JP6923816B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP6923816B2
JP6923816B2 JP2019116351A JP2019116351A JP6923816B2 JP 6923816 B2 JP6923816 B2 JP 6923816B2 JP 2019116351 A JP2019116351 A JP 2019116351A JP 2019116351 A JP2019116351 A JP 2019116351A JP 6923816 B2 JP6923816 B2 JP 6923816B2
Authority
JP
Japan
Prior art keywords
phosphor
less
light emitting
emitting device
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019116351A
Other languages
English (en)
Other versions
JP2019165257A (ja
Inventor
昌治 細川
昌治 細川
和哉 西俣
和哉 西俣
智一 ▲吉▼田
智一 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017004424A external-priority patent/JP6558378B2/ja
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2019116351A priority Critical patent/JP6923816B2/ja
Publication of JP2019165257A publication Critical patent/JP2019165257A/ja
Application granted granted Critical
Publication of JP6923816B2 publication Critical patent/JP6923816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本開示は、発光装置に関する。
青色光を発する発光ダイオード(LED)と、この青色光に励起される緑色発光の蛍光体及び赤色発光の蛍光体を組み合わせることにより、白色系の混色光を放出可能な発光装置が開発されている。液晶表示装置等の画像表示装置に発光装置を用いる場合には、光束が大きく、色度座標上において広範囲の色を再現することを可能にする発光装置が求められている。色再現性の評価基準としては、例えばNTSCで規格化されたNTSC比が挙げられる。
例えば、特許文献1には、NTSC比95%以上の色再現性が求められる液晶表示装置に用いられる発光装置として、390nm以上550nm以下の範囲に発光ピーク波長を有する発光素子と、緑色発光のβサイアロン系蛍光体と、CaAlSiN:Eu等で示される赤色発光の蛍光体を備えた発光装置が開示されている。
特開2008−303331号公報
液晶表示装置は、それぞれ赤色光、緑色光又は青色光を透過するカラーフィルタを備え、発光装置からの光の一部を透過させることによって、赤、緑及び青の三原色を組み合わせて色を表現する。したがって発光装置の発光スペクトルが、赤、緑、青の各波長領域に半値幅が狭い発光ピークを有するものであれば、各波長領域における色純度が高くなり、色再現性が良好となる。
特許文献1に記載のβサイアロン系蛍光体は、発光スペクトルの半値幅が比較的広く、発光ピーク波長が比較的長波長側にある。そして視感度の関係でその発光スペクトルの一部が明るさの向上に寄与する波長範囲にあり、その波長領域における発光成分が他の蛍光体と比べて比較的多いため、他の蛍光体と比べて明るい。その一方、発光スペクトルの半値幅が比較的広いため、緑の色純度が低くなり、色再現範囲を広げることに限界がある場合がある。そのため、βサイアロン系蛍光体を用いた発光装置を、より高輝度かつ、より広い色再現範囲が求められる高精細な液晶表示装置の光源として用いる場合には改善の余地がある。
そこで、本発明は、液晶表示装置に用いる場合に、広範囲な色再現性及び明るさを両立できる発光装置を提供することを目的とする。
前記課題を解決するための具体的手段は以下の通りであり、以下の構成を包含する。
本発明の一態様は、400nm以上470nm以下の範囲に発光ピーク波長を有する発光素子と、蛍光部材とを備え、前記蛍光部材は、510nm以上525nm以下の範囲に発光ピーク波長を有し、Ba、Sr、及びCaからなる群より選択される少なくとも1種のアルカリ土類金属と、Mgと、Mnとを含むアルミン酸塩を含む第一蛍光体、510nm以上550nm以下の範囲に発光ピーク波長を有し、前記第一蛍光体と組成が異なる第二蛍光体、及び620nm以上670nm以下の範囲に発光ピーク波長を有する第三蛍光体を含み、510nm以上535nm以下の範囲における極大発光の発光強度を100%とする場合に、500nmにおける相対発光強度が35%以下であり、540nmにおける相対発光強度が65%以下である発光スペクトルを有する発光装置である。
本発明の一態様によれば、液晶表示装置に用いる場合に、広範囲な色再現性及び明るさを両立できる発光装置を提供できる。
図1は、発光装置の一例を示す概略断面図である。 図2は、発光装置の他の例を示す概略断面図である。 図3は、実施例及び比較例の発光装置に用いた蛍光体について、波長に対する相対発光強度を示す発光スペクトルである。 図4は、実施例1から4及び比較例1から3の発光装置について、波長に対する相対発光強度を示す発光スペクトルである。 図5は、実施例5、6、比較例1及び比較例4から6の発光装置について、波長に対する相対発光強度を示す発光スペクトルである。 図6は、実施例7、比較例1及び比較例7から9の発光装置について、波長に対する相対発光強度を示す発光スペクトルである。 図7は、実施例8から10、比較例10及び比較例11の発光装置について、波長に対する相対発光強度を示す発光スペクトルである。
以下、本発明に係る発光装置を一実施形態に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の発光装置に限定されない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。また、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
[発光装置]
本実施形態に係る発光装置100は、400nm以上470nm以下の範囲に発光ピーク波長を有する発光素子10と、蛍光部材50とを備える。前記蛍光部材50は、510nm以上525nm以下の範囲に発光ピーク波長を有し、Ba、Sr、及びCaからなる群より選択される少なくとも1種のアルカリ土類金属と、Mgと、Mnとを含むアルミン酸塩を含む第一蛍光体71、510nm以上550nm以下の範囲に発光ピーク波長を有し、前記第一蛍光体71とは組成が異なる第二蛍光体72、及び620nm以上670nm以下の範囲に発光ピーク波長を有する第三蛍光体73を含む。そして発光装置100は、510nm以上535nm以下の範囲における極大発光の発光強度を100%とする場合に、500nmにおける相対発光強度が35%以下であり、540nmにおける相対発光強度が65%以下である発光スペクトルを有する。
発光装置100は、特定の組成を有し、510nm以上525nm以下の範囲に発光ピーク波長を有する第一蛍光体71と、510nm以上550nm以下の範囲に発光ピーク波長を有する第二蛍光体72とを組み合わせて、510nm以上535nm以下の範囲に局所的な発光ピークを有する緑色発光成分として用いる。これにより、発光スペクトルにおける青緑色領域及び黄緑色領域の発光成分が一定量以下となり、更に色再現性の優れる緑色成分を増やすことができる。つまり、発光装置100の発光スペクトルにおいて、青色、緑色及び赤色それぞれの波長領域における各色の発光が強調された発光スペクトルを得ることができるので、液晶表示装置に用いた場合に、色再現範囲を拡大することができる。特に、より高精細な液晶表示装置において色再現範囲を示す規格であるBT.2020に基づく数値が、本実施形態の発光装置を用いる液晶表示装置では、従来の発光装置を用いる場合よりも、更に優れた数値になり、色再現範囲が拡大される。
さらに発光装置100は、液晶表示装置の色再現性と明るさを両立させることができる。これは例えば以下のように考えることができる。緑色の波長領域は、赤色と青色の波長領域に挟まれており、また視感度の関係で明るさの向上に寄与する発光成分を含むため、色再現性と明るさに優れた液晶表示装置とするためには、それに用いる発光装置の発光スペクトルにおいて、緑色の波長領域の発光スペクトルの半値幅や発光強度を調整することが特に重要となる。本実施形態のように、半値幅が狭い発光スペクトルを有する第一蛍光体を含む発光装置を用いると、赤色発光及び青色発光への緑色発光の影響が少なくなり、カラーフィルタ透過後の色分離も良好となり、結果として液晶表示装置の色再現性が拡大する。さらに、視感度の関係で明るさの向上に寄与する555nm付近の発光成分を、色再現範囲の拡大に影響を与えない程度に、半値幅が広い第二蛍光体による発光スペクトルにより増やすことができる。これにより、液晶表示装置の色再現性と明るさの向上に寄与する発光装置を構成することができる。
発光装置100を図1に基づいて詳細に説明する。発光装置100は、表面実装型発光装置の一例である。
発光装置100は、可視光の短波長側(例えば、380nm以上500nm以下の範囲)の光を発し、発光ピーク波長が400nm以上470nm以下の範囲内にある窒化ガリウム系化合物半導体の発光素子10と、発光素子10を載置する成形体40とを有する。成形体40は、第1のリード20および第2のリード30と、樹脂部42とが一体的に成形されてなるものである。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が載置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1のリード20および第2のリード30とワイヤ60を介して電気的に接続されている。発光素子10は蛍光部材50により被覆されている。蛍光部材50は例えば、発光素子10からの光を波長変換する蛍光体70と樹脂とを含有してなる。蛍光体70は、第一蛍光体71、第二蛍光体72及び第三蛍光体73を含んで構成される。
蛍光部材50中の蛍光体70の総含有量は、樹脂(100重量部)に対して、例えば、50重量部以上、好ましくは50.5重量部以上、より好ましくは51重量部以上、更に好ましくは60重量部以上であり、また例えば300重量部以下、好ましくは250重量部以下、より好ましくは230重量部以下、更に好ましくは160重量部以下である。蛍光部材50中の蛍光体の総含有量が、上記範囲内であると、発光素子10から発した光を蛍光体70で効率よく波長変換することができる。
蛍光部材50は、封止材料である樹脂及び蛍光体70に加えて、フィラー、光拡散材等を更に含んでいてもよい。例えば、光拡散材を含むことで、発光素子10からの指向性を緩和させ、視野角を増大させることができる。フィラーとしては、例えばシリカ、酸化チタン、酸化亜鉛、酸化ジルコニウム、アルミナ等を挙げることができる。蛍光部材50がフィラーを含む場合、フィラーの含有量は、例えば、樹脂(100重量部)に対して1重量部以上20重量部以下とすることができる。
蛍光部材50は、蛍光体70を含む波長変換部材としてだけではなく、発光素子10や蛍光体70を外部環境から保護するための部材としても機能する。図1では、第一蛍光体71、第二蛍光体72及び第三蛍光体73は混合された状態で、発光素子10の近傍に偏在している。すなわち、蛍光体70は、蛍光部材50中において、成形体40の上面近傍に近い蛍光部材50中よりも、発光素子10に近い蛍光部材50中に多く配置される。このように発光素子10に近接して蛍光体70を配置することにより、発光素子10からの光を効率よく波長変換することができ、発光効率の優れた発光装置とすることができる。なお、蛍光部材50中の蛍光体70の配置位置は、発光素子10に近接して配置する形態だけではなく、例えば、蛍光体70への発光素子10からの熱の影響が少なくなるように、蛍光部材50中で、発光素子10から間隔をあけて配置することもできる。また、発光装置100からの光の色ムラが抑制されるように、蛍光部材50中の全体に蛍光体70を略均一に分散させて配置することもできる。
図2は、本実施形態の発光装置100の他の例を示す概略断面図である。図2では、蛍光部材50中において、第三蛍光体73を発光素子10の近傍に配置し、第二蛍光体72を第三蛍光体73の上側に、第一蛍光体71を第二蛍光体72の上側に配置している。これにより、発光素子10から発せられた光によって、各蛍光体がより効率よく励起されて発光する。
(発光素子)
発光素子10は、可視光の短波長側(例えば380nm以上485nm以下の範囲)に発光スペクトルを有する光を発し、発光ピーク波長が400nm以上470nm以下の範囲内であり、好ましくは430nm以上470nm以下、より好ましくは440nm以上460nm以下の範囲内である。これらの範囲内であることにより、第一蛍光体から第三蛍光体の発光効率を向上させることができる。
発光素子10としては、窒化ガリウム系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)を用いた半導体発光素子を用いることが好ましい。励起光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。発光素子の発光スペクトルの半値幅は、例えば、30nm以下とすることができる。
(蛍光部材)
蛍光部材50は、蛍光体70を含み、必要に応じてその他の蛍光体、樹脂、光拡散材等を含むことができる。蛍光体70は、緑色に発光する第一蛍光体71及び第二蛍光体72と、赤色に発光する第三蛍光体73とを少なくとも含む。
(第一蛍光体)
第一蛍光体71は、510nm以上525nm以下の範囲に発光ピーク波長を有し、Ba、Sr、及びCaからなる群より選択される少なくとも1種のアルカリ土類金属と、Mgと、Mnとを含むアルミン酸塩を含む。アルカリ土類金属は少なくともBaを含むことが好ましい。アルミン酸塩がBaを含む場合、アルミン酸塩を構成するアルカリ土類金属におけるBaの含有比率は、例えば、50モル%以上、好ましくは70モル%以上であり、また99モル%以下であってもよい。第一蛍光体の発光ピーク波長は510nm以上520nm未満であってもよい。
第一蛍光体71は、実質的に下記式(I)で表される組成を有することが好ましい。以下、式(I)で表される組成を有する蛍光体を「第一蛍光体(I)」ともいう。
EuMgMnAlp+t+q+r+1.5s (I)
式(I)中、Xは、Ba、Sr及びCaからなる群から選択される少なくとも1種であり、p、q、r、sは、0.5≦p≦1、0≦q≦0.7、0.2≦r≦0.7、8.5≦s≦13、0≦t≦0.5、0.5≦p+t≦1.2、0.2≦q+r≦1を満たす。
第一蛍光体(I)では、Xが少なくともBaを含むことが好ましい。第一蛍光体(I)が組成にBaを含むことにより、例えば、発光ピーク波長における反射率は比較的高く維持されながら、青色領域の光に対する反射率が比較的低く、すなわち青色領域の光の吸収が高くなり、第一蛍光体(I)の発光強度を高くすることができると考えられる。
式(I)において、pは、Ba、Sr及びCaからなる群より選択される少なくとも1種の元素であるXの合計モル組成比である。また、式(I)で表される第一蛍光体において、pが、0.5未満又は1を超える場合は、第一蛍光体(I)の結晶構造が不安定となる傾向があり、また発光強度が低下する虞がある。pは、好ましくは0.6以上、より好ましくは0.8以上である。またpは、0.99以下であってもよい。
式(I)において、qはMgのモル組成比である。qが0.7を超える場合は、Mgのモル組成比が高くなり、相対的に賦活元素となるMnの量が少なくなり、相対発光強度が低下する傾向がある。qは、好ましくは0.05以上、より好ましくは0.1以上であり、また好ましくは0.65以下、より好ましくは0.6以下である。式(I)において、qが0.0≦q≦0.7を満たす数であると、近紫外から青色領域の光励起による発光スペクトルが510nm以上525nm以下の範囲に発光ピーク波長を有し、反射率が比較的低く、発光強度が大きくなる傾向がある。このような第一蛍光体71を含む発光装置を液晶表示装置に用いる場合に、広い色再現性を実現することができる。
式(I)において、rは、Mnのモル組成比である。Mnは、第一蛍光体(I)の賦活元素である。なお、賦活元素として、Mnに加えてEu、Ce等の希土類元素を更に含んでいてもよい。特に、賦活元素としてMnとEuとを含むことにより、Euが光を吸収して電子が励起され、その励起エネルギーがEuからMnへ伝達され、さらにMnの発光に寄与することが期待される。そのため、発光ピーク波長が400nm以上470nm以下の範囲内の励起光源で励起したときの第一蛍光体の発光強度を向上させることができる点で好ましい。式(I)において、rが0.2未満又は0.7を超える場合には、例えば近紫外から青色領域の光で励起された場合に、反射率が高くなり、発光強度が小さくなる傾向がある。式(I)において、rが0.2未満の場合には、Mnの賦活量が少なく、第一蛍光体(I)は、近紫外から青色領域の光で励起された場合に、光の吸収が小さく、反射率が高くなり、発光強度を大きくすることが困難になる傾向がある。式(I)において、rが0.7を超えると、Mnの賦活量が多くなりすぎ、第一蛍光体(I)において、濃度消光が起こり、発光強度が小さくなる傾向がある。式(I)において、rは、好ましくは0.3以上、より好ましくは0.4以上であり、また好ましくは0.6以下、より好ましくは0.55以下である。
式(I)において、q+rは0.2以上1以下である。q+rが0.2未満または1を超えると充分な相対発光強度が得られない場合がある。q+rは、好ましくは0.3以上、より好ましくは0.4以上であり、また好ましくは0.99以下、より好ましくは0.98以下である。
式(I)において、tはEuのモル組成比である。tが0.5を超えると発光強度が低下する傾向がある。tは、好ましくは0.3以下、より好ましくは0.2以下である。
またp+tは、0.5以上1.2以下である。p+tが、5未満又は1.2を超えると、第一蛍光体(I)の結晶構造が不安定となる傾向があり、また発光強度が低下する虞がある。p+tは、好ましくは0.55以上、より好ましくは0.60以上であり、また好ましくは1.1以下、より好ましくは1.05以下である。
式(I)において、sは、Alのモル組成比である。sが8.5未満又は13を超える場合には、結晶構造が不安定となり、第一蛍光体(I)において、近紫外から青色領域の光で励起された場合に、発光強度が低下する傾向がある。式(I)において、sは、好ましくは9以上であり、また好ましくは13以下、より好ましくは12以下、さらに好ましくは11以下である。
第一蛍光体71は、原料として反応性を高めるためにハロゲン化物等のフラックスを用いて製造されることがある。この場合、アルカリ金属を含むフラックスを用いると、蛍光体71から微量のアルカリ金属が検出される場合がある。このような場合であっても、主成分が例えば式(I)を満たす場合は、第一蛍光体(I)に該当する。第一蛍光体71がアルカリ金属を含む場合、アルカリ金属の含有率は、好ましくは1000ppm以下、より好ましくは990ppm以下であり、また好ましくは100pm以上、より好ましくは200ppm以上、さらに好ましくは300ppm以上である。第一蛍光体71にアルカリ金属が含まれる場合、第一蛍光体71中のアルカリ金属のモル組成比は、好ましくは0.05モル以下、より好ましくは0.04モル以下である。また、第一蛍光体71にハロゲン元素が含まれる場合、第一蛍光体71中のハロゲン元素のモル組成比は、好ましくは0.12モル以下、より好ましくは0.1モル以下である。
フラックスとしては、アルカリ金属フッ化物、アルカリ金属塩化物等を用いることができ、好ましくはフッ化ナトリウム(NaF)又はフッ化カリウム(KF)であり、より好ましくはNaFである。
第一蛍光体71は、発光ピーク波長が400nm以上470nm以下の範囲内である発光素子10から発する光を吸収して、515nm以上525nm以下の範囲に発光ピーク波長を有して発光する。第一蛍光体71では、例えば、発光ピーク波長が450nmである発光素子から発する光によって励起された発光スペクトルの半値幅が、好ましくは45nm以下、より好ましくは40nm以下、さらに好ましくは35nm以下、さらに好ましくは30nm以下である。また半値幅は、例えば20nm以上である。
第一蛍光体71は、400nm以上470nm以下の範囲内に発光ピーク波長を有する発光素子によって励起され、緑色の発光スペクトルの半値幅が狭い発光スペクトルを有する蛍光体であり、第一蛍光体を含む発光装置を液晶表示装置に用いる場合に、色再現範囲を広くすることができる。
第一蛍光体71は、例えば平均粒径が5μm以上50μm以下である。第一蛍光体の平均粒径が5μm以上であると、例えば光の吸収が向上して発光強度が大きくなる傾向がある。また平均粒径が50μm以下であると、製造される発光装置ごとの色ばらつきの発生が抑制される傾向がある。第一蛍光体の平均粒径は、好ましくは5.5μm以上、より好ましくは6μm以上、さらに好ましくは7μm以上であり、また好ましくは48μm以下、より好ましくは45μm以下、さらに好ましくは30μm以下である。
なお、本明細書において、蛍光体の平均粒径は、レーザー回折式粒度分布測定装置(例えばMALVERN社製MASTER SIZER3000)により測定される小径側からの体積累積頻度が50%に達する体積平均径(メジアン径)をいう。
(第二蛍光体)
発光装置100が備える蛍光部材50は、緑色発光の蛍光体として、第一蛍光体71に加えて、少なくとも1種の第二蛍光体72を含む。第二蛍光体は510nm以上550nm以下の範囲に発光ピーク波長を有し、第一蛍光体とは異なる組成を有する蛍光体から選択される。第二蛍光体72は、1種の蛍光体を単独で使用してもよく、2種以上を併用してもよい。
第二蛍光体72は、βサイアロン系蛍光体、シリケート系蛍光体及び硫化物系蛍光体からなる群から選択される少なくとも1種であることが好ましい。第二蛍光体72が、これらの蛍光体から選択される少なくとも1種であると、第一蛍光体71と組み合わせた場合に、色再現範囲をより広くすることができる。第二蛍光体72の発光ピーク波長は、好ましくは520nm以上545nm以下である。更に第二蛍光体72の発光ピーク波長は、第一蛍光体の発光ピーク波長より長いことが好ましい。第一蛍光体71と第二蛍光体72の発光ピーク波長の差は、例えば30nm以下、好ましくは25nm以下であり、より好ましくは実質的に0nmである。このような発光ピーク波長を有する第二蛍光体72を発光装置100に用いることにより、明るさの向上に寄与する555nm付近の発光成分を、色再現範囲の拡大に影響を与えない程度に増やすことができる。
第二蛍光体72は、下記式(IIa)から式(IId)のいずれかで表される組成を有する蛍光体からなる群から選択される少なくとも1種であることが好ましい。特定の組成を有する第二蛍光体72を含むことによって、発光装置100の色再現範囲をより広くすることができる。なお、式(IIa)はβサイアロン系蛍光体の組成を表し、式(IIb)及び式(IId)はシリケート系蛍光体の組成を表し、式(IIc)は硫化物系蛍光体の組成を表す。
Si6−zAl8−z:Eu (ただし、0≦z≦4.2、好ましくは0.02≦z≦0.5) (IIa)
(Ca,Sr)MgSi16(Cr,F,Br):Eu (IIb)
(Sr,Ca,Ba)Ga:Eu (IIc)
(Ba,Sr,Ca)SiO:Eu (IId)
第二蛍光体72は、400nm以上470nm以下の範囲に発光ピーク波長を有する発光素子10から発する光を吸収して、510nm以上550nm以下の範囲に発光ピーク波長を有して発光する。第二蛍光体72は、例えば、発光ピーク波長が450nmである発光素子10から発する光によって励起された発光スペクトルの半値幅が、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下、よりさらに好ましくは65nm以下である。また半値幅は、例えば30nm以上である。このような半値幅を有する第二蛍光体72を発光装置100に用いることにより、明るさの向上に寄与する555nm付近の発光成分を、色再現範囲の拡大に影響を与えない程度に増やすことができる。
第一蛍光体71に対する第二蛍光体72の半値幅の比は、例えば1以上であり、好ましくは1.1以上であり、また例えば2.5以下であり、好ましくは1.8以下である。半値幅の比が前記範囲であると、色再現範囲をより広くすることができる。第一蛍光体71と第二蛍光体72の発光ピーク波長の差が実質的に0nmであって、第一蛍光体71に対する第二蛍光体72の半値幅の比が1.1以上であると、色再現範囲がより広くなる傾向がある。
第二蛍光体72の平均粒径は、発光効率の観点から、例えば2μm以上、好ましくは5μm以上、より好ましくは7μm以上であり、例えば50μm以下、好ましくは45μm以下、より好ましくは42μm以下である。
蛍光部材50に含まれる第一蛍光体71及び第二蛍光体72の含有量は、所望の色再現性を得る観点から、蛍光部材50に含まれる樹脂100重量部に対して、例えば50重量部以上、好ましくは60重量部以上、より好ましくは70重量部以上であり、また例えば250重量部以下、好ましくは220重量部以下。より好ましくは200重量部以下である。
蛍光部材50に含まれる第一蛍光体71及び第二蛍光体72の総量に対する第二蛍光体72の含有比率は、第二蛍光体72がβサイアロン系蛍光体の場合は、例えば10重量%未満、好ましくは5重量%以下、より好ましくは3重量%以下であり、また例えば0.05重量%以上である。第二蛍光体72がシリケート系蛍光体の場合は、例えば1重量%未満、好ましくは0.5重量%以下、より好ましくは0.3重量%以下であり、また例えば0.01重量%以上である。第二蛍光体72が硫化物系蛍光体の場合は、例えば0.5重量%未満、好ましくは0.1重量%以下、より好ましくは0.05重量%以下であり、また例えば0.01重量%以上である。
(第三蛍光体)
本実施形態の発光装置が備える蛍光部材50は、620nm以上670nm以下の範囲に発光ピーク波長を有する第三蛍光体73を含む。第三蛍光体は、620nm以上670nm以下の範囲に発光ピーク波長を有する蛍光体から選択される。第三蛍光体73は、1種の蛍光体を単独で使用してもよく、2種以上を併用してもよい。
第三蛍光体73は、フッ化物系蛍光体、マグネシウムフルオロゲルマネート系蛍光体、窒化物系蛍光体及び硫化物系蛍光体からなる群から選択される少なくとも1種であることが好ましい。第三蛍光体73が、これらの種類の蛍光体から選択される少なくとも一種であると、発光装置の色再現範囲をより広くすることができる。
第三蛍光体73は、下記式(IIIa)から式(IIIe)のいずれかで表される組成を有する蛍光体からなる群から選択される少なくとも1種であることが好ましい。特定の組成を有する蛍光体を含むことによって、発光装置の色再現範囲をより広くすることができる。なお、式(IIIa)はフッ化物系蛍光体の組成を表し、式(IIIb)はマグネシウムフルオロゲルマネート系蛍光体の組成を表し、式(IIIc)及び式(IIId)は窒化物系蛍光体の組成を表し、式(IIIe)は硫化物系蛍光体の組成を表す。
(Si,Ge,Ti)F:Mn (IIIa)
3.5MgO・0.5MgF・GeO:Mn (IIIb)
(Sr,Ca)AlSiN:Eu (IIIc)
(Sr,Ca)LiAl:Eu (IIId)
(Ca,Sr)S:Eu (IIIe)
第三蛍光体73は、400nm以上470nm以下の範囲に発光ピーク波長を有する発光素子10から発する光を吸収して、620nm以上670nm以下の範囲に発光ピーク波長を有して発光する。第三蛍光体は、例えば、発光ピーク波長が450nmである発光素子10から発する光によって励起された発光スペクトルの半値幅が、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下、よりさらに好ましくは65nm以下である。また半値幅は、例えば3nm以上である。
第三蛍光体73の平均粒径は、発光効率の観点から、例えば2μm以上、好ましくは5μm以上、より好ましくは7μm以上であり、また例えば50μm以下、好ましくは45μm以下、より好ましくは42μm以下である。
蛍光部材50に含まれる第三蛍光体73の含有量は、所望の色再現範囲を得る観点から、蛍光部材50に含まれる樹脂100重量部に対して、例えば0.5重量部以上、好ましくは1重量部以上、より好ましくは3重量部以上であり、また例えば100重量部以下、好ましくは90重量部以下。より好ましくは80重量部以下である。
蛍光部材50における、第一蛍光体71及び第二蛍光体72を含む緑色蛍光体と、第三蛍光体73を含む赤色蛍光体との含有比(緑色蛍光体:赤色蛍光体)は、例えば5:95以上99:1以下であり、好ましくは20:80以上98:2以下、より好ましくは30:70以上97:3以下、さらに好ましくは40:60以上96:4以下、特に好ましくは50:50以上95:5以下である。蛍光部材50が、緑色蛍光体と赤色蛍光体とを前記範囲で含むことによって、色再現範囲をより広くすることができる。
(その他の蛍光体)
蛍光部材50は、第一蛍光体71、第二蛍光体72及び第三蛍光体73以外のその他の蛍光体を必要に応じて含んでいてもよい。その他の蛍光体としては、例えば(Y,Gd,Tb,Lu)(Al,Ga)12:Ce、CaScSi12:Ce、CaSc:Ce、(La,Y)Si11:Ce、(Ca,Sr,Ba)Si:Eu、(Ca,Sr,Ba)Si12:Eu、(Ba,Sr,Ca)Si:Eu等が挙げられる。発光装置がその他の蛍光体を含む場合、その含有量は、目的等に応じて適宜選択することができ、例えば第一蛍光体71、第二蛍光体72及び第三蛍光体73の総量に対して、その他の蛍光体の含有量は、例えば5質量%以下、好ましくは2質量%以下である。
発光装置100は、発光スペクトルにおいて510nm以上535nm以下の範囲における局所的な極大発光の発光強度を100%とする場合に、500nmにおける相対発光強度が35%以下であり、好ましくは30%以下であり、より好ましくは25%以下である。また540nmにおける相対発光強度は65%以下であり、好ましくは60%以下、より好ましくは55%以下である。相対発光強度が前記範囲内であることにより、発光装置の発光スペクトルにおいて、青色光及び赤色光の波長領域と、それらに挟まれて色再現範囲に強く影響する緑色光の波長領域のそれぞれにおいて、青色、緑色及び赤色のそれぞれの発光が強調されるので、各色の色純度が高くなり液晶表示装置の色再現範囲を拡大することができる。
なお、510nm以上535nm以下の範囲に発光の極大値が2以上存在する場合は、それらのうちの発光強度の最大値を基準とする。
発光スペクトルにおける510nm以上535nm以下、すなわち緑色領域における発光のピーク波長は、色再現範囲と明るさの観点から、例えば512nm以上530nm以下、好ましくは514nm以上528nm以下であり、半値幅は例えば20nm以上40nm以下であり、好ましくは23nm以上35nm以下である。
発光装置100は、発光素子の光と、第一蛍光体71、第二蛍光体72及び第三蛍光体73が発する光との混色光を発光する。その混色光の色度は、CIE1931に規定されるxy色度座標において、例えばxが0.22以上0.34以下且つyが0.16以上0.34以下の範囲であり、好ましくはxが0.22以上0.33以下且つyが0.17以上0.33以下の範囲である。
以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(蛍光体)
実施例及び比較例の発光装置の製造に先立ち、緑色に発光する第一蛍光体及び第二蛍光体並びに赤色に発光する第三蛍光体をそれぞれ準備した。第一蛍光体として、表1に示す蛍光体A及びA2と、第二蛍光体として、表1に示す蛍光体BからDを準備した。
(蛍光体A)
蛍光体Aとして、式(I):X EuMgMnAlp+t+q+r+1.5sで表される組成を有する蛍光体であって、XとしてBaを選択し、tが0、pが1.0、qが0.5、rが0.5、sが10.0となるようにモル組成比を設定したものを準備した。具体的には、原料としてBaCO、MgO、MnCO、Al、及びMgFを準備し、フラックスとしてNaFを準備した。これらをBaCO:MgO:MgF:MnCO:Al:NaFがモル比で1.0:0.4:0.1:0.5:10.0:0.1になるように計量、混合して混合物を得た。この混合物をアルミナルツボに充填し、H/N=3/97(体積比)の混合ガス雰囲気で常圧下、1500℃で5時間、熱処理して粉末を得た。
得られた粉末について、量子効率測定装置(大塚電子株式会社製、QE−2000)を用いて、励起波長450nmの光を照射し、室温(25℃±5℃)における発光スペクトルを測定し、発光強度が最大となる波長を発光ピーク波長(nm)として測定した。得られた粉末の発光ピーク波長は517nmであった。この粉末をBa1.0Mg0.5Mn0.5Al1017で表される組成を有する蛍光体Aとした。
(蛍光体A2)
蛍光体A2として、式(I):X EuMgMnAlp+t+q+r+1.5sで表される組成を有する蛍光体であって、XとしてBaを選択し、tが0.1、pが0.9、qが0.5、rが0.5、sが10.0となるようにモル組成比を設定したものを準備した。具体的には、原料としてBaCO、Eu、MgO、MnCO、Al、及びMgFを準備し、フラックスとしてNaFを準備した。これらをBaCO:Eu:MgO:MgF:MnCO:Al:NaFがモル比で0.9:0.1:0.4:0.1:0.5:10.0:0.1になるように計量、混合して混合物を得た。その他は蛍光体Aと同様の条件で熱処理して粉末を得た。
得られた粉末について、蛍光体Aと同様にして測定した発光ピーク波長は517nmであった。この粉末をBa0.9Eu0.1Mg0.5Mn0.5Al1017で表される組成を有する蛍光体A2とした。
(蛍光体B)
蛍光体Bとして、Si6−zAl8−z:Eu(z=0.06)で表される組成を有する蛍光体(以下、「βサイアロン蛍光体」とも称する。)を準備した。蛍光体Aと同様にして測定した発光ピーク波長は529nmであった。
(蛍光体C)
蛍光体Cとして、CaMgSi16Cl:Euで表される組成を有する蛍光体(以下、「クロロシリケート蛍光体」とも称する。)を準備した。蛍光体Aと同様にして測定した発光ピーク波長は522nmであった。
(蛍光体D)
蛍光体Dとして、SrGa:Euで表される組成を有する蛍光体(以下、「チオガレート蛍光体」とも称する。)を準備した。蛍光体Aと同様にして測定した発光ピーク波長は535nmであった。
(第三蛍光体)
赤色に発光する第三蛍光体として、KSiF:Mnで表される組成を有する蛍光体(以下、「KSF蛍光体」とも称する。)を準備した。蛍光体Aと同様にして測定した発光ピーク波長は631nmであった。
各蛍光体について、以下の測定を行った。
<発光特性の評価>
蛍光体A、蛍光体A2、蛍光体B、蛍光体C、及び蛍光体Dについて、発光特性を測定した。得られた発光スペクトルの半値幅を測定した。結果を表1に示す。また、蛍光体A、蛍光体B、蛍光体C、及び蛍光体Dの発光スペクトルを、各蛍光体の最大発光強度で規格化して図3に示す。なお、蛍光体A2の発光スペクトルは、蛍光体Aとほぼ同じであった。
Figure 0006923816
(実施例1から10、比較例1から11)
表2に示す配合比率となるように、第一蛍光体、第二蛍光体及び第三蛍光体とシリコーン樹脂とを混合分散し、脱泡して蛍光部材用組成物を得た。蛍光部材用組成物は、製造する発光装置が発する混色光がCIE1931に規定されるxy色度座標において、xが0.26、yが0.22(x=0.26、y=0.22)付近となるように配合比を調整した。発光ピーク波長が455nmである青色発光LED(発光素子)上に、蛍光部材用組成物を充填、硬化させて、図1に示されるような発光装置100をそれぞれ製造した。なお、第一蛍光体として蛍光体AまたはA2を、第二蛍光体として蛍光体BからDのいずれかを、第三蛍光体としてKSF蛍光体を用いた。表2中、総蛍光体量(重量%)は組成物中の樹脂量に対する蛍光体の総含有率(重量%)を示す。また蛍光体内訳は、総蛍光体量に対する各蛍光体の含有比率(重量%)を示す。
Figure 0006923816
得られた各発光装置について以下の測定を行った。結果を表3に示す。表3には第一蛍光体及び第二蛍光体の種類、並びに第一蛍光体と第二蛍光体の総量に対する第二蛍光体の比率(重量%)を併せて示す。
<色再現範囲>
積分球を使用した全光束測定装置を用いて測定した各発光装置の発光スペクトルデータと、カラーフィルタの透過率曲線データとを用いて、シミュレーションを実行したことにより、液晶表示装置としてBT.2020に基づき、色再現範囲の相対値を算出した。すなわち、比較例1の発光装置を用いた液晶表示装置を100%とし、これに対する相対値として、他の発光装置を用いた液晶表示装置の「相対BT.2020(%)」を求めた。併せて液晶表示装置としての明るさ(輝度「cd/m」)を算出し、比較例1を基準(100.0%)とする相対値として「明るさ(%)」を求めた。なお、カラーフィルタとしては、比較例1の発光装置を用いた液晶表示装置の場合にBT.2020に基づく色再現範囲の値が80%程度になるカラーフィルタを用いた。
<相対光束>
積分球を使用した全光束測定装置を用いて、光束を測定した。比較例1の発光装置の光束を100%として、他の発光装置の相対光束を算出した。
<色度座標:x、y>
各発光装置の発光スペクトルデータと、カラーフィルタの透過率曲線データを用いて、シミュレーションを実行したことにより、カラーフィルタ透過後の発光色の色度(x、y)を、CIE1931に規定されるxy色度座標における数値(x、y)として求めた。
<発光スペクトル>
相対光束の測定と同様の装置を用いて、波長に対する相対強度を示す発光スペクトルを測定した。各発光装置の発光スペクトルにおける510nm以上535nm以下の範囲における極大発光強度を100%とし、この発光強度に対する500nm、及び540nmにおける相対発光強度を算出した。極大発光強度を与える波長をλpGreen(nm)、500nmにおける相対発光強度をI500(%)、540nmにおける相対発光強度をI540(%)として表3に示す。また、図4〜7に、各発光装置の発光スペクトルを示す。なお、各発光装置の発光スペクトルは、510nm以上535nm以下の範囲における極大発光の発光強度で規格化されている。
Figure 0006923816
実施例1から4及び比較例1から3では、第一蛍光体として蛍光体Aを用いている。また比較例1を除き、第二蛍光体としてβサイアロン蛍光体を用いている。表3、図4に示すように実施例1から4の発光装置におけるλpGreenは517nm付近である。500nmの相対発光強度は35%以下、540nmの相対発光強度は65%以下であることから、500nm付近の青緑成分及び540nm付近の黄緑色成分が少なくなっている。得られた発光装置について所定のカラーフィルタを用いる液晶表示装置とした場合のBT.2020の色再現範囲及び明るさを求めたところ、実施例の発光装置を用いた場合には、色再現範囲が同等であり、明るさは高いところで20%程度高くなっている。比較例2及び3では、500nmの成分が少ないが、540nmの相対発光強度が65%よりも高くなっている。また、βサイアロン蛍光体の比率が5重量%より多くなっている。この場合、比較例1よりも明るくなっているものの色再現範囲の値の低下が大きく、色再現範囲が狭くなっていることが分かる。
実施例5、6及び比較例4から6では、第一蛍光体として蛍光体Aを用い、第二蛍光体としてクロロシリケート蛍光体を用いている。表3、図5に示すように、実施例4及び5の発光装置のλpGreenは516nm付近であり、500nmの相対発光強度は35%以下、540nmの相対発光強度は65%以下であった。それに対し、比較例4から6は500nmの相対発光強度が35%よりも高く、比較例6は540nmの相対発光強度も65%よりも高くなっている。実施例の色再現範囲は比較例1とほぼ同等であり、明るさが高いところで24%高くなっている。比較例4から6は明るくなっているものの、色再現範囲が狭くなっていることが分かる。
実施例7及び比較例7から9では、第一蛍光体として蛍光体Aを用い、第二蛍光体としてチオガレート(SGS)蛍光体を用いている。表3、図6に示すように、実施例7の発光装置のλpGreenは516nm付近であり、500nmの相対発光強度は35%以下、540nmの相対発光強度は65%以下であった。それに対し、比較例7から9は500nmの相対発光強度は低いが、540nmの相対発光強度が高くなっている。実施例7の色再現範囲は比較例1とほぼ同等であり、明るさが26%高くなっている。一方、比較例7から9は色再現範囲が狭くなっていることが分かる。
実施例8から10及び比較例10、11では、第一蛍光体として蛍光体A2を用いている。また比較例10を除き、第二蛍光体としてβサイアロン蛍光体を用いている。表3、図7に示すように、実施例8から10の発光装置のλpGreenは518nm付近であり、500nmの相対発光強度は35%以下であり、540nmの相対発光強度は60%以下であった。それに対し、比較例11では、500nmの相対発光強度は低いが、540nmの相対発光強度が65%よりも高くなっている。実施例8から10の色再現範囲は、比較例10とほぼ同等であり、明るさが高いところで24%高くなっている。一方、比較例11は色再現範囲が狭くなっていることが分かる。
以上から、緑色発光の蛍光体として、第一蛍光体に加えて第二蛍光体を用い、緑色領域の発光スペクトルが所定の形状となるようにすることで、色再現範囲の拡大と明るさの両立が可能となった。
本発明の一実施形態に係る発光装置は、発光ダイオードを励起光源とし、ディスプレイ、バックライト用の光源、一般照明、車載照明等の幅広い分野での使用することができる。本発明の一実施形態に係る発光装置は、広範囲の色再現性を実現できるので、RGBの各色を深く鮮やかに再現することが望まれるモニター、スマートフォン等の液晶表示装置のバックライト用の光源として好適に利用できる。
10:発光素子、40:成形体、42:樹脂部、50:蛍光部材、71:第一蛍光体、72:第二蛍光体、73:第三蛍光体、100:発光装置。

Claims (11)

  1. 400nm以上470nm以下の範囲に発光ピーク波長を有する発光素子と、蛍光部材とを備え、
    前記蛍光部材が、510nm以上525nm以下の範囲に発光ピーク波長を有し、Ba、Sr、及びCaからなる群より選択される少なくとも1種のアルカリ土類金属と、Mgと、Mnとを含むアルミン酸塩を含む第一蛍光体、510nm以上550nm以下の範囲に発光ピーク波長を有し、前記第一蛍光体と組成が異なる第二蛍光体、及び620nm以上670nm以下の範囲に発光ピーク波長を有する第三蛍光体を含み、
    前記第一蛍光体に対する第二蛍光体の半値幅の比が、1.1以上2.5以下であり、
    前記第二蛍光体は、βサイアロン系蛍光体、シリケート系蛍光体及び硫化物系蛍光体からなる群から選択される1種であり、
    前記第三蛍光体は、フッ化物系蛍光体、マグネシウムフルオロゲルマネート系蛍光体、窒化物系蛍光体及び硫化物系蛍光体からなる群から選択される少なくとも1種であり、
    前記第一蛍光体及び前記第二蛍光体の総量に対する第二蛍光体の含有比率が、前記第二蛍光体がβサイアロン系蛍光体の場合は、5重量%以下であり、前記第二蛍光体がシリケート系蛍光体の場合は、0.5重量%以下であり、前記第二蛍光体が硫化物系蛍光体の場合は、0.1重量%以下である発光装置。
  2. 前記第一蛍光体が、下記式(I)で表される組成を有する請求項1に記載の発光装置。
    EuMgMnAlp+t+q+r+1.5s (I)
    (式(I)中、Xは、Ba、Sr及びCaからなる群から選択される少なくとも1種であり、p、q、r、sは、0.5≦p≦1、0≦q≦0.7、0.2≦r≦0.7、8.5≦s≦13、0≦t≦0.5、0.5≦p+t≦1.2、0.2≦q+r≦1を満たす。)
  3. 前記式(I)において、XがBaを含み、pが0.6≦p≦1を満たす請求項2に記載の発光装置。
  4. 前記式(I)において、rが0.3≦r<0.6を満たす請求項2又は3に記載の発光装置。
  5. 前記第二蛍光体が、下記式(IIa)から式(IId)のいずれかで表される組成を有する蛍光体からなる群から選択される1種である請求項1から4のいずれか1項に記載の発光装置。
    Si6−zAl8−z:Eu 0≦z≦4.2 (IIa)
    (Ca,Sr)MgSi16(Cr,F,Br):Eu (IIb)
    (Sr,Ca,Ba)Ga:Eu (IIc)
    (Ba,Sr,Ca)SiO:Eu (IId)
  6. 前記第三蛍光体が、下記式(IIIa)から式(IIIe)のいずれかで表される組成を有する蛍光体からなる群から選択される少なくとも1種である請求項1から5のいずれか1項に記載の発光装置。
    (Si,Ge,Ti)F:Mn (IIIa)
    3.5MgO・0.5MgF・GeO:Mn (IIIb)
    (Sr,Ca)AlSiN:Eu (IIIc)
    (Sr,Ca)LiAl:Eu (IIId)
    (Ca,Sr)S:Eu (IIIe)
  7. 前記第二蛍光体の発光ピーク波長が、前記第一蛍光体の発光ピーク波長よりも長い、請求項1から6のいずれか1項に記載の発光装置。
  8. CIE1931に規定されるxy色度座標において、xが0.22以上0.34以下且つyが0.16以上0.40以下の範囲である光を発する、請求項1から7のいずれか1項に記載の発光装置。
  9. 前記蛍光部材は、前記第一蛍光体及び前記第二蛍光体を含む緑色蛍光体と、前記第三蛍光体を含む赤色蛍光体との含有比が、5:95以上99:1以下である請求項1から8のいずれか1項に記載の発光装置。
  10. 前記蛍光部材は、樹脂を含み、前記第一蛍光体及び前記第二蛍光体の含有量が、前記樹脂100重量部に対して、50重量部以上250重量部以下である請求項1から9のいずれか1項に記載の発光装置。
  11. 前記蛍光部材は、樹脂を含み、前記第三蛍光体の含有量が、前記樹脂100重量部に対して、0.5重量部以上100重量部以下である請求項1から10のいずれか1項に記載の発光装置。
JP2019116351A 2017-01-13 2019-06-24 発光装置 Active JP6923816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019116351A JP6923816B2 (ja) 2017-01-13 2019-06-24 発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004424A JP6558378B2 (ja) 2017-01-13 2017-01-13 発光装置
JP2019116351A JP6923816B2 (ja) 2017-01-13 2019-06-24 発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017004424A Division JP6558378B2 (ja) 2017-01-13 2017-01-13 発光装置

Publications (2)

Publication Number Publication Date
JP2019165257A JP2019165257A (ja) 2019-09-26
JP6923816B2 true JP6923816B2 (ja) 2021-08-25

Family

ID=68066317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116351A Active JP6923816B2 (ja) 2017-01-13 2019-06-24 発光装置

Country Status (1)

Country Link
JP (1) JP6923816B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240016946A (ko) * 2021-06-02 2024-02-06 도레이 카부시키가이샤 색변환 조성물, 색변환 시트, 그것을 포함하는 광원 유닛, 디스플레이 및 조명 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775377B2 (ja) * 2002-11-06 2006-05-17 日亜化学工業株式会社 マンガン付活アルミン酸塩蛍光体とその製造方法及び真空紫外線励起発光装置
JP4561194B2 (ja) * 2003-08-01 2010-10-13 三菱化学株式会社 冷陰極蛍光ランプ用アルカリ土類アルミン酸塩蛍光体および冷陰極蛍光ランプ
TWI250664B (en) * 2004-01-30 2006-03-01 South Epitaxy Corp White light LED
JP2007049114A (ja) * 2005-05-30 2007-02-22 Sharp Corp 発光装置とその製造方法
JP4965840B2 (ja) * 2005-09-29 2012-07-04 株式会社東芝 白色発光型ledランプの製造方法およびそれを用いたバックライトの製造方法並びに液晶表示装置の製造方法
WO2009093427A1 (ja) * 2008-01-21 2009-07-30 Nichia Corporation 発光装置
WO2009110285A1 (ja) * 2008-03-03 2009-09-11 シャープ株式会社 発光装置
JP6380826B2 (ja) * 2013-09-20 2018-08-29 パナソニックIpマネジメント株式会社 光源装置
JP6384302B2 (ja) * 2014-12-05 2018-09-05 日亜化学工業株式会社 発光装置
JP6520553B2 (ja) * 2014-12-19 2019-05-29 日亜化学工業株式会社 発光装置
JP2016154205A (ja) * 2015-02-13 2016-08-25 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
JP2019165257A (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP6558378B2 (ja) 発光装置
TWI718305B (zh) 發光裝置
JP6384302B2 (ja) 発光装置
JP4930649B1 (ja) ハロリン酸塩蛍光体、及び白色発光装置
WO2011105571A1 (ja) ハロリン酸塩蛍光体、及び白色発光装置
US10199547B2 (en) Red phosphor and light emitting device including the same
TWI491706B (zh) Green luminescent phosphor and light emitting device
JP2013060506A (ja) フッ化物蛍光体及びそれを用いた発光装置
TW201828490A (zh) 發光裝置
JP2009280763A (ja) 蛍光体調製物およびそれを用いた発光装置
US11757070B2 (en) Light emitting device with Ce-activated aluminate fluorescent material
JP6503929B2 (ja) 半導体発光装置
US10903401B2 (en) Light-emitting device
JP5323308B2 (ja) 発光モジュール
JP6923816B2 (ja) 発光装置
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置
JP7004892B2 (ja) 発光装置
US11437549B2 (en) Light emitting device
JP6617659B2 (ja) アルミン酸塩蛍光体及び発光装置
JP6772621B2 (ja) 発光装置
JP6583201B2 (ja) 発光装置
JP5697765B2 (ja) 蛍光体及び発光装置
WO2023074525A1 (ja) 発光装置及び光源装置
JP5697766B2 (ja) 蛍光体及び発光装置
JP2007332261A (ja) 橙色発光蛍光体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6923816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150