JP7287087B2 - 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大 - Google Patents

変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大 Download PDF

Info

Publication number
JP7287087B2
JP7287087B2 JP2019081635A JP2019081635A JP7287087B2 JP 7287087 B2 JP7287087 B2 JP 7287087B2 JP 2019081635 A JP2019081635 A JP 2019081635A JP 2019081635 A JP2019081635 A JP 2019081635A JP 7287087 B2 JP7287087 B2 JP 7287087B2
Authority
JP
Japan
Prior art keywords
optical
optical channel
channel
symbol rate
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019081635A
Other languages
English (en)
Other versions
JP2019193266A (ja
Inventor
アイ ヴァシリーヴァ・オルガ
キム・インウン
公 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2019193266A publication Critical patent/JP2019193266A/ja
Application granted granted Critical
Publication of JP7287087B2 publication Critical patent/JP7287087B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

本開示は、一般に、光通信システムに関し、より詳細には、変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大に関する。
電気通信システム、ケーブルテレビジョンシステム、及びデータ通信ネットワークは、光ネットワークを用いて、遠隔地点間で大量の情報を迅速に伝達する。光ネットワークにおいて、情報は、光ファイバを介して光信号の形で伝達される。光ネットワークはまた、増幅器、分散補償器、マルチプレクサ/デマルチプレクサフィルタ、波長選択スイッチ、カプラ等といった、ネットワーク内で様々な動作を実行する様々なネットワークノードを含み得る。光チャネルの伝送到達距離は、より高次の変調方式の使用により制限され得る。
光スーパーチャネルは、チャネルごとに400Gビット/秒及び1Tビット/秒のデータレートで信号を伝送するための新たなソリューションであり、将来におけるより高いデータレートも期待できる。一般的なスーパーチャネルは、単一波長チャネルを形成するように周波数多重されるサブキャリアのセットを含む。次いで、スーパーチャネルは、ネットワークエンドポイントにわたる単一チャネルとして、光ネットワークを介して伝送され得る。スーパーチャネル内のサブキャリアは、高いスペクトル効率を実現するために密にパックされる。スーパーチャネルの伝送到達距離は、様々なファクタにより制限され得る。
光信号の伝送のための別の技術は、マルチキャリアチャネル(サブキャリア多重(SCM)又はナイキスト周波数分割多重(Nyquist-FDM)とも呼ばれる)を使用することである。マルチキャリアチャネルは、光チャネルであって、所与の数のサブキャリアへのこの光チャネルの分割を伴う、光チャネルについて送信機において生成される。スーパーチャネルと同様に、マルチキャリアチャネルの伝送到達距離も、ノイズを不必要に増大させる所定の非線形効果等の様々なファクタにより制限され得る。
一態様において、適応的光ネットワークにおいて到達距離を拡大するためのシステムが開示される。このシステムは、複数の光トランスポンダと、ネットワーク管理システムと、を含んでよい。ネットワーク管理システムは、記憶媒体と、記憶媒体にアクセスすることができるプロセッサと、を含む。記憶媒体は、プロセッサにより実行可能である、所与のターゲット距離及び所与の最大データレートを有する光チャネルについての変調方式を選択する命令であって、選択された変調方式は、所与のターゲット距離及び所与の最大データレートを有する光チャネルに適している、適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、命令と、光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、光チャネルについてのシンボルレートを決定する命令と、決定されたシンボルレートに対応する、光チャネルについてのサブキャリア数を決定する命令と、光チャネルについてサブキャリア多重を有効化する命令であって、サブキャリア多重を有効化することは、選択された変調方式及び決定されたサブキャリア数を使用して、光チャネルにおいてトラフィックを送信及び/又は受信する命令を、複数の光トランスポンダのうちの1つ以上の光トランスポンダに送信することを含む、命令と、を記憶してよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートを決定することは、光チャネルにおいてトラフィックが運ばれる光ファイバの分散係数に応じて、シンボルレートを算出することを含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートを決定することは、光チャネルにおいてトラフィックが運ばれるスパンの数と、光チャネルにおいてトラフィックが運ばれる1つ以上のスパンの各々の長さと、のうちの1つ以上に応じて、シンボルレートを算出することを含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートを決定することは、シンボルレートを、シンボルレートが、光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性にマッピングされているデータ構造から、取得することを含んでよい。伝送媒体の1つ以上の特性は、光チャネルにおいてトラフィックが運ばれる光ファイバの分散係数と、光チャネルにおいてトラフィックが運ばれるスパンの数と、光チャネルにおいてトラフィックが運ばれる1つ以上のスパンの各々の長さと、のうちの1つ以上を含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルにおいてトラフィックが運ばれる伝送媒体は、複数のスパンを含んでよく、複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含む。シンボルレートを決定することは、2つ以上の光ファイバタイプの各々の光ファイバを含む、伝送媒体のそれぞれの部分を決定することと、2つ以上の光ファイバタイプの各々の光ファイバを含む、伝送媒体のそれぞれの部分に応じて、シンボルレートを算出することと、を含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルにおいてトラフィックが運ばれる伝送媒体は、複数のスパンを含んでよく、複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含む。シンボルレートを決定することは、第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することと、シンボルレートを、シンボルレートが、第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長とのそれぞれの比にマッピングされているデータ構造から、取得することと、を含んでよい。
本開示の実施形態のうちの任意の実施形態において、記憶媒体は、プロセッサにより実行可能である、光チャネルについてのルーティング情報をデータ構造から取得する命令と、ルーティング情報に応じて、所与のターゲット距離と、所与の最大データレートと、光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性と、のうちの1つ以上を決定する命令と、をさらに記憶してよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートは、光チャネルについての所望される又は期待される光雑音対信号比マージンにさらに応じて決定されてよい。
本開示の実施形態のうちの任意の実施形態において、記憶媒体は、プロセッサにより実行可能である、適応的光ネットワークにおけるトポロジ変化を検出する命令をさらに記憶してよい。記憶媒体は、プロセッサにより実行可能である、検出されたトポロジ変化に応じて、光チャネルについての異なる変調方式を選択する命令と、光チャネルについての異なるシンボルレートを決定する命令と、異なるシンボルレートに対応する、光チャネルについての異なるサブキャリア数を決定する命令と、異なる変調方式及び異なるサブキャリア数を使用して、光チャネルにおいてトラフィックを送信及び/又は受信するように、1つ以上の光トランスポンダのうちの少なくとも1つを再構成する命令と、をさらに記憶してよい。
本開示の実施形態のうちの任意の実施形態において、複数の光トランスポンダの各々は、送信機デジタル信号プロセッサと、受信機デジタル信号プロセッサと、複数の変調方式の各々を実施するための第1の回路と、選択された変調方式を使用して、光チャネルにおいて送信される光信号を生成するように、送信機デジタル信号プロセッサを構成するための第2の回路と、決定されたサブキャリア数を使用して、光チャネルにおいて送信される光信号を生成するように、送信機デジタル信号プロセッサを構成するための第3の回路と、選択された変調方式及び決定されたサブキャリア数に従って、光チャネルを介して受信された光信号を処理するように、受信機デジタル信号プロセッサを構成するための第4の回路と、を含んでよい。
別の態様において、適応的光ネットワークにおいて到達距離を拡大するための方法が開示される。この方法は、所与のターゲット距離及び所与の最大データレートを有する光チャネルについての変調方式を選択するステップであって、選択された変調方式は、所与のターゲット距離及び所与の最大データレートを有する光チャネルに適している、適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、ステップと、光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、光チャネルについてのシンボルレートを決定するステップと、決定されたシンボルレートに対応する、光チャネルについてのサブキャリア数を決定するステップと、光チャネルについてサブキャリア多重を有効化するステップであって、サブキャリア多重を有効化することは、選択された変調方式及び決定されたサブキャリア数を使用して、光チャネルにおいてトラフィックを送信及び/又は受信するように、1つ以上の光トランスポンダを構成することを含む、ステップと、を含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートを決定することは、光チャネルにおいてトラフィックが運ばれる光ファイバの分散係数に応じて、シンボルレートを算出することを含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートを決定することは、光チャネルにおいてトラフィックが運ばれるスパンの数と、光チャネルにおいてトラフィックが運ばれる1つ以上のスパンの各々の長さと、のうちの1つ以上に応じて、シンボルレートを算出することを含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートを決定することは、シンボルレートを、シンボルレートが、光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性にマッピングされているデータ構造から、取得することを含んでよい。伝送媒体の1つ以上の特性は、光チャネルにおいてトラフィックが運ばれる光ファイバの分散係数と、光チャネルにおいてトラフィックが運ばれるスパンの数と、光チャネルにおいてトラフィックが運ばれる1つ以上のスパンの各々の長さと、のうちの1つ以上を含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルにおいてトラフィックが運ばれる伝送媒体は、複数のスパンを含んでよく、複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含む。シンボルレートを決定することは、2つ以上の光ファイバタイプの各々の光ファイバを含む、伝送媒体のそれぞれの部分を決定することと、2つ以上の光ファイバタイプの各々の光ファイバを含む、伝送媒体のそれぞれの部分に応じて、シンボルレートを算出することと、を含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルにおいてトラフィックが運ばれる伝送媒体は、複数のスパンを含んでよく、複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含む。シンボルレートを決定することは、第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することと、シンボルレートを、シンボルレートが、第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長とのそれぞれの比にマッピングされているデータ構造から、取得することと、を含んでよい。
本開示の実施形態のうちの任意の実施形態において、この方法は、光チャネルについてのルーティング情報をデータ構造から取得するステップをさらに含んでよい。この方法は、ルーティング情報に応じて、所与のターゲット距離と、所与の最大データレートと、光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性と、のうちの1つ以上を決定するステップをさらに含んでよい。
本開示の実施形態のうちの任意の実施形態において、光チャネルについてのシンボルレートは、光チャネルについての所望される又は期待される光雑音対信号比マージンにさらに応じて決定されてよい。
本開示の実施形態のうちの任意の実施形態において、この方法は、適応的光ネットワークにおけるトポロジ変化を検出するステップと、検出されたトポロジ変化に応じて、光チャネルについての異なる変調方式を選択するステップと、光チャネルについての異なるシンボルレートを決定するステップと、異なるシンボルレートに対応する、光チャネルについての異なるサブキャリア数を決定するステップと、異なる変調方式及び異なるサブキャリア数を使用して、光チャネルにおいてトラフィックを送信及び/又は受信するように、1つ以上の光トランスポンダのうちの少なくとも1つを再構成するステップと、をさらに含んでよい。
本開示の実施形態のうちの任意の実施形態において、この方法は、別のターゲット距離又は別の最大データレートを有する別の光チャネルについての変調方式を選択するステップであって、別の光チャネルについての選択された変調方式は、別のターゲット距離又は別の最大データレートを有する光チャネルに適している、適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、ステップをさらに含んでよい。この方法は、別の光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、別の光チャネルについてのシンボルレートを決定するステップと、別の光チャネルについての決定されたシンボルレートに対応する、別の光チャネルについてのサブキャリア数を決定するステップと、別の光チャネルについてサブキャリア多重を有効化するステップであって、サブキャリア多重を有効化することは、別の光チャネルについての選択された変調方式及び別の光チャネルについての決定されたサブキャリア数を使用して、別の光チャネルにおいてトラフィックを送信及び/又は受信するように、1つ以上の他の光トランスポンダを構成することを含む、ステップと、をさらに含んでよい。別の光チャネルについての選択された変調方式及び別の光チャネルについての決定されたサブキャリア数のうちの少なくとも1つは、光チャネルについての選択された変調方式及び光チャネルについての決定されたサブキャリア数のうちの少なくとも1つとそれぞれ異なってよい。
本発明並びにその特徴及び利点のより完全な理解のために、添付の図面とともに以下の説明を参照する。
光トランスポートネットワークの一実施形態の選択された要素のブロック図。 単一キャリアチャネル及びマルチキャリアチャネルの例示的なスペクトルを示す図。 適応的光ネットワークのためのネットワーク管理システムの一実施形態の選択された要素のブロック図。 (A)一実施形態に従った、光IQ送信機の一実施形態の選択された要素のブロック図、(B)一実施形態に従った、送信機DSPの一実施形態の選択された要素のブロック図。 (A)一実施形態に従った、光IQ受信機の一実施形態の選択された要素のブロック図、(B)一実施形態に従った、受信機DSPの一実施形態の選択された要素のブロック図。 一実施形態に従った、2つの異なるタイプの光ファイバについての、算出された最適シンボルレートと伝送到達距離との間の関係を示す図。 一実施形態に従った、特定の光チャネルについて可能な到達距離拡大の例を示す図。 一実施形態に従った、複数の光チャネルが異なる変調方式及びサブキャリア数を使用してトラフィックを運ぶ光ネットワークを示すブロック図。 それぞれの変調方式及びサブキャリア数の制御を通じて、光チャネルについての伝送到達距離拡大を実現するための例示的な方法の選択された要素のフローチャート。 所与の光チャネルについて可能な最も高いスペクトル効率及び最も長い到達距離拡大を実現する変調方式及びサブキャリア数を選択するための例示的な方法の選択された要素のフローチャート。
以下の記載において、本開示の主題の議論を容易にするために、例として詳細事項が説明される。しかしながら、本開示の実施形態は、例示であり、全ての可能な実施形態を網羅するものではないことが、当業者には明らかであろう。
本明細書において使用される場合、ハイフンで結んだ形の参照符号は、要素の特定のインスタンスを表し、ハイフンがない形の参照符号は、集合的又は総称的要素を表す。したがって、例えば、ウィジェット「72-1」は、ウィジェットクラスのインスタンスを表し、これは、ウィジェット「72」として集合的に参照されることがあり、それらのうちの任意の1つが、ウィジェット「72」として総称的に参照されることがある。
電気通信システム、ケーブルテレビジョンシステム、及びデータ通信ネットワークは、光ネットワークを用いて、遠隔地点間で大量の情報を迅速に伝達する。光ネットワークにおいて、情報は、光ファイバを介して光信号の形で伝達される。光ネットワークはまた、増幅器、分散補償器、マルチプレクサ/デマルチプレクサフィルタ、波長選択スイッチ、カプラ等といった、ネットワーク内で様々な動作を実行する様々なネットワークノードを含み得る。
光ネットワークにわたる伝送容量の需要が増加するにつれ、伝送容量を増加させるために様々な伝送技術が使用されている。例えば、伝送される1波長チャネル当たりの容量を増加させる先進的な変調方式が導入されている。例えば、16-QAMは、同じ波長チャネルに対してQPSKを用いる場合と比較して約2倍の情報を運ぶことができる変調方式である。しかしながら、より高い情報密度を提供する変調方式は、概して、伝送到達距離の低減をもたらし、これは、伝送到達距離と伝送容量との間のトレードオフの形で、伝送容量に関する経済的制約をもたらす。別の例において、マルチキャリアチャネル技術の出現は、マルチキャリアチャネルにおける各サブキャリアの低減されたボーレート(シンボルレート)に起因する、光ネットワーク伝送についての制限ファクタである、ファイバ非線形性に影響されやすい点を低減させている。
以下においてより詳細に開示されるように、適応的光ネットワークにおける光チャネルの到達距離拡大が、それぞれの変調方式及びサブキャリア数の制御を通じて実現され得る。本明細書に記載の、光チャネルの到達距離拡大のための方法及びシステムは、所与の光チャネルが、この光チャネルについてのターゲット距離、ネットワークにおける光トランスポンダによりサポートされる変調方式、光チャネルについての伝送媒体、及び、光チャネルについてサブキャリア多重を有効化する能力(又はそのような能力の欠如)を所与として可能な最も高いスペクトル効率及び最も長い到達距離拡大をもって光信号を伝送することを可能にし得る。本明細書に記載の方法及びシステムは、光トランスポンダ内の様々なデジタル信号プロセッサ(DSP)の電力消費の最適化を可能にし得、これは、光ネットワークにおける全体的な電力消費を低減させることができる。本明細書に記載の、光チャネルの到達距離拡大のための方法及びシステムは、中央ネットワーク管理システムにより制御される、単一キャリア及びマルチキャリア・サブキャリア用の送信機又は受信機等の汎用プログラマブルトランスポンダを使用して実現され得る。
図面を参照すると、図1は、光通信システムを表し得る光トランスポートネットワーク(OTN)101の例示的な実施形態を示している。光トランスポートネットワーク101は、光ファイバ106を介して光信号を伝送するためのデバイスを含み得る。情報は、波長に関する情報を符号化するための、光の1つ以上の波長の変調により、光トランスポートネットワーク101を介して送信及び受信され得る。光ネットワークにおいて、光の波長は、光信号に含まれる「チャネル」と呼ばれることもある。各チャネルは、光トランスポートネットワーク101を介して所定の量の情報を運ぶことができる。
光トランスポートネットワーク101は、光トランスポートネットワーク101のコンポーネントにより通信される1つ以上の光信号を伝送するための1つ以上の光ファイバ106を含む。ファイバ106により互いに接続される、光トランスポートネットワーク101のネットワーク要素は、1つ以上の送信機(Tx)102、1つ以上のマルチプレクサ(MUX)104、1つ以上の光増幅器108、1つ以上の光アド/ドロップマルチプレクサ(OADM)110、1つ以上のデマルチプレクサ(DEMUX)105、及び1つ以上の受信機(Rx)112を含み得る。
光トランスポートネットワーク101は、端末ノードを含むポイントツーポイント型光ネットワーク、リング型光ネットワーク、メッシュ型光ネットワーク、又は任意の他の適切な光ネットワーク若しくは光ネットワークの組み合わせを含み得る。光トランスポートネットワーク101は、短距離メトロポリタンネットワーク、長距離都市間ネットワーク、又は任意の他の適切なネットワーク若しくはネットワークの組み合わせにおいて用いられ得る。光トランスポートネットワーク101の容量は、例えば、100Gビット/秒、400Gビット/秒、又は1Tビット/秒を含み得る。光ファイバ106は、非常に低い損失で長距離にわたって信号を伝達することができるガラスの細いひもを含む。光ファイバ106は、光伝送のために多様なファイバから選択される適切なタイプのファイバを含み得る。光ファイバ106は、標準的なシングルモードファイバ(SMF)、E-LEAF(Enhanced Large Effective Area Fiber)、又はTW-RS(TrueWave(登録商標) Reduced Slope)ファイバ等の任意の適切なタイプのファイバを含み得る。
光トランスポートネットワーク101は、光ファイバ106を介して光信号を伝送するためのデバイスを含み得る。情報は、波長に関する情報を符号化するための、光の1つ以上の波長の変調により、光トランスポートネットワーク101を介して送信及び受信され得る。光ネットワークにおいて、光の波長は、光信号に含まれる「チャネル」と呼ばれることもある。各チャネルは、光トランスポートネットワーク101を介して所定の量の情報を運ぶことができる。
光トランスポートネットワーク101の情報容量及び伝送能力を増大させるために、複数のチャネルにおいて伝送される複数の信号が、単一の広帯域光信号へと結合され得る。複数のチャネルにおいて情報を通信するプロセスは、光学では波長分割多重(WDM)と呼ばれる。粗波長分割多重(CWDM)は、通常20nmの間隔よりも大きく16個の波長よりも少ない、少数のチャネルを有する広く間隔があけられた波長の、ファイバへの多重化を表し、高密度波長分割多重(DWDM)は、通常0.8nmの間隔よりも小さく40個の波長よりも多い、多数のチャネルを有する密に間隔があけられた波長の、ファイバへの多重化を表す。WDM又は他の複数波長多重伝送技術は、1光ファイバ当たりの集約帯域幅を増大させるために、光ネットワークにおいて使用される。WDMがないと、光ネットワークにおける帯域幅は、たった1波長のビットレートに制限され得る。より大きな帯域幅を用いると、光ネットワークは、より多くの情報を伝送することができる。光トランスポートネットワーク101は、WDM又は何らかの他の適切なマルチチャネル多重技術を使用して、異なるチャネルを伝送し、マルチチャネル信号を増幅することができる。
DWDMにおける進歩は、複数の光キャリアを結合して、所望の容量の合成光信号を生成することを可能にしている。マルチキャリア光信号のそのような一例は、100Gビット/秒、400Gビット/秒、又は1Tビット/秒以上の伝送レートを達成することができる高いスペクトル効率(SE)の一例であるスーパーチャネルである。スーパーチャネルにおいて、複数のサブキャリア(又はサブチャネル若しくはチャネル)は、固定帯域幅の帯域において密にパックされ、非常に高いデータレートで伝送され得る。さらに、スーパーチャネルは、例えば数百キロメートル等といった非常に長い距離にわたる伝送に良好に適し得る。一般的なスーパーチャネルは、光トランスポートネットワークを介して1つのエンティティとして伝送される、単一チャネルを形成するために周波数多重されるサブキャリアのセットを含み得る。スーパーチャネル内のサブキャリアは、高いスペクトル効率を実現するために密にパックされる。
特定の実施形態において、ナイキスト周波数分割多重(N-FDM)が、チャネルにおいて用いられ得る。N-FDMにおいて、ほぼ矩形のスペクトルを有する光パルスが、ボーレートに近付く帯域幅で周波数領域において一緒にパックされる(図2も参照されたい)。
光トランスポートネットワーク101は、特定の波長又はチャネルで、光トランスポートネットワーク101を介して光信号を送信する1つ以上の光送信機(Tx)102を含み得る。送信機102は、電気信号を光信号に変換し該光信号を送信するシステム、装置、又はデバイスを含み得る。例えば、送信機102は各々、レーザと、電気信号を受信し該電気信号に含まれる情報を特定の波長でレーザにより生成される光のビームに変調し、光トランスポートネットワークを介して信号を運ぶためにビームを送信する変調器と、を含み得る(図4(A)も参照されたい)。いくつかの実施形態において、光送信機102は、光変調中に、送信されるべきデータについてのボーレートを決定するために、使用され得る。異なるボーレートを適用する送信機102の一例は、適応レートトランスポンダである。さらに、前方誤り訂正(FEC)モジュールが、光送信機102に含まれることもあるし、光送信機102とともに使用されることもある。FECモジュールは、誤り訂正符号を含めるように、送信されるべき情報又はデータを運ぶ電気信号を処理することができる。送信機102におけるFECモジュールはまた、光変調のために光送信機102に送信されるべきデータを送信するためのボーレートを決定することができる。
マルチプレクサ104は、送信機102に接続され得、送信機102により、例えばそれぞれの個々の波長で送信される信号を、WDM信号へと結合するシステム、装置、又はデバイスであり得る。
光増幅器108は、光トランスポートネットワーク101内のマルチチャネル信号を増幅することができる。光増幅器108は、所定の長さのファイバ106の前及び後に配置され得、これは、「インライン増幅」と呼ばれる。光増幅器108は、光信号を増幅するシステム、装置、又はデバイスを含み得る。例えば、光増幅器108は、光信号を増幅する光リピータを含み得る。この増幅は、光-電気又は電気-光変換を用いて実行され得る。いくつかの実施形態において、光増幅器108は、ドープファイバ増幅素子を形成するために希土類元素でドープされた光ファイバを含み得る。信号がファイバを通過するとき、外部エネルギーが、光ファイバのドープされた部分の原子を励起するためにポンプ信号の形で印加され得、これは、光信号の強度を増大させる。一例として、光増幅器108は、エルビウムドープファイバ増幅器(EDFA)を含み得る。しかしながら、半導体光増幅器(SOA)等の任意の他の適切な増幅器が使用されてもよい。
OADM110は、ファイバ106を介して光トランスポートネットワーク101に接続され得る。OADM110は、ファイバ106に対して光信号を(すなわち、個々の波長で)挿入及び除去するシステム、装置、又はデバイスを含み得るアド/ドロップモジュールを含む。OADM110を通過した後、光信号は、ファイバ106に沿って宛先に直接移動することもあるし、光信号は、宛先に到達する前に、1つ以上の追加のOADM110及び光増幅器108を通過することもある。このように、OADM110は、異なるリング及び異なる直線的スパン等の異なる光トランスポートネットワークトポロジを一緒に接続することを可能にし得る。
光トランスポートネットワーク101の所定の実施形態において、OADM110は、WDM信号の個々の又は複数の波長を挿入又は除去することができる再構成可能OADM(ROADM)を表し得る。個々の又は複数の波長は、例えば、ROADMに含まれ得る波長選択スイッチ(WSS)(図示せず)を使用して、光領域において挿入又は除去され得る。
多くの既存の光ネットワークは、OADMの従来の実装及びデマルチプレクサ105の従来の実装と互換性がある、固定グリッド間隔としても知られる国際電気通信連合(ITU)基準波長グリッドに従って、50ギガヘルツ(GHz)のチャネル間隔をもって、10ギガビット/秒(Gbps)又は40Gbpsの信号レートで動作する。しかしながら、データレートが100Gbpsを超えて増大すると、このような高データレート信号のより広いスペクトル要件は、しばしば、チャネル間隔の増大を必要とする。異なるレートの信号をサポートする従来の固定グリッドネットワークシステムにおいて、ネットワークシステム全体は、一般に、最も高いレートの信号に対応することができる最も粗いチャネル間隔(100GHz、200GHz等)で動作しなければならない。これは、より低いレートの信号及びより低い全体的なスペクトルの利用のために過度にプロビジョニングされたチャネルスペクトルをもたらし得る。
したがって、所定の実施形態において、光トランスポートネットワーク101は、チャネルごとに特定の周波数スロットを指定することを可能にするフレキシブルなグリッド光ネットワーキングと互換性があるコンポーネントを使用することができる。例えば、WDM伝送の各波長チャネルは、少なくとも1つの周波数スロットを使用して割り当てられ得る。したがって、1つの周波数スロットは、シンボルレートが低い波長チャネルに割り当てられ得るのに対し、複数の周波数スロットは、シンボルレートが高い波長チャネルに割り当てられ得る。したがって、光トランスポートネットワーク101において、ROADM110は、光領域において挿入又は除去されるべきデータチャネルを運ぶWDM、DWDM、又はスーパーチャネル信号の個々の又は複数の波長を挿入又は除去することが可能であり得る。所定の実施形態において、ROADM110は、波長選択スイッチ(WSS)を含むこともあるし、WSSに接続されることもある。
図1に示されているように、光トランスポートネットワーク101はまた、ネットワーク101の1つ以上の宛先において1つ以上のデマルチプレクサ105を含み得る。デマルチプレクサ105は、単一の合成WDM信号をそれぞれの波長で個々のチャネルに分割することによりデマルチプレクサとして動作するシステム、装置、又はデバイスを含み得る。例えば、光トランスポートネットワーク101は、40チャネルDWDM信号を伝送して運ぶことができる。デマルチプレクサ105は、40個の異なるチャネルに従って、単一の40チャネルDWDM信号を、40個の別個の信号に分割することができる。様々な実施形態において、異なる数のチャネル又はサブキャリアが、光トランスポートネットワーク101において、伝送及び逆多重され得ることが、理解されよう。
図1において、光トランスポートネットワーク101はまた、デマルチプレクサ105に接続される受信機112を含み得る。各受信機112は、特定の波長又はチャネルで送信された光信号を受信し、該光信号が含む情報(データ)を得る(復調する)ように、該光信号を処理することができる(図5(A)も参照されたい)。したがって、ネットワーク101は、ネットワークのチャネルごとに少なくとも1つの受信機112を含み得る。図示されているように、受信機112は、送信機102により使用されたボーレートに従って、光信号を復調することができる。いくつかの実施形態において、受信機112は、誤り訂正符号を使用して、受信されたデータのインテグリティをチェックする前方誤り訂正(FEC)モジュールを含むこともあるし、受信機112の後にそのようなFECモジュールがあることもある。FECモジュールはまた、誤り訂正符号に基づいて、データにおける所定の誤りを訂正することができる。受信機112におけるFECモジュールはまた、上述したように、送信機102においてチャネルごとに定められた特定のボーレートで、データを復調することができる。
図1における光トランスポートネットワーク101等の光ネットワークは、光ファイバを介して光信号内の情報を伝達するために、変調技術を使用することができる。そのような変調方式は、変調技術の例の中でもとりわけ、位相シフトキーイング(PSK)、周波数シフトキーイング(FSK)、振幅シフトキーイング(ASK)、及び直交振幅変調(QAM)を含み得る。PSKにおいて、光信号により運ばれる情報は、搬送波又はキャリアとしても知られる基準信号の位相を変調することにより、伝達され得る。情報は、2値又はバイナリ位相シフトキーイング(BPSK)、4値又は直交位相シフトキーイング(QPSK)、多値位相シフトキーイング(m-PSK)、及び差動位相シフトキーイング(DPSK)を用いて信号自体の位相を変調することにより、伝達され得る。QAMにおいて、光信号により運ばれる情報は、搬送波の振幅及び位相の両方を変調することにより、伝達され得る。PSKは、QAMのサブセットとみなされ得、ここでは、搬送波の振幅が、一定に維持される。
PSK信号及びQAM信号は、コンステレーション図上で実軸及び虚軸を有する複素平面を使用して表現され得る。情報を運ぶシンボルを表すコンステレーション図上の点は、図の原点の周りに均一な角度間隔をもって配置され得る。PSK及びQAMを用いて変調されるシンボルの数は、増大し、したがって、運ばれ得る情報を増大させ得る。信号の数は、2の倍数で与えられ得る。追加のシンボルが追加されると、追加のシンボルは、原点の周りに均一に配置され得る。PSK信号は、コンステレーション図上での円状のそのような配置を含み得、これは、PSK信号が、全てのシンボルについて一定のパワーを有することを意味する。QAM信号は、PSK信号の角度配置と同じ角度配置を有し得るが、異なる振幅配置を含み得る。QAM信号は、複数の円の周りに配置されたシンボルを有し得、これは、QAM信号が、異なるシンボルについて異なるパワーを有することを意味する。この配置は、シンボルが可能な限り離されるとき、ノイズのリスクを低減させ得る。シンボル数「m」が用いられ、「m-PSK」又は「m-QAM」と表され得る。
異なるシンボル数を有するPSK及びQAMの例は、コンステレーション図上で0度及び180度(又は、ラジアンでは、0及びπ)の2つの位相を用いるバイナリPSK(BPSK又は2-PSK);又は、0度、90度、180度、及び270度(又は、ラジアンでは、0、π/2、π、及び3π/2)の4つの位相を用いる直交PSK(QPSK、4-PSK、又は4-QAM);を含み得る。そのような信号における位相は、オフセットされ得る。2-PSK信号及び4-PSK信号の各々は、コンステレーション図上に配置され得る。また、所定のm-PSK信号は、偏波多重QPSK(DP-QPSK)等の技術を使用して偏波化され得、ここでは、別個のm-PSK信号が、信号を直交偏波化することにより多重される。また、m-QAM信号は、偏波多重16-QAM(DP-16-QAM)等の技術を使用して偏波化され得、ここでは、別個のm-QAM信号が、信号を直交偏波化することにより多重される。
偏波分割多重(PDM)とも呼ばれることがある偏波多重技術は、情報伝送のためのより大きなビットレートを実現することを可能にする。PDM伝送は、チャネルに関連付けられた光信号の様々な偏波成分に情報を同時に変調することを含み、それにより、偏波成分数倍だけ(by a factor of the number of polarization components)、伝送レートを名目上増大させる。光信号の偏波は、光信号の振動の方向を表し得る。用語「偏波」は、一般に、光信号の伝搬方向に垂直な、空間内の点における電場ベクトルの先端により描かれる経路を指し得る。
図1における光トランスポートネットワーク101等の光ネットワークにおいて、管理プレーン、制御プレーン、及びトランスポートプレーン(時として物理層と呼ばれる)を参照することが通常である。中央管理ホスト(図示せず)は、管理プレーンに存在し得、制御プレーンのコンポーネントを構成及び管理することができる。管理プレーンは、トランスポートプレーン及び制御プレーンのエンティティの全て(例えば、ネットワーク要素)に対する最終的な制御を含む。一例として、管理プレーンは、1つ以上の処理リソース、データ記憶コンポーネント等を含む中央処理センタ(例えば、中央管理ホスト)を含み得る。管理プレーンは、制御プレーンの要素と電気的に通信することができ、トランスポートプレーンの1つ以上のネットワーク要素とも電気的に通信することができる。管理プレーンは、システム全体に対する管理機能を実行し、ネットワーク要素、制御プレーン、及びトランスポートプレーンの間の調整を提供することができる。例として、管理プレーンは、1つ以上のネットワーク要素を要素の観点から扱う要素管理システム(EMS)、多くのデバイスをネットワークの観点から扱うネットワーク管理システム(NMS)、又はネットワーク全体の動作を扱う動作支援システム(OSS)を含み得る。
本開示の範囲から逸脱することなく、光トランスポートネットワーク101に対して変更、追加、又は省略が可能である。例えば、光トランスポートネットワーク101は、図1に示されている要素よりも多い又は少ない要素を含んでもよい。また、上述したように、ポイントツーポイント型ネットワークとして図示されているが、光トランスポートネットワーク101は、リング型、メッシュ型、又は階層型のネットワークトポロジ等、光信号を伝送するための任意の適切なネットワークトポロジを含んでもよい。
上述したように、光チャネルの伝送到達距離は、より高次の変調方式の使用により制限され得る。少なくともいくつかの実施形態において、本明細書に記載のシステム及び方法を使用して、デジタルサブキャリア多重(SCM)を利用する光伝送システムにおける伝送信号到達距離を増大させることができる。本明細書においてより詳細に説明されるように、これらの方法は、光伝送システムにおいて、特定の信号チャネルについて最も高いスペクトル効率及び最も長い到達距離を実現する特定の変調方式及び特定のサブキャリア数を選択することを含み得る。所与の光チャネルについてのサブキャリア数の選択は、考慮事項の中でもとりわけ、光ファイバタイプ、選択された変調方式、及び提供される到達距離拡大に依存し得る。
少なくともいくつかの実施形態において、到達距離拡大を実現するための方法は、複数のサポートされる変調方式から、所与のターゲット距離及び所与の最大データレートを有する光チャネルに適している、最も高いスペクトル効率を有する変調方式を選択することを含み得る。この方法はまた、光チャネルにおけるスパンの数及び長さ、並びに、光チャネルにおいてトラフィックが運ばれる各ファイバタイプについてのファイバ特性に少なくとも基づいて、光チャネルについて最適シンボルレート及び対応するサブキャリア数を決定することを含み得る。最適なサブキャリア数が2以上であるとき、この方法は、デジタルサブキャリア多重を有効化することを含み得、デジタルサブキャリア多重を有効化することは、選択された変調方式及び決定された最適なサブキャリア数を使用して、光信号を送信及び/又は受信するように、所与の光チャネルに関連付けられているトランスポンダを構成することを含み得る。例えば、トランスポンダ内のDSPが、光伝送システムにおける中央ネットワーク管理システム上でのソフトウェア操作により、選択された変調方式及び決定された最適なサブキャリア数を使用して動作するようにこれらを構成することによって、制御され得る。少なくともいくつかの実施形態において、本開示の技術の使用は、マルチキャリアシステムについてのより良いネットワーク利用及び電力消費の低減をもたらし得る。
図2を参照すると、光チャネルの選択された実施形態が、単一キャリアチャネル及びマルチキャリアチャネルについての5つのスペクトルを示すパワースペクトル200として示されている。例えば、単一キャリア信号は、単一の送信機により生成され得る。マルチキャリア信号は、単一の送信機により生成され得、ここで、これは、(例えば、DSPにおいて)所与の数のサブキャリアに電気的に分割される。スペクトル200は、縮尺通りには描かれていない概略表現で示されている。具体的には、スペクトル200-1は、帯域幅BWを有する単一キャリアチャネルを示している。例えば、帯域幅が35GHzであるとき、スペクトル200-1における単一チャネルは、32Gボーのシンボルレートを有し得る。スペクトル200-2は、2サブキャリアを有するマルチキャリアチャネルを示している。帯域幅が35GHzであるとき、スペクトル200-2におけるサブキャリアの各々は、16Gボーのシンボルレートを有し得る。スペクトル200-3は、4サブキャリアを有するマルチキャリアチャネルを示している。帯域幅が35GHzであるとき、スペクトル200-3におけるサブキャリアの各々は、8Gボーのシンボルレートを有し得る。スペクトル200-4は、8サブキャリアを有するマルチキャリアチャネルを示している。帯域幅が35GHzであるとき、スペクトル200-4におけるサブキャリアの各々は、4Gボーのシンボルレートを有し得る。スペクトル200-5は、16サブキャリアを有するマルチキャリアチャネルを示している。帯域幅が35GHzであるとき、スペクトル200-5におけるサブキャリアの各々は、2Gボーのシンボルレートを有し得る。マルチキャリアチャネルは、光チャネルを所望の数のサブキャリアに分割することができるDSPを含む単一の送信機を使用して生成され得る。チャネル帯域幅BW及び光パワーは、単一キャリアチャネルとして伝送されるか又はマルチキャリアチャネルとして伝送されるかにかかわらず、光チャネルについて同じに保たれることに留意されたい。
マルチキャリアチャネルのサブキャリアの間の非線形相互作用は、とりわけ、相互位相変調(XPM)、自己位相変調(SPM)、及び四光波混合(FWM)を含み得る。相互位相変調は、1つのサブキャリアからの位相情報、振幅情報、又はこれらの両方が、マルチキャリアチャネルにおける隣接するサブキャリアに対して変調されるときに生じ得る。自己位相変調は、屈折率(又は強度に対する屈折率の依存度)の変化が各サブキャリア内の位相シフトをもたらすときに生じ得る。四光波混合(FWM)において、3つの波長が、サブキャリアの波長と一致し得る第4の波長をもたらすように相互作用し得、影響を受けるサブキャリアに対するピークパワーの望ましくない変化又は他のタイプの信号歪みをもたらし得る。さらに、非線形クロストークは、サブキャリア間成分を含み得る。非線形相互作用は、ファイバ伝送中に生じ、サブキャリア周波数帯域のオーバーラップの程度に依存し得ないので、ナイキストパルスシェーピングは、マルチキャリアチャネルにおける非線形クロストークに関する所定の問題を解決する際に非効果的であり得る。
特定の実施形態において、2つ以上のマルチキャリアチャネルが同時に伝送され得る。例えば、図2に示されているマルチキャリアチャネルのうちの任意のマルチキャリアチャネルが、別のマルチキャリアチャネルとともに伝送され得る。この場合、ガード帯域が、ファイバにおける非線形相互作用を緩和するために、第1のマルチキャリアチャネルと第2のマルチキャリアチャネルとの間に適用され得る。
次いで図3を参照すると、例えば光トランスポートネットワーク101(図1参照)等の光ネットワークにおける制御プレーン機能を実装するネットワーク管理システム300の一実施形態の選択された要素のブロック図が示されている。制御プレーンは、ネットワークインテリジェンス及び制御のための機能を含み得、以下においてより詳細に説明されるように、発見、ルーティング、経路算出、及びシグナリングのためのアプリケーション又はモジュールを含め、ネットワークサービスを確立する能力をサポートするアプリケーションを含み得る。ネットワーク管理システム300により実行される制御プレーンアプリケーションは、光ネットワーク内でサービスを自動的に確立するように一緒に動作することができる。発見モジュール312は、近傍同士を接続するローカルリンクを発見することができる。ルーティングモジュール310は、データベース304に投入するとともに光ネットワークノードにローカルリンク情報をブロードキャストすることができる。光ネットワークからのサービスの要求が受信されると、経路算出エンジン302が呼び出されて、ネットワーク経路が、データベース304を使用して算出され得る。次いで、このネットワーク経路が、要求されたサービスを確立するために、シグナリングモジュール306に提供され得る。
図3に示されているように、ネットワーク管理システム300は、プロセッサ308及び記憶媒体320を含む。記憶媒体320は、記憶媒体320にアクセスすることができるプロセッサ308により実行可能であり得る実行可能な命令(すなわち、実行可能なコード)を記憶することができる。プロセッサ308は、本明細書に記載の機能及び動作をネットワーク管理システム300に実行させる命令を実行することができる。本開示の目的のために、記憶媒体320は、少なくともある時間期間の間、データ及び命令を記憶する非一時的なコンピュータ可読媒体を含み得る。記憶媒体320は、永続的及び揮発性媒体、固定及び取り外し可能媒体、並びに、磁気及び半導体媒体を含み得る。記憶媒体320は、直接アクセス記憶デバイス(例えば、ハードディスクドライブ又はフロッピー(登録商標)ディスク)、順次アクセス記憶デバイス(例えば、テープディスクドライブ)、コンパクトディスク(CD)、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、CD-ROM、デジタル多用途ディスク(DVD)、電気的に消去可能なプログラム可能な読み取り専用メモリ(EEPROM)、及びフラッシュメモリ等の記憶媒体、非一時的な媒体、又はこれらの様々な組み合わせを含み得るが、これらに限定されるものではない。記憶媒体320は、命令、データ、又はこれらの両方を記憶するよう動作することができる。図示されている記憶媒体320は、実行可能なコンピュータプログラム、すなわち、経路算出エンジン302、シグナリングモジュール306、発見モジュール312、及びルーティングモジュール310を表し得る命令のセット又はシーケンスを含む。
図示されているように、図3におけるネットワーク管理システム300には、プロセッサ308とネットワーク330との間のインタフェースとして機能するよう動作することができる適切なシステム、装置、又はデバイスであり得るネットワークインタフェース314も含まれる。ネットワークインタフェース314は、ネットワーク管理システム300が適切な伝送プロトコル又は規格を使用してネットワーク330を介して通信することを可能にし得る。いくつかの実施形態において、ネットワークインタフェース314は、ネットワーク330を介してネットワーク記憶リソースに通信可能に接続され得る。いくつかの実施形態において、ネットワーク330は、光トランスポートネットワーク101の少なくとも所定の部分を表す。ネットワーク330はまた、ガルバニック又は電子媒体を用いるネットワークの所定の部分を含み得る。所定の実施形態において、ネットワーク330は、インターネット等のパブリックネットワークの少なくとも所定の部分を含み得る。ネットワーク330は、ハードウェア、ソフトウェア、又はこれらの様々な組み合わせを使用して実装され得る。
所定の実施形態において、ネットワーク管理システム300は、人(ユーザ)とインタフェースし、光信号伝送経路に関するデータを受信するよう構成され得る。例えば、ネットワーク管理システム300は、ユーザからの光信号伝送経路に関するデータの受信を実現しユーザに結果を出力するために、1つ以上の入力デバイス及び出力装置を含んでもよいし、このような1つ以上の入力デバイス及び出力装置に接続されてもよい。1つ以上の入力デバイス又は出力デバイス(図示せず)は、キーボード、マウス、タッチパッド、マイクロフォン、ディスプレイ、タッチスクリーンディスプレイ、オーディオスピーカ等を含み得るが、これらに限定されるものではない。代替的又は追加的に、ネットワーク管理システム300は、例えばネットワーク330を介して、別のコンピューティングデバイス等のデバイス又はネットワーク要素から、光信号伝送経路に関するデータを受信するよう構成されてもよい。
図3に示されているように、いくつかの実施形態において、発見モジュール312は、光ネットワークにおける光信号伝送経路に関するデータを受信するよう構成され得、近傍同士及び近傍同士の間のリンクの発見を担い得る。言い換えると、発見モジュール312は、発見プロトコルに従って発見メッセージを送信することができ、光信号伝送経路に関するデータを受信することができる。いくつかの実施形態において、発見モジュール312は、とりわけ、ファイバタイプ、ファイバ長、コンポーネントの数及びタイプ、データレート、データの変調方式、光信号の入力パワー、信号を運ぶ波長(すなわち、チャネル)の数、チャネル間隔、トラフィック要求、及びネットワークトポロジ等の特徴を決定することができるが、これらに限定されるものではない。
図3に示されているように、ルーティングモジュール310は、光トランスポートネットワーク101等の光ネットワーク内の様々なノードにリンク接続情報を伝搬することを担い得る。特定の実施形態において、ルーティングモジュール310は、リンク帯域幅可用性を含み得る、トラフィックエンジニアリングをサポートするためのリソース情報をデータベース304に投入することができる。したがって、データベース304には、ルーティングモジュール310により、光ネットワークのネットワークトポロジを決定するために使用できる情報が投入され得る。
経路算出エンジン302は、ルーティングモジュール310によりデータベース304に提供された情報を使用して、光信号伝送経路の伝送特性を決定するよう構成され得る。光信号伝送経路の伝送特性は、とりわけ、波長分散(CD)、非線形(NL)効果、偏波モード分散(PMD)及び偏波依存損失(PDL)等の偏波効果、並びに自然放射増幅光(ASE)等といった伝送劣化ファクタが、光信号伝送経路内で光信号にどのように影響を及ぼし得るかについての洞察を提供し得る。光信号伝送経路の伝送特性を決定するために、経路算出エンジン302は、伝送劣化ファクタの間の相互作用を考慮することができる。様々な実施形態において、経路算出エンジン302は、特定の伝送劣化ファクタについての値を生成することができる。経路算出エンジン302は、さらに、光信号伝送経路を特徴付けるデータをデータベース304に格納することができる。
図3において、シグナリングモジュール306は、光トランスポートネットワーク101等の光ネットワークにおいてエンドツーエンドネットワークサービスをセットアップ、変更、及び解除することに関連する機能を提供することができる。例えば、光ネットワークにおける入口ノードがサービス要求を受信すると、ネットワーク管理システム300は、シグナリングモジュール306を使用して、帯域幅、コスト等といった異なる基準に従って最適化され得るネットワーク経路を、経路算出エンジン302に要求することができる。所望のネットワーク経路が識別されると、シグナリングモジュール306は、要求されたネットワークサービスを確立するために、ネットワーク経路に沿ったそれぞれのノードと通信することができる。異なる実施形態において、シグナリングモジュール306は、シグナリングプロトコルを使用して、ネットワーク経路に沿ったノードとの間で後続の通信を伝搬することができる。
ネットワーク管理システム300の動作において、光チャネルがプロビジョニングされた後、ネットワーク管理システム300は、光チャネルの伝送到達距離を増大させるように光チャネルを構成することができる。いくつかの実施形態において、経路算出エンジン302、又はネットワーク管理システム300の別の要素は、光伝送システムにおいて、信号チャネルについて最も高いスペクトル効率及び最も長い到達距離を実現する特定の変調方式及び特定のサブキャリア数を選択するよう動作することができる。光チャネルについてのサブキャリア数の選択は、考慮事項の中でもとりわけ、光ファイバタイプ、選択された変調方式、及び提供される到達距離拡大に依存し得る。
次いで図4(A)を参照すると、光IQ送信機400の一実施形態の選択された要素のブロック図が示されている。送信機400は、図1における送信機102の一実施形態であり得る。送信機400は、概略表現であり、縮尺通りには描かれていない。様々な実施形態において、送信機400は、図示されている要素よりも少ない又は多い要素を有するように実装されてもよい。図4(A)における破線は、電気信号により論理的に表されるデジタルデータを含め、電気信号を表すのに対し、実線は、光信号を表す。
図示されているように、送信機400は、デジタル信号プロセッサ(DSP)410における送信のために、入力信号としてデータ402を受信することができる。DSP410は、DSP410により実行可能な命令を記憶しているメモリを含み得る(又は、そのようなメモリにアクセスすることができる)。DSP410は、デジタル-アナログ変換器(DAC)によりアナログ信号に変換される、光変調のためのデータ402の実(I)部411-1及び虚(Q)部411-2を生成することができる。図示されているように、送信機400は、光源としてレーザ414を使用して振幅変調を実行するマッハツェンダ変調器(MZM)404を含む。具体的には、実(I)部411-1が、DAC408-1により、デジタルデータからアナログ変調信号に変換され、アナログ変調信号が、MZM404-1に供給される。同時に、虚(Q)部411-2が、DAC408-2により、デジタルデータからアナログ変調信号に変換され、アナログ変調信号が、MZM404-2に供給される。MZM404-2の出力にπ/2位相シフト406を適用した後、光信号が結合されて、光信号403が生成される。
図4(B)において、DSP410-1の一実施形態のさらなる詳細が示されている。DSP410-1は、データ402を受信し、次いで、データ402に対して、シリアル-パラレル変換(S/P)420を実行することができ、その後、データ402の各サブキャリア部分である、1~Nのサブキャリアが、並列に処理されるようになる。いくつかの実施形態において、DSP410-1は、本明細書に記載の機能の少なくとも一部を実行するフィールドプログラマブルゲートアレイ(FPGA)を含み得ることに留意されたい。各サブキャリア1~Nについて、次いで、DSP410-1は、シンボルマッピング422及びナイキストフィルタリング424を実行することができ、次いで、周波数シフト(FS)426が適用される。次いで、サブキャリアマルチプレクサ428において、個々のサブキャリアデータが、信号部分711へと結合され、この信号部分711が、実(I)部411-1又は虚(Q)部411-2であり得る。
次いで図5(A)を参照すると、光IQ受信機500の一実施形態の選択された要素のブロック図が示されている。受信機500は、図1における受信機112の一実施形態であり得る。受信機500は、概略表現であり、縮尺通りには描かれていない。様々な実施形態において、受信機500は、図示されている要素よりも少ない又は多い要素を有するように実装されてもよい。図5(A)における破線は、電気信号により論理的に表されるデジタルデータを含め、電気信号を表すのに対し、実線は、光信号を表す。
図5(A)に示されているように、受信機500は、例えば光ネットワークにおける伝送の後、入力として光信号403を受信することができる。光信号403とともに局レーザ光514が、光ハイブリッド504において受信され得る。光ハイブリッド504は、光信号403を、基準信号として使用される局レーザ光514と混合して、4つの直交状態にする90度光ハイブリッドであり得る。光ハイブリッド504のそれぞれの出力は、実部成分としてレシーバ506-1に、虚部成分としてレシーバ506-2に、供給され得る。レシーバ506は、コヒーレント信号復調を実行し、光パワーモニタリングも実行することができるバランストレシーバであり得る。ADC508-1及び508-2それぞれによるデジタル化の後、DSP510は、光信号403の実信号部分511-1及び虚信号部分511-2を受信する。DSP510を使用して、各サブキャリアについて振幅情報及び位相情報を抽出し、データ402を再生成することができる。データ402が生成された後、BERが算出され得る。
図5(B)において、DSP510-1の一実施形態のさらなる詳細が示されている。DSP510-1は、信号部分511を受信し、次いで、信号部分511に対して、周波数オフセット補償(FOC)512を実行することができ、その後、信号部分511の各サブキャリア部分である、1~Nのサブキャリアが、並列に処理されるようになる。いくつかの実施形態において、DSP510-1は、本明細書に記載の機能の少なくとも一部を実行するフィールドプログラマブルゲートアレイ(FPGA)を含み得ることに留意されたい。各サブキャリア1~Nについて、次いで、DSP510-1は、ナイキストフィルタリング514を実行することができ、次いで、周波数シフト(FS)516が適用される。FOC512、ナイキストフィルタリング514、及びFS516は、サブキャリアデマルチプレクサ(SC DEMUX)528を表し得る。次いで、各サブキャリア1~Nについて、波長分散補償(CDC)518が実行され得、次いで、定包絡線アルゴリズム(CMA)ベースの適応等価(AEQ)が続き、次いで、FOC/キャリア位相復元(CPR)524が続く。次いで、パラレル-シリアル変換器(P/S)520において、実部及び虚部のうちの一方に対応する信号部分513が生成される。次いで、DSP510において、実信号部分及び虚信号部分513が結合されて、データ402が生成され得る。
いくつかの既存のシステムは、例えば、光スーパーチャネルのサブキャリアパワープリエンファシス、確率的コンステレーションシェーピング、又は、デジタル逆伝搬(DBP)を用いた非線形性緩和を含め、様々な光チャネルの伝送到達距離を拡大するための方法を実行する。例えば、いくつかの既存のDSPデバイスは、非線形性緩和を実現するための回路を含む。しかしながら、既存の技術は、WDM信号についてではなく、単一チャネルについてしか、非線形性の緩和を提供しない。本明細書に記載の技術を使用して、SCMシステム内の拡大される到達距離のために、光チャネルにおける最適なサブキャリア数を選択することができる。
図2に示され上述したように、マルチキャリアチャネルの光スペクトル全体は、単一キャリアチャネルと同じ帯域幅(例えば、図2に示されている例では35GHz)を占有し得る。しかしながら、所与の帯域幅を介して伝送される情報の量を表すスペクトル効率は、変調方式及びサブキャリア数に応じて異なり得る。図2に示されている例において、光スペクトル200-1により表される単一キャリアチャネルが、32Gボーのシンボルレートで、QPSKを用いてトラフィックを伝送する場合、データレートは、100Gビット/秒であり得る。デジタルサブキャリア多重が有効化されると、各サブキャリアは、より低いシンボルレート(例えば、16サブキャリアの各サブキャリアについて2Gボーのシンボルレート、又は、4サブキャリアの各サブキャリアについて8Gボーのシンボルレート)を有するようになるが、光チャネルについての総シンボルレートは、単一キャリアチャネルの場合と同じ(32Gボー)であり、占有される総帯域幅は、単一キャリアチャネルの場合と同じ(35GHz)である。
図示されている例において、光チャネルを含む光ネットワークは、主に矩形パルスシェーピングであるナイキストパルスシェーピングを実行する送信機DSPを有する32Gボートランスポンダを含み得る。送信機DSPはまた、マルチキャリア信号を生成するよう動作することができる。例えば、図4(B)は、高データレート信号が、上述したように、マッピング、ナイキストシェーピング、及び周波数シェーピングが実行される対象の複数の低データレートサブキャリアに分割される送信機DSP410-1を示している。同様に、受信機DSP(図5(B)に示されている受信機DSP510-1等)は、受信した高データレート信号を、複数のサブキャリア信号に分割し、各サブキャリア信号を別個に処理する。このようにして、光トランスポートシステムは、高データレート信号を1つの単一チャネルとみなし得る(ただし、これは、複数のサブキャリア信号を含み得る)。
既往の研究では、光伝送システムにおける各光チャネルについて最適シンボルレート(又はボーレート)が存在すること、及び、この最適シンボルレートが、主に、基礎をなす伝送媒体の特性に依存すること、が見出されている。より具体的には、最適シンボルレート(ボーレート)は、
Figure 0007287087000001

のように、光ファイバについての群速度分散パラメータ(β)、スパン長(
Figure 0007287087000002

)、及びスパン数(
Figure 0007287087000003

)に依存する。
一例において、一般的なシングルモード光ファイバ(SMFファイバ)は、Dfiber=16.6ps/nm/kmのようなファイバ分散係数を有し得る。
別の例において、非ゼロ分散シフトファイバ(NZ-DSFファイバ)は、Dfiber=4.4ps/nm/kmのようなはるかに低いファイバ分散係数を有し得る。
図6(A)及び図6(B)は、一実施形態に従った、2つの異なるタイプの光ファイバについての、算出された最適シンボルレート又はボーレートRopt(Gボー単位)と伝送到達範囲又は距離(キロメートル単位)との間の関係を示すグラフである。図6(B)におけるグラフ620は、図6(A)における破線により部分的に示されている、最適シンボルレート(Gボー)以下を表すグラフ600の一部の拡大されたバージョンである。図6(A)に示されているグラフ600及び図6(B)に示されているグラフ620において、線602に沿った各点は、NZ-DSFファイバのそれぞれの距離についての算出された最適シンボルレートを表し、線604に沿った各点は、SMFファイバのそれぞれの距離についての算出された最適シンボルレートを表す。
グラフ600及びグラフ620は、光チャネルについてのターゲット距離が増加するにつれ、光チャネルについての最適シンボルレートが減少することを示している。例えば、2000キロメートルというターゲット距離でSMFファイバの場合、最適シンボルレートは、4Gボーであり得る。しかしながら、ターゲット距離が4000キロメートルである場合、SMFファイバを介して運ばれる光チャネルについての最適シンボルレートは、約2.7Gボーであり得る。
グラフ600及びグラフ620はまた、異なるタイプの光ファイバを介して運ばれる光チャネルについての最適シンボルレートが、同じターゲット距離でも異なることを示している。例えば、5000キロメートルというターゲット距離でNZ-DSFファイバを介して運ばれる光チャネルについての最適シンボルレートは、5.5Gボーであり得るのに対し、同じターゲット距離でSMFファイバを介して運ばれる光チャネルについての最適シンボルレートは、約2.4Gボーであり得る。本明細書に記載のシステム及び方法は、ファイバタイプ及びターゲット距離に基づいて、所与の光チャネルについての適切なシンボルレートを選択することができる。
上述したように、所与の光チャネルについての最適シンボルレートは、変調方式非依存であり得る。しかしながら、デジタルサブキャリア多重の有効化に起因する到達距離拡大は、変調方式に依存する。例えば、DP-QPSK等のより低次の変調方式で動作する光チャネルについての最大可能到達距離拡大は、DP-16-QAM等のより高次の変調方式で動作する光チャネルについての最大可能到達距離拡大よりも大きい。加えて、より高次の変調方式は、デジタルサブキャリア多重が有効化されるか否かにかかわらず、一般に、制限された到達距離を有する。少なくともいくつかの実施形態において、本明細書に記載のシステム及び方法を使用して、所与の光チャネルについて、最も高いスペクトル効率及び最も長い到達距離を実現する変調方式及びサブキャリア数を選択することができ、これは、より良い全体的なネットワークの利用につながる。以下においてより詳細に説明されるように、最適なサブキャリア数は、ファイバタイプ、変調方式、及び提供される到達距離拡大に依存し得る。
いくつかの実施形態において、経路算出エンジン(図3に示されている経路算出エンジン302等)又はネットワーク管理システム(ネットワーク管理システム300等)の別の要素は、所与の光チャネルについて、最も高い可能なスペクトル効率を有する適切な変調方式を選択して、最適シンボルレート(及び対応するサブキャリア数)を決定し、必要なときに、デジタルサブキャリア多重を有効化する命令を、所与の光チャネル用のトランスポンダ(例えば、トランスポンダ内のDSP)に送信するよう動作することができる。例えば、トランスポンダは、デジタルサブキャリア多重ありの及びデジタルサブキャリア多重なしの複数の変調方式をサポートすることができ、例えば、光ネットワークの初期化中且つ/又は光ネットワークの動作中、ネットワーク管理システムにより構成可能又は再構成可能であり得る。一例において、トランスポンダの各々は、変調方式の中でもとりわけ、偏波多重ありの又は偏波多重なしの、QPSK、8-QAM、及び16-QAMをサポートすることができ、また、サブキャリア多重が有効化された状態でこれらの変調方式を実施するオプションを含み得る。いくつかの実施形態において、ネットワーク管理システムによりトランスポンダに送信される命令は、選択された変調方式と、選択された変調方式、最適シンボルレート、及びターゲット到達距離に少なくとも基づいて生成される特定のサブキャリアの数と、を示すことができる。
既存の光トランスポートネットワークは、一般に、固定(静的)ネットワークとして構成される。これらの光ネットワークは、光ネットワークのコンポーネントが古くなったときでも最も長い可能な到達距離を保証するシステムマージン要件をもって、最悪のケースのエンドオブライフシナリオのためにしばしば設計される。例えば、これらの光ネットワークは、超える場合には全ての誤りが回復可能である、実際の光信号対雑音比(OSNR)値と閾OSNR値との間の差を表すOSNRマージンを含むように設計され得、これは、光ネットワークが、長い年にわたって誤りなく動作することを可能にする。これらの光ネットワークにおいて、全ての波長における光伝送経路は、その宛先に到達し得る。しかしながら、これらのネットワークは、スタートオブライフシナリオにおいて、短到達距離光伝送経路についての大量の未使用マージンにより、不十分なネットワーク容量を示し得る。一例において、閾OSNR値は、全てのビット誤りがトランスポンダにおいて成功裡に特定されて訂正される閾値を表す、光経路についてのFEC閾値から1dBとして特定され得る。
いくつかの実施形態において、本明細書に記載のシステム及び方法を使用して、大量の無駄なマージンを伴う固定光ネットワークではなく、フレキシブルで動的な光ネットワークを実装することができる。これらのフレキシブルで動的な光ネットワークは、従来の固定ネットワークよりも高いスペクトル効率と、無駄なマージンがほとんど又は全くなく可能な最も長い到達距離と、を有する光伝送チャネルを提供することができる。これらのネットワークは、ノード及びリンクがネットワークに追加されると、また、ノード及びリンクがネットワークから除去されると、動的に構成され得る。各新たな又は変更された光チャネルについて、ネットワーク管理システムは、当該新たな又は変更された光チャネルについて、最も高い可能なスペクトル効率を有する適切な変調方式を選択して、最適シンボルレート(及び対応するサブキャリア数)を決定し、これらに従って当該新たな又は変更された光チャネル用のトランスポンダを構成する命令を、当該新たな又は変更された光チャネル用のトランスポンダに送信するよう動作することができる。少なくともいくつかの実施形態において、SCMシステムのトランスポンダ内のDSPのソフトウェア制御を実現するこのアプローチを使用して、サブキャリア信号についてのシンボルレートを下げることにより、マルチキャリアシステムにおけるDSP電力消費を最適化する又は低減させることができる。
図7は、一実施形態に従った、特定の光チャネルについて可能な到達距離拡大の例を示すグラフ700である。第1の例において、曲線702は、35GHz帯域幅光チャネルを使用して伝送される32GボーDP-16-QAM被変調光信号を表す。この伝送の場合、光チャネルについての35GHz帯域幅は、例えば、32Gボーで1サブキャリア(単一キャリア)、16Gボーで2サブキャリア(マルチキャリア)、8Gボーで4サブキャリア(マルチキャリア)、4Gボーで8サブキャリア(マルチキャリア)、又は2Gボーで16サブキャリア(マルチキャリア)、に割り当てられ得る。
第2の例において、曲線704は、35GHz帯域幅光チャネルを使用して伝送される32GボーDP-8-QAM被変調光信号を表す。第1の例と同様に、光チャネルについての35GHz帯域幅は、例えば、32Gボーで1サブキャリア(単一キャリア)、16Gボーで2サブキャリア(マルチキャリア)、8Gボーで4サブキャリア(マルチキャリア)、4Gボーで8サブキャリア(マルチキャリア)、又は2Gボーで16サブキャリア(マルチキャリア)、に割り当てられ得る。
第3の例において、曲線706は、35GHz帯域幅光チャネルを使用して伝送される32GボーDP-QPSK被変調光信号を表す。ここでも同様に、光チャネルについての35GHz帯域幅は、例えば、32Gボーで1サブキャリア(単一キャリア)、16Gボーで2サブキャリア(マルチキャリア)、8Gボーで4サブキャリア(マルチキャリア)、4Gボーで8サブキャリア(マルチキャリア)、又は2Gボーで16サブキャリア(マルチキャリア)、に割り当てられ得る。
図7において曲線706により示されているように、DP-QPSKを用いると、32Gボーのシンボルレートでの単一キャリアのトラフィック送信及び受信は、2000kmに容易に到達し得る。サブキャリア数が増加すると、これに対応して、各サブキャリア信号についてシンボルレートが減少し、伝送到達距離が拡大される。この例において、最大到達距離拡大は、ΔL(707)として示されており、各サブキャリアが約4Gボーのシンボルレートでトラフィックを送信及び受信する8サブキャリアを使用して実現され得る。
図7において曲線702により示されているように、DP-16-QAMを用いると、32Gボーのシンボルレートでの単一キャリアのトラフィック送信及び受信は、約400kmという到達距離を有する。この場合における最大到達距離拡大は、ΔL(703)として示されており、各サブキャリアが約8Gボーのシンボルレートでトラフィックを送信及び受信する4サブキャリアを使用して実現され得る。
図7において曲線704により示されているように、DP-8-QAMを用いると、32Gボーのシンボルレートでの単一キャリアのトラフィック送信及び受信は、約750kmという到達距離を有する。この場合における最大到達距離拡大は、ΔL(705)として示されており、各サブキャリアが約5.33Gボーのシンボルレートでトラフィックを送信及び受信する6サブキャリアを使用して実現され得る。
図7は、所与の光チャネルについての最大可能到達距離拡大が、変調方式に依存することを示している。例えば、DP-16-QAMを用いて実現可能な最大到達距離拡大ΔL(703)は、DP-QPSKを用いて実現可能な最大到達距離拡大ΔL(707)よりもはるかに小さい。これが、以下の表1においてさらに示されている。
Figure 0007287087000004
表1に示されているように、DP-QPSKを用いると、SMFファイバリンクについての例示的な到達距離は、2000キロメートルである。8サブキャリアを用いるSCMの有効化から生じる到達距離拡大ΔLは、約800キロメートルである。DP-8-CAMを用いると、SMFファイバリンクについての例示的な到達距離は、750キロメートルである。この場合、6サブキャリアを用いるSCMの有効化から生じる到達距離拡大ΔLは、約240キロメートルである。DP-16-CAMを用いると、SMFファイバリンクについての例示的な到達距離は、400キロメートルである。この場合、4サブキャリアを用いるSCMの有効化から生じる到達距離拡大ΔLは、約80キロメートルである。
表1に示されているように、DP-QPSKは、DP-8-QAM又はDP-16-QAMよりも低いスペクトル効率を有する。ここで、スペクトル効率は、特定の帯域幅で運ぶことができる情報の量を表す。スペクトル効率は、1秒、1Hz当たりのビット数の単位で時として表される。例えば、DP-QPSKは、偏波ごとに1シンボル当たり2ビットしか運ばないのに対し、DP-16-QAMは、偏波ごとに1シンボル当たり4ビットを運ぶ。したがって、DP-16-QAMを使用することにより、DP-QPSKを使用することよりも多くの情報が、所与の光チャネルにパックされ得る。
図7及び表1を再度参照すると、600kmというターゲット距離を有する光チャネルについて、変調方式DP-8-QAM及び変調方式DP-QPSKのいずれも、このターゲット距離に容易に到達し得る。しかしながら、ネットワーク管理システムは、より高いスペクトル効率を理由として、DP-16-QAMを選択し得る。この場合、単一キャリアDP-16-QAMは、ターゲット距離に到達することができないので、ネットワーク管理システムは、デジタルサブキャリア多重を有効化する命令を、光チャネル用のトランスポンダに送信することができる。例えば、各サブキャリアが8Gボーのシンボルレートでトラフィックを送信及び受信する4サブキャリアを用いると、600kmというターゲット距離を実現することができる。
別の例において、800kmというターゲット距離を有する光チャネルについて、利用可能なオプションは、単一キャリアDP-8-QAM、又は、各サブキャリアが8Gボーのシンボルレートでトラフィックを送信及び受信する4サブキャリアを用いるDP-8-QAMを含む。いくつかの実施形態において、このオプションは、4サブキャリアを用いて実現可能な追加の到達距離を提供することに加えて、追加のOSNRマージンを提供するために、ネットワーク管理システムにより選択され得る。
さらに別の例において、2200kmというターゲット距離を有する光チャネルについて、唯一の利用可能な変調方式オプションは、サポートされる変調方式のうち最も低いスペクトル効率を有するDP-QPSKである。この例において、ネットワーク管理システムは、各サブキャリアが4Gボーのシンボルレートでトラフィックを送信及び受信する8サブキャリアを用いるデジタルサブキャリア多重を有効化することができる。このオプションは、光チャネルが、ターゲット到達距離を実現することを可能にし得、また、追加のOSNRマージンを提供することもできる。
これらの例は、所定の状況下において、ネットワーク管理システムが、より高いスペクトル効率を、伝送される信号にパックするか否かの間の選択肢を有し得、また、より高次の変調方式を使用するときに一般に実現可能な制限された到達距離を補うためのサブキャリア多重を用いて到達距離を拡大するオプションを有し得る。いくつかの実施形態において、所与のターゲット距離を有する光チャネルについて、ネットワーク管理システムは、まず、最も高い可能なスペクトル効率を実現する変調方式を選択し、次いで、例えば、デジタルサブキャリア多重を通じて到達距離を拡大して又は拡大せずに、所与のターゲット距離を実現する最適なサブキャリア数を決定するよう動作することができる。変調方式及びサブキャリア数が決定されると、ネットワーク管理システムは、それらに従って光チャネルを構成する命令を、1つ以上のトランスポンダに送信するよう動作することができる。
マルチキャリアチャネルにおける最適ボーレートは、自己位相変調(SPM)としばしば表現される単一サブキャリア非線形性と、相互位相変調(XPM)及び四光波混合(FWM)から生じ得るサブキャリア間非線形性と、の間の相互作用に依存することに留意されたい。FWMは、マルチキャリアチャネルにおけるサブキャリア数とともに増加し、伝送到達距離についての制限ファクタであることが観測されている。したがって、最大到達距離拡大が実現されるポイントを超えてサブキャリア数を増加させ続けることにより、到達距離は著しく減少し得る。この理由は、多数のサブキャリアと突然に生じるであろうより多くの四光波混合との間のより多くの相互作用が存在するであろうことであり、これが、到達距離を減少させる。図7に示されているように、曲線702、704、及び706の各々により示されている到達距離拡大は、これがゼロに達するまで、急速且つ急激に低下している。
図8は、一実施形態に従った、異なる長さの複数の光チャネルが異なる変調方式を使用してトラフィックを運ぶ光ネットワークを示すブロック図である。この例において、光ネットワーク800は、図3に示され上述したネットワーク管理システム300に類似したものであってよいネットワーク管理システム810を含む。ネットワーク800はまた、5つのROADM820を含み、ROADM820のうちの様々なペアにおけるROADM820の間の距離は異なる。
ROADM820のペアの間の光チャネルの各々について、ターゲット伝送到達距離は異なり得、これらのリンクの各々の伝送媒体は異なり得る。この例において、ネットワーク管理システム810は、ターゲット距離、ファイバタイプ、スパンの数、及びスパンの長さを含む、各光チャネルについてのルーティング情報を取得することができる。ネットワーク管理システム810は、各光チャネルについて、当該光チャネルについてのターゲット距離に適しているこれらの変調方式のうちで最も高いスペクトル効率を有する変調方式を選択するよう動作することができる。いくつかの場合において、ネットワーク管理システム810は、光チャネルについて、到達距離を拡大するように、OSNRマージンを増大させるように、且つ/又は、電力消費を低減させるように、光チャネルについてSCMを有効化するよう動作することができる。
図示されている例において、ROADM820-1からROADM820-2への光経路838は、SCMを有効化することなくDP-8-QAMを用いてターゲット距離に到達することができるほど十分短いものであり得る。ROADM820-1からROADM820-3への光経路836は、光経路838よりもわずかに長い。この場合、SCMが、この光経路について伝送到達距離を拡大するように有効化されれば、DP-8-QAMを用いてターゲット距離を実現することができる。
ROADM820-1からROADM820-4への光経路834は、光経路836よりも長い。この場合、DP-8-QAMを用いてターゲット距離に到達することはできず、光経路834に関連付けられているトランスポンダは、SCMを有効化することなくDP-QPSKを用いるよう構成され得る。図示されている例において、ROADM820-1からROADM820-5への光経路832は、図示されている中で最も長い。この場合、SCMが、この光経路について伝送到達距離を拡大するように有効化されれば、DP-QPSKを用いてターゲット距離を実現することができる。
図8は、特定のターゲット距離について、最も高いスペクトル効率を有する変調方式及び最適シンボルレートが、所望のOSRNマージンを満たしながら最も高い可能なスペクトル効率でターゲット距離に伝送が到達することを可能にするために、(SCMを有効化して又は有効化せずに)光チャネルに割り当てられ得ることを示している。
次いで図9を参照すると、本明細書に記載のように、それぞれの変調方式及びサブキャリア数の制御を通じて光チャネルの伝送到達距離拡大を実現するための方法900の一実施形態の選択された要素のフローチャートが示されている。方法900の動作の一部又は全ては、上述したように、光トランスポートネットワーク101における様々なコンポーネントと通信することができるネットワーク管理システム(図3に示されているネットワーク管理システム300又は図8に示されているネットワーク管理システム810等)により実行され得る。より具体的には、方法900の動作のうちの1つ以上の動作は、図3に示されている経路算出エンジン302等の経路算出エンジンにより実行され得る。方法900に記載の所定の動作は、異なる実施形態においては、任意的であることもあるし、並べ替えられることもあることに留意されたい。
方法900は、902において、所与のターゲット距離及び所与の最大データレートを有する光チャネルに適している、最も高いスペクトル効率を有する変調方式を選択することで、開始し得る。一例において、変調方式は、典型的な到達距離が所与のターゲット距離以上である光チャネルに関連付けられているトランスポンダによりサポートされる1つ以上の変調方式の中から選択され得る。別の例において、変調方式は、本明細書に記載のように、典型的な到達距離が、デジタルサブキャリア多重の有効化を通じて所与のターゲット距離を実現できるほど所与のターゲット距離に十分近い光チャネルに関連付けられているトランスポンダによりサポートされる1つ以上の変調方式の中から選択され得る。
904において、方法900は、光チャネルについての伝送媒体の特性及び所望される又は期待されるマージンに応じて、光チャネルについての最適シンボルレートを決定することを含み得る。いくつかの実施形態において、光チャネルについての最適シンボルレートを決定することは、トラフィックが運ばれる光ファイバの分散係数に応じて、最適シンボルレートを算出することを含み得る。いくつかの実施形態において、光チャネルについての最適シンボルレートを決定することは、トラフィックが運ばれるスパンの数及び/又はトラフィックが運ばれるスパンの各々の長さに応じて、最適シンボルレートを算出することを含み得る。いくつかの実施形態において、光チャネルについての最適シンボルレートを決定することは、所望される又は期待されるOSNRマージンに応じて、最適シンボルレートを算出することを含み得る。いくつかの実施形態において、光チャネルについての最適シンボルレートを決定することは、シンボルレートが伝送媒体の特性にマッピングされているデータ構造から、最適シンボルレートを取得することを含み得る。
906において、方法900は、決定された最適シンボルレートに対応する、光チャネルについてのサブキャリア数を決定することを含み得る。例えば、決定されるサブキャリア数は、決定された最適シンボルレートと逆相関したものであり得る。本明細書に記載のように、シンボルレートが増加するにつれ、サブキャリア数は比例的に減少する。908において、方法900は、光チャネルについて、デジタルサブキャリア多重を有効化することを含み得、デジタルサブキャリア多重を有効化することは、決定されたサブキャリア数及び選択された変調方式を使用してトラフィックを送信及び/又は受信するように、光チャネルに関連付けられている1つ以上のトランスポンダを構成(又は再構成)することを含み得る。いくつかの実施形態において、ネットワーク管理システム(又は経路算出エンジン若しくはネットワーク管理システムの他の要素)は、決定されたサブキャリア数及び選択された変調方式を使用してトラフィックを送信及び/又は受信するように、光チャネルに関連付けられているトランスポンダの送信機DSP及び/又は受信機DSPに命令する制御信号を、光チャネルに関連付けられているトランスポンダの送信機DSP及び/又は受信機DSPに送信することができる。図9に示されている動作は、光ネットワークにおける各光経路について、この光チャネルについて可能な最も高いスペクトル効率及び最も長い到達距離拡大を実現するように当該光経路を構成するために実行され得る。
いくつかの実施形態において、光ネットワークにおいて特定の光チャネルを介して運ぶために使用される伝送媒体は、複数のファイバタイプの光ファイバを含み得る。いくつかの場合において、単一光チャネルの基礎をなす光ファイバについて、ファイバタイプの混合が存在することもある。例えば、1つのスパンはSMFファイバを含み、別のスパンはNZ-DSFファイバを含むものが存在することがある。いくつかのそのような実施形態において、ネットワーク管理システムは、所与の光経路について、適している変調方式を選択するとき及び/又は最適シンボルレートを決定するとき、このようなファイバ混合を考慮することができる。いくつかの実施形態において、最適シンボルレートの決定は、各ファイバタイプを含む、光経路の相対部分に依存し得る。例えば、最適シンボルレートの決定は、SMFファイバを含むスパンの長さとNZ-DSFファイバを含むスパンの長さとの比に依存し得る。
いくつかの場合において、光経路において使用されている複数のファイバタイプのうち1つの支配的な(dominant)ファイバタイプが存在する場合、ネットワーク管理システムは、光経路において使用されている他のファイバタイプの特性を考慮することなく、支配的なファイバタイプの特性に基づいて、最適シンボルレートを選択することができる。一例において、光経路の全長の少なくとも90%が、あるファイバタイプを使用して実現されている場合、そのファイバタイプが、支配的なファイバタイプであるとみなされ得る。他のファイバタイプを使用して実現されている1つ以上のスパンであって、1つ以上のスパンを組み合わせたときの長さが光経路の全長の10%未満である、1つ以上のスパンを含めることは、最適シンボルレートの算出において、小さな誤差をもたらし得る。しかしながら、ほとんどの光ネットワークは、そのような変動、又は、温度変化、波長シフト、又は他のファクタに起因する変動を考慮するための少なくとも何らかの量のOSNRマージンを含むように設計される。いくつかの実施形態において、支配的なファイバタイプではないタイプのファイバを含めることから生じる0.5dB以下のOSNRペナルティは、許容でき得る。他の実施形態において、1つのファイバタイプが、支配的なファイバタイプであるとみなされるかどうかを判定する際に、異なる閾値又は基準が使用されてもよい。いくつかの実施形態において、2つ以上のファイバタイプの複数のスパンを含む光チャネルについての最適シンボルレートは、以下に示される式に基づいて算出され得る。他の実施形態において、最適シンボルレートは、支配的なファイバタイプが存在しない場合に限り、このやり方で算出され得る。以下の式において、この算出は、2つの異なるタイプのファイバであるSMFファイバ及びNZ-DSFファイバが存在し、いずれのファイバタイプも支配的なファイバタイプであるとみなされない光チャネルについて実行され得る。
Figure 0007287087000005
この例において、SMFが、支配的なファイバであるとみなされた場合、ネットワーク管理システムは、SMFファイバの特性のみに基づいて、最適シンボルレートを算出することができる。あるいは、NZ-DSFが、支配的なファイバであるとみなされた場合、ネットワーク管理システムは、NZ-DSFファイバの特性のみに基づいて、最適シンボルレートを算出することができる。
上記の例は、複数のスパンの各スパンが2つの異なる光ファイバタイプのうちの1つの光ファイバタイプの光ファイバを含む光チャネルについての最適シンボルレートの算出を示しているが、他の実施形態において、類似するアプローチを使用して、複数のスパンの各スパンが3つ以上の異なる光ファイバタイプのうちの1つの光ファイバタイプの光ファイバを含む光チャネルについての最適シンボルレートを算出することができる。いくつかの実施形態において、この式は、様々なファイバ混合又は比について予め計算され、(例えば経路算出エンジンにおける)データ構造に格納され得る。他の実施形態において、これは、光ネットワークの動作中必要とされるときに計算され得る。
次いで図10を参照すると、本明細書に記載のように、所与の光チャネルについて可能な最も高いスペクトル効率及び最も長い到達距離を実現する変調方式及びサブキャリア数を選択するための方法1000の一実施形態の選択された要素のフローチャートが示されている。方法1000の動作の一部又は全ては、上述したように、光トランスポートネットワーク101における様々なコンポーネントと通信することができるネットワーク管理システム(図3に示されているネットワーク管理システム300又は図8に示されているネットワーク管理システム810等)により実行され得る。より具体的には、方法1000の動作のうちの1つ以上の動作は、図3に示されている経路算出エンジン302等の経路算出エンジンにより実行され得る。方法1000に記載の所定の動作は、異なる実施形態においては、任意的であることもあるし、並べ替えられることもあることに留意されたい。
方法1000は、1002において、所与の光チャネルについて、ターゲット距離(到達距離)及び伝送媒体特性を含むルーティング情報を取得することで、開始し得る。一例において、経路算出エンジンは、所与の光チャネルに関連付けられているトランスポンダから、ルーティング情報を取得することができる、且つ/又は、ネットワーク管理システムの要素によりアクセス可能なデータ構造にルーティング情報を格納することができる。1004において、方法1000は、本明細書に記載のように、最大可能データレートを所与として、光チャネルに適している、最も高いスペクトル効率を有する変調方式を選択することを含み得る。
1006において、図示されている実施形態では、所与の光チャネルが複数のスパン及び異なるファイバタイプを含むかどうかが判定される。そうである場合、方法1000は1008に進む。そうでない場合、方法1000は1012に進む。1008において、方法1000は、各ファイバタイプから構成されている、伝送媒体の相対部分を決定することを含み得る。いくつかの実施形態において、これは、第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することを含み得る。
1010において、方法1000は、所与の光チャネルについて、各ファイバタイプのファイバを含むスパンの数及び長さと、各ファイバタイプについてのファイバ特性と、に基づいて、最適シンボルレート及び対応するサブキャリア数を決定することを含み得る。いくつかの実施形態において、支配的なファイバタイプが存在すると判定された場合、最適シンボルレートは、支配的なファイバタイプのファイバ特性に基づいて算出され得る。支配的なファイバタイプが存在しない場合、最適シンボルレートは、本明細書に記載のように、複数のファイバタイプのファイバ特性に基づいて算出され得る。
1012において、方法1000は、所与の光チャネルについて、所与の光チャネルにおいてトラフィックが運ばれる単一の光ファイバタイプについてのスパンの数及び長さとファイバ特性とに基づいて、最適シンボルレート及び対応するサブキャリア数を決定することを含み得る。
1010又は1012において、所与の光チャネルについて最適シンボルレートを決定した後、1014において、方法1000は、決定された変調方式、最適シンボルレート、及び対応するサブキャリア数を使用してトラフィックを送信及び/又は受信するように、所与の光チャネル用の1つ以上のトランスポンダを構成することを含み得る。いくつかの実施形態において、ネットワーク管理システム(又は経路算出エンジン若しくはネットワーク管理システムの他の要素)は、決定された変調方式、最適シンボルレート、及び対応するサブキャリア数を使用してトラフィックを送信及び/又は受信するように、光チャネルに関連付けられているトランスポンダの送信機DSP及び/又は受信機DSPに命令する制御信号を、光チャネルに関連付けられているトランスポンダの送信機DSP及び/又は受信機DSPに送信することができる。
光ネットワークにおける光チャネルのうちの任意の光チャネル用のトランスポンダを構成した後に(例えば、光ネットワークの動作中の何らかの時点で)、所与の光チャネルについてのルーティング情報の変化が生じた場合、1016において、方法1000は、そのような変化の各々に応じて、1002~1014に示されている動作のうちの少なくとも一部を必要に応じて繰り返して、影響が及ぼされる光チャネル用のトランスポンダを再構成することを含み得る。
図10に示されている動作は、光ネットワークにおける各光経路について、この光チャネルについて可能な最も高いスペクトル効率及び最も長い到達距離拡大を実現するように当該光経路を構成及び/又は再構成するために実行され得る。
本明細書に記載のように、適応的光ネットワークにおける光チャネルの到達距離拡大が、それぞれの変調方式及びサブキャリア数のソフトウェア制御を通じて実現され得る。本明細書において開示されている、光チャネルの到達距離拡大のための方法及びシステムは、所与の光チャネルが、この光チャネルについてのターゲット距離、光ネットワークにおける光トランスポンダによりサポートされる変調方式、光チャネルについての伝送媒体、及び、光チャネルについてサブキャリア多重を有効化する能力を所与として可能な最も高いスペクトル効率及び最も長い到達距離拡大をもって光信号を伝送することを可能にし得る。これは、異なる到達距離拡大技術を使用する光伝送システムにおいて可能であるものよりも良いネットワーク利用をもたらし得る。
本明細書に記載の、光チャネルの到達距離拡大のための方法及びシステムは、中央ネットワーク管理システムにより制御される、単一キャリア及びマルチキャリア・サブキャリア用の送信機又は受信機等の汎用プログラマブルトランスポンダを使用して実現され得る。所与のターゲット距離を有する光チャネルについて、中央ネットワーク管理システムは、まず、最も高い可能なスペクトル効率を実現する変調方式を選択し、次いで、デジタルサブキャリア多重を通じて到達距離を拡大して又は拡大せずに、所与のターゲット距離を実現する最適なサブキャリア数を決定するよう動作することができる。変調方式及びサブキャリア数が決定されると、中央ネットワーク管理システムは、それらに従って光チャネルを構成する命令を、1つ以上のトランスポンダに送信するよう動作することができる。本明細書に開示されている方法及びシステムは、より低いシンボルレートのサブキャリアの使用を通じて、光トランスポンダ内の様々なデジタル信号プロセッサ(DSP)の電力消費の最適化を可能にし得、これは、光ネットワークにおける全体的な電力消費を低減させることができる。
本明細書の主題が、1つ以上の例示的な実施形態に関連して説明されたが、これは、いかなる請求項も前述の特定の形態に限定するよう意図されるものではない。そうではなく、本開示を対象とするいずれの請求項も、本開示の主旨及び範囲に含まれるとしてこのような代替実施形態、変更実施形態、及び均等実施形態を網羅するよう意図されるものである。
以上の実施形態に関し、さらに以下の付記を開示する。
(付記1)
適応的光ネットワークにおいて到達距離を拡大するためのシステムであって、
複数の光トランスポンダと、
記憶媒体と、前記記憶媒体にアクセスすることができるプロセッサと、を有するネットワーク管理システムであって、前記記憶媒体は、前記プロセッサにより実行可能である、
所与のターゲット距離及び所与の最大データレートを有する光チャネルについての変調方式を選択する命令であって、前記の選択された変調方式は、前記所与のターゲット距離及び前記所与の最大データレートを有する光チャネルに適している、前記適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、命令と、
前記光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、前記光チャネルについてのシンボルレートを決定する命令と、
前記の決定されたシンボルレートに対応する、前記光チャネルについてのサブキャリア数を決定する命令と、
前記光チャネルについてサブキャリア多重を有効化する命令であって、前記サブキャリア多重を有効化することは、前記の選択された変調方式及び前記の決定されたサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信する命令を、前記複数の光トランスポンダのうちの1つ以上の光トランスポンダに送信することを含む、命令と、
を記憶している、ネットワーク管理システムと、
を含む、システム。
(付記2)
前記光チャネルについての前記シンボルレートを決定することは、前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数に応じて、前記シンボルレートを算出することを含む、付記1に記載のシステム。
(付記3)
前記光チャネルについての前記シンボルレートを決定することは、
前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
のうちの1つ以上に応じて、前記シンボルレートを算出することを含む、付記1に記載のシステム。
(付記4)
前記光チャネルについての前記シンボルレートを決定することは、前記シンボルレートを、前記シンボルレートが、前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性にマッピングされているデータ構造から、取得することを含み、
前記伝送媒体の前記1つ以上の特性は、
前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数と、
前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
のうちの1つ以上を含む、付記1に記載のシステム。
(付記5)
前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体は、複数のスパンを含み、前記複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含み、
前記シンボルレートを決定することは、
前記2つ以上の光ファイバタイプの各々の光ファイバを含む、前記伝送媒体のそれぞれの部分を決定することと、
前記2つ以上の光ファイバタイプの各々の前記光ファイバを含む、前記伝送媒体の前記それぞれの部分に応じて、前記シンボルレートを算出することと、
を含む、付記1に記載のシステム。
(付記6)
前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体は、複数のスパンを含み、前記複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含み、
前記シンボルレートを決定することは、
第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することと、
前記シンボルレートを、シンボルレートが、前記第1の光ファイバタイプの光ファイバを含むスパンの全長と前記第2の光ファイバタイプの光ファイバを含むスパンの全長とのそれぞれの比にマッピングされているデータ構造から、取得することと、
を含む、付記1に記載のシステム。
(付記7)
前記記憶媒体は、前記プロセッサにより実行可能である、
前記光チャネルについてのルーティング情報をデータ構造から取得する命令と、
前記ルーティング情報に応じて、
前記所与のターゲット距離と、
前記所与の最大データレートと、
前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性と、
のうちの1つ以上を決定する命令と、
をさらに記憶している、付記1に記載のシステム。
(付記8)
前記光チャネルについての前記シンボルレートは、前記光チャネルについての所望される又は期待される光雑音対信号比マージンにさらに応じて決定される、付記1に記載のシステム。
(付記9)
前記記憶媒体は、前記プロセッサにより実行可能である、
前記適応的光ネットワークにおけるトポロジ変化を検出する命令と、
前記の検出されたトポロジ変化に応じて、
前記光チャネルについての異なる変調方式を選択する命令と、
前記光チャネルについての異なるシンボルレートを決定する命令と、
前記異なるシンボルレートに対応する、前記光チャネルについての異なるサブキャリア数を決定する命令と、
前記異なる変調方式及び前記異なるサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信するように、前記1つ以上の光トランスポンダのうちの少なくとも1つを再構成する命令と、
をさらに記憶している、付記1に記載のシステム。
(付記10)
前記複数の光トランスポンダの各々は、
送信機デジタル信号プロセッサと、
受信機デジタル信号プロセッサと、
前記複数の変調方式の各々を実施するための第1の回路と、
前記の選択された変調方式を使用して、前記光チャネルにおいて送信される光信号を生成するように、前記送信機デジタル信号プロセッサを構成するための第2の回路と、
前記の決定されたサブキャリア数を使用して、前記光チャネルにおいて送信される光信号を生成するように、前記送信機デジタル信号プロセッサを構成するための第3の回路と、
前記の選択された変調方式及び前記の決定されたサブキャリア数に従って、前記光チャネルを介して受信された光信号を処理するように、前記受信機デジタル信号プロセッサを構成するための第4の回路と、
を含む、付記1に記載のシステム。
(付記11)
適応的光ネットワークにおいて到達距離を拡大するための方法であって、
所与のターゲット距離及び所与の最大データレートを有する光チャネルについての変調方式を選択するステップであって、前記の選択された変調方式は、前記所与のターゲット距離及び前記所与の最大データレートを有する光チャネルに適している、前記適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、ステップと、
前記光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、前記光チャネルについてのシンボルレートを決定するステップと、
前記の決定されたシンボルレートに対応する、前記光チャネルについてのサブキャリア数を決定するステップと、
前記光チャネルについてサブキャリア多重を有効化するステップであって、前記サブキャリア多重を有効化することは、前記の選択された変調方式及び前記の決定されたサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信するように、1つ以上の光トランスポンダを構成することを含む、ステップと、
を含む、方法。
(付記12)
前記光チャネルについての前記シンボルレートを決定することは、前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数に応じて、前記シンボルレートを算出することを含む、付記11に記載の方法。
(付記13)
前記光チャネルについての前記シンボルレートを決定することは、
前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
のうちの1つ以上に応じて、前記シンボルレートを算出することを含む、付記11に記載の方法。
(付記14)
前記光チャネルについての前記シンボルレートを決定することは、前記シンボルレートを、前記シンボルレートが、前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性にマッピングされているデータ構造から、取得することを含み、
前記伝送媒体の前記1つ以上の特性は、
前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数と、
前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
のうちの1つ以上を含む、付記11に記載の方法。
(付記15)
前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体は、複数のスパンを含み、前記複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含み、
前記シンボルレートを決定することは、
前記2つ以上の光ファイバタイプの各々の光ファイバを含む、前記伝送媒体のそれぞれの部分を決定することと、
前記2つ以上の光ファイバタイプの各々の前記光ファイバを含む、前記伝送媒体の前記それぞれの部分に応じて、前記シンボルレートを算出することと、
を含む、付記11に記載の方法。
(付記16)
前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体は、複数のスパンを含み、前記複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含み、
前記シンボルレートを決定することは、
第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することと、
前記シンボルレートを、シンボルレートが、前記第1の光ファイバタイプの光ファイバを含むスパンの全長と前記第2の光ファイバタイプの光ファイバを含むスパンの全長とのそれぞれの比にマッピングされているデータ構造から、取得することと、
を含む、付記11に記載の方法。
(付記17)
前記光チャネルについてのルーティング情報をデータ構造から取得するステップと、
前記ルーティング情報に応じて、
前記所与のターゲット距離と、
前記所与の最大データレートと、
前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性と、
のうちの1つ以上を決定するステップと、
をさらに含む、付記11に記載の方法。
(付記18)
前記光チャネルについての前記シンボルレートは、前記光チャネルについての所望される又は期待される光雑音対信号比マージンにさらに応じて決定される、付記11に記載の方法。
(付記19)
前記適応的光ネットワークにおけるトポロジ変化を検出するステップと、
前記の検出されたトポロジ変化に応じて、
前記光チャネルについての異なる変調方式を選択するステップと、
前記光チャネルについての異なるシンボルレートを決定するステップと、
前記異なるシンボルレートに対応する、前記光チャネルについての異なるサブキャリア数を決定するステップと、
前記異なる変調方式及び前記異なるサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信するように、前記1つ以上の光トランスポンダのうちの少なくとも1つを再構成するステップと、
をさらに含む、付記11に記載の方法。
(付記20)
別のターゲット距離又は別の最大データレートを有する別の光チャネルについての変調方式を選択するステップであって、前記別の光チャネルについての前記の選択された変調方式は、前記別のターゲット距離又は前記別の最大データレートを有する光チャネルに適している、前記適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、ステップと、
前記別の光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、前記別の光チャネルについてのシンボルレートを決定するステップと、
前記別の光チャネルについての前記の決定されたシンボルレートに対応する、前記別の光チャネルについてのサブキャリア数を決定するステップと、
前記別の光チャネルについてサブキャリア多重を有効化するステップであって、該サブキャリア多重を有効化することは、前記別の光チャネルについての前記の選択された変調方式及び前記別の光チャネルについての前記の決定されたサブキャリア数を使用して、前記別の光チャネルにおいて前記トラフィックを送信及び/又は受信するように、1つ以上の他の光トランスポンダを構成することを含む、ステップと、
をさらに含み、
前記別の光チャネルについての前記の選択された変調方式及び前記別の光チャネルについての前記の決定されたサブキャリア数のうちの少なくとも1つは、前記光チャネルについての前記の選択された変調方式及び前記光チャネルについての前記の決定されたサブキャリア数のうちの少なくとも1つとそれぞれ異なる、付記11に記載の方法。
101 光トランスポートネットワーク
102 送信機(Tx)
104 マルチプレクサ(MUX)
105 デマルチプレクサ(DEMUX)
106 光ファイバ
108 光増幅器
110 光アド/ドロップマルチプレクサ(OADM)
112 受信機(Rx)
300 ネットワーク管理システム
302 経路算出エンジン
304 データベース
306 シグナリングモジュール
308 プロセッサ
310 ルーティングモジュール
312 発見モジュール
314 ネットワークインタフェース
320 記憶媒体
330 ネットワーク

Claims (18)

  1. 適応的光ネットワークにおいて到達距離を拡大するためのシステムであって、
    複数の光トランスポンダと、
    記憶媒体と、前記記憶媒体にアクセスすることができるプロセッサと、を有するネットワーク管理システムであって、前記記憶媒体は、前記プロセッサにより実行可能である、
    所与のターゲット距離及び所与の最大データレートを有する光チャネルについての変調方式を選択する命令であって、前記の選択された変調方式は、前記所与のターゲット距離及び前記所与の最大データレートを有する光チャネルに適している、前記適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、命令と、
    前記光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、前記光チャネルについてのシンボルレートを決定する命令と、
    前記の決定されたシンボルレートに対応する、前記光チャネルについてのサブキャリア数を決定する命令と、
    前記光チャネルについてサブキャリア多重を有効化する命令であって、前記サブキャリア多重を有効化することは、前記の選択された変調方式及び前記の決定されたサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信する命令を、前記複数の光トランスポンダのうちの1つ以上の光トランスポンダに送信することを含む、命令と、
    を記憶している、ネットワーク管理システムと、
    を含み、
    前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体は、複数のスパンを含み、前記複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含み、
    前記シンボルレートを決定することは、
    前記2つ以上の光ファイバタイプの各々の光ファイバを含む、前記伝送媒体のそれぞれの部分を決定することと、
    前記2つ以上の光ファイバタイプの各々の前記光ファイバを含む、前記伝送媒体の前記それぞれの部分に応じて、前記シンボルレートを算出することと、
    を含む、システム。
  2. 前記光チャネルについての前記シンボルレートを決定することは、前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数に応じて、前記シンボルレートを算出することをさらに含む、請求項1に記載のシステム。
  3. 前記光チャネルについての前記シンボルレートを決定することは、
    前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
    前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
    のうちの1つ以上に応じて、前記シンボルレートを算出することをさらに含む、請求項1に記載のシステム。
  4. 前記光チャネルについての前記シンボルレートを決定することは、前記シンボルレートを、前記シンボルレートが、前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性にマッピングされているデータ構造から、取得することをさらに含み、
    前記伝送媒体の前記1つ以上の特性は、
    前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数と、
    前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
    前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
    のうちの1つ以上を含む、請求項1に記載のシステム。
  5. 記シンボルレートを決定することは、
    第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することと、
    前記シンボルレートを、シンボルレートが、前記第1の光ファイバタイプの光ファイバを含むスパンの全長と前記第2の光ファイバタイプの光ファイバを含むスパンの全長とのそれぞれの比にマッピングされているデータ構造から、取得することと、
    さらに含む、請求項1に記載のシステム。
  6. 前記記憶媒体は、前記プロセッサにより実行可能である、
    前記光チャネルについてのルーティング情報をデータ構造から取得する命令と、
    前記ルーティング情報に応じて、
    前記所与のターゲット距離と、
    前記所与の最大データレートと、
    前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性と、
    のうちの1つ以上を決定する命令と、
    をさらに記憶している、請求項1に記載のシステム。
  7. 前記光チャネルについての前記シンボルレートは、前記光チャネルについての所望される又は期待される光雑音対信号比マージンにさらに応じて決定される、請求項1に記載のシステム。
  8. 前記記憶媒体は、前記プロセッサにより実行可能である、
    前記適応的光ネットワークにおけるトポロジ変化を検出する命令と、
    前記の検出されたトポロジ変化に応じて、
    前記光チャネルについての異なる変調方式を選択する命令と、
    前記光チャネルについての異なるシンボルレートを決定する命令と、
    前記異なるシンボルレートに対応する、前記光チャネルについての異なるサブキャリア数を決定する命令と、
    前記異なる変調方式及び前記異なるサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信するように、前記1つ以上の光トランスポンダのうちの少なくとも1つを再構成する命令と、
    をさらに記憶している、請求項1に記載のシステム。
  9. 前記複数の光トランスポンダの各々は、
    送信機デジタル信号プロセッサと、
    受信機デジタル信号プロセッサと、
    前記複数の変調方式の各々を実施するための第1の回路と、
    前記の選択された変調方式を使用して、前記光チャネルにおいて送信される光信号を生成するように、前記送信機デジタル信号プロセッサを構成するための第2の回路と、
    前記の決定されたサブキャリア数を使用して、前記光チャネルにおいて送信される光信号を生成するように、前記送信機デジタル信号プロセッサを構成するための第3の回路と、
    前記の選択された変調方式及び前記の決定されたサブキャリア数に従って、前記光チャネルを介して受信された光信号を処理するように、前記受信機デジタル信号プロセッサを構成するための第4の回路と、
    を含む、請求項1に記載のシステム。
  10. 適応的光ネットワークにおいて到達距離を拡大するための方法であって、
    所与のターゲット距離及び所与の最大データレートを有する光チャネルについての変調方式を選択するステップであって、前記の選択された変調方式は、前記所与のターゲット距離及び前記所与の最大データレートを有する光チャネルに適している、前記適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、ステップと、
    前記光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、前記光チャネルについてのシンボルレートを決定するステップと、
    前記の決定されたシンボルレートに対応する、前記光チャネルについてのサブキャリア数を決定するステップと、
    前記光チャネルについてサブキャリア多重を有効化するステップであって、前記サブキャリア多重を有効化することは、前記の選択された変調方式及び前記の決定されたサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信するように、1つ以上の光トランスポンダを構成することを含む、ステップと、
    を含み、
    前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体は、複数のスパンを含み、前記複数のスパンは、2つ以上の光ファイバタイプの光ファイバを含み、
    前記シンボルレートを決定することは、
    前記2つ以上の光ファイバタイプの各々の光ファイバを含む、前記伝送媒体のそれぞれの部分を決定することと、
    前記2つ以上の光ファイバタイプの各々の前記光ファイバを含む、前記伝送媒体の前記それぞれの部分に応じて、前記シンボルレートを算出することと、
    を含む、方法。
  11. 前記光チャネルについての前記シンボルレートを決定することは、前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数に応じて、前記シンボルレートを算出することをさらに含む、請求項1に記載の方法。
  12. 前記光チャネルについての前記シンボルレートを決定することは、
    前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
    前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
    のうちの1つ以上に応じて、前記シンボルレートを算出することをさらに含む、請求項1に記載の方法。
  13. 前記光チャネルについての前記シンボルレートを決定することは、前記シンボルレートを、前記シンボルレートが、前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性にマッピングされているデータ構造から、取得することをさらに含み、
    前記伝送媒体の前記1つ以上の特性は、
    前記光チャネルにおいて前記トラフィックが運ばれる光ファイバの分散係数と、
    前記光チャネルにおいて前記トラフィックが運ばれるスパンの数と、
    前記光チャネルにおいて前記トラフィックが運ばれる1つ以上のスパンの各々の長さと、
    のうちの1つ以上を含む、請求項1に記載の方法。
  14. 記シンボルレートを決定することは、
    第1の光ファイバタイプの光ファイバを含むスパンの全長と第2の光ファイバタイプの光ファイバを含むスパンの全長との比を決定することと、
    前記シンボルレートを、シンボルレートが、前記第1の光ファイバタイプの光ファイバを含むスパンの全長と前記第2の光ファイバタイプの光ファイバを含むスパンの全長とのそれぞれの比にマッピングされているデータ構造から、取得することと、
    さらに含む、請求項1に記載の方法。
  15. 前記光チャネルについてのルーティング情報をデータ構造から取得するステップと、
    前記ルーティング情報に応じて、
    前記所与のターゲット距離と、
    前記所与の最大データレートと、
    前記光チャネルにおいて前記トラフィックが運ばれる前記伝送媒体の前記1つ以上の特性と、
    のうちの1つ以上を決定するステップと、
    をさらに含む、請求項1に記載の方法。
  16. 前記光チャネルについての前記シンボルレートは、前記光チャネルについての所望される又は期待される光雑音対信号比マージンにさらに応じて決定される、請求項1に記載の方法。
  17. 前記適応的光ネットワークにおけるトポロジ変化を検出するステップと、
    前記の検出されたトポロジ変化に応じて、
    前記光チャネルについての異なる変調方式を選択するステップと、
    前記光チャネルについての異なるシンボルレートを決定するステップと、
    前記異なるシンボルレートに対応する、前記光チャネルについての異なるサブキャリア数を決定するステップと、
    前記異なる変調方式及び前記異なるサブキャリア数を使用して、前記光チャネルにおいて前記トラフィックを送信及び/又は受信するように、前記1つ以上の光トランスポンダのうちの少なくとも1つを再構成するステップと、
    をさらに含む、請求項1に記載の方法。
  18. 別のターゲット距離又は別の最大データレートを有する別の光チャネルについての変調方式を選択するステップであって、前記別の光チャネルについての前記の選択された変調方式は、前記別のターゲット距離又は前記別の最大データレートを有する光チャネルに適している、前記適応的光ネットワークにおいてサポートされる複数の変調方式のうちの1つ以上の間で最も高いスペクトル効率を有する、ステップと、
    前記別の光チャネルにおいてトラフィックが運ばれる伝送媒体の1つ以上の特性に応じて、前記別の光チャネルについてのシンボルレートを決定するステップと、
    前記別の光チャネルについての前記の決定されたシンボルレートに対応する、前記別の光チャネルについてのサブキャリア数を決定するステップと、
    前記別の光チャネルについてサブキャリア多重を有効化するステップであって、該サブキャリア多重を有効化することは、前記別の光チャネルについての前記の選択された変調方式及び前記別の光チャネルについての前記の決定されたサブキャリア数を使用して、前記別の光チャネルにおいて前記トラフィックを送信及び/又は受信するように、1つ以上の他の光トランスポンダを構成することを含む、ステップと、
    をさらに含み、
    前記別の光チャネルについての前記の選択された変調方式及び前記別の光チャネルについての前記の決定されたサブキャリア数のうちの少なくとも1つは、前記光チャネルについての前記の選択された変調方式及び前記光チャネルについての前記の決定されたサブキャリア数のうちの少なくとも1つとそれぞれ異なる、請求項1に記載の方法。
JP2019081635A 2018-04-27 2019-04-23 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大 Active JP7287087B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/964,297 US10389473B1 (en) 2018-04-27 2018-04-27 Reach extension for optical networks through control of modulation formats and numbers of subcarriers
US15/964297 2018-04-27

Publications (2)

Publication Number Publication Date
JP2019193266A JP2019193266A (ja) 2019-10-31
JP7287087B2 true JP7287087B2 (ja) 2023-06-06

Family

ID=67620939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081635A Active JP7287087B2 (ja) 2018-04-27 2019-04-23 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大

Country Status (2)

Country Link
US (1) US10389473B1 (ja)
JP (1) JP7287087B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091617B2 (ja) * 2017-08-02 2022-06-28 富士通株式会社 光受信器、光伝送システム、及び受信処理方法
CN109039462B (zh) * 2018-07-19 2020-04-03 中国科学院西安光学精密机械研究所 多调制格式兼容高速激光信号无锁相接收系统及方法
US10601517B1 (en) * 2019-01-22 2020-03-24 Fujitsu Limited Probabilistic shaping on eight-dimensional super-symbols
US10700807B1 (en) * 2019-07-01 2020-06-30 Fujitsu Limited Fiber input power selection for probabilistically shaped signals in optical networks
US10809480B1 (en) 2019-09-30 2020-10-20 Corning Research & Development Corporation Dense wavelength division multiplexing fiber optic apparatuses and related equipment
CN112040352B (zh) * 2020-08-21 2022-03-01 烽火通信科技股份有限公司 路径切换方法、装置、设备及可读存储介质
US11539442B1 (en) * 2020-11-03 2022-12-27 Cable Television Laboratories, Inc. Systems and methods for power and modulation management
JP7506335B2 (ja) * 2021-01-13 2024-06-26 日本電信電話株式会社 通信装置、中継装置、通信システム、通信方法およびプログラム
WO2022171280A1 (en) * 2021-02-11 2022-08-18 Huawei Technologies Co., Ltd. Optical system and method for configuring the optical system
US11689310B2 (en) 2021-04-22 2023-06-27 Adva Optical Networking Se Method and system for providing a maximum channel capacity in a wavelength division multiplexing transmission system
WO2022269725A1 (ja) * 2021-06-21 2022-12-29 日本電信電話株式会社 光送受信機及びその制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030897A1 (ja) 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
WO2012147889A1 (ja) 2011-04-27 2012-11-01 日本電信電話株式会社 光通信装置及び光経路切替装置及びネットワーク
JP2014042140A (ja) 2012-08-22 2014-03-06 Kddi R & D Laboratories Inc 光送受信機制御装置、制御方法および光伝送システム
JP2016509387A (ja) 2012-12-31 2016-03-24 ゼットティーイー (ユーエスエー) インコーポレイテッド 光伝送ネットワークのための適応データ伝送フォーマット
JP2017511060A (ja) 2014-04-15 2017-04-13 日本電気株式会社 光送信器およびその制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272186B1 (en) * 1998-12-22 2001-08-07 Nortel Networks Limited Normal burst acquisition system for use in a cellular communications network
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
US9900104B2 (en) * 2011-04-01 2018-02-20 Infinera Corporation Multiplexer and modulation arrangements for multi-carrier optical modems
US20130230311A1 (en) * 2012-03-02 2013-09-05 Neng Bai Systems and methods for compensating for interference in multimode optical fiber
CN104247306B (zh) * 2012-08-28 2017-06-06 华为技术有限公司 光接收器
US9112607B1 (en) * 2013-01-23 2015-08-18 Viasat, Inc. Low power low complexity chromatic dispersion compensation
JP6135415B2 (ja) * 2013-09-11 2017-05-31 富士通株式会社 非線形歪み補償装置及び方法並びに光受信器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030897A1 (ja) 2009-09-14 2011-03-17 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
WO2012147889A1 (ja) 2011-04-27 2012-11-01 日本電信電話株式会社 光通信装置及び光経路切替装置及びネットワーク
JP2014042140A (ja) 2012-08-22 2014-03-06 Kddi R & D Laboratories Inc 光送受信機制御装置、制御方法および光伝送システム
JP2016509387A (ja) 2012-12-31 2016-03-24 ゼットティーイー (ユーエスエー) インコーポレイテッド 光伝送ネットワークのための適応データ伝送フォーマット
JP2017511060A (ja) 2014-04-15 2017-04-13 日本電気株式会社 光送信器およびその制御方法

Also Published As

Publication number Publication date
US10389473B1 (en) 2019-08-20
JP2019193266A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP7073884B2 (ja) 不均等サブキャリア間隔を用いるマルチキャリアチャネルの到達距離拡張
JP7287087B2 (ja) 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大
JP6878997B2 (ja) 光通信システムのための変調フォーマットのコンステレーションシェーピング
JP6638539B2 (ja) 伝送基準に基づくスーパーチャネルパワーフリープリエンファシス
US10396899B1 (en) Probabilistic constellation shaping using set-partitioned M-QAM
US9100137B2 (en) Crosstalk reduction in optical networks using variable subcarrier spectral allocation
JP6299358B2 (ja) 可変的サブキャリア電力レベルを利用する光ネットワークにおけるクロストーク低減
US10511388B1 (en) Reducing variance in reach of WDM channels in an optical network
US9768878B2 (en) Methods and systems for superchannel power pre-emphasis
US10601517B1 (en) Probabilistic shaping on eight-dimensional super-symbols
US10530490B1 (en) Probabilistic constellation shaping for optical networks with diverse transmission media
JP6930118B2 (ja) 混合ボーレートサブキャリアを有するスーパーチャネル
US10461881B2 (en) Method and system for assigning modulation format in optical networks
US11012187B1 (en) Error correction in optical networks with probabilistic shaping and symbol rate optimization
US11265086B2 (en) Low rate loss bit-level distribution matcher for constellation shaping
JP6932994B2 (ja) 異なる変調フォーマットを有するスーパーチャネルを運ぶネットワークの最適化
JP7031245B2 (ja) 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和
US10225008B1 (en) Systems and methods for reconfiguring an adaptive optical network when adding an optical path
US20180234199A1 (en) Optical transport network with improved signal loading
JP2016208514A (ja) 光トランスポートネットワークにおけるスペクトル反転を用いる非線形ペナルティ推定
JP7200686B2 (ja) キャリア抑圧マルチレベルパルス振幅変調

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7287087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150