JP6928622B2 - 波長可変レーザ装置 - Google Patents

波長可変レーザ装置 Download PDF

Info

Publication number
JP6928622B2
JP6928622B2 JP2018566689A JP2018566689A JP6928622B2 JP 6928622 B2 JP6928622 B2 JP 6928622B2 JP 2018566689 A JP2018566689 A JP 2018566689A JP 2018566689 A JP2018566689 A JP 2018566689A JP 6928622 B2 JP6928622 B2 JP 6928622B2
Authority
JP
Japan
Prior art keywords
wavelength
resonator
laser
dither
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018566689A
Other languages
English (en)
Other versions
JPWO2018146749A1 (ja
Inventor
泰雅 川北
泰雅 川北
和明 清田
和明 清田
康貴 比嘉
康貴 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2018146749A1 publication Critical patent/JPWO2018146749A1/ja
Application granted granted Critical
Publication of JP6928622B2 publication Critical patent/JP6928622B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1007Branched waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、波長可変レーザ装置に関するものである。
コヒーレント通信の普及に伴い、狭線幅の波長可変レーザの需要が高まっている。一般に、半導体レーザを狭線幅化するには光共振器を長くする必要がある(特許文献1、2、非特許文献1参照)。また、半導体レーザから出力されるレーザ光を半導体光増幅器で増幅して出力する構成の波長可変レーザが開示されている(特許文献3参照)。
米国特許第6665321号明細書 国際公開第2016/152274号 特許第5567226号公報
N. Kobayashi et al., "Silicon Photonic Hybrid Ring-Filter External Cavity Wavelength Tunable Lasers," J. Lightwave Technol., vol. 33, pp.1241-1246, 2015
しかしながら、光共振器が長い半導体レーザは、共振器モード(縦モード)の波長間隔(光周波数間隔)が狭いので、安定した単一モード発振性を実現することが困難な場合がある。また、半導体レーザから出力されるレーザ光を半導体光増幅器で増幅して出力する構成の波長可変レーザでは、レーザ光の波長の正確な制御が困難な場合がある。
本発明は、上記に鑑みてなされたものであって、安定した単一モード発振性の実現及びレーザ光の波長の正確な制御が容易な波長可変レーザ装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の一態様に係る波長可変レーザ装置は、光共振器内に波長応答スペクトルが可変である複数の波長選択要素を有する波長可変レーザ要素と、前記波長可変レーザ要素から出力されるレーザ光が入力され、該レーザ光を増幅する半導体光増幅器と、前記波長可変レーザ要素と前記半導体光増幅器との間に配置される光アイソレータと、前記波長可変レーザ要素から出力され、前記半導体光増幅器に入力される前のレーザ光の強度変動を検出する光強度変動検出手段と、前記光共振器の共振器モードを波長軸上で変調する共振器モード用波長ディザを生成する波長ディザ生成手段と、前記光強度変動検出手段により検出される強度変動に基づいて、前記共振器モード用波長ディザをフィードバック制御する波長ディザフィードバック制御手段と、を備えることを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長ディザ生成手段は、前記複数の波長選択要素の少なくとも一つの波長応答スペクトルを波長軸上で変調する波長選択要素用波長ディザを生成することを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長応答スペクトルは反射スペクトルであって、前記共振器モード用波長ディザによって前記複数の波長選択要素の反射スペクトルの所定の帯域内に移動した共振器モードを、前記所定の帯域内の反射ピークと一致させることを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長応答スペクトルは透過スペクトルであって、前記共振器モード用波長ディザによって前記複数の波長選択要素の透過スペクトルの所定の帯域内に移動した共振器モードを、前記所定の帯域内の透過ピークと一致させることを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記複数の波長選択要素の応答スペクトルのうち、或るピーク同士が波長軸上で一致した状態で、前記光共振器の共振器モードを波長軸上で変調することを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長応答スペクトルは反射スペクトルであって、前記複数の波長選択要素のうちの一組の波長選択要素は、前記反射スペクトルのピーク間の間隔が互いに異なることを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記半導体光増幅器から出力されたレーザ光の強度を検出する光強度検出手段と、前記光強度検出手段により検出される強度に基づいて、前記半導体光増幅器をフィードバック制御する半導体光増幅器フィードバック制御手段と、をさらに備えることを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長可変レーザ要素は、位相調整信号が与えられて前記光共振器内の光の位相を変化させる位相調整要素を有し、前記波長ディザ生成手段は、前記位相調整信号によって前記位相調整要素を制御することにより、前記共振器モード用波長ディザを生成し、前記波長ディザフィードバック制御手段は、前記位相調整要素を制御することにより、前記共振器モード用波長ディザのフィードバック制御を行うことを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長ディザ生成手段は、前記位相調整信号によって前記位相調整要素の屈折率を変調することを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長ディザ生成手段は、前記位相調整信号によって、前記位相調整要素を加熱するヒータの発熱量を制御することによって、前記位相調整要素の屈折率を変調することを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長ディザ生成手段は、前記波長選択要素の屈折率を変調することによって前記波長選択要素用波長ディザを生成することを特徴とする。
本発明の一態様に係る波長可変レーザ装置は、前記波長ディザ生成手段は、2つの前記波長選択要素の屈折率を変調することによって前記波長選択要素用波長ディザを生成することを特徴とする。
本発明によれば、安定した単一モード発振性の実現及びレーザ光の波長の正確な制御が容易な波長可変レーザ装置を実現できるという効果を奏する。
図1は、実施形態に係る波長可変レーザ装置の構成を示す模式図である。 図2は、波長可変レーザの構成例1及び制御器を示す模式図である。 図3Aは、第一の櫛状反射スペクトル及び第二の櫛状反射スペクトルを示す図である。 図3Bは、第一の櫛状反射スペクトル、第二の櫛状反射スペクトル及び共振器モードを示す図である。 図4は、第一の櫛状反射スペクトル、第二の櫛状反射スペクトル及びその重なりを示す図である。 図5は、第一の櫛状反射スペクトル、第二の櫛状反射スペクトル及び共振器モードの重なり並びに波長ディザを示す図である。 図6は、波長可変レーザの構成例2を示す模式図である。 図7は、波長可変レーザの構成例3を示す模式図である。
以下に、図面を参照して本発明の実施形態について説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、図中で適宜xyz座標軸を示し、これにより方向を説明する。
(実施形態)
図1は、実施形態に係る波長可変レーザ装置の構成を示す模式図である。波長可変レーザ装置100は、筐体1内に、温度調節素子2、支持部材3、波長可変レーザ要素としての波長可変レーザ4、コリメートレンズ5、温度調節素子6、支持部材7、光アイソレータ8、集光レンズ9、半導体光増幅器10、コリメートレンズ11、ビームスプリッタ12、13、光強度変動検出手段としてのパワーモニタ用フォトダイオード(Photo Diode:PD)14、エタロンフィルタ15、波長モニタ用PD16、ビームスプリッタ17、パワーモニタ用PD18、集光レンズ19、及び光ファイバ20の一端が収容され、モジュール化された構成を備える。このモジュールを波長可変レーザモジュールと記載する。さらに、波長可変レーザ装置100は、波長可変レーザモジュールの動作を制御する制御器21を備える。
筐体1は、底板1aと、側壁部と、上部蓋とを有している。なお、図1では説明のために上部蓋は記載を省略している。紙面右側の側壁部には、集光レンズ19を収容し、かつ光ファイバ20の一端が挿通固定されるホルダ部1bが設けられている。筐体1は内部が気密構造となるように封止されている。底板1aは銅タングステン(CuW)などの熱伝導率が高い材料からなる。筐体1のその他の部分はKovar(登録商標)などの熱膨張係数が低い材料からなる。
温度調節素子2は、たとえばペルチェ素子である。温度調節素子2は、筐体1内において、底板1aに載置されており、駆動電流が供給されることによって波長可変レーザ4を冷却してその温度を調節することができる。
支持部材3は、温度調節素子2に載置されている。支持部材3は、波長可変レーザ4及びコリメートレンズ5を載置するものであり、窒化アルミニウム(AlN)などの熱伝導率が高い材料からなる。波長可変レーザ4は、支持部材3を介して温度調節素子2に載置されている。
波長可変レーザ4は、たとえばバーニア効果を利用した波長可変レーザであるが、その構成例は後に詳述する。波長可変レーザ4は、制御器21によって制御されてレーザ光L1を出力する。レーザ光L1の波長は光通信用に用いられる波長帯(たとえば1520nm〜1620nm)内の波長である。
コリメートレンズ5は、支持部材3に載置され、波長可変レーザ4のレーザ光出力側(前方側)に配置されている。コリメートレンズ5は、波長可変レーザ4から出力されたレーザ光L1を平行光に変換する。
温度調節素子6は、筐体1内において、底板1aに載置され、波長可変レーザ4の前方側に配置されている。温度調節素子6はたとえばペルチェ素子である。温度調節素子6は、駆動電流が供給されることによって載置する各要素の温度を調節することができる。
支持部材7は、温度調節素子6に載置されている。支持部材7は、熱伝導率が高い材料で構成されており、光アイソレータ8、集光レンズ9、半導体光増幅器10、コリメートレンズ11、ビームスプリッタ12、13、光強度変動検出手段としてのパワーモニタ用PD14、エタロンフィルタ15、波長モニタ用PD16、ビームスプリッタ17、パワーモニタ用PD18の各要素を載置している。各要素は温度調節素子6によって温度調節される。
光アイソレータ8は、波長可変レーザ4と半導体光増幅器10との間に配置されている。光アイソレータ8は、紙面左側から入力されたレーザ光L1を紙面右側に通過させ、かつ、紙面右側から紙面左側への光の通過を阻止する。これによって、波長可変レーザ4に戻り光(反射光や半導体光増幅器10が発生するASE(Amplified Spontaneous Emission)光が入力されることが防止される。このことは、波長可変レーザ4の動作の安定に寄与するとともに、レーザ光L1の狭線幅化に寄与する。
集光レンズ9は、コリメートレンズ5によって平行光にされ、光アイソレータ8を通過したレーザ光L1を半導体光増幅器10に集光して入力させる。
半導体光増幅器10は、波長可変レーザ4とは分離して設けられており、活性層を含むストライプ状の埋め込みメサ構造の光導波路である光増幅部10aを有している。半導体光増幅器10は、光増幅部10aに入力されたレーザ光L1を光増幅して出力する。このとき、半導体光増幅器10は、制御器21によって電力を供給され、レーザ光L1が所望の光強度になるように光増幅する。
コリメートレンズ11は、半導体光増幅器10から出力された増幅されたレーザ光L1を平行光にする。集光レンズ19は、コリメートレンズ11によって平行光にされたレーザ光L1を光ファイバ20に集光して光結合させる。光ファイバ20はレーザ光L1を所定の装置等まで伝送する。
ビームスプリッタ12は、光アイソレータ8と集光レンズ9との間に配置されている。ビームスプリッタ12は、たとえばハーフミラーであり、光アイソレータ8を通過したレーザ光L1の大部分を透過して集光レンズ9に入力させるとともに、レーザ光L1の一部(レーザ光L2)をパワーモニタ用PD14に向けて反射させる。ビームスプリッタ13は、たとえばハーフミラーであり、レーザ光L2の一部(レーザ光L3)をエタロンフィルタ15に反射させる。
パワーモニタ用PD14は、レーザ光L2の強度を検出し、検出された強度に応じた電気信号を制御器21に出力する。
エタロンフィルタ15は、波長に対して周期的な透過特性(透過波長特性)を有し、その透過波長特性に応じた透過率で、ビームスプリッタ13が反射したレーザ光L3を選択的に透過して波長モニタ用PD16に入力する。波長モニタ用PD16は、エタロンフィルタ15を透過したレーザ光L3の強度を検出し、検出された強度に応じた電気信号を制御器21に出力する。エタロンフィルタ15の透過波長特性の周期としては、光周波数で表すとたとえば50GHz、33.3GHz、25GHzなどである。
パワーモニタ用PD14及び波長モニタ用PD16によって検出されたレーザ光L2、L3の強度は、制御器21による波長ロック制御(波長可変レーザ4から出力されるレーザ光L1を所望の波長にするための制御)に用いられる。
具体的には、波長ロック制御では、制御器21は、パワーモニタ用PD14によって検出されたレーザ光L2の強度と、波長モニタ用PD16によって検出された、エタロンフィルタ15透過後のレーザ光L3の強度との比が、レーザ光L1の強度及び波長が所望の強度及び波長になるときの比になるように、波長可変レーザ4の駆動電流と温度とを変化させる制御をする。これにより、レーザ光L1の波長を所望の波長(ロック波長)に制御することができる。このように、ビームスプリッタ12、13、パワーモニタ用PD14、エタロンフィルタ15、及び波長モニタ用PD16は、レーザ光L1の波長の変化をモニタする波長モニタ機構として機能する。
また、ビームスプリッタ17は、半導体光増幅器10によって光増幅され、半導体光増幅器10から出力されたレーザ光L1の一部(レーザ光L4)を反射させる。光強度検出手段としてのパワーモニタ用PD18は、レーザ光L4の強度を検出し、検出された強度に応じた電気信号を制御器21に出力する。制御器21は、パワーモニタ用PD18によって検出されたレーザ光L4の強度に基づいて半導体光増幅器10をフィードバック制御(出力一定制御)する。具体的には、制御器21は、レーザ光L4の強度に基づいて、レーザ光L1が所望の強度になるように半導体光増幅器10に供給する電力を制御してフィードバック制御を行う。
制御器21は、波長可変レーザ4及び半導体光増幅器10をそれぞれ駆動するための駆動部と、これらの駆動部の制御のための各種演算処理を行う演算処理部と、演算処理部が演算処理を行うために使用する各種プログラムやデータ等が格納されるROMなどの記憶部と、演算処理部が演算処理を行う際の作業スペースや演算処理部の演算処理の結果等を記憶する等のために使用されるRAMなどの記憶部とを備えている。制御器21は、半導体光増幅器10をフィードバック制御する半導体光増幅器フィードバック制御手段、並びに、後述する波長ディザ生成手段、波長ディザフィードバック制御手段としての機能を有する。
つぎに、波長可変レーザ4の構成例及びその制御について説明する。図2は、波長可変レーザ4の構成例1及び制御器を示す模式図である。
波長可変レーザ4は、共通の基部B上に形成された、第1の導波路部410と第2の導波路部420とを備えている。基部Bはたとえばn型InPからなる。なお、基部Bの裏面にはn側電極430が形成されている。n側電極430は、たとえばAuGeNiを含んで構成され、基部Bとオーミック接触する。
第1の導波路部410は、導波路部411と、半導体積層部412と、p側電極413と、Tiからなるマイクロヒータ415とを備えている。第1の導波路部410は、埋込み導波路構造を有しており、導波路部411は、半導体積層部412内にz方向に延伸するように形成されている。第1の導波路部410内には、利得部411aと、波長選択要素としてのDBR(Distributed Bragg Reflector)型の回折格子層411bとが配置されている。利得部411aは、InGaAsPからなる多重量子井戸構造と光閉じ込め層とを有する活性層である。また、回折格子層411bは、InGaAsPとInPとからなる標本化回折格子で構成されている。半導体積層部412は、InP系半導体層が積層して構成されており、導波路部411に対してクラッド部の機能等を備える。
p側電極413は、半導体積層部412上において、利得部411aに沿うように配置されている。なお、半導体積層部412には後述するSiN保護膜が形成されており、p側電極413はSiN保護膜に形成された開口部を介して半導体積層部412に接触している。マイクロヒータ415は、半導体積層部412のSiN保護膜上において、回折格子層411bに沿うように配置されている。マイクロヒータ415は、制御器21から電流を供給されることによって発熱し、回折格子層411bを加熱する。制御器21が通電量を制御することによって回折格子層411bの温度が変化し、その屈折率が変化する。
第2の導波路部420は、2分岐部421と、2つのアーム部422、423と、リング状導波路424と、Tiからなるマイクロヒータ425とを備えている。
2分岐部421は、1×2型の多モード干渉型(MMI)導波路421aを含む1×2型の分岐型導波路で構成され、2ポート側が2つのアーム部422、423のそれぞれに接続されるとともに1ポート側が第1の導波路部410側に接続されている。2分岐部421により、2つのアーム部422、423は、その一端が統合され、回折格子層411bと光学的に結合される。
アーム部422、423は、いずれもz方向に延伸し、リング状導波路424を挟むように配置されている。アーム部422、423はリング状導波路424と近接し、いずれも同一の結合係数κでリング状導波路424と光学的に結合している。κの値はたとえば0.2である。アーム部422、423とリング状導波路424とは、リング共振器フィルタRF1を構成している。また、リング共振器フィルタRF1と2分岐部421とは、波長選択要素としての反射ミラーM1を構成している。マイクロヒータ425はリング状であり、リング状導波路424を覆うように形成されたSiN保護膜上に配置されている。マイクロヒータ425は、制御器21から電流を供給されることによって発熱し、リング状導波路424を加熱する。制御器21が通電量を制御することによってリング状導波路424の温度が変化し、その屈折率が変化する。
2分岐部421、アーム部422、423、及びリング状導波路424は、いずれも、InGaAsPからなる光導波層420aがInPからなるクラッド層によって挟まれたハイメサ導波路構造を有している。
また、アーム部423の一部のSiN保護膜上には、マイクロヒータ426が配置されている。アーム部423のうちマイクロヒータ426の下方の領域は、光の位相を変化させる位相調整要素である位相調整部427として機能する。マイクロヒータ426は、制御器21から電流を供給されることによって発熱し、位相調整部427を加熱する。制御器21が通電量を制御することによって位相調整部427の温度が変化し、その屈折率が変化する。
第1の導波路部410と第2の導波路部420は、互いに光学的に接続された一組の波長選択要素である回折格子層411bと反射ミラーM1とにより構成される、光共振器C1を構成している。利得部411aと位相調整部427とは光共振器C1内に配置される。
つぎに、回折格子層411bとリング共振器フィルタRF1との反射特性について図3A、Bを用いて説明する。図3A、Bにおいて縦軸は反射率(Reflectance)を示している。回折格子層411bは、図3Aに凡例「SG」で曲線を示すように、波長応答スペクトルとして、略所定の波長間隔で略周期的な反射特性を有する第一の櫛状反射スペクトルを生成する。一方、リング共振器フィルタRF1は、図3Aに凡例「Ring」で曲線を示すように、波長応答スペクトルとして、所定の波長間隔で周期的な反射特性を有する第二の櫛状反射スペクトルを生成する。図3Bは図3Aの反射スペクトルの1550nm近傍を拡大して示した図である。図3Bにおいて、凡例「Mode」は、光共振器C1の共振器モードを示している。共振器モードは少なくとも図3Aに示す1530nm〜1570nmの波長範囲に亘って存在している。図3A、Bに示すように、第二の櫛状反射スペクトルは、第一の櫛状反射スペクトルのピークSC1の半値全幅よりも狭い半値全幅のピークSC2を有し、第一の櫛状反射スペクトルの波長間隔とは異なる波長間隔で略周期的な反射特性を有する。但し、屈折率の波長分散を考慮すると、スペクトル成分は厳密には等波長間隔になっていないことに注意が必要である。
各櫛状反射スペクトルの特性について例示すると、第一の櫛状反射スペクトルのピーク間の波長間隔(自由スペクトル領域:FSR)は光の周波数で表すと373GHzであり、各ピークの半値全幅は光の周波数で表すと43GHzである。また、第二の櫛状反射スペクトルのピーク間の波長間隔(FSR)は光の周波数で表すと400GHzであり、各ピークの半値全幅は光の周波数で表すと25GHzである。すなわち、第二の櫛状反射スペクトルの各ピークの半値全幅(25GHz)は第一の櫛状反射スペクトルの各ピークの半値全幅(43GHz)より狭い。
また、第二の櫛状反射スペクトルのピークは波長に対して急峻に変化する形状を有しており、波長に対する反射率の2次微分がピークより短波長側及び長波長側で正値をとる波長域がある。第二の櫛状反射スペクトルのピークは例えば二重指数分布(ラプラス分布)型の形状である。一方、第一の櫛状反射スペクトルのピークは、第二の櫛状反射スペクトルのピークに比して、波長に対して緩やかに変化する形状を有しており、波長に対する反射率の2次微分がピークに対して短波長側及び長波長側で負値をとる波長域がある。第一の櫛状反射スペクトルのピークは例えばガウシャン型の形状である。
波長可変レーザ4において、レーザ発振を実現するために、第一の櫛状反射スペクトルのピークの一つと第二の櫛状反射スペクトルのピークの一つとを波長軸上で重ね合わせ可能に構成されている。図4は、第一の櫛状反射スペクトル、第二の櫛状反射スペクトル及びその重なりを示す図である。凡例「Overlap」で示す曲線がスペクトルの重なりを示す。図4に示す例では、波長1550nmにて重なりがもっとも大きくなる。
なお、このような重ね合わせは、マイクロヒータ415及びマイクロヒータ425の少なくともいずれか一つを用いて、マイクロヒータ415により回折格子層411bを加熱して熱光学効果によりその屈折率を変化させて第一の櫛状反射スペクトルを波長軸上で全体的に移動させて変化させる、及び、マイクロヒータ425によりリング状導波路424を加熱してその屈折率を変化させて第二の櫛状反射スペクトルを波長軸上で全体的に移動させて変化させる、の少なくともいずれか一つを行うことにより、実現することができる。
一方、波長可変レーザ4において、図3Bにその一部を示すように、光共振器C1による共振器モードが存在する。波長可変レーザ4においては、共振器モードの間隔(縦モード間隔)は25GHz以下となるように光共振器C1の共振器長が設定されている。この設定の場合、光共振器C1の共振器長は1800μm以上となり、発振するレーザ光の狭線幅化が期待できる。
波長可変レーザ4は、制御器21により、n側電極430及びp側電極413から利得部411aへ電流を注入し、利得部411aを発光させると、第一の櫛状反射スペクトルのスペクトル成分のピーク、第二の櫛状反射スペクトルのスペクトル成分のピーク、及び光共振器C1の共振器モードの一つが一致した波長、例えば1550nmでレーザ発振し、レーザ光L1を出力するように構成されている。なお、光共振器C1の共振器モードの波長は、マイクロヒータ426を用いて位相調整部427を加熱してその屈折率を変化させて共振器モードの波長を波長軸上で全体的に移動させることにより微調整することができる。すなわち、位相調整部427は、光共振器C1の光路長を能動的に制御するための部分である。
つぎに、波長可変レーザ4におけるレーザ発振波長の選択方法を説明する。波長可変レーザ4では、バーニア効果を利用してレーザ発振波長の選択を行っている。
図3A、B、図4にも示すように、第一の櫛状反射スペクトルと第二の櫛状反射スペクトルとのFSRは、わずかに異なるように設計されている。なお、ピークがより鋭い第二の櫛状反射スペクトルのFSRの方を大きくすることで、スペクトルの重なりのピークが最も高い1550nmに隣接する重なり(例えば、1547nm付近の重なり)のピークの高さが相対的に小さくなる。その結果、スペクトルの重なりのピークが最も高い波長に隣接する重なりのピークの波長でのレーザ発振が抑制されることとなるので、サイドモード抑圧比を高くできる。
波長可変レーザ4における可変波長範囲は、バーニア効果により、FSRの最小公倍数で決定される。第一の櫛状反射スペクトルのピークの一つと第二の櫛状反射スペクトルのピークの一つが重ね合わせられ、そのピークが一致した波長で反射率が最大となり、レーザ発振が起こる。つまり、回折格子層411bとリング共振器フィルタRF1のバーニア効果により大まかなレーザ発振波長が決定される(スーパーモード)。より精密には、レーザ発振波長は、光共振器C1内において、回折格子層411bから、2分岐部421、リング共振器フィルタRF1のアーム部422、423のうちの一方、リング状導波路424、アーム部422、423のうちの他方、2分岐部421を順に経由して回折格子層411bに帰還する経路(共振器長)で定義される共振器モードの波長とスーパーモードとの重なりで決定される。すなわち、重ね合わされた第一の櫛状反射スペクトルのピークと第二の櫛状反射スペクトルのピークの重なり領域に、光共振器C1の共振器モードの一つを一致させ、その一致した共振器モードの波長でレーザ発振することとなる。したがって、波長可変レーザ4では、回折格子層411bに対するマイクロヒータ415とリング共振器フィルタRF1に対するマイクロヒータ425とにより第一の櫛状反射スペクトルと第二の櫛状反射スペクトルとをそれぞれチューニングすることで粗調、位相調整部427に対するマイクロヒータ426により共振器長をチューニングすることで微調を行う波長可変動作が実現される。
図3A、Bに示す状態(第1の状態とする)では、第一の櫛状反射スペクトルと第二の櫛状反射スペクトルとは波長1550nmで重なりが最も大きい(スーパーモード)。第1の状態ではレーザ発振波長は1550nm付近に粗調されている状態である。第1の状態で位相調整部427をチューニングすることで共振器モードを微調することで、波長1550nmでのレーザ発振を得ることができる。
つぎに、レーザ発振波長を変更する場合は、リング共振器フィルタRF1のチューニングを固定した状態で、回折格子層411bのみマイクロヒータ415で加熱する。すると、熱光学効果により回折格子層411bの屈折率が上昇し、回折格子層411bの反射スペクトル(第一の櫛状反射スペクトル)は全体的に長波側にシフトする。その結果、1550nm付近のリング共振器フィルタRF1の反射スペクトル(第二の櫛状反射スペクトル)のピークとの重なりが解かれ、長波側に存在する別のピーク(1556nm付近)に重なり、第2の状態となる。これにより、別のスーパーモードへの遷移が実現する。さらに、位相調整部427をチューニングして共振器モードを微調することで、1556nm付近でのレーザ発振を実現できる。なお、レーザ発振波長を短波側に変更する際は、回折格子層411bのチューニングを固定し、リング共振器フィルタRF1のみマイクロヒータ425で加熱して、リング共振器フィルタRF1の櫛状反射スペクトルを全体的に長波側にシフトさせればよい。
ここで、本実施形態に係る波長可変レーザ装置100では、重ね合わされた第一の櫛状反射スペクトルのピークと第二の櫛状反射スペクトルのピークの重なり領域に、光共振器C1の共振器モードの一つを一致させるために、制御器21が以下の制御を行う。
すなわち、制御器21は、光共振器C1の共振器モードを波長軸上で変調する共振器モード用波長ディザを生成し、光強度変動検出手段であるパワーモニタ用PD14により検出される光の強度変動に基づいて、共振器モード用波長ディザをフィードバック制御する。
具体的には、制御器21からマイクロヒータ426を発熱させるために供給する電流を強度変調電流とした位相調整信号にすることによって、マイクロヒータ426の発熱量を制御し、これによって位相調整部427を制御し、その温度及び屈折率を強度変調する。すると、共振器モードは、図5の矢印D1で示すよう波長軸上で所定の波長幅で全体的に変調する。この変調(共振器モード用波長ディザ)により、第一の櫛状反射スペクトルのピークと第二の櫛状反射スペクトルのピークの重なり領域と、光共振器C1の共振器モードとの重なりの程度も変動されるため、波長可変レーザ4から出力されるレーザ光L1の強度が変動する。この光強度変動はパワーモニタ用PD14により検出される。制御器21は、検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように共振器モード用波長ディザの変調の振幅をフィードバック制御する。すなわち、位相調整信号で位相調整部427を制御することによって、共振器モード用波長ディザのフィードバック制御を行う。このようなフィードバック制御は、例えば、検出される光強度変動の変動量が設定値範囲内、かつ光強度が設定値範囲内の状態を維持するように継続して行われる。
なお、半導体光増幅器10は一般に利得飽和の状態で動作させるため、レーザ光L1の強度変動は半導体光増幅器10によって緩和される。そのため、半導体光増幅器10よって増幅されたレーザ光L1においては、共振器モード用波長ディザに対する応答としての光強度変動が検出しづらくなる。特に、本実施形態に係る波長可変レーザ装置100のように半導体光増幅器10を出力一定制御している場合では、振器モード用波長ディザによる光強度変動が出力一定制御の影響を受けてさらに緩和され、検出しづらくなる。
しかしながら、この波長可変レーザ装置100では、パワーモニタ用PD14が、波長可変レーザ4から出力されて半導体光増幅器10に入力される前のレーザ光L1の強度変動を検出する構成であるので、利得飽和や出力一定制御の影響を受けず、共振器モード用波長ディザに対する応答としての本来の光強度変動が検出しやすくなる。その結果、共振器モード用波長ディザによって所定の帯域内の2つの櫛状反射スペクトルのピークの重なり領域に光共振器C1の共振器モードの1つを移動させて一致させる制御を、より一層正確に行うことができる。特に、第二の櫛状反射スペクトルのピークは波長に対して急峻に変化する形状を有しているため、共振器モード用波長ディザに対する応答としての光強度変動が大きくなる。その結果、2つの櫛状反射スペクトルのピークの重なり領域に光共振器C1の共振器モードの1つを正確に一致させやすくなる。なお、図5では、共振器モードMODE1が2つの櫛状反射スペクトルのピークの重なり領域に一致している状態を示している。
また、光アイソレータ8により、共振器モード用波長ディザに対する応答としての光強度変動が戻り光の影響を受けにくくなり、より一層正確に行うことができる。また、2つの櫛状反射スペクトルのピークの重なり領域に光共振器C1の共振器モードの1つを移動させて一致させる制御をより一層正確に行うことができるので、波長可変レーザ4の安定した単一モード発振性の実現が容易にできる。
なお、波長可変レーザ装置100の波長可変レーザ4において、制御器21が、波長ディザ生成手段として、複数の波長選択要素である回折格子層411b及び反射ミラーM1の少なくとも一つの波長応答スペクトル(櫛状反射スペクトル)を波長軸上で変調する波長選択要素用波長ディザをさらに生成するように制御器21を構成としてもよい。この場合、制御器21は、共振器モード用波長ディザ及び波長選択要素用波長ディザを生成し、光強度変動検出手段であるパワーモニタ用PD14により検出される光の強度変動に基づいて、共振器モード用波長ディザ及び波長選択要素用波長ディザをフィードバック制御する。
反射ミラーM1に対する波長選択要素用波長ディザを生成する場合を例にして説明する。制御器21からマイクロヒータ425を発熱させるために供給する電流を強度変調電流とした反射スペクトル調整信号にすることによって、マイクロヒータ425の発熱量を制御し、これによって反射ミラーM1を制御し、その温度及び屈折率を強度変調する。すると、第一の櫛状反射スペクトルは、図5の矢印D2で示すよう波長軸上で所定の波長幅で全体的に変調する。なお、共振器モードも矢印D1で示すよう波長軸上で所定の波長幅で全体的に変調する。この2つの変調により、第一の櫛状反射スペクトルのピークと第二の櫛状反射スペクトルのピークの重なり領域と、光共振器C1の共振器モードとの重なりの程度も変動されるため、波長可変レーザ4から出力されるレーザ光L1の強度が変動する。この光強度変動はパワーモニタ用PD14により検出される。制御器21は、検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように波長選択要素用波長ディザ及び共振器モード用波長ディザの変調の振幅をフィードバック制御する。すなわち、位相調整信号で位相調整部427を制御し、反射スペクトル調整信号で反射ミラーM1を制御することによって、波長選択要素用波長ディザ及び共振器モード用波長ディザのフィードバック制御を行う。このようなフィードバック制御は、例えば、検出される光強度変動の変動量が設定値以下、かつ光強度が設定値以上の状態を維持するように継続して行われる。
さらに回折格子層411bに対する波長選択要素用波長ディザを生成する場合は、制御器21からマイクロヒータ415に供給する電流を強度変調電流とした反射スペクトル調整信号にすることによって、マイクロヒータ415の発熱量を制御し、これによって回折格子層411bを制御し、その温度及び屈折率を強度変調する。すると、第二の櫛状反射スペクトルは、図5の矢印D3で示すよう波長軸上で所定の波長幅で全体的に変調する。これら矢印D1、D2、D3の3つの変調により、第一の櫛状反射スペクトルのピークと第二の櫛状反射スペクトルのピークの重なり領域と、光共振器C1の共振器モードとの重なりの程度も変動されるため、波長可変レーザ4から出力されるレーザ光L1の強度が変動する。制御器21は、パワーモニタ用PD14により検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように2つの波長選択要素用波長ディザ及び共振器モード用波長ディザの変調の振幅をフィードバック制御する。このようなフィードバック制御は、例えば、検出される光強度変動の変動量が設定値以下、かつ光強度が設定値以上の状態を維持するように継続して行われる。
(波長可変レーザの構成例2)
実施形態の波長可変レーザ装置100において、波長可変レーザ4は他の様々な構成の波長可変レーザ要素に置き換えることができる。図6は、波長可変レーザの構成例2を示す模式図である。構成例2に係る波長可変レーザ4Aは、半導体増幅素子401Aと、コリメートレンズ5と、エタロンフィルタ402A、403Aと、エタロンフィルタ402A、403Aがそれぞれ載置される、基台404A、405Aと、反射膜付き光アイソレータ8Aの光アイソレータ8の端面に形成された反射膜406Aと、半導体増幅素子401Aから出力されるレーザ光の波長において透明な光学要素407Aと、光学要素407Aが載置されるヒータ付き基台408Aと、を含んで構成されている。波長可変レーザ4Aと反射膜付き光アイソレータ8Aは波長可変レーザ装置100の波長可変レーザ4、光アイソレータ8と置き換えることができる。なお、反射膜付き光アイソレータ8Aは支持部材3に載置してもよい。
半導体増幅素子401Aは、後端面に、例えば反射率が90%以上の高反射膜401Aaが形成され、前端面に無反射膜401Abが形成されており、前端面側からレーザ光を出力する。半導体増幅素子401Aは例えば埋め込み導波路構造を有するファブリーペロー型の半導体レーザ素子である。
エタロンフィルタ402A、403Aは、それぞれ、波長応答スペクトルとして、透過率が波長に対して略周期的に変化する透過スペクトルを生成する波長選択要素である。エタロンフィルタ402A、403Aは、半導体増幅素子401Aから出力されたレーザ光の光軸に対してそれぞれの主表面が互いに異なる角度で傾斜して配置されている。これにより、エタロンフィルタ402A、403Aのそれぞれの透過スペクトルの透過率の変化の周期は互いに異なっている。エタロンフィルタ402A、403Aは、半導体増幅素子401Aから出力されたレーザ光を、レーザ光の波長におけるそれぞれの透過率で透過させる。
エタロンフィルタ402A、403Aにはヒータが設けられており、ヒータは、それぞれ、制御器21から電流を供給されることによって発熱し、エタロンフィルタ402A、403Aをそれぞれ加熱する。制御器21が通電量を制御することによってエタロンフィルタ402A、403Aの温度及び屈折率がそれぞれ変化する。これにより、エタロンフィルタ402A、403Aの透過スペクトルを波長軸上で全体的に移動させることができる。
光学要素407Aは、エタロンフィルタ402A、403Aを透過したレーザ光を透過させる。ヒータ付き基台408Aは、制御器21から電流を供給されることによって発熱し、光学要素407Aを加熱する。制御器21が通電量を制御することによって光学要素407Aの温度及び屈折率がそれぞれ変化する。これによって光学要素407Aは光の位相を変化させる位相調整要素として機能する。
反射膜406Aは例えば反射率が10%〜30%程度の低反射膜であり、半導体増幅素子401Aの高反射膜401Aaとともに波長可変レーザ4Aの光共振器C2を構成している。波長可変レーザ4Aは、光共振器C2を構成する一方の反射膜406Aが半導体増幅素子401Aの外部にある、いわゆる外部共振器型の構成であるので、共振器長を長くできる。
波長可変レーザ4Aでは、エタロンフィルタ402A、403Aのそれぞれの透過スペクトルの透過率の変化の周期は互いに異なっており、かつヒータによってそれぞれの透過スペクトルを波長軸上で全体的に移動させることができる(すなわち可変である)ので、波長可変レーザ4Aはバーニア効果を利用した波長可変レーザとして機能する。
さらに、波長可変レーザ4Aに対して、重ね合わされた2つの透過スペクトルのピークの重なり領域に、光共振器C2の共振器モードの一つを一致させるために、制御器21が以下の制御を行うことができる。
すなわち、制御器21は、光共振器C2の共振器モードを波長軸上で変調する共振器モード用波長ディザを生成し、光強度変動検出手段であるパワーモニタ用PD14により検出される光の強度変動に基づいて、共振器モード用波長ディザをフィードバック制御する。具体的には、制御器21からヒータ付き基台408Aのヒータを発熱させるために供給する電流を強度変調電流とした位相調整信号にすることによって、ヒータの発熱量を制御し、これによって光学要素407Aを制御し、その温度及び屈折率を強度変調する。制御器21は、検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように共振器モード用波長ディザの変調の振幅をフィードバック制御する。すなわち、位相調整信号で光学要素407Aを制御することによって、共振器モード用波長ディザのフィードバック制御を行う。
波長可変レーザ装置100において波長可変レーザ4Aを用いた場合も、共振器モード用波長ディザによって所定の帯域内の2つの透過スペクトルのピークの重なり領域に光共振器C2の共振器モードの1つを移動させて一致させる制御を、より一層正確に行うことができる。その結果、安定した単一モード発振性の実現及びレーザ光の波長の正確な制御が容易になる。
なお、波長可変レーザ4Aにおいて、制御器21が、エタロンフィルタ402A、403Aの少なくとも一つの透過スペクトルを波長軸上で変調する波長選択要素用波長ディザをさらに生成するように制御器21を構成してもよい。この場合、制御器21は、共振器モード用波長ディザ及び波長選択要素用波長ディザを生成し、光強度変動検出手段であるパワーモニタ用PD14により検出される光の強度変動に基づいて、共振器モード用波長ディザ及び波長選択要素用波長ディザをフィードバック制御する。
エタロンフィルタ402Aに対する波長選択要素用波長ディザを生成する場合を例にして説明する。制御器21から、エタロンフィルタ402Aに設けられたヒータを発熱させるために供給する電流を、強度変調電流とした透過スペクトル調整信号にすることによって、ヒータの発熱量を制御する。これによってエタロンフィルタ402Aを制御し、その温度及び屈折率を強度変調する。すると、エタロンフィルタ402Aの透過スペクトルは、波長軸上で所定の波長幅で全体的に変調する。なお、共振器モードも波長軸上で所定の波長幅で全体的に変調する。この2つの変調により、2つの透過スペクトルのピークの重なり領域と、光共振器C2の共振器モードとの重なりの程度も変動されるため、波長可変レーザ4Aから出力されるレーザ光の強度が変動する。制御器21は、パワーモニタ用PD14によって検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように波長選択要素用波長ディザ及び共振器モード用波長ディザの変調の振幅をフィードバック制御する。すなわち、位相調整信号で光学要素407Aを制御し、透過スペクトル調整信号でエタロンフィルタ402Aを制御することによって、波長選択要素用波長ディザ及び共振器モード用波長ディザのフィードバック制御を行う。このようなフィードバック制御は、例えば、検出される光強度変動の変動量が設定値以下、かつ光強度が設定値以上の状態を維持するように継続して行われる。
(波長可変レーザの構成例2)
図7は、波長可変レーザの構成例3を示す模式図である。構成例3に係る波長可変レーザ4Bは、半導体増幅素子401Bと、波長選択要素部402Bと、マイクロヒータ403B、404B、405Bと、を含んで構成されている。波長可変レーザ4Bは波長可変レーザ装置100の波長可変レーザ4と置き換えることができる。
半導体増幅素子401Bは、後端面に波長選択要素部402Bが接続され、前端面に例えば反射率が10%〜30%程度の低反射膜401Baが形成されており、前端面側からレーザ光を出力する。半導体増幅素子401Bは例えば埋め込み導波路構造を有するファブリーペロー型の半導体レーザ素子である。半導体増幅素子401Bは導波路である活性層401Bbを備えている。
波長選択要素部402Bは、例えばシリコンフォトニクスにおいて用いられるシリコン導波路回路によって構成される。波長選択要素部402Bは、接続導波路402Baと、導波路型のリング共振器フィルタ402Bb、402Bcと、反射部402Bdとを備えている。接続導波路402Baは半導体増幅素子401Bの活性層401Bbに光学的に接続される。リング共振器フィルタ402Bb、402Bcは、それぞれ、2つのアーム部とリング状導波路とを備えている。リング共振器フィルタ402Bbの一方のアーム部は接続導波路402Baに光学的に接続され、他方のアーム部はリング共振器フィルタ402Bbの一方のアーム部と光学的に接続している。リング共振器フィルタ402Bbの他方のアーム部は反射部402Bdに接続している。リング共振器フィルタ402Bb、402Bcは、それぞれ、波長応答スペクトルとして、透過率が波長に対して略周期的に変化する櫛状透過スペクトルを生成する波長選択要素である。リング共振器フィルタ402Bb、402Bcのリング状導波路は、互いに異なる直径を有する。これにより、リング共振器フィルタ402Bb、402Bcのそれぞれの櫛状透過スペクトルの透過率の変化の周期は互いに異なっている。リング共振器フィルタ402Bb、402Bcは、半導体増幅素子401Bから出力された自然放出光を、レーザ光の波長におけるそれぞれの透過率で透過させる。
マイクロヒータ403Bは、接続導波路402Baの上方に設けられている。マイクロヒータ404B、405Bは、それぞれ、リング共振器フィルタ402Bb、402Bcのリング状導波路のそれぞれの上方に設けられている。マイクロヒータ403B、404B、405Bは、それぞれ、制御器21から電流を供給されることによって発熱し、接続導波路402Ba、リング共振器フィルタ402Bb、402Bcをそれぞれ加熱する。制御器21がマイクロヒータ404B、405Bのそれぞれの通電量を制御することによって、リング共振器フィルタ402Bb、402Bcの温度及び屈折率がそれぞれ変化する。これにより、リング共振器フィルタ402Bb、402Bcの櫛状透過スペクトルを波長軸上で全体的に移動させることができる。また、制御器21がマイクロヒータ403B通電量を制御することによって接続導波路402Baの温度及び屈折率がそれぞれ変化する。これによって接続導波路402Baは光の位相を変化させる位相調整要素として機能する。
反射部402Bdは例えば反射率が90%以上であり、半導体増幅素子401Bの低反射膜401Baとともに波長可変レーザ4Bの光共振器C3を構成している。波長可変レーザ4Bは、外部共振器型の構成であるので、共振器長を長くできる。
波長可変レーザ4Bでは、リング共振器フィルタ402Bb、402Bcのそれぞれの櫛状透過スペクトルの透過率の変化の周期は互いに異なっており、かつマイクロヒータ404B、405Bによってそれぞれの櫛状透過スペクトルを波長軸上で全体的に移動させることができる(すなわち可変である)ので、波長可変レーザ4Bはバーニア効果を利用した波長可変レーザとして機能する。
さらに、波長可変レーザ4Bに対して、重ね合わされた2つの櫛状透過スペクトルのピークの重なり領域に、光共振器C3の共振器モードの一つを一致させるために、制御器21が以下の制御を行うことができる。
すなわち、制御器21は、光共振器C3の共振器モードを波長軸上で変調する共振器モード用波長ディザを生成し、光強度変動検出手段であるパワーモニタ用PD14により検出される光の強度変動に基づいて、共振器モード用波長ディザをフィードバック制御する。具体的には、制御器21からマイクロヒータ403Bを発熱させるために供給する電流を強度変調電流とした位相調整信号にすることによって、マイクロヒータ403Bの発熱量を制御し、これによって接続導波路402Baを制御し、その温度及び屈折率を強度変調する。制御器21は、検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように共振器モード用波長ディザの変調の振幅をフィードバック制御する。すなわち、位相調整信号で接続導波路402Baを制御することによって、共振器モード用波長ディザのフィードバック制御を行う。
波長可変レーザ装置100において波長可変レーザ4Bを用いた場合も、共振器モード用波長ディザによって所定の帯域内の2つの櫛状透過スペクトルのピークの重なり領域に光共振器C3の共振器モードの1つを移動させて一致させる制御を、より一層正確に行うことができる。その結果、安定した単一モード発振性の実現及びレーザ光の波長の正確な制御が容易になる。
なお、波長可変レーザ4Bにおいて、制御器21が、リング共振器フィルタ402Bb、402Bcの少なくとも一つの透過スペクトルを波長軸上で変調する波長選択要素用波長ディザをさらに生成するように制御器21を構成としてもよい。この場合、制御器21は、共振器モード用波長ディザ及び波長選択要素用波長ディザを生成し、光強度変動検出手段であるパワーモニタ用PD14により検出される光の強度変動に基づいて、共振器モード用波長ディザ及び波長選択要素用波長ディザをフィードバック制御する。
リング共振器フィルタ402Bbに対する波長選択要素用波長ディザを生成する場合を例にして説明する。制御器21からマイクロヒータ404Bを発熱させるために供給する電流を強度変調電流とした透過スペクトル調整信号にすることによって、マイクロヒータ404Bの発熱量を制御し、これによってリング共振器フィルタ402Bbを制御し、その温度及び屈折率を強度変調する。すると、リング共振器フィルタ402Bbの櫛状透過スペクトルは、波長軸上で所定の波長幅で全体的に変調する。なお、共振器モードも波長軸上で所定の波長幅で全体的に変調する。この2つの変調により、2つの櫛状透過スペクトルのピークの重なり領域と、光共振器C3の共振器モードとの重なりの程度も変動されるため、波長可変レーザ4Bから出力されるレーザ光の強度が変動する。制御器21は、パワーモニタ用PD14によって検出された光強度変動の変動量が小さく、かつ光強度が大きくなるように波長選択要素用波長ディザ及び共振器モード用波長ディザの変調の振幅をフィードバック制御する。すなわち、位相調整信号で接続導波路402Baを制御し、透過スペクトル調整信号でリング共振器フィルタ402Bbを制御することによって、波長選択要素用波長ディザ及び共振器モード用波長ディザのフィードバック制御を行う。このようなフィードバック制御は、例えば、検出される光強度変動の変動量が設定値以下、かつ光強度が設定値以上の状態を維持するように継続して行われる。
なお、上記実施形態に係る波長可変レーザでは、波長可変動作を実現するために、マイクロヒータによる熱光学効果を利用しているが、波長可変動作を実現するために電流注入によるキャリアプラズマ効果も利用可能にするようにしてもよい。この場合は電流注入により屈折率が下がるため、反射スペクトルは全体的に短波側にシフトし、それまでスーパーモードが形成されていた波長より短波側に存在する別のピークにおいて重なりが生じ、新たなスーパーモードを形成することが可能である。
また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
以上のように、本発明に係る波長可変レーザ装置は、主に光通信の用途に利用して好適なものである。
1 筐体
1b ホルダ部
2、6 温度調節素子
3、7 支持部材
4、4A、4B 波長可変レーザ
5、11 コリメートレンズ
8 光アイソレータ
8A 反射膜付き光アイソレータ
9、19 集光レンズ
10 半導体光増幅器
10a 光増幅部
12、13、17 ビームスプリッタ
14、18 パワーモニタ用PD
15、402A、403A エタロンフィルタ
16 波長モニタ用PD
20 光ファイバ
21 制御器
100 波長可変レーザ装置
401A、401B 半導体増幅素子
401Aa 高反射膜
401Ab 無反射膜
401Ba 低反射膜
401Bb 活性層
402B 波長選択要素部
402Ba 接続導波路
402Bb、402Bc リング共振器フィルタ
402Bd 反射部
403B、404B、405B、415、425、426 マイクロヒータ
404A、405A、基台
408A ヒータ付き基台
406A 反射膜
407A 光学要素
410 第1の導波路部
411 導波路部
411a 利得部
411b 回折格子層
412 半導体積層部
413 p側電極
420 第2の導波路部
420a 光導波層
421a 導波路
422、423 アーム部
424 リング状導波路
427 位相調整部
430 n側電極
B 基部
C1、C2、C3 光共振器
D1、D2、D3 矢印
L1、L2、L3、L4 レーザ光
M1 反射ミラー
MODE1 共振器モード
RF1 リング共振器フィルタ
SC1、SC2 ピーク

Claims (2)

  1. 光共振器内に波長応答スペクトルが可変である複数の波長選択要素を有する波長可変レーザ要素と、
    前記波長可変レーザ要素から出力されるレーザ光が入力され、該レーザ光を増幅する半導体光増幅器と、
    前記波長可変レーザ要素と前記半導体光増幅器との間に配置される光アイソレータと、
    前記波長可変レーザ要素から出力され、前記半導体光増幅器に入力される前のレーザ光の強度変動を検出する光強度変動検出手段と、
    前記光共振器の共振器モードを波長軸上で変調する共振器モード用波長ディザを生成する波長ディザ生成手段と、
    前記光強度変動検出手段により検出される強度変動に基づいて、前記共振器モード用波長ディザをフィードバック制御する波長ディザフィードバック制御手段と、
    前記半導体光増幅器から出力されたレーザ光の強度を検出する光強度検出手段と、
    前記光強度検出手段により検出される強度に基づいて、前記半導体光増幅器をフィードバック制御する半導体光増幅器フィードバック制御手段と、
    を備え、
    前記半導体光増幅器フィードバック制御手段が、前記半導体光増幅器を、出力一定の状態に制御し、
    前記半導体光増幅器が利得飽和の状態で動作することにより、
    前記半導体光増幅器で増幅されたレーザ光の強度変動が緩和されて当該強度変動が検出しづらくなっている状態において、
    前記半導体光増幅器に入力される前の前記レーザ光が、前記光強度変動検出手段により、前記波長ディザ生成手段が生成した前記共振器モード用波長ディザによる強度変動が緩和されること無く検出され、
    前記波長可変レーザ要素は、位相調整信号が与えられて前記光共振器内の光の位相を変化させる位相調整要素を有し、
    前記波長ディザ生成手段は、前記複数の波長選択要素の少なくとも一つの波長応答スペクトルを波長軸上で変調する波長選択要素用波長ディザを生成するとともに、前記位相調整信号によって前記位相調整要素を加熱するヒータの発熱量を制御することにより、前記位相調整要素の屈折率を変調し、
    前記波長応答スペクトルは反射スペクトルであって、前記共振器モード用波長ディザによって前記複数の波長選択要素の反射スペクトルの所定の帯域内に移動した共振器モードを、前記所定の帯域内の反射ピークと一致させ、
    前記複数の波長選択要素のうちの一組の波長選択要素は、前記反射スペクトルのピーク間の間隔が互いに異なり、
    前記一組の波長選択要素の反射スペクトルのうち、或るピーク同士が波長軸上で重ね合わされて一致した状態で、前記光共振器の共振器モードを波長軸上で変調し、
    前記半導体光増幅器フィードバック制御手段は、前記半導体光増幅器を、前記出力一定の状態でかつ利得飽和した状態に制御し、
    前記反射スペクトルにおいて、前記一組の波長選択要素のうちの第一の波長選択要素としてのリング共振器フィルタの第二の櫛状反射スペクトルは、前記一組の波長選択要素のうちの第二の波長選択要素としての回折格子の第一の櫛状反射スペクトルのピークの半値全幅よりも狭い半値全幅のピークを有し、
    前記波長ディザフィードバック制御手段は、前記第一の櫛状反射スペクトルのピークの高さよりも前記第二の櫛状反射スペクトルのピークが突出して高い状態で、前記位相調整要素を制御することにより、前記共振器モード用波長ディザ及び前記波長選択要素用波長ディザのフィードバック制御を行うことを特徴とする波長可変レーザ装置。
  2. 前記半導体光増幅器は、前記波長可変レーザ要素とは分離して設けられ、
    前記分離して設けられた半導体光増幅器を、出力一定の状態に制御する前記半導体光増幅器フィードバック制御手段と、
    緩和していないレーザ光の強度変動に基づいて、前記共振器モード用波長ディザをフィードバック制御する前記波長ディザフィードバック制御手段と、
    を備える制御器を有することを特徴とする請求項1に記載の波長可変レーザ装置。
JP2018566689A 2017-02-08 2017-02-08 波長可変レーザ装置 Active JP6928622B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004589 WO2018146749A1 (ja) 2017-02-08 2017-02-08 波長可変レーザ装置

Publications (2)

Publication Number Publication Date
JPWO2018146749A1 JPWO2018146749A1 (ja) 2019-12-12
JP6928622B2 true JP6928622B2 (ja) 2021-09-01

Family

ID=63108243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018566689A Active JP6928622B2 (ja) 2017-02-08 2017-02-08 波長可変レーザ装置

Country Status (4)

Country Link
US (1) US10965094B2 (ja)
JP (1) JP6928622B2 (ja)
CN (1) CN110235321B (ja)
WO (1) WO2018146749A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170090267A1 (en) * 2015-09-30 2017-03-30 Ciena Corporation Chirp suppressed ring resonator
CN113424381B (zh) * 2019-02-14 2024-03-08 古河电气工业株式会社 波长可变光源装置以及波长可变激光元件的控制方法
JP6998903B2 (ja) * 2019-02-14 2022-01-18 古河電気工業株式会社 波長可変光源装置および波長可変光源装置の制御方法
JP2020136359A (ja) * 2019-02-14 2020-08-31 古河電気工業株式会社 波長可変レーザ装置およびその波長制御方法
WO2020166648A1 (ja) * 2019-02-14 2020-08-20 古河電気工業株式会社 波長可変レーザ装置及び波長制御方法
US20210036489A1 (en) * 2019-08-02 2021-02-04 Innolight Technology (Suzhou) Ltd. Narrow linewidth external cavity laser and optical module
EP4181423A4 (en) * 2020-07-09 2024-01-10 Nec Corp PROCESSING DEVICE, TRANSMISSION DEVICE, COMMUNICATION DEVICE, PROCESSING METHOD AND RECORDING MEDIUM
CN117441273A (zh) * 2021-06-08 2024-01-23 Ipg光子公司 用于增加激光器系统的使用寿命的方法和装置
CN115810976A (zh) * 2021-09-13 2023-03-17 中兴光电子技术有限公司 波长锁定器、可调激光器及波长锁定控制方法
WO2023053303A1 (ja) * 2021-09-29 2023-04-06 日本電気株式会社 光源ユニット、光送信モジュール及びプラガブル光モジュール
CN115441304B (zh) * 2022-11-03 2023-02-28 之江实验室 调制效率增强的全光毫米波振荡器边模抑制装置、方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240109B1 (en) * 1999-02-25 2001-05-29 Lucent Technologies Inc Wavelength stabilization of wavelength division multiplexed channels
US6717967B2 (en) * 2002-03-18 2004-04-06 Dicos Technologies Inc. Absolutely calibrated periodic filters and sources
US6665321B1 (en) 2002-12-31 2003-12-16 Intel Corporation Tunable laser operation with locally commensurate condition
US6927377B2 (en) * 2003-03-31 2005-08-09 Intel Corporation Wavelength locking channel monitor
JP5074667B2 (ja) * 2005-03-18 2012-11-14 古河電気工業株式会社 集積型半導体レーザ装置および集積型半導体レーザ装置の駆動方法
JP5233090B2 (ja) * 2006-07-28 2013-07-10 沖電気工業株式会社 キャリア抑圧光パルス列発生方法及びこの方法を実現するモード同期半導体レーザ
JP4892467B2 (ja) * 2007-12-11 2012-03-07 日本オプネクスト株式会社 レーザ装置およびその制御方法
JPWO2009119284A1 (ja) * 2008-03-26 2011-07-21 日本電気株式会社 波長可変レーザ装置並びにその制御方法及び制御プログラム
JP5373653B2 (ja) * 2010-01-29 2013-12-18 日本電信電話株式会社 光変調信号生成装置及び光変調信号生成方法
CN102738702B (zh) * 2012-01-19 2014-04-09 四川马尔斯科技有限责任公司 利用fp激光器为增益光源的外腔式单波长可调谐激光器
WO2013180291A1 (ja) * 2012-05-31 2013-12-05 古河電気工業株式会社 半導体レーザモジュール
JP6684094B2 (ja) 2015-03-20 2020-04-22 古河電気工業株式会社 波長可変レーザ素子およびレーザモジュール
WO2016152274A1 (ja) * 2015-03-20 2016-09-29 古河電気工業株式会社 波長可変レーザ素子およびレーザモジュール

Also Published As

Publication number Publication date
JPWO2018146749A1 (ja) 2019-12-12
US20190363505A1 (en) 2019-11-28
CN110235321A (zh) 2019-09-13
CN110235321B (zh) 2021-12-31
US10965094B2 (en) 2021-03-30
WO2018146749A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6928622B2 (ja) 波長可変レーザ装置
US9722397B2 (en) Tunable laser and tunable laser module
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
EP1156563B1 (en) Laser wavelength stabilisation system for optical commmunication
JP5567226B2 (ja) 半導体レーザモジュール
EP2283551B1 (en) Method and apparatus for reducing the amplitude modulation of optical signals in external cavity lasers
US9436022B2 (en) Modulated light source
US20090122817A1 (en) Variable-wavelength filter and variable-wavelength laser
CN102354909B (zh) 一种基于dbr的外腔式波长可调谐激光器
US20100265975A1 (en) Extended cavity semiconductor laser device with increased intensity
US9966724B2 (en) Laser and method of controlling laser
US20130322472A1 (en) Wavelength selective and tunable laser device
JP2016139741A (ja) 変調光源
JP7016653B2 (ja) 変調光源
US6757307B2 (en) Self seeding pulsed non-linear resonant cavity
JP2020136360A (ja) 波長可変レーザ装置及びマルチモード発振検知方法
KR101781411B1 (ko) 파장 가변 광원 구현 방법 및 장치
CN110718851A (zh) 光学组件
JP2020136359A (ja) 波長可変レーザ装置およびその波長制御方法
JP2011176070A (ja) 波長可変レーザ装置

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20190305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210511

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R151 Written notification of patent or utility model registration

Ref document number: 6928622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370