JP6930019B2 - Component mounting system - Google Patents

Component mounting system Download PDF

Info

Publication number
JP6930019B2
JP6930019B2 JP2020501916A JP2020501916A JP6930019B2 JP 6930019 B2 JP6930019 B2 JP 6930019B2 JP 2020501916 A JP2020501916 A JP 2020501916A JP 2020501916 A JP2020501916 A JP 2020501916A JP 6930019 B2 JP6930019 B2 JP 6930019B2
Authority
JP
Japan
Prior art keywords
component mounting
feeder
physical quantity
loader
mounting machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020501916A
Other languages
Japanese (ja)
Other versions
JPWO2019163044A1 (en
Inventor
康彦 太田
康彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2019163044A1 publication Critical patent/JPWO2019163044A1/en
Application granted granted Critical
Publication of JP6930019B2 publication Critical patent/JP6930019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

本明細書では、部品実装システムを開示する。 This specification discloses a component mounting system.

基板に電子部品を装着する部品実装機としては、種々の機能を有するものが知られている。例えば、特許文献1には、この種の部品実装機において、基板保持部、部品装着部又は部品供給部の動作時に発生する動作音を取得し、その動作音に基づいて基板保持部、部品装着部又は部品供給部の動作異常を検出するものが提案されている。 As a component mounting machine for mounting electronic components on a substrate, those having various functions are known. For example, in Patent Document 1, in this type of component mounting machine, an operation sound generated at the time of operation of a board holding unit, a component mounting unit, or a component supply unit is acquired, and based on the operating sound, the board holding unit and the component mounting unit are mounted. It has been proposed to detect an operation abnormality of a unit or a component supply unit.

特開2005−183572号公報Japanese Unexamined Patent Publication No. 2005-183572

ところで、基板に電子部品を装着する作業は、通常、複数の部品実装機を所定方向に沿って並べた実装ラインを用いて行われる。この場合、特許文献1のような動作異常の検出を行おうとすると、実装ラインに並べられた部品実装機ごとに動作音を取得するマイクを設ける必要があった。 By the way, the work of mounting an electronic component on a substrate is usually performed by using a mounting line in which a plurality of component mounting machines are arranged along a predetermined direction. In this case, in order to detect an operation abnormality as in Patent Document 1, it is necessary to provide a microphone for acquiring the operation sound for each component mounting machine arranged on the mounting line.

本開示は、このような課題に鑑みなされたものであり、音などの物理量を検出する物理量検出部を部品実装機ごとに設けることなく実装ラインを構成する部品実装機の異常の有無を判定できるようにすることを主目的とする。 This disclosure has been made in view of such a problem, and it is possible to determine whether or not there is an abnormality in the component mounting machine constituting the mounting line without providing a physical quantity detecting unit for detecting a physical quantity such as sound for each component mounting machine. The main purpose is to do so.

本開示の部品実装システムは、
部品実装機が複数所定方向に沿って並べられた実装ラインと、
前記所定方向に沿って移動し、各部品実装機に対して作業を行う移動型作業装置と、
を備えた部品実装システムであって、
前記移動型作業装置に取り付けられ、音、温度及び振動の少なくとも1つの物理量を検出する物理量検出部と、
前記物理量検出部によって検出された前記物理量に基づいて前記実装ラインを構成する前記部品実装機の異常の有無を判定する判定装置と、
を備えたものである。
The component mounting system of the present disclosure is
A mounting line in which multiple component mounting machines are arranged along a predetermined direction,
A mobile work device that moves along the predetermined direction and performs work on each component mounting machine.
It is a component mounting system equipped with
A physical quantity detector that is attached to the mobile work device and detects at least one physical quantity of sound, temperature, and vibration.
A determination device for determining the presence or absence of an abnormality in the component mounting machine constituting the mounting line based on the physical quantity detected by the physical quantity detecting unit.
It is equipped with.

この部品実装システムでは、実装ラインに沿って移動する移動型作業装置が物理量検出部を備え、判定装置が物理量検出部によって検出された物理量に基づいて実装ラインを構成する部品実装機の異常の有無を判定する。つまり、物理量検出部は、移動型作業装置に設けるだけでよい。そのため、実装ラインを構成する部品実装機ごとに物理量検出部を設けることなく実装ラインを構成する部品実装機の異常の有無を判定することができる。 In this component mounting system, the mobile work device that moves along the mounting line is equipped with a physical quantity detection unit, and the determination device is based on the physical quantity detected by the physical quantity detection unit. To judge. That is, the physical quantity detection unit need only be provided in the mobile work apparatus. Therefore, it is possible to determine whether or not there is an abnormality in the component mounting machine that constitutes the mounting line without providing a physical quantity detection unit for each component mounting machine that constitutes the mounting line.

部品実装システム10の概略構成を示す平面図。The plan view which shows the schematic structure of the component mounting system 10. 部品実装機20及びローダ50の概略構成を示す斜視図。The perspective view which shows the schematic structure of the component mounting machine 20 and the loader 50. フィーダ30の概略構成を示す斜視図。The perspective view which shows the schematic structure of the feeder 30. 部品実装機20及びローダ50の概略構成を示す側面図。The side view which shows the schematic structure of the component mounting machine 20 and the loader 50. 部品実装システム10の電気的な接続関係を示す説明図。Explanatory drawing which shows the electrical connection relation of the component mounting system 10. 第1実施形態の検査処理ルーチンのフローチャート。The flowchart of the inspection processing routine of 1st Embodiment. 第2実施形態の検査処理ルーチンのフローチャート。The flowchart of the inspection processing routine of 2nd Embodiment. 第3実施形態の検査処理ルーチンのフローチャート。The flowchart of the inspection processing routine of 3rd Embodiment.

[第1実施形態]
本開示の部品実装機の好適な実施形態について図面を参照しながら以下に説明する。図1は部品実装システム10の概略構成を示す平面図、図2は部品実装機20及びローダ50の概略構成を示す斜視図、図3はフィーダ30の概略構成を示す斜視図、図4は部品実装機20及びローダ50の概略構成を示す側面図、図5は部品実装システム10の電気的な接続関係を示す説明図である。なお、X軸方向(左右方向)、Y軸方向(前後方向)、Z軸方向(上下方向)は図1及び図2に示した通りである(図1ではZ軸方向は紙面に垂直方向)。
[First Embodiment]
A preferred embodiment of the component mounting machine of the present disclosure will be described below with reference to the drawings. 1 is a plan view showing a schematic configuration of a component mounting system 10, FIG. 2 is a perspective view showing a schematic configuration of a component mounting machine 20 and a loader 50, FIG. 3 is a perspective view showing a schematic configuration of a feeder 30, and FIG. 4 is a component. A side view showing a schematic configuration of the mounting machine 20 and the loader 50, and FIG. 5 is an explanatory view showing an electrical connection relationship of the component mounting system 10. The X-axis direction (horizontal direction), Y-axis direction (front-back direction), and Z-axis direction (vertical direction) are as shown in FIGS. 1 and 2 (in FIG. 1, the Z-axis direction is the direction perpendicular to the paper surface). ..

部品実装システム10は、実装ライン12と、ローダ50と、管理コンピュータ80とを備えている。 The component mounting system 10 includes a mounting line 12, a loader 50, and a management computer 80.

実装ライン12は、図1に示すように、部品実装機20を複数、X方向に沿って並べることにより構成されている。基板Sは、最も左に配置された部品実装機20へ搬入されたあと右方向へ搬送されていき最も右に配置された部品実装機20から搬出される。そのため、実装ライン12の左側を上流側、右側を下流側と称する。なお、本実施形態では、部品実装機20として、前後2列で基板Sを搬送するタイプを例示したが、特にこのタイプに限定されない。 As shown in FIG. 1, the mounting line 12 is configured by arranging a plurality of component mounting machines 20 along the X direction. The board S is carried into the leftmost component mounting machine 20, then transported to the right, and then carried out from the rightmost component mounting machine 20. Therefore, the left side of the mounting line 12 is referred to as an upstream side, and the right side is referred to as a downstream side. In the present embodiment, as the component mounting machine 20, a type in which the substrate S is conveyed in two front and rear rows is illustrated, but the present invention is not particularly limited to this type.

部品実装機20は、図2に示すように、基板搬送装置21と、フィーダ台22と、ヘッド23と、ヘッド移動機構24とを備える。基板搬送装置21は、基板SをX方向に搬送する。フィーダ台22は、部品実装機20の前面に設けられた側面視がL字状の台である。このフィーダ台22は、X方向に複数配列されたスロット22aと、上下2つの位置決め穴22bの間に設けられたコネクタ22cとを備える。ヘッド23は、フィーダ30によって所定の部品供給位置に供給される部品を負圧により吸着し吸着した部品を正圧により放すノズルを有する。ヘッド移動機構24は、ヘッド23をXY方向に移動させる。また、部品実装機20は、装置全体を制御する実装制御装置28(図5参照)を備える。実装制御装置28は、周知のCPUやROM、HDD、RAMなどで構成され、基板搬送装置21やヘッド23、ヘッド移動機構24などに駆動信号を出力する。 As shown in FIG. 2, the component mounting machine 20 includes a substrate transfer device 21, a feeder base 22, a head 23, and a head moving mechanism 24. The substrate transfer device 21 conveys the substrate S in the X direction. The feeder stand 22 is a stand provided on the front surface of the component mounting machine 20 and having an L-shaped side view. The feeder base 22 includes a plurality of slots 22a arranged in the X direction and a connector 22c provided between two upper and lower positioning holes 22b. The head 23 has a nozzle that sucks the parts supplied to the predetermined parts supply position by the feeder 30 with a negative pressure and releases the sucked parts with a positive pressure. The head moving mechanism 24 moves the head 23 in the XY directions. Further, the component mounting machine 20 includes a mounting control device 28 (see FIG. 5) that controls the entire device. The mounting control device 28 is composed of a well-known CPU, ROM, HDD, RAM, etc., and outputs a drive signal to the board transfer device 21, the head 23, the head moving mechanism 24, and the like.

フィーダ30は、部品を所定ピッチで収容するテープを送り出すテープフィーダとして構成されている。フィーダ30は、図3に示すように、テープリール32と、テープ送り機構33と、コネクタ35と、レール部材37と、バーコード38とを備える。テープリール32は、テープを巻回保持している。テープは、テープ面に設けられた複数の凹部に部品が収納されている。テープ送り機構33は、テープリール32からテープを引き出し、ノズルが部品を吸着可能な所定の部品供給位置までテープを送り出す。コネクタ35は、突出する2本の位置決めピン34の間に設けられている。レール部材37は、フィーダ30の下端面にてY方向に延びる形状の部材である。バーコード38は、テープリール32に収容された部品の種類(部品種)を特定可能なシリアルIDを情報として含むものであり、フィーダ30の上面に設けられている。フィーダ30をフィーダ台22にセットする場合、フィーダ30のレール部材37をフィーダ台22のスロット22aに沿って前方から後方へ差し込む。差し込み終わると、フィーダ30の2本の位置決めピン34がフィーダ台22の2つの位置決め穴22bに嵌まり込むと同時に、フィーダ30のコネクタ35がフィーダ台22のコネクタ22cに嵌まり込んで両コネクタ35,22cが電気的に接続する。フィーダ30をフィーダ台22から外す場合には、セットする場合と逆の手順を行う。フィーダ30は、フィーダ全体の制御を行うフィーダ制御装置39(図5参照)を備える。フィーダ制御装置39は、周知のCPUやROM、RAMなどで構成され、テープ送り機構33に駆動信号を出力する。また、フィーダ制御装置39は、コネクタ35,22cを介して実装制御装置28や管理コンピュータ80などと通信可能となる。 The feeder 30 is configured as a tape feeder that sends out a tape that accommodates parts at a predetermined pitch. As shown in FIG. 3, the feeder 30 includes a tape reel 32, a tape feeding mechanism 33, a connector 35, a rail member 37, and a barcode 38. The tape reel 32 winds and holds the tape. The tape has parts stored in a plurality of recesses provided on the tape surface. The tape feeding mechanism 33 pulls out the tape from the tape reel 32 and feeds the tape to a predetermined component supply position where the nozzle can suck the components. The connector 35 is provided between the two protruding positioning pins 34. The rail member 37 is a member having a shape extending in the Y direction on the lower end surface of the feeder 30. The barcode 38 includes a serial ID that can identify the type (part type) of the parts housed in the tape reel 32 as information, and is provided on the upper surface of the feeder 30. When the feeder 30 is set on the feeder base 22, the rail member 37 of the feeder 30 is inserted from the front to the rear along the slot 22a of the feeder base 22. When the insertion is completed, the two positioning pins 34 of the feeder 30 are fitted into the two positioning holes 22b of the feeder base 22, and at the same time, the connector 35 of the feeder 30 is fitted into the connector 22c of the feeder base 22 and both connectors 35. , 22c are electrically connected. When removing the feeder 30 from the feeder stand 22, the procedure is the reverse of the setting. The feeder 30 includes a feeder control device 39 (see FIG. 5) that controls the entire feeder. The feeder control device 39 is composed of a well-known CPU, ROM, RAM, and the like, and outputs a drive signal to the tape feed mechanism 33. Further, the feeder control device 39 can communicate with the mounting control device 28, the management computer 80, and the like via the connectors 35 and 22c.

部品実装機20の前面には、図2及び図4に示すように、上部ガイドレール40と、下部ガイドレール42と、ラックギヤ44と、非接触給電コイル46とが設けられている。上部ガイドレール40は、X方向に延びる断面U字状のレールであり、開口部が下を向いている。下部ガイドレール42は、X方向に延びる断面L字状のレールであり、垂直面が部品実装機20の前面に取り付けられ、水平面が前方に伸び出している。ラックギヤ44は、X方向に延び、前面に複数の縦溝が刻まれたギヤである。非接触給電コイル46は、X方向に沿って配置されたコイルである。部品実装機20の上部ガイドレール40、下部ガイドレール42及びラックギヤ44は、隣接する部品実装機20の上部ガイドレール40、下部ガイドレール42及びラックギヤ44と着脱可能に連結することができる。そのため、部品実装機20は規格化されており、実装ライン12に並んだ部品実装機20の数を増減することができる。 As shown in FIGS. 2 and 4, an upper guide rail 40, a lower guide rail 42, a rack gear 44, and a non-contact power feeding coil 46 are provided on the front surface of the component mounting machine 20. The upper guide rail 40 is a rail having a U-shaped cross section extending in the X direction, and the opening faces downward. The lower guide rail 42 is a rail having an L-shaped cross section extending in the X direction, a vertical surface is attached to the front surface of the component mounting machine 20, and a horizontal plane extends forward. The rack gear 44 is a gear that extends in the X direction and has a plurality of vertical grooves engraved on the front surface. The non-contact feeding coil 46 is a coil arranged along the X direction. The upper guide rail 40, the lower guide rail 42, and the rack gear 44 of the component mounting machine 20 can be detachably connected to the upper guide rail 40, the lower guide rail 42, and the rack gear 44 of the adjacent component mounting machine 20. Therefore, the component mounting machines 20 are standardized, and the number of component mounting machines 20 lined up on the mounting line 12 can be increased or decreased.

ローダ50は、図4に示すように、上下2段に構成され、下段は走行台52、上段はフィーダ収納ユニット70となっている。 As shown in FIG. 4, the loader 50 is composed of two upper and lower stages, the lower stage is a traveling table 52, and the upper stage is a feeder storage unit 70.

走行台52は、上部ローラ54と、下部ローラ56と、ピニオンギヤ58と、走行用モータ60と、非接触受電コイル62とを備える。上部ローラ54は、上部ガイドレール40の開口部から上向きに挿入され、上部ガイドレール40の側壁に転動可能に係合するように支持されている。下部ローラ56は、下部ガイドレール42の水平面に転動可能に係合するように支持されている。ピニオンギヤ58は、ラックギヤ44に噛み合わされている。走行用モータ60は、モータ軸がピニオンギヤ58の回転軸と連結されている。X方向に延びるラックギヤ44と噛み合っているピニオンギヤ58が走行用モータ60によって回転されると、上部ローラ54が上部ガイドレール40の側壁を転動すると共に下部ローラ56が下部ガイドレール42の水平面を転動しながら、走行台52ひいてはローダ50がX方向に移動する。一方、非接触受電コイル62は、部品実装機20の非接触給電コイル46と所定の間隔を保った状態で対峙し、ローダ50の走行等の動作に必要な電力を部品実装機20から受け取る。なお、非接触受電コイル62は、部品実装機20から受け取った電力を図示しないバッテリに充電し、そのバッテリの電力を走行等の動作に利用してもよい。走行台52は、更に、図5に示すように、ローダ制御装置64と、エンコーダ66とを備える。ローダ制御装置64は、周知のCPUやROM、HDD、RAMなどで構成されている。エンコーダ66は、ローダ50のX方向の位置を検出してローダ制御装置64へ出力する。 The traveling table 52 includes an upper roller 54, a lower roller 56, a pinion gear 58, a traveling motor 60, and a non-contact power receiving coil 62. The upper roller 54 is inserted upward from the opening of the upper guide rail 40 and is supported so as to be rotatably engaged with the side wall of the upper guide rail 40. The lower roller 56 is supported so as to be rotatably engaged with the horizontal plane of the lower guide rail 42. The pinion gear 58 is meshed with the rack gear 44. In the traveling motor 60, the motor shaft is connected to the rotating shaft of the pinion gear 58. When the pinion gear 58 meshing with the rack gear 44 extending in the X direction is rotated by the traveling motor 60, the upper roller 54 rolls on the side wall of the upper guide rail 40 and the lower roller 56 rolls on the horizontal plane of the lower guide rail 42. While moving, the traveling table 52 and thus the loader 50 move in the X direction. On the other hand, the non-contact power receiving coil 62 faces the non-contact power feeding coil 46 of the component mounting machine 20 while maintaining a predetermined interval, and receives power required for operations such as running of the loader 50 from the component mounting machine 20. The non-contact power receiving coil 62 may charge a battery (not shown) with electric power received from the component mounting machine 20, and use the electric power of the battery for operations such as traveling. The pedestal 52 further includes a loader control device 64 and an encoder 66, as shown in FIG. The loader control device 64 is composed of a well-known CPU, ROM, HDD, RAM, and the like. The encoder 66 detects the position of the loader 50 in the X direction and outputs the position to the loader control device 64.

フィーダ収納ユニット70は、部品実装機20へ補給するフィーダ30を収納したり、部品実装機20から回収したフィーダ30を収納したりする。フィーダ収納ユニット70は、フィーダ移載機構72とバーコードリーダ74とマイク76とを備える。フィーダ移載機構72は、フィーダ30の補給や回収を行う。具体的には、フィーダ移載機構72は、フィーダ30を部品実装機20へ補給する際、フィーダ収納ユニット70に収納されたフィーダ30をクランプしてY軸に沿って後方へ移動させ、部品実装機20のフィーダ台22の空きスロット22aに挿入する。また、フィーダ移載機構72は、部品実装機20からフィーダ30を回収する際、部品実装機20のフィーダ台22に保持されているフィーダ30をクランプしてY軸に沿って前方へ移動させてフィーダ台22から引き抜いてフィーダ収納ユニット70に収納する。フィーダ移載機構72に必要な電力は、非接触給電コイル46を介して部品実装機20から供給される。バーコードリーダ74は、フィーダ収納ユニット70に収納されたフィーダ30のバーコード38を読み取り、読み取った情報をローダ制御装置64へ出力する。マイク76は、フィーダ収納ユニット70の天板に部品実装機20(実装ライン12)を向く姿勢で取り付けられている。マイク76は、指向性の高いもの(例えば単一指向性や超指向性)である。マイク76で拾った音は、ローダ制御装置64の内部メモリ(HDDやRAM)に記録される。 The feeder storage unit 70 stores the feeder 30 to be replenished to the component mounting machine 20, and stores the feeder 30 collected from the component mounting machine 20. The feeder storage unit 70 includes a feeder transfer mechanism 72, a barcode reader 74, and a microphone 76. The feeder transfer mechanism 72 replenishes and collects the feeder 30. Specifically, when the feeder 30 is replenished to the component mounting machine 20, the feeder transfer mechanism 72 clamps the feeder 30 stored in the feeder storage unit 70 and moves the feeder 30 backward along the Y axis to mount the components. It is inserted into the empty slot 22a of the feeder base 22 of the machine 20. Further, when the feeder 30 is recovered from the component mounting machine 20, the feeder transfer mechanism 72 clamps the feeder 30 held on the feeder base 22 of the component mounting machine 20 and moves the feeder 30 forward along the Y axis. It is pulled out from the feeder stand 22 and stored in the feeder storage unit 70. The electric power required for the feeder transfer mechanism 72 is supplied from the component mounting machine 20 via the non-contact power feeding coil 46. The barcode reader 74 reads the barcode 38 of the feeder 30 stored in the feeder storage unit 70, and outputs the read information to the loader control device 64. The microphone 76 is attached to the top plate of the feeder storage unit 70 in a posture facing the component mounting machine 20 (mounting line 12). The microphone 76 is highly directional (for example, unidirectional or super directional). The sound picked up by the microphone 76 is recorded in the internal memory (HDD or RAM) of the loader control device 64.

管理コンピュータ80は、周知のCPUやROM、HDD、RAMなどで構成され、図5に示すように、LCDなどのディスプレイ82と、キーボードやマウスなどの入力デバイス84とを備える。管理コンピュータ80のHDDには、生産ジョブデータが記憶されている。生産ジョブデータには、各部品実装機20においてどの部品をどういう順番で基板Sへ装着するか、また、そのように装着した基板Sを何枚作製するかなどが定められている。管理コンピュータ80は、各部品実装機20の実装制御装置28と有線により双方向通信可能に接続されている。管理コンピュータ80は、ローダ制御装置64と双方向通信可能である。 The management computer 80 is composed of a well-known CPU, ROM, HDD, RAM, etc., and includes a display 82 such as an LCD and an input device 84 such as a keyboard and a mouse as shown in FIG. Production job data is stored in the HDD of the management computer 80. The production job data defines which parts are mounted on the board S in what order in each component mounting machine 20, and how many boards S are mounted in this way. The management computer 80 is connected to the mounting control device 28 of each component mounting machine 20 by wire so as to enable bidirectional communication. The management computer 80 is capable of bidirectional communication with the loader control device 64.

次に、部品実装機20の動作について説明する。部品実装機20の実装制御装置28は、ヘッド23のノズルがフィーダ30の部品供給位置に来るようにヘッド移動機構24を制御し、フィーダ30が供給する部品をノズルに吸着させる。その後、実装制御装置28は、ノズルに吸着された部品が基板Sの所定の実装位置に来るようにヘッド移動機構24を制御し、ノズルによる部品の吸着を解除してその実装位置に部品を実装する。実装制御装置28は、この実装動作を基板Sに実装すべき全部品について行う。また、実装制御装置28は、生産ジョブデータに設定された枚数分の基板Sについて部品実装を行う。 Next, the operation of the component mounting machine 20 will be described. The mounting control device 28 of the component mounting machine 20 controls the head moving mechanism 24 so that the nozzle of the head 23 comes to the component supply position of the feeder 30, and attracts the component supplied by the feeder 30 to the nozzle. After that, the mounting control device 28 controls the head moving mechanism 24 so that the component attracted to the nozzle comes to a predetermined mounting position on the substrate S, releases the suction of the component by the nozzle, and mounts the component at the mounting position. do. The mounting control device 28 performs this mounting operation on all the components to be mounted on the substrate S. Further, the mounting control device 28 mounts components on the number of boards S set in the production job data.

部品実装機20の実装制御装置28は、フィーダ30から部品が取り出されるごとにそのフィーダ30の部品残数を減算し、そのフィーダの部品残数が所定の閾値以下になったとき、部品切れが近づいたとみなし、管理コンピュータ80に対して部品の補給要求を出力する。 The mounting control device 28 of the component mounting machine 20 subtracts the remaining number of parts of the feeder 30 each time a component is taken out from the feeder 30, and when the remaining number of parts of the feeder becomes equal to or less than a predetermined threshold value, the component is cut off. It is regarded as approaching, and a supply request for parts is output to the management computer 80.

補給要求を入力した管理コンピュータ80は、オペレータに対し、部品補給が必要な部品種を収容したフィーダ30をローダ50のフィーダ収納ユニット70にセットするよう指示する画面をディスプレイ82に表示する。オペレータは、この画面を見た後、その部品種を収容したフィーダ30をローダ50のフィーダ収納ユニット70にセットする。フィーダ収納ユニット70にフィーダ30がセットされると、バーコードリーダ74によってフィーダ30のバーコード38が読み取られ、そのバーコード38のシリアルIDがローダ制御装置64から管理コンピュータ80に送信される。管理コンピュータ80は、シリアルIDごとに部品に関するデータをHDDに保存しているため、ローダ50にセットされたフィーダ30の部品種が補給要求のあった部品種と同じか否かを判定する。管理コンピュータ80は、両部品種が同じでなかったならばエラーを報知する。管理コンピュータ80は、両部品種が同じだったならば、ローダ制御装置64にフィーダ交換要求を出力する。フィーダ交換要求は、補給要求を出力した部品実装機20においてローダ50にフィーダ交換を行うように指示する指令である。フィーダ交換要求には、部品実装機20のフィーダ台22のスロット22aの位置情報、具体的には補給されるフィーダ30を差し込むスロット22aの位置情報や部品切れになったフィーダ30が差し込まれているスロット22aの位置情報も含まれる。 The management computer 80 that has input the replenishment request displays a screen on the display 82 instructing the operator to set the feeder 30 containing the parts that need to be replenished in the feeder storage unit 70 of the loader 50. After seeing this screen, the operator sets the feeder 30 accommodating the component type in the feeder storage unit 70 of the loader 50. When the feeder 30 is set in the feeder storage unit 70, the barcode reader 74 reads the barcode 38 of the feeder 30, and the serial ID of the barcode 38 is transmitted from the loader control device 64 to the management computer 80. Since the management computer 80 stores the data related to the parts for each serial ID in the HDD, it determines whether or not the part type of the feeder 30 set in the loader 50 is the same as the part type for which the replenishment request has been made. The management computer 80 notifies an error if both component types are not the same. If both component types are the same, the management computer 80 outputs a feeder replacement request to the loader control device 64. The feeder replacement request is a command instructing the loader 50 to replace the feeder in the component mounting machine 20 that outputs the supply request. In the feeder replacement request, the position information of the slot 22a of the feeder base 22 of the component mounting machine 20, specifically, the position information of the slot 22a into which the feeder 30 to be replenished is inserted and the feeder 30 out of parts are inserted. The position information of the slot 22a is also included.

ローダ制御装置64は、管理コンピュータ80からフィーダ交換要求を入力すると、補給要求を出力した部品実装機20の前方位置にローダ50が来るよう走行用モータ60を制御する。具体的には、フィーダ収納ユニット70にセットされたフィーダ30がそのフィーダ30を差し込むスロット22aと対向するよう走行用モータ60を制御する。その状態で、ローダ制御装置64は、フィーダ収納ユニット70にセットされたフィーダ30がその対向するスロット22aに差し込まれるようフィーダ移載機構72を制御する。これにより、新たなフィーダ30が部品実装機20に補給される。 When the feeder replacement request is input from the management computer 80, the loader control device 64 controls the traveling motor 60 so that the loader 50 comes to the front position of the component mounting machine 20 that outputs the supply request. Specifically, the traveling motor 60 is controlled so that the feeder 30 set in the feeder storage unit 70 faces the slot 22a into which the feeder 30 is inserted. In that state, the loader control device 64 controls the feeder transfer mechanism 72 so that the feeder 30 set in the feeder storage unit 70 is inserted into the slot 22a facing the feeder 30. As a result, a new feeder 30 is supplied to the component mounting machine 20.

その後、ローダ制御装置64は、フィーダ収納ユニット70のフィーダ回収位置がフィーダ台22の部品切れになったフィーダ30と対向するよう走行用モータ60を制御する。その状態で、ローダ制御装置64は、部品切れになったフィーダ30がフィーダ収納ユニット70のフィーダ回収位置に引き込まれるようフィーダ移載機構72を制御する。これにより、部品切れのフィーダ30はローダ50に回収される。 After that, the loader control device 64 controls the traveling motor 60 so that the feeder collection position of the feeder storage unit 70 faces the feeder 30 whose parts of the feeder base 22 have run out. In that state, the loader control device 64 controls the feeder transfer mechanism 72 so that the feeder 30 out of parts is pulled into the feeder collection position of the feeder storage unit 70. As a result, the out-of-parts feeder 30 is collected by the loader 50.

このように、部品切れになった部品種と同じ部品を収容した新たなフィーダ30の補給及び部品切れとなったフィーダ30の回収が、ローダ50によって自動的に行われる。そのため、部品実装機20は、部品切れのフィーダ30の部品供給位置(ヘッド23に備えられたノズルで部品を吸着する位置)を、新たなフィーダ30の部品供給位置に切り替えるだけで、実装作業を中断することなく生産を継続して行うことができる。 In this way, the loader 50 automatically replenishes the new feeder 30 containing the same parts as the part type that has run out of parts and collects the feeder 30 that has run out of parts. Therefore, the component mounting machine 20 simply switches the component supply position of the feeder 30 out of components (the position where the component is sucked by the nozzle provided on the head 23) to the component supply position of the new feeder 30 to perform the mounting work. Production can be continued without interruption.

次に、ローダ制御装置64が実行する検査処理ルーチンについて説明する。ローダ制御装置64は、部品実装機20の部品実装動作中に、管理コンピュータ80から実装ライン12の検査要求を入力すると、検査プログラムをROMから読み出して検査処理ルーチンを実行する。なお、管理コンピュータ80は、定期的に実装ライン12の検査要求をローダ制御装置64に送信するものとする。図6は、検査処理ルーチンの一例を示すフローチャートである。 Next, the inspection processing routine executed by the loader control device 64 will be described. When the loader control device 64 inputs an inspection request for the mounting line 12 from the management computer 80 during the component mounting operation of the component mounting machine 20, the loader control device 64 reads the inspection program from the ROM and executes the inspection processing routine. The management computer 80 periodically transmits an inspection request for the mounting line 12 to the loader control device 64. FIG. 6 is a flowchart showing an example of the inspection processing routine.

ローダ制御装置64は、検査処理ルーチンを開始すると、まず、ローダ50がフィーダの補給作業又は回収作業を実行中か否かを判定し(S100)、ローダ50が作業を実行中だったならば再びS100に戻る。つまり、ローダ制御装置64は、ローダ50の作業が終了するまで待機する。一方、S100でローダ50が作業を実行していなかったならば、ローダ制御装置64は、ローダ制御装置64が備えるカウンタの変数であるnをゼロにリセットする(S110)。続いて、ローダ制御装置64は、nを1インクリメントし(S120)、ローダ50がn番目の部品実装機20と対面した位置で停止するように走行用モータ60を制御する(S130)。ここでは、実装ライン12の左側から右側に向かって順に1番目の部品実装機20、2番目の部品実装機20、…というように数えるものとする。続いて、ローダ制御装置64は、所定時間にわたってマイク76が拾う動作音を内部メモリ(HDD又はRAM)に記録する(S140)。所定時間は、例えば、ローダ50が対面している部品実装機20に基板Sが搬入されてから搬出されるまでの時間としてもよいし、それに余裕を見込んだ時間としてもよい。S140で内部メモリに記録された音は、主としてn番目の部品実装機20の動作音である。続いて、ローダ制御装置64は、nが上限に達したか否かを判定し(S150)、nが上限に達していなければ再びS120に戻る。なお、nの上限は、実装ライン12を構成する部品実装機20の総数である。一方、S150でnが上限に達していたならば、ローダ制御装置64は、部品実装機20ごとに記録した動作音に基づいて異常の有無を判定する(S160)。例えば、ローダ制御装置64は、記録した動作音を分析し、通常の部品実装動作では発生し得ない異常な音成分(例えば特定の周波数域の音成分や所定の閾値を超える大きさの音成分など)が含まれているか否かによって異常の有無を判定してもよい。あるいは、部品実装機20の点検を行った結果が良好だった場合にその点検直後の動作音を録音してそれを基準音(正常な動作音)とし、その基準音と録音した動作音とを比較して異常の有無を判定してもよい。その後、ローダ制御装置64は、判定結果を管理コンピュータへ出力し(S170)、本ルーチンを終了する。 When the loader control device 64 starts the inspection processing routine, it first determines whether or not the loader 50 is executing the replenishment work or the recovery work of the feeder (S100), and if the loader 50 is executing the work, it is again performed. Return to S100. That is, the loader control device 64 waits until the work of the loader 50 is completed. On the other hand, if the loader 50 is not executing the work in S100, the loader control device 64 resets n, which is a variable of the counter included in the loader control device 64, to zero (S110). Subsequently, the loader control device 64 increments n by 1 (S120), and controls the traveling motor 60 so that the loader 50 stops at a position facing the nth component mounting machine 20 (S130). Here, it is assumed that the first component mounting machine 20, the second component mounting machine 20, and so on are counted in order from the left side to the right side of the mounting line 12. Subsequently, the loader control device 64 records the operation sound picked up by the microphone 76 in the internal memory (HDD or RAM) for a predetermined time (S140). The predetermined time may be, for example, the time from when the board S is carried into the component mounting machine 20 facing the loader 50 until it is carried out, or it may be a time that allows for a margin. The sound recorded in the internal memory in S140 is mainly the operating sound of the nth component mounting machine 20. Subsequently, the loader control device 64 determines whether or not n has reached the upper limit (S150), and if n has not reached the upper limit, returns to S120 again. The upper limit of n is the total number of component mounting machines 20 constituting the mounting line 12. On the other hand, if n has reached the upper limit in S150, the loader control device 64 determines the presence or absence of an abnormality based on the operation sound recorded for each component mounting machine 20 (S160). For example, the loader control device 64 analyzes the recorded operating sound, and an abnormal sound component (for example, a sound component in a specific frequency range or a sound component having a magnitude exceeding a predetermined threshold value) that cannot be generated in a normal component mounting operation. Etc.) may be included or not, and the presence or absence of abnormality may be determined. Alternatively, when the result of the inspection of the component mounting machine 20 is good, the operation sound immediately after the inspection is recorded and used as the reference sound (normal operation sound), and the reference sound and the recorded operation sound are recorded. The presence or absence of abnormality may be determined by comparison. After that, the loader control device 64 outputs the determination result to the management computer (S170), and ends this routine.

管理コンピュータ80は、ローダ制御装置64から判定結果を入力すると、その判定結果をディスプレイ82に表示する。管理コンピュータ80は、すべての部品実装機20で異常がみられなかった場合には、ディスプレイ82にその旨を表示する。管理コンピュータ80は、異常がみられた部品実装機20があった場合には、何番目の部品実装機20に異常発生のおそれがあるかを示す内容をディスプレイ82に表示する。この表示を見たオペレータは、異常発生のおそれのある部品実装機20の点検作業を行う。 When the management computer 80 inputs the determination result from the loader control device 64, the management computer 80 displays the determination result on the display 82. If no abnormality is found in all the component mounting machines 20, the management computer 80 displays that fact on the display 82. When there is a component mounting machine 20 in which an abnormality is found, the management computer 80 displays on the display 82 a content indicating which number of the component mounting machine 20 may cause an abnormality. The operator who sees this display performs the inspection work of the component mounting machine 20 which may cause an abnormality.

ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の部品実装システム10が本開示の部品実装システムに相当し、実装ライン12が実装ラインに相当し、ローダ50が移動型作業装置に相当し、音が物理量に相当し、マイク76が物理量検出部に相当し、ローダ制御装置64が判定装置に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present disclosure will be clarified. The component mounting system 10 of the present embodiment corresponds to the component mounting system of the present disclosure, the mounting line 12 corresponds to the mounting line, the loader 50 corresponds to the mobile work device, the sound corresponds to the physical quantity, and the microphone 76 corresponds. It corresponds to the physical quantity detection unit, and the loader control device 64 corresponds to the determination device.

以上説明した第1実施形態の部品実装システム10では、実装ライン12に沿って移動するローダ50がマイク76を備え、ローダ制御装置64がマイク76によって検出された動作音に基づいて実装ライン12を構成する部品実装機20の異常の有無を判定する。つまり、マイク76は、ローダ50に設けるだけでよい。そのため、実装ライン12を構成する部品実装機20ごとにマイクを設けることなく実装ライン12を構成する部品実装機20の異常の有無を判定することができる。 In the component mounting system 10 of the first embodiment described above, the loader 50 that moves along the mounting line 12 includes a microphone 76, and the loader control device 64 sets the mounting line 12 based on the operating sound detected by the microphone 76. It is determined whether or not there is an abnormality in the constituent component mounting machine 20. That is, the microphone 76 need only be provided on the loader 50. Therefore, it is possible to determine whether or not there is an abnormality in the component mounting machine 20 that constitutes the mounting line 12 without providing a microphone for each component mounting machine 20 that constitutes the mounting line 12.

また、ローダ50は、実装ライン12に並べられた複数の部品実装機20に順次対面するように移動し、マイク76は、ローダ50が対面した部品実装機20の動作音を検出し、ローダ制御装置64は、動作音に基づいてローダ50が対面した部品実装機20の異常の有無を判定する。そのため、部品実装機20ごとに異常の有無を判定することができる。 Further, the loader 50 moves so as to sequentially face a plurality of component mounting machines 20 arranged on the mounting line 12, and the microphone 76 detects the operating sound of the component mounting machines 20 facing the loader 50 and controls the loader. The device 64 determines whether or not there is an abnormality in the component mounting machine 20 facing the loader 50 based on the operating sound. Therefore, it is possible to determine the presence or absence of an abnormality for each component mounting machine 20.

[第2実施形態]
第2実施形態では、第1実施形態と比べて、マイク76が全指向性(無指向性)であること及び検査処理ルーチンが異なること以外は、第1実施形態と同様である。そのため、以下には主に検査処理ルーチンについて説明する。図7は、第2実施形態の検査処理ルーチンの一例を示すフローチャートである。
[Second Embodiment]
The second embodiment is the same as the first embodiment except that the microphone 76 is omnidirectional (omnidirectional) and the inspection processing routine is different from that of the first embodiment. Therefore, the inspection processing routine will be mainly described below. FIG. 7 is a flowchart showing an example of the inspection processing routine of the second embodiment.

ローダ制御装置64は、検査処理ルーチンを開始すると、まず、ローダ50がフィーダの補給作業又は回収作業を実行中か否かを判定し(S200)、ローダ50が作業を実行中だったならば再びS200に戻る。つまり、ローダ制御装置64は、ローダ50の作業が終了するまで待機する。一方、S200でローダ50が作業を実行していなかったならば、ローダ制御装置64は、ローダ50が実装ライン12の中央で停止するように走行用モータ60を制御する(S210)。続いて、ローダ制御装置64は、所定時間にわたってマイク76が拾う音を内部メモリ(HDD又はRAM)に記録する(S220)。ここでは、実装ライン12を構成するすべての部品実装機20で発生する動作音が記録される。本実施形態では、マイク76は全指向性であるため、このような動作音を記録するのに適している。所定時間は、例えば1枚の基板Sが実装ライン12の上流側に搬入されてから下流側から搬出されるまでの時間としてもよいし、1枚の基板Sが1台の部品実装機20に搬入されてから搬出されるまでの時間としてもよいし、これらに余裕を見込んだ時間としてもよい。続いて、ローダ制御装置64は、記録した全体の動作音に基づいて、実装ライン12に並べられた複数の部品実装機20の中に異常なものがあるか否かを判定する(S230)。ここでは、ローダ制御装置64は、記録した動作音を分析し、通常の部品実装動作では発生し得ない異常な音成分が含まれているか否かによって異常の有無を判定する。その後、ローダ制御装置64は、判定結果を管理コンピュータへ出力し(S240)、本ルーチンを終了する。 When the loader control device 64 starts the inspection processing routine, it first determines whether or not the loader 50 is executing the replenishment work or the recovery work of the feeder (S200), and if the loader 50 is executing the work, it is again performed. Return to S200. That is, the loader control device 64 waits until the work of the loader 50 is completed. On the other hand, if the loader 50 is not executing the work in S200, the loader control device 64 controls the traveling motor 60 so that the loader 50 stops at the center of the mounting line 12 (S210). Subsequently, the loader control device 64 records the sound picked up by the microphone 76 in the internal memory (HDD or RAM) for a predetermined time (S220). Here, the operating sounds generated by all the component mounting machines 20 constituting the mounting line 12 are recorded. In the present embodiment, since the microphone 76 is omnidirectional, it is suitable for recording such an operating sound. The predetermined time may be, for example, the time from when one board S is carried into the upstream side of the mounting line 12 until it is carried out from the downstream side, or when one board S is carried into one component mounting machine 20. It may be the time from the time it is carried in to the time it is taken out, or it may be the time that allows for a margin. Subsequently, the loader control device 64 determines whether or not there is an abnormality among the plurality of component mounting machines 20 arranged on the mounting line 12 based on the recorded overall operating sound (S230). Here, the loader control device 64 analyzes the recorded operation sound and determines the presence or absence of an abnormality based on whether or not an abnormal sound component that cannot be generated in a normal component mounting operation is included. After that, the loader control device 64 outputs the determination result to the management computer (S240), and ends this routine.

管理コンピュータ80は、ローダ制御装置64から判定結果を入力すると、その判定結果をディスプレイに表示する。管理コンピュータ80は、実装ライン12全体で異常がみられなかった場合には、ディスプレイ82にその旨を表示し、異常がみられた場合には、実装ライン12に並べられた複数の部品実装機20の中に異常なものがあるおそれがある旨をディスプレイ82に表示する。この表示を見たオペレータは、異常発生のおそれのある実装ライン12を構成する複数の部品実装機20の点検作業を行う。 When the management computer 80 inputs the determination result from the loader control device 64, the management computer 80 displays the determination result on the display. If no abnormality is found in the entire mounting line 12, the management computer 80 displays the fact on the display 82, and if any abnormality is found, the management computer 80 displays a plurality of component mounting machines arranged on the mounting line 12. The display 82 indicates that there is a possibility that there is an abnormality in 20. The operator who sees this display performs inspection work on a plurality of component mounting machines 20 constituting the mounting line 12 in which an abnormality may occur.

以上説明した第2実施形態の部品実装システム10では、実装ライン12に沿って移動するローダ50がマイク76を備え、ローダ制御装置64がマイク76によって検出された音に基づいて実装ライン12を構成する部品実装機20の異常の有無を判定する。つまり、マイク76は、ローダ50に設けるだけでよい。そのため、実装ライン12を構成する部品実装機20ごとにマイクを設けることなく実装ライン12を構成する部品実装機20の異常の有無を判定することができる。 In the component mounting system 10 of the second embodiment described above, the loader 50 moving along the mounting line 12 includes a microphone 76, and the loader control device 64 configures the mounting line 12 based on the sound detected by the microphone 76. It is determined whether or not there is an abnormality in the component mounting machine 20. That is, the microphone 76 need only be provided on the loader 50. Therefore, it is possible to determine whether or not there is an abnormality in the component mounting machine 20 that constitutes the mounting line 12 without providing a microphone for each component mounting machine 20 that constitutes the mounting line 12.

また、マイク76は、実装ライン12の全体の動作音を検出し、ローダ制御装置64は、マイク76によって検出された動作音に基づいて実装ライン12に並べられた複数の部品実装機20の中に異常なものがあるか否かを判定する。そのため、実装ライン12に並べられた複数の部品実装機20の中に異常なものがあるか否かを知ることができる。 Further, the microphone 76 detects the entire operating sound of the mounting line 12, and the loader control device 64 is among the plurality of component mounting machines 20 arranged on the mounting line 12 based on the operating sound detected by the microphone 76. Determine if there is something wrong with. Therefore, it is possible to know whether or not there is an abnormal one among the plurality of component mounting machines 20 arranged on the mounting line 12.

[第3実施形態]
第3実施形態では、第1実施形態と比べて、マイク76の単一指向性と全指向性(無指向性)とをローダ制御装置64によって切り替え可能であること及び検査処理ルーチンが異なること以外は、第1実施形態と同様である。そのため、以下には主に検査処理ルーチンについて説明する。図8は、第3実施形態の検査処理ルーチンの一例を示すフローチャートである。
[Third Embodiment]
In the third embodiment, as compared with the first embodiment, the unidirectionality and the omnidirectionality (omnidirectionality) of the microphone 76 can be switched by the loader control device 64, and the inspection processing routine is different. Is the same as in the first embodiment. Therefore, the inspection processing routine will be mainly described below. FIG. 8 is a flowchart showing an example of the inspection processing routine of the third embodiment.

ローダ制御装置64は、検査処理ルーチンを開始すると、S200〜S230の処理を実行する。S200〜S230の処理については第2実施形態で説明したため、ここではその説明を省略する。なお、マイク76は、S220で録音する前に全指向性に設定される。S230のあと、ローダ制御装置64は、実装ライン12に並べられた複数の部品実装機20の中に異常なものがあったか否かを判定し(S232)、なかったならば、その旨を管理コンピュータ80へ出力し(S234)、本ルーチンを終了する。一方、S232で異常なものがあったならば、ローダ制御装置64は、S110〜S170の処理を実行する。S110〜S170の処理については第1実施形態で説明したため、ここではその説明を省略する。なお、マイク76は、S140で録音する前に単一指向性に設定される。 When the loader control device 64 starts the inspection processing routine, the loader control device 64 executes the processing of S200 to S230. Since the processes of S200 to S230 have been described in the second embodiment, the description thereof will be omitted here. The microphone 76 is set to omnidirectional before recording with S220. After S230, the loader control device 64 determines whether or not there is an abnormal one in the plurality of component mounting machines 20 arranged on the mounting line 12 (S232), and if not, the management computer to that effect. Output to 80 (S234) and end this routine. On the other hand, if there is something abnormal in S232, the loader control device 64 executes the processes of S110 to S170. Since the processing of S110 to S170 has been described in the first embodiment, the description thereof will be omitted here. The microphone 76 is set to unidirectional before recording in S140.

以上説明した第3実施形態の部品実装システム10では、第2実施形態と同様の効果が得られる。加えて、ローダ制御装置64は、まずは、実装ライン12に並べられた複数の部品実装機20の中に異常なものがあるか否かを判定し、異常なものがあったときに、部品実装機20ごとに異常の有無を判定する。そのため、最初から部品実装機20ごとに異常の有無を判定する場合に比べて、判定に要する時間が短くなる。 In the component mounting system 10 of the third embodiment described above, the same effect as that of the second embodiment can be obtained. In addition, the loader control device 64 first determines whether or not there is an abnormal one in the plurality of component mounting machines 20 arranged on the mounting line 12, and when there is an abnormal one, the component mounting The presence or absence of an abnormality is determined for each machine 20. Therefore, the time required for the determination is shorter than in the case of determining the presence or absence of an abnormality for each component mounting machine 20 from the beginning.

[他の実施形態]
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
[Other Embodiments]
It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various aspects as long as it belongs to the technical scope of the present invention.

例えば、上述した各実施形態では、物理量として音を採用し、物理量検出部としてマイク76を採用したが、その代わりに、物理量として振動を採用し、物理量検出部として部品実装機20の振動を検出する振動検出センサを採用してもよい。その場合、検出された振動のレベル(大きさ)に基づいて部品実装機20の異常の有無を判定してもよい。あるいは、物理量として温度を採用し、物理量検出部として部品実装機20の温度を検出する温度検出センサを採用してもよい。その場合、検出された温度に基づいて部品実装機20の異常の有無を判定してもよい。なお、温度や振動は部品実装機20に異常が発生してから変化するまでに時間を要することがあるが、音は部品実装機20に異常が発生してから比較的速やかに変化するため異常の有無を早期に発見しやすい。この点で物理量として音を採用するのが好ましい。 For example, in each of the above-described embodiments, sound is adopted as the physical quantity and the microphone 76 is adopted as the physical quantity detection unit, but instead, vibration is adopted as the physical quantity and the vibration of the component mounting machine 20 is detected as the physical quantity detection unit. A vibration detection sensor may be adopted. In that case, the presence or absence of abnormality in the component mounting machine 20 may be determined based on the detected vibration level (magnitude). Alternatively, a temperature may be adopted as the physical quantity, and a temperature detection sensor for detecting the temperature of the component mounting machine 20 may be adopted as the physical quantity detecting unit. In that case, the presence or absence of abnormality in the component mounting machine 20 may be determined based on the detected temperature. It may take some time for the temperature and vibration to change after the abnormality occurs in the component mounting machine 20, but the sound is abnormal because it changes relatively quickly after the abnormality occurs in the component mounting machine 20. It is easy to detect the presence or absence of. In this respect, it is preferable to use sound as a physical quantity.

上述した各実施形態では、ローダ制御装置64が録音データ(動作音)に基づいて異常の有無を判定したが、ローダ制御装置64が録音データを管理コンピュータ80へ送信し、それを受信した管理コンピュータ80が異常の有無を判定してもよい。その場合、管理コンピュータ80が判定装置の役割を果たすことになる。 In each of the above-described embodiments, the loader control device 64 determines the presence or absence of an abnormality based on the recorded data (operating sound), but the loader control device 64 transmits the recorded data to the management computer 80 and receives the recorded data. 80 may determine the presence or absence of abnormality. In that case, the management computer 80 plays the role of a determination device.

上述した各実施形態では、マイク76をフィーダ収納ユニット70の天板に取り付けたが、特にこれに限られるものではなく、マイク76を走行台52の側面やフィーダ収納ユニット70の側面に取り付けてもよいしローダ50に内蔵してもよい。 In each of the above-described embodiments, the microphone 76 is attached to the top plate of the feeder storage unit 70, but the present invention is not particularly limited, and the microphone 76 may be attached to the side surface of the traveling table 52 or the side surface of the feeder storage unit 70. It may be built in the loader 50.

上述した各実施形態では、管理コンピュータ80がディスプレイ82に判定結果を表示したが、これに代えて又は加えて、ローダ制御装置64が自己のディスプレイに判定結果を表示してもよいし、実装制御装置28がローダ制御装置64から判定結果を取得して自己のディスプレイに表示してもよい。 In each of the above-described embodiments, the management computer 80 displays the determination result on the display 82, but instead of or in addition to this, the loader control device 64 may display the determination result on its own display, or mounting control. The device 28 may acquire the determination result from the loader control device 64 and display it on its own display.

上述した第1及び第3実施形態のS160では、実装ライン12を構成するすべての部品実装機20の動作音を記録し終わってから各部品実装機20の異常の有無を判定したが、1台の部品実装機20の動作音を記録し終わるごとにその部品実装機20の異常の有無を判定してもよい。また、S140では部品実装機20ごとに動作音を所定時間にわたって記録したが、部品実装機20の動作ごとの動作音を記録してもよい。動作としては、例えば、基板搬送装置21が基板Sを搬入する動作、フィーダ30が部品を供給する動作、ヘッド23のノズルがテープから部品を吸着する動作、ヘッド移動機構24がヘッド30を移動させる動作、ヘッド23のノズルが部品を基板Sに装着する動作、基板搬送装置21が基板Sを搬出する動作などが挙げられる。部品実装機20の動作ごとの動作音を記録する場合、部品実装機20が各処理の動作の開始や終了をローダ制御装置64に通知し、その通知に合わせてローダ制御装置64がローダ50をその部品実装機20と対面した位置に移動させ、動作音を記録してもよい。 In S160 of the first and third embodiments described above, the presence or absence of an abnormality in each component mounting machine 20 is determined after recording the operating sounds of all the component mounting machines 20 constituting the mounting line 12, but one unit is used. The presence or absence of an abnormality in the component mounting machine 20 may be determined each time the operation sound of the component mounting machine 20 is recorded. Further, in S140, the operation sound is recorded for each component mounting machine 20 for a predetermined time, but the operation sound for each operation of the component mounting machine 20 may be recorded. The operations include, for example, an operation in which the substrate transfer device 21 carries in the substrate S, an operation in which the feeder 30 supplies parts, an operation in which the nozzle of the head 23 sucks the parts from the tape, and an operation in which the head moving mechanism 24 moves the head 30. Examples include an operation, an operation in which the nozzle of the head 23 attaches the component to the substrate S, an operation in which the substrate transfer device 21 carries out the substrate S, and the like. When recording the operation sound for each operation of the component mounting machine 20, the component mounting machine 20 notifies the loader control device 64 of the start and end of the operation of each process, and the loader control device 64 notifies the loader 50 in accordance with the notification. The operation sound may be recorded by moving the component mounting machine 20 to a position facing the component mounting machine 20.

上述した第2実施形態では、S210で実装ライン12の中央にローダ50を移動したが、実装ライン12の全体の動作音を拾える位置であれば実装ライン12の中央以外でも構わない。 In the second embodiment described above, the loader 50 is moved to the center of the mounting line 12 in S210, but it may be other than the center of the mounting line 12 as long as the entire operating sound of the mounting line 12 can be picked up.

上述した第3実施形態では、単一指向性と全指向性とを切り替え可能なマイク76を用いたが、単一指向性のマイクと全指向性のマイクの2本をローダ50に装着し、S220では全指向性のマイクを使用し、S140では単一指向性のマイクを使用するようにしてもよい。 In the third embodiment described above, the microphone 76 capable of switching between unidirectional and omnidirectional is used, but two microphones, a unidirectional microphone and an omnidirectional microphone, are attached to the loader 50. An omnidirectional microphone may be used in S220, and a unidirectional microphone may be used in S140.

上述した各実施形態では、部品供給装置としてフィーダ30を例示したが、特にフィーダ30に限定されるものではなく、例えば部品トレイや部品トレイを供給するユニットであってもよい。また、部品供給装置は、フィーダ30のように基板Sに実装される部品を供給する装置に限定されるものではなく、例えばヘッドを供給する装置や、ヘッドに取り付けられる交換用ノズルを供給するノズルストッカであってもよい。 In each of the above-described embodiments, the feeder 30 has been exemplified as the component supply device, but the present invention is not particularly limited to the feeder 30, and for example, a component tray or a unit for supplying the component tray may be used. Further, the component supply device is not limited to a device that supplies components mounted on the substrate S such as the feeder 30, and is, for example, a device that supplies a head or a nozzle that supplies a replacement nozzle attached to the head. It may be a stocker.

上述した各実施形態では、ローダ50がフィーダ30の補給と回収の両方を実行する例を示したが、特にこれに限定されるものではなく、例えば、ローダ50が補給と回収のいずれか一方のみを実行するようにしてもよい。 In each of the above-described embodiments, an example is shown in which the loader 50 performs both replenishment and recovery of the feeder 30, but the present invention is not particularly limited to this, and for example, the loader 50 has only one of replenishment and recovery. May be executed.

上述した各実施形態では、移動型作業装置として、走行用モータ60によって走行するローダ50を例示したが、特にこれに限定されるものではない。例えば、床面に埋設したガイドラインの磁気誘導作用によって走行する無人搬送車であってもよい。 In each of the above-described embodiments, the loader 50 traveling by the traveling motor 60 has been exemplified as the mobile working device, but the present invention is not particularly limited thereto. For example, it may be an automatic guided vehicle that travels by the magnetic induction action of the guideline embedded in the floor surface.

上述した各実施形態では、ローダ50を作動させる電力は非接触給電コイル46を介して部品実装機20から供給されるようにしたが、特にこれに限定されるものではない。例えば、バッテリをローダ50に搭載していてもよい。 In each of the above-described embodiments, the electric power for operating the loader 50 is supplied from the component mounting machine 20 via the non-contact power feeding coil 46, but the present invention is not particularly limited to this. For example, the battery may be mounted on the loader 50.

上述した各実施形態では、走行用モータ60の回転運動をラックギヤ44とピニオンギヤ58を用いて直線運動に変換したが、ラックギヤ44の代わりにチェーン、ピニオンギヤ58の代わりにスプロケットホイールを採用して走行用モータ60の回転運動を直線運動に変換してもよい。 In each of the above-described embodiments, the rotational motion of the traveling motor 60 is converted into linear motion using the rack gear 44 and the pinion gear 58, but a chain is used instead of the rack gear 44 and a sprocket wheel is used instead of the pinion gear 58 for traveling. The rotary motion of the motor 60 may be converted into a linear motion.

上述した各実施形態では、実装ライン12として複数の部品実装機20をX方向に並べたものを例示したが、最上流位置の部品実装機20の上流側に、基板Sにはんだを印刷する印刷機やその印刷状況を検査する印刷検査機を配置してもよい。あるいは、最下流位置の部品実装機20の下流側に、基板S上の部品を検査する部品検査機やはんだのリフローを行うリフロー機を配置してもよい。 In each of the above-described embodiments, a plurality of component mounting machines 20 are arranged in the X direction as the mounting line 12, but printing is performed on the substrate S on the upstream side of the component mounting machine 20 at the most upstream position. A printing inspection machine for inspecting the machine and its printing status may be arranged. Alternatively, a component inspection machine for inspecting the components on the substrate S and a reflow machine for reflowing the solder may be arranged on the downstream side of the component mounting machine 20 at the most downstream position.

上述した各実施形態では、ローダ制御装置64が録音データ(動作音)に基づいて異常の有無を判定したが、動作の不良が推定されたとき、もしくは不良の予兆を認識した時に、動作音の録音、記録を行うようにしてもよい。不良の推定、予兆の認識方法としては、例えば、吸着動作の異常回数、ミス率の増加、検査機による実装不良回数、不良率の増加等が考えられる。また何らかの不良データの統計処理により不良箇所が特定されたときに、その不良箇所の動作音を録音、記録するようにしても良い。このように動作音を記録、分析をすることにより、不良の状況をより明確に把握できる可能性がある。 In each of the above-described embodiments, the loader control device 64 determines the presence or absence of an abnormality based on the recorded data (operating sound). Recording may be performed. As a method of estimating defects and recognizing signs, for example, the number of abnormal adsorption operations, an increase in the error rate, the number of mounting defects by an inspection machine, an increase in the defect rate, and the like can be considered. Further, when a defective portion is identified by some statistical processing of defective data, the operating sound of the defective portion may be recorded. By recording and analyzing the operating sound in this way, there is a possibility that the state of failure can be grasped more clearly.

[本開示の部品実装システムの構成例]
なお、本開示の部品実装システムは、以下のように構成してもよい。
[Configuration example of the component mounting system of the present disclosure]
The component mounting system of the present disclosure may be configured as follows.

本開示の部品実装システムにおいて、前記移動型作業装置は、前記実装ラインに並べられた複数の前記部品実装機に順次対面するように移動し、前記物理量検出部は、前記移動型作業装置が対面した前記部品実装機に関する前記物理量を検出し、前記判定装置は、前記物理量検出部によって検出された前記物理量に基づいて、前記移動型作業装置が対面した前記部品実装機の異常の有無を判定してもよい。こうすれば、部品実装機ごとに異常の有無を判定することができる。 In the component mounting system of the present disclosure, the mobile work device moves so as to sequentially face a plurality of the component mounting machines arranged on the mounting line, and the physical quantity detection unit faces the mobile work device. The physical quantity of the component mounting machine is detected, and the determination device determines whether or not there is an abnormality in the component mounting machine facing the mobile work device based on the physical quantity detected by the physical quantity detecting unit. You may. In this way, it is possible to determine the presence or absence of an abnormality for each component mounting machine.

本開示の部品実装システムにおいて、前記物理量検出部は、前記実装ラインの全体に関する前記物理量を検出し、前記判定装置は、前記物理量検出部によって検出された前記物理量に基づいて、前記実装ラインに並べられた複数の前記部品実装機の中に異常なものがあるか否かを判定してもよい。こうすれば、実装ラインに並べられた複数の部品実装機の中に異常なものがあるか否かを知ることができる。 In the component mounting system of the present disclosure, the physical quantity detecting unit detects the physical quantity with respect to the entire mounting line, and the determination device arranges the physical quantity on the mounting line based on the physical quantity detected by the physical quantity detecting unit. It may be determined whether or not there is an abnormality among the plurality of the component mounting machines. In this way, it is possible to know whether or not there is an abnormality among the plurality of component mounting machines arranged on the mounting line.

この場合、前記移動型作業装置は、前記実装ラインに並べられた複数の前記部品実装機の中に異常なものがあると判定されたならば、前記実装ラインに並べられた複数の前記部品実装機に順次対面するように移動し、前記物理量検出部は、前記移動型作業装置が対面した前記部品実装機に関する前記物理量を検出し、前記判定装置は、前記物理量検出部によって検出された前記物理量に基づいて、前記移動型作業装置が対面した前記部品実装機の異常の有無を判定してもよい。つまり、まずは、実装ラインに並べられた複数の部品実装機の中に異常なものがあるか否かを判定し、異常なものがあったときに、部品実装機ごとに異常の有無を判定する。そのため、最初から部品実装機ごとに異常の有無を判定する場合に比べて、判定に要する時間が短くなる。 In this case, if it is determined that there is an abnormality among the plurality of component mounting machines arranged on the mounting line, the mobile work apparatus mounts the plurality of components arranged on the mounting line. The physical quantity detection unit sequentially moves to face the machine, the physical quantity detection unit detects the physical quantity related to the component mounting machine facing the mobile work device, and the determination device detects the physical quantity detected by the physical quantity detection unit. It may be determined whether or not there is an abnormality in the component mounting machine facing the mobile work device based on the above. That is, first, it is determined whether or not there is an abnormality among the plurality of component mounting machines arranged on the mounting line, and when there is an abnormality, it is determined whether or not there is an abnormality for each component mounting machine. .. Therefore, the time required for the determination is shorter than in the case of determining the presence or absence of an abnormality for each component mounting machine from the beginning.

本開示の部品実装システムにおいて、前記物理量は、音とするのが好ましい。温度や振動は部品実装機に異常が発生してから変化するまでに時間を要することがあるが、音は部品実装機に異常が発生してから比較的速やかに変化するため異常の有無を早期に発見しやすい。 In the component mounting system of the present disclosure, the physical quantity is preferably sound. Temperature and vibration may take some time to change after an abnormality occurs in the component mounting machine, but sound changes relatively quickly after an abnormality occurs in the component mounting machine, so the presence or absence of an abnormality is early. Easy to find.

本発明は、基板に部品を実装する作業を行う各種産業に利用可能である。 The present invention can be used in various industries in which components are mounted on a substrate.

10 部品実装システム、12 実装ライン、20 部品実装機、21 基板搬送装置、22 フィーダ台、22a スロット、22b 穴、22c コネクタ、23 ヘッド、24 ヘッド移動機構、28 実装制御装置、30 フィーダ、32 テープリール、33 テープ送り機構、34 ピン、35 コネクタ、35 両コネクタ、37 レール部材、38 バーコード、39 フィーダ制御装置、40 上部ガイドレール、42 下部ガイドレール、44 ラックギヤ、46 非接触給電コイル、50 ローダ、52 走行台、54 上部ローラ、56 下部ローラ、58 ピニオンギヤ、60 走行用モータ、62 非接触受電コイル、64 ローダ制御装置、66 エンコーダ、70 フィーダ収納ユニット、72 フィーダ移載機構、74 バーコードリーダ、76 マイク、80 管理コンピュータ、82 ディスプレイ、84 入力デバイス。 10 component mounting system, 12 mounting line, 20 component mounting machine, 21 board transfer device, 22 feeder stand, 22a slot, 22b hole, 22c connector, 23 head, 24 head moving mechanism, 28 mounting control device, 30 feeder, 32 tape Reel, 33 tape feed mechanism, 34 pins, 35 connectors, 35 both connectors, 37 rail members, 38 barcodes, 39 feeder control devices, 40 upper guide rails, 42 lower guide rails, 44 rack gears, 46 non-contact power supply coils, 50 Loader, 52 pedestal, 54 upper roller, 56 lower roller, 58 pinion gear, 60 traction motor, 62 non-contact power receiving coil, 64 loader control device, 66 encoder, 70 feeder storage unit, 72 feeder transfer mechanism, 74 barcode Reader, 76 microphones, 80 management computers, 82 displays, 84 input devices.

Claims (2)

部品実装機が複数所定方向に沿って並べられた実装ラインと、
前記所定方向に沿って移動し、各部品実装機に対して作業を行う移動型作業装置と、
前記移動型作業装置に取り付けられ、音、温度及び振動の少なくとも1つの物理量を検出する物理量検出部と、
前記物理量検出部によって検出された、前記実装ラインの全体に関する前記物理量に基づいて、前記実装ラインに並べられた複数の前記部品実装機の中に異常なものがあるか否かを判定する判定装置と、
を備え
前記移動型作業装置は、前記実装ラインに並べられた複数の前記部品実装機の中に異常なものがあると判定されたならば、前記実装ラインに並べられた複数の前記部品実装機に順次対面するように移動し、
前記物理量検出部は、前記移動型作業装置が対面した前記部品実装機に関する前記物理量を検出し、
前記判定装置は、前記物理量検出部によって検出された、前記移動型作業装置が対面した前記部品実装機に関する前記物理量に基づいて、前記移動型作業装置が対面した前記部品実装機の異常の有無を判定する、
部品実装システム。
A mounting line in which multiple component mounting machines are arranged along a predetermined direction,
A mobile work device that moves along the predetermined direction and performs work on each component mounting machine.
A physical quantity detector that is attached to the mobile work device and detects at least one physical quantity of sound, temperature, and vibration.
A determination device for determining whether or not there is an abnormality among the plurality of component mounting machines arranged in the mounting line based on the physical quantity detected by the physical quantity detecting unit with respect to the entire mounting line. When,
Equipped with a,
If it is determined that there is an abnormality among the plurality of component mounting machines arranged on the mounting line, the mobile work apparatus sequentially moves to the plurality of component mounting machines arranged on the mounting line. Move to face each other,
The physical quantity detection unit detects the physical quantity of the component mounting machine facing the mobile work device, and detects the physical quantity.
The determination device determines the presence or absence of an abnormality in the component mounting machine facing the mobile working device based on the physical quantity detected by the physical quantity detecting unit with respect to the component mounting machine facing the mobile working device. judge,
Component mounting system.
前記物理量は、音である、
請求項1に記載の部品実装システム。
The physical quantity is sound,
The component mounting system according to claim 1.
JP2020501916A 2018-02-22 2018-02-22 Component mounting system Active JP6930019B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006379 WO2019163044A1 (en) 2018-02-22 2018-02-22 Component mounting system

Publications (2)

Publication Number Publication Date
JPWO2019163044A1 JPWO2019163044A1 (en) 2020-12-03
JP6930019B2 true JP6930019B2 (en) 2021-09-01

Family

ID=67688256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501916A Active JP6930019B2 (en) 2018-02-22 2018-02-22 Component mounting system

Country Status (2)

Country Link
JP (1) JP6930019B2 (en)
WO (1) WO2019163044A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199228A1 (en) * 2020-03-31 2021-10-07 株式会社Fuji Maintenance system
WO2024105735A1 (en) * 2022-11-14 2024-05-23 株式会社Fuji Moving work device, mount device, and mount system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831708B2 (en) * 1993-05-31 1996-03-27 日本電気株式会社 Mounting method by automatic component mounting machine group
JP4255415B2 (en) * 2004-06-29 2009-04-15 中国電力株式会社 Sound information acquisition system, sound information acquisition device, non-contact diagnosis system, and non-contact diagnosis method
JP2006099726A (en) * 2004-09-03 2006-04-13 Tcm Corp Automated guided facility
JP2006339388A (en) * 2005-06-01 2006-12-14 Yamaha Motor Co Ltd Method for managing packaging work, packaging line and packaging machine
JP6573768B2 (en) * 2015-03-19 2019-09-11 株式会社Fuji Condition monitoring device
JP6623341B2 (en) * 2015-08-19 2019-12-25 Cyberdyne株式会社 Facility management and operation system
US10939601B2 (en) * 2016-02-17 2021-03-02 Fuji Corporation Component mounting line

Also Published As

Publication number Publication date
JPWO2019163044A1 (en) 2020-12-03
WO2019163044A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5963863B2 (en) Component mounting system
US8181337B2 (en) Electronic component mounting method
JP5872969B2 (en) Component supply device and surface mounter
JP6872007B2 (en) Component mounting system
JPWO2016174712A1 (en) Feeder management device
JP6666915B2 (en) Component mounting machine
JP5822819B2 (en) Electronic component mounting method and surface mounter
JP6930019B2 (en) Component mounting system
JP4995745B2 (en) Component mounting equipment
JP4550370B2 (en) Parts management device
JP5808160B2 (en) Electronic component mounting equipment
JPWO2018198333A1 (en) Work system
JP4303174B2 (en) Electronic component mounting device
US11516952B2 (en) Tape incorrect mounting detection system
US11490552B2 (en) Component verification system
JP2008147313A (en) Mounting condition determining method
JP4378428B2 (en) Electronic component mounting device
WO2022044081A1 (en) Component mounting system
JP6734722B2 (en) Quality control system
JP4364293B2 (en) Electronic component mounting device
WO2022176179A1 (en) Feeder insertion/removal device and component mounting system
WO2024053099A1 (en) Substrate production system and substrate production method
JP4922460B2 (en) Electronic component mounting device
JPWO2018211657A1 (en) Parts supply device
JP2004327625A (en) System for managing remaining number of component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210811

R150 Certificate of patent or registration of utility model

Ref document number: 6930019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150