値セットを及び前記第2スーパーチャネルのために第2光パワー値セットを読み出し、前記第1光パワー値セット及び前記前記第2光パワー値セットは、スーパーチャネルパワープリエンファシス(SPP)を実装するために、それぞれ前記第1スーパーチャネル及び前記第2スーパーチャネルの中の各々のサブキャリアの光パワーを指定し、
前記第1光パワー値セットに従い、前記第1光経路に渡る前記第1スーパーチャネルの第1出射パワーを構成し、
前記第2光パワー値セットに従い、前記第2光経路に渡る前記第2スーパーチャネルの第2出射パワーを構成し、
前記第1光経路及び前記第2光経路のための所定ルールに基づき、前記共通光経路の前記距離Yに渡り前記第1スーパーチャネルと前記第2スーパーチャネルとの間にゼロGB又は前記GB値を適用する、
ためのものである、ネットワーク管理システム。
(付記10) 前記データベースと、命令と、を更に有し、該命令は、
異なる種類のスーパーチャネルについて、それぞれ、前記GB値を予め計算し、前記GB値を前記データベースに格納し、
異なるスーパーチャネルについて、それぞれ、各々のサブキャリアに対応するパワー値セットを予め計算し、前記パワー値セットを前記データベースに格納する、
ためのものであり、
前記GB値及び前記パワー値セットは、異なる変調フォーマット、異なるサブキャリア数、及び前記距離Yの異なる値について、前記データベースの中でインデックス付けされる、
付記9に記載のネットワーク管理システム。
(付記11) 前記第1変調フォーマットは、より高次の変調フォーマットである前記第2変調フォーマットより大きな伝搬距離を有する、より低次の変調フォーマットである、付記9に記載のネットワーク管理システム。
(付記12) 前記第1変調フォーマットは、QPSKフォーマットであり、前記第2変調フォーマットはm−QAMフォーマットであり、mは4より大きい、付記11に記載のネットワーク管理システム。
(付記13) 前記第1変調フォーマット及び前記第2変調フォーマットは、二偏波(DP)変調フォーマットである、付記11に記載のネットワーク管理システム。
(付記14) 前記所定ルールは、
前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬するとき、
前記距離Yが閾距離より小さい場合に、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
前記距離Yが前記閾距離より大きい又は等しい場合に、前記GBを前記GB値に設定する、
ことを指定する、付記9に記載のネットワーク管理システム。
(付記15) 前記閾距離は900kmである、付記14に記載のネットワーク管理システム。
(付記16) 前記所定ルールは、
前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬せず、前記第2光経路が前記距離Yに及び、前記第1光経路が前記距離Yより大きい距離Xに及ぶとき、
前記第2光経路が前記第1光経路の始めから距離Z未満で開始し、前記距離Zは(X−Y)/2により与えられる場合、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
前記第2光経路が前記第1光経路の始めから前記距離Z以上から開始する場合、前記GBを前記GB値に設定する、
ことを更に指定する、付記14に記載のネットワーク管理システム。
101 光トランスポートネットワーク
102 送信機(Tx)
104 マルチプレクサ(MUX)
105 デマルチプレクサ(DEMUX)
106 光ファイバ
108 光増幅器
110 OADM
112 受信機(Rx)
300 ネットワーク管理システム
302 経路計算エンジン
304 データベース
306 シグナリングモジュール
308 プロセッサ
310 ルーティングモジュール
312 発見モジュール
314 ネットワークインタフェース
320 記憶媒体
330 ネットワーク
400 光ネットワーク

Claims (16)

  1. 異なる変調フォーマットを有するスーパーチャネルを送信する方法であって、前記方法は、
    光ネットワークに渡る第1光経路と第2光経路とを識別するステップであって、第1変調フォーマットの第1スーパーチャネルは前記第1光経路に渡り送信され、第2変調フォーマットの第2スーパーチャネルは前記第2光経路に渡り送信され、記第1光経路及び前記第2光経路は、距離Yに渡り共通光経路を含む、ステップと、
    前記共通光経路に渡り前記第2スーパーチャネルと共伝搬する前記第1スーパーチャネルのために、データベースからガードバンド(GB)値を読み出すステップと、
    前記データベースから前記第1スーパーチャネルのために第1光パワー値セットを及び前記第2スーパーチャネルのために第2光パワー値セットを読み出すステップであって、前記第1光パワー値セット及び前記2光パワー値セットは、スーパーチャネルパワープリエンファシス(SPP)を実装するために、それぞれ前記第1スーパーチャネル及び前記第2スーパーチャネルの中の各々のサブキャリアの光パワーを指定する、ステップと、
    前記第1光パワー値セットに従い、前記第1光経路に渡る前記第1スーパーチャネルの第1出射パワーを構成するステップと、
    前記第2光パワー値セットに従い、前記第2光経路に渡る前記第2スーパーチャネルの第2出射パワーを構成するステップと、
    前記第1光経路及び前記第2光経路のための所定ルールに基づき、前記共通光経路の前記距離Yに渡り前記第1スーパーチャネルと前記第2スーパーチャネルとの間にゼロGB又は前記GB値を適用するステップと、
    を有する方法。
  2. 異なる種類のスーパーチャネルについて、それぞれ、前記GB値を予め計算し、前記GB値を前記データベースに格納するステップと、
    異なるスーパーチャネルについて、それぞれ、各々のサブキャリアに対応するパワー値セットを予め計算し、前記パワー値セットを前記データベースに格納するステップと、
    を更に有し、
    前記GB値及び前記パワー値セットは、異なる変調フォーマット、異なるサブキャリア数、及び前記距離Yの異なる値について、前記データベースの中でインデックス付けされる、
    請求項1に記載の方法。
  3. 前記第1変調フォーマットは、より高次の変調フォーマットである前記第2変調フォーマットより大きな伝搬距離を有する、より低次の変調フォーマットである、請求項1に記載の方法。
  4. 前記第1変調フォーマットは、QPSKフォーマットであり、前記第2変調フォーマットはm−QAMフォーマットであり、mは4より大きい、請求項3に記載の方法。
  5. 前記第1変調フォーマット及び前記第2変調フォーマットは、二偏波(DP)変調フォーマットである、請求項3に記載の方法。
  6. 前記所定ルールは、
    前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬するとき、
    前記距離Yが閾距離より小さい場合に、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
    前記距離Yが前記閾距離より大きい又は等しい場合に、前記GBを前記GB値に設定する、
    ことを指定する、請求項1に記載の方法。
  7. 前記閾距離は900kmである、請求項6に記載の方法。
  8. 前記所定ルールは、
    前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬せず、前記第2光経路が前記距離Yに及び、前記第1光経路が前記距離Yより大きい距離Xに及ぶとき、
    前記第2光経路が前記第1光経路の始めから距離Z未満で開始し、前記距離Zは(X−Y)/2により与えられる場合、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
    前記第2光経路が前記第1光経路の始めから前記距離Z以上から開始する場合、前記GBを前記GB値に設定する、
    ことを更に指定する、請求項6に記載の方法。
  9. 異なる変調フォーマットを有するスーパーチャネルの送信を可能にするネットワーク管理システムであって、前記ネットワーク管理システムは命令を格納する非一時的コンピュータ可読記憶媒体にアクセスするよう構成されるプロセッサを有し、前記命令は、該プロセッサにより実行可能であり、
    光ネットワークに渡る第1光経路と第2光経路とを識別し、第1変調フォーマットの第1スーパーチャネルは前記第1光経路に渡り送信され、第2変調フォーマットの第2スーパーチャネルは前記第2光経路に渡り送信され、記第1光経路及び前記第2光経路は、距離Yに渡り共通光経路を含み
    前記共通光経路に渡り前記第2スーパーチャネルと共伝搬する前記第1スーパーチャネルのために、データベースからガードバンド(GB)値を読み出し、
    前記データベースから前記第1スーパーチャネルのために第1光パワー値セットを及び前記第2スーパーチャネルのために第2光パワー値セットを読み出し、前記第1光パワー値セット及び前記2光パワー値セットは、スーパーチャネルパワープリエンファシス(SPP)を実装するために、それぞれ前記第1スーパーチャネル及び前記第2スーパーチャネルの中の各々のサブキャリアの光パワーを指定し、
    前記第1光パワー値セットに従い、前記第1光経路に渡る前記第1スーパーチャネルの第1出射パワーを構成し、
    前記第2光パワー値セットに従い、前記第2光経路に渡る前記第2スーパーチャネルの第2出射パワーを構成し、
    前記第1光経路及び前記第2光経路のための所定ルールに基づき、前記共通光経路の前記距離Yに渡り前記第1スーパーチャネルと前記第2スーパーチャネルとの間にゼロGB又は前記GB値を適用する、
    ためのものである、ネットワーク管理システム。
  10. 前記データベースと、命令と、を更に有し、該命令は、
    異なる種類のスーパーチャネルについて、それぞれ、前記GB値を予め計算し、前記GB値を前記データベースに格納し、
    異なるスーパーチャネルについて、それぞれ、各々のサブキャリアに対応するパワー値セットを予め計算し、前記パワー値セットを前記データベースに格納する、
    ためのものであり、
    前記GB値及び前記パワー値セットは、異なる変調フォーマット、異なるサブキャリア数、及び前記距離Yの異なる値について、前記データベースの中でインデックス付けされる、
    請求項9に記載のネットワーク管理システム。
  11. 前記第1変調フォーマットは、より高次の変調フォーマットである前記第2変調フォーマットより大きな伝搬距離を有する、より低次の変調フォーマットである、請求項9に記載のネットワーク管理システム。
  12. 前記第1変調フォーマットは、QPSKフォーマットであり、前記第2変調フォーマットはm−QAMフォーマットであり、mは4より大きい、請求項11に記載のネットワーク管理システム。
  13. 前記第1変調フォーマット及び前記第2変調フォーマットは、二偏波(DP)変調フォーマットである、請求項11に記載のネットワーク管理システム。
  14. 前記所定ルールは、
    前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬するとき、
    前記距離Yが閾距離より小さい場合に、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
    前記距離Yが前記閾距離より大きい又は等しい場合に、前記GBを前記GB値に設定する、
    ことを指定する、請求項9に記載のネットワーク管理システム。
  15. 前記閾距離は900kmである、請求項14に記載のネットワーク管理システム。
  16. 前記所定ルールは、
    前記第1光経路及び前記第2光経路が、前記第1光経路及び前記第2光経路のうちの少なくとも1つの始め又は終わりで共伝搬せず、前記第2光経路が前記距離Yに及び、前記第1光経路が前記距離Yより大きい距離Xに及ぶとき、
    前記第2光経路が前記第1光経路の始めから距離Z未満で開始し、前記距離Zは(X−Y)/2により与えられる場合、前記第1スーパーチャネルと前記第2スーパーチャネルとの間のGBをゼロに設定し、
    前記第2光経路が前記第1光経路の始めから前記距離Z以上から開始する場合、前記GBを前記GB値に設定する、
    ことを更に指定する、請求項14に記載のネットワーク管理システム。
JP2017101817A 2016-05-24 2017-05-23 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化 Active JP6932994B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662340696P 2016-05-24 2016-05-24
US62/340696 2016-05-24
US15/388,849 US9967054B2 (en) 2016-05-24 2016-12-22 Optimization of networks carrying superchannels with different modulation formats
US15/388849 2016-12-22

Publications (2)

Publication Number Publication Date
JP2017212736A JP2017212736A (ja) 2017-11-30
JP6932994B2 true JP6932994B2 (ja) 2021-09-08

Family

ID=60418326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101817A Active JP6932994B2 (ja) 2016-05-24 2017-05-23 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化

Country Status (2)

Country Link
US (1) US9967054B2 (ja)
JP (1) JP6932994B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123100B2 (en) * 2014-02-28 2018-11-06 Japan Science And Technology Agency Optical network
JP6962336B2 (ja) * 2016-12-28 2021-11-05 日本電気株式会社 受信装置、送信装置、光通信システムおよび光通信方法
US20210075536A1 (en) * 2019-09-05 2021-03-11 Infinera Corporation Dynamically switching queueing schemes for network switches
CN113067661B (zh) 2021-03-26 2021-12-28 苏州大学 光通道性能保证下的osnr感知频谱分配方法及系统
CN115173958B (zh) * 2022-06-30 2024-03-22 桂林电子科技大学 基于光ofdm实现水下多媒体数据传输不等错误保护的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132762A1 (ja) * 2011-03-28 2012-10-04 株式会社村田製作所 ガラスセラミック基板およびその製造方法
US8644704B2 (en) * 2011-04-21 2014-02-04 Fujitsu Limited Method and system for an adaptive channel grid of an optical network
US9461749B2 (en) * 2011-06-30 2016-10-04 Xieon Networks S.A.R.L. Optical line terminal transmitting device for next generation optical access networks
US8559829B2 (en) * 2011-07-05 2013-10-15 Fujitsu Limited Flexible multi-band multi-traffic optical OFDM network
US8923698B2 (en) * 2012-06-18 2014-12-30 Verizon Patent And Licensing Inc. Spectrum efficient optical transport system with superchannels
US9312914B2 (en) * 2013-04-22 2016-04-12 Fujitsu Limited Crosstalk reduction in optical networks using variable subcarrier power levels
US9197322B2 (en) * 2014-02-05 2015-11-24 Ciena Corporation Digital optical spectral shaping
US9509434B2 (en) * 2014-05-19 2016-11-29 Ciena Corporation Margin-based optimization systems and methods in optical networks by intentionally reducing margin
US9680596B2 (en) * 2014-10-13 2017-06-13 Fujitsu Limited Span-wise spectrum management system and method
US9515733B2 (en) * 2015-03-05 2016-12-06 Fujitsu Limited Mitigation of spectral offset in an optical filter
US9654223B2 (en) * 2015-04-23 2017-05-16 Fujitsu Limited Superchannel power pre-emphasis based on transmission criteria

Also Published As

Publication number Publication date
US9967054B2 (en) 2018-05-08
JP2017212736A (ja) 2017-11-30
US20170346594A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6878997B2 (ja) 光通信システムのための変調フォーマットのコンステレーションシェーピング
JP7073884B2 (ja) 不均等サブキャリア間隔を用いるマルチキャリアチャネルの到達距離拡張
JP7287087B2 (ja) 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大
JP6825246B2 (ja) 周期的光フィルタリングによる光チャネル監視のために変調周波数を用いる方法及びシステム
US9312914B2 (en) Crosstalk reduction in optical networks using variable subcarrier power levels
US9100137B2 (en) Crosstalk reduction in optical networks using variable subcarrier spectral allocation
JP6638539B2 (ja) 伝送基準に基づくスーパーチャネルパワーフリープリエンファシス
US9768878B2 (en) Methods and systems for superchannel power pre-emphasis
JP6932994B2 (ja) 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化
JP6930118B2 (ja) 混合ボーレートサブキャリアを有するスーパーチャネル
US10461881B2 (en) Method and system for assigning modulation format in optical networks
US10511388B1 (en) Reducing variance in reach of WDM channels in an optical network
US10355779B2 (en) Virtual optical network service with guaranteed availability
JP7031245B2 (ja) 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和
US20180234199A1 (en) Optical transport network with improved signal loading
US9912435B2 (en) Nonlinear penalty estimation using spectral inversion in optical transport networks
JP2017062473A (ja) ブラッグ反射導波路を用いる高調波生成及び位相感応型増幅
JP7200686B2 (ja) キャリア抑圧マルチレベルパルス振幅変調
US10038496B1 (en) Method for determining optical network utilization efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6932994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150