JP6921482B2 - 素子、これを有する発振器及び情報取得装置 - Google Patents

素子、これを有する発振器及び情報取得装置 Download PDF

Info

Publication number
JP6921482B2
JP6921482B2 JP2016093082A JP2016093082A JP6921482B2 JP 6921482 B2 JP6921482 B2 JP 6921482B2 JP 2016093082 A JP2016093082 A JP 2016093082A JP 2016093082 A JP2016093082 A JP 2016093082A JP 6921482 B2 JP6921482 B2 JP 6921482B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
conductor layer
less
thz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016093082A
Other languages
English (en)
Other versions
JP2016219796A (ja
Inventor
フェイギノフ ミハエル
フェイギノフ ミハエル
泰史 小山
泰史 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/151,765 priority Critical patent/US9899959B2/en
Publication of JP2016219796A publication Critical patent/JP2016219796A/ja
Application granted granted Critical
Publication of JP6921482B2 publication Critical patent/JP6921482B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、活性層を含むマイクロストリップ構造を有する素子、この素子を有する発振器及び情報取得装置に関する。
概略0.1THz〜10THzの周波数範囲のテラヘルツ帯の電磁波(以下、テラヘルツ波とも称する)には多くの応用分野がある。例えば、多くの分子や分子錯体はこの周波数帯で共鳴現象を示す。従って、光領域の周波数の電磁波に対しては透明ではないがテラヘルツ波に対しては透明な種々のガスや物質の同定などに、テラヘルツ波のスペクトル分析が利用できる。よって、テラヘルツイメージングが、セキュリティチェック、製造工程における品質管理などの目的に利用できる。さらに、テラヘルツ波は、超高速無線通信などにも利用できる。
上述した応用に対しては、コンパクトで、効率が良く、室温で動作するテラヘルツ光源が要望される。近年、共鳴トンネルダイオード(RTD)を有する素子を用いたテラヘルツ波発振器が、有望なテラヘルツ光源の候補として注目されている。今日、RTDは、略1.8THzまでのテラヘルツ波を出すことができる。RTDは、非常にコンパクトで、効率が十分良く、実用的応用に適している。また、室温で動作する。これらの特性は、RTDの実用的応用を非常に魅力あるものとしているが、RTDの出力パワーは比較的小さく、現在の所、多くの応用にとって十分なものではない。
上記課題に関して、特許文献1は次の技術を開示する。すなわち、マイクロストリップ導波路をアンテナに接続して該導波路からのテラヘルツ波を放射する幾つかの方法を示している。また、0.2THz程度の電磁波を発振する様に設計されたRTD付き導波路のパラメータについても記載している。
特許文献2は次のアクティブ導波路の技術を開示する。すなわち、RTDを備える導波路のコアの側部にパッシブな金属−誘電体−金属の導波路を設けた構成を開示している。
特開2013−236326号公報 特開2007−324257号公報
しかしながら、コアにRTDを有する発振器では、共振部における電磁波の伝搬損失は大きい。従って、2THz付近までの周波数帯において、共振部における損失を補償するためにRTDによる利得を十分より大きくすることが求められる。
本発明はかかる課題を鑑みてなされたものであり、0.1THz以上2THz以下の周波数領域の少なくとも一部において、RTDによる利得をより大きくして、損失を補償できる素子を提供することを目的とする。
上記課題に鑑み、本発明の一側面としての素子は、電磁波を放射することができる活性層を有する素子であって、第1の方向に延びる第1の導電体層と、前記第1の方向に延びる第2の導電体層と、前記第1の導電体層と前記第2の導電体層との間に配置されている半導体、とを有し、前記半導体は、前記第1の導電体層と接触している第1の半導体層と、前記第2の導電体層と接触している第2の半導体層と、前記第1の半導体層と前記第2の半導体層との間に配置されている前記活性層と、を有し、前記第1の半導体層、前記活性層及び前記第2の半導体層が積層されている方向を第2の方向とすると、前記半導体は、前記第1の方向及び前記第2の方向と交差する方向における幅が0.5μm以上5μm以下であり、且つ、前記第2の方向における厚さが0.1μm以上1.0μm以下であり、前記活性層は、2つの障壁層を有する2重障壁共鳴トンネルダイオードであり、前記2重障壁共鳴トンネルダイオードの前記2つの障壁層のそれぞれは、前記第2の方向における厚さが0.7nm以上2.0nm以下であることを特徴とする。
本発明の一側面としての素子によれば、0.1THz以上2THz以下の周波数領域の少なくとも一部において、RTDによる利得をより大きくして、損失を補償できる。
第1実施形態の素子の構成の一例を説明する模式図。 第1実施形態の素子の他の構成の例を説明する模式図。 第1実施形態の素子の他の構成の一例を説明する模式図。 2重障壁共鳴トンネルダイオードのバンド構造を説明する模式図。 第1実施形態の素子の積層構造を説明する表の図。 素子の具体的設計値と動作周波数との関係の演算結果を示す図。 第2実施形態の素子の構成の一例を説明する模式図。 第3実施形態の素子の構成の例を説明する模式図。 第4実施形態の素子の構成の一例を説明する模式図。 第4実施形態の利得部のアドミタンスと半導体の幅Wとの関係の解析結果を示す図。 第4実施形態の利得部のアドミタンスと活性層の障壁層厚さdbarとの関係の解析結果を示す図。 第5実施形態の情報取得装置の構成を一例を説明する模式図。
RTDを用いた素子は、容量を低減させるためにRTDの寸法を小さくする必要がある。そうでないと、発振器の動作周波数を制限することになる。一方、テラヘルツ帯では、RTDの寸法は通常サブミクロン領域であり、このように小さい寸法では、RTDの出力パワーは制限されてしまう。このため、2THz付近までの周波数帯における高出力化を達成する為には、微細化による容量の低減と電磁波利得の確保を両立するために、RTDを含む素子の構造最適化が必要となる。
以下の実施形態は、導波路の発振器の活性層として好適な2重障壁共鳴トンネルダイオード(2重障壁RTD)を有する。この2重障壁RTDの場合で利得が導波路の損失を上回り発振に至る構成を提示するものである。なお、本発明は以下の実施形態の構成に限定されるものではなく、種々の変更が可能である。
(第1実施形態)
第1実施形態は、マイクロストリップ構造(以下、「マイクロストリップ」と呼ぶ)を有する素子に係わる。マイクロストリップの伸長方向である第1の方向に垂直な面における素子100の断面は、図1に示す通りである。素子100は、上部導電体層(第1の導電体層)102と、下部導電体層(第2の導電体層)101と、半導体110と、を有するマイクロストリップを有する。半導体110は、活性層105と、活性層105を挟むキャリアドープされた第1の半導体層103及び第2の半導体層104とを有する。
活性層105は、マイクロストリップの半導体110内の任意位置に配置することができる。例えば、図1に示すようにマイクロストリップの厚さ方向である第2の方向の中央部近くに配置することができる。或いは、図2(a)、図2(b)に示すように、上部導電体層102または下部導電体層191側にずらすこともできる。
第1の半導体層103は上部導電体層102と接触しており、第2の半導体層104は下部導電体層101と接触している。下部導電体層101、上部導電体層102は、それぞれ金属ストライプである。下部導体層101は、図1と図2に示す様に広い金属板にしたり、図3に示す様に、その上の第2の半導体層104の幅(第1及び第2の方向と交差(典型的には、直交)する方向の幅)と同等の幅をもつ狭い金属ストライプにしたりすることができる。図3では下部導電体層101は基板106上に設けられている。下部導電体層101、上部導電体層102として用いられる典型的な金属としては、例えば、Au、Mo、Cuなどがある。
活性層105は、2重障壁RTD(以下、単に「RTD」と呼ぶことがある)を用いている。このRTDは、2つのトンネル障壁層に挟まれた井戸層(QW)を有する。各障壁層は、例えば、広いバンドギャップを有する半導体層である。井戸層は、典型的には、1以上の狭いバンドギャップの半導体層である。RTD105のバンド構造、各部のフェルミレベルの値、QWや障壁層のギャップの値が図4に示されている。図5は、半導体110に含まれる半導体層の積層構造を説明している。各層の組成、キャリア(n)ドーピング濃度、厚さが記載されている。AlAsが障壁層で、InGaAs、InAs、InGaAsが井戸層(QW)である。RTD105は、キャリアドープされた第1の半導体層103及び第2の半導体層104で挟まれ、これにより、電子がRTD105に供給され、RTD105を通り、そして取り出される。
本実施形態ではRTDを進行波型にする構成、すなわち、コアにRTDを有する導波路ないし伝送路の形態を用いた。この場合、RTDの負性微分コンダクタンス(NDC、負性微分抵抗の逆数)が導波路に増幅(利得)を付与する必要がある。この利得が導波路における損失より大きければ、導波路は発振器として利用できる。このために、例えば、導波路の端面を開放端とする。そうすると、導波モードの半波長の整数倍に略等しい長さの導波路は、開放端での反射により共振器を構成する。導波路での利得が損失より大きければ、こうした共振器は共振周波数で発振する。
素子100の電磁波の伝搬特性や減衰/利得を分析するために、通常の伝送路のモデルを用いて説明する。議論を簡単にする為に、半導体110の幅Wは、下部導電体層101と上部導電体層102との間隔dMM(下部導電体層101に垂直な“z”方向(第2の方向)における半導体110の厚さ)より遥かに大きいとする。この場合、マイクロストリップ中の電流と電磁界は、“x”方向(幅の方向)において均質的であり、半導体110と上部導電体層101及び下部導電体層102の中に局在化していると見なせる。伝送路モデルで、“x−y”面の単位面積において垂直方向(“z”方向)に流れる電流(図1参照)に対する導波路のアドミッタンスYは次の式で表すことができる。
1/Y=1/(GRTD+iωCRTD)+R+Rcont1/(1+iωRcont1cont1)+Rcont2/(1+iωRcont2cont2) (1)
ここで、ωは角周波数、GRTDとCRTDはそれぞれRTD105のコンダクタンスと容量、Rはnキャリアドープされた第1の半導体層103、第2の半導体層104の抵抗である。Rcont1とCcont1は、オーム接触する下部金属層(下部導電体層)101とnドープ層(第2の半導体層)104との間の抵抗と容量である。また、Rcont2とCcont2は、オーム接触する上部金属層(上部導電体層)102とnドープ層(第1の半導体層)103との間の抵抗と容量である。
“y”方向の単位長さ及び“x”方向の単位長幅における金属ストライプに沿ったインピーダンスZは次の式で表される。
Z=iωLMM+Zsk (2)
ここで、LMM=4π・dMM/c(CGS単位系)はマイクロストリップのインダクタンスで、Zskは下部導電体層103の表皮効果を考慮したインピーダンス(ストライプの単位長さ及び単位長幅あたり)で、cは自由空間での光速である。RTD付き導波路の伝搬定数γ(“y”方向)は次の式で表される。
γ=√−YZ (3)
マイクロストリップの特性を分析する為に、RTD105の構造の各パラメータを特定する。代表例として、次のパラメータのRTD105を用いる。図4と図5に示す様に、このRTD105は次の構成を有する。AlAsの各障壁層は厚さdbarを有する。障壁層間のQWはInGaAs/InAs/InGaAsの3層を含み、QWのInGaAsはInPに格子整合した組成を有する。QWの各層は1.2nmの厚さを有し、QW全体の厚さは3.6nmである。障壁層とQWは意図的にはドープしていない。障壁層に隣接する層は、InPと格子整合したInGaAsであり、nドーピング濃度は略1.5×1.018cm−3である。障壁層から数十nmの距離で、第1及び第2の半導体層103、104のドーピング濃度は典型的には1.5×1.019cm−3に上昇する。こうしたパラメータと障壁層厚さ(略4nm(歪み障壁層の臨界厚さ)から1nm以下までの広い範囲に亘る)のRTD105は実際に作製することができる。
次に、RTD105のGRTDとCRTDを計算する。そして、このGRTDとCRTDを用いて、式(1)、(2)、(3)に基づきマイクロストリップの伝搬定数を計算する。演算結果が図6の細い方の実線で示されている。RTD105の障壁層の厚さdbarは、1.0nm以上1.8nm以下である。接触抵抗は5Ωμmとする。マイクロストリップのパワーの吸収係数はα=−2・Im(γ)で定義される。αの正の値は、導波路損失が利得より大きく、こうしたパラメータや周波数では発振不可能であることを示す。反対にαが負の値の場合、利得が損失より大きくマイクロストリップが発振器として動作することを示す。αが負の値の周波数領域はマイクロストリップの動作周波数である。
図6はマイクロストリップの高い方の動作周波数を示す。この動作周波数は、広いストライプ幅(W>>dMM)の構成において、dbar=1.8nmで略0.2THzであり、dbar=1.0nmで略0.8THzである。図6には、この間の範囲が示されている。ここで下部導電体層101と上部導電体層102との間隔dMM=0.5μm、第1、第2の半導体層103、104のnドーピング濃度が5×1.019cm−3、Rcont1=Rcont2=Rcont=5Ωμmである。
接触抵抗がRcont1=Rcont2=Rcont=2Ωμmに低下するとき、図6の太い実線で示すように、マイクロストリップの動作周波数が上昇する。このとき、上記のパラメータとdbar=1.0nmで、高い方の動作周波は略1.4THzまで上昇する。接触抵抗Rcontを略1Ωμmまで下げると、マイクロストリップの動作周波数は2THzに近づく。接触抵抗は1ないし2Ωμmまで下げることが可能である。
また、図6において、RTD105の障壁層厚さdbarが薄くなるに従って、素子100の動作周波数は高周波数であるほど顕著に高くなることが分かる。そこで演算結果を、より薄い障壁層(dbarが略0.7nm)まで外挿するとき、素子100の動作周波数は2THz近くになる。
また、幅Wの動作周波数への影響を解析するために、市販の有限要素法のシミュレーションソフトを用いてマイクロストリップのモード特性を検討した。幅Wを狭くした場合(W=dMM=0.5μm)の演算結果は図6の破線で示した。マイクロストリップの幅を低下させてdMMと等しくなる程度まで下げるとき、利得と損失が低下することが分かる。この理由は次の通りである。すなわち、マイクロストリップ周りの空中に電磁界が広がり、電磁界が半導体層内に局在しなくなるからである。しかし、高周波数側では、図6の太い実線と破線との差が小さく、幅Wによる変化はあまり大きくない。なぜなら、マイクロストリップにおける損失と利得は主に半導体層と活性層の中に存在するからである。マイクロストリップが狭くなるに従い、マイクロストリップの周りの電磁界の外縁部は、半導体層のモードとの重なりが減少する。しかし、空中のモード部分は、損失や利得への係わりが小さい。このように損失と利得の間のバランスは半導体層と活性層により決まるので、モードの空中へのはみ出し(外縁部の電磁場)は、高周波数側では余り影響を与えない。
RTDの障壁層厚さの更なる2nmまでへの増大化及び/又はRcontの略10Ωμmへの増大化により、図6のデータから外挿する計算から得られる様に、マイクロストリップの動作周波数は0.1THz近辺まで下がる。
以上、上記シミュレーションは、周波数領域0.1〜2THz(0.1THz以上2.0THz以下)をカバーするためにはRTDとマイクロストリップのパラメータは次の範囲内にある必要があることを示す。すなわち、dbar=0.7〜2.0nm(0.7nm以上2.0nm以下)、Rcont1とRcont2は略1〜10Ωμm(1Ωμm以上10Ωμm以下)。W=0.5〜5μm(0.5μm以上5μm以下)、dMM=0.1〜1.0μm(0.1μm以上1.0μm以下)。より好ましくは、dMM=0.2〜1.0μm(0.2μm以上1.0μm以下)である。これに加えて、RTDの構造パラメータの更なる最適化を行うことも可能である。例えば、QWのパラメータや組成の変更、RTD周りの半導体層のドーピング濃度の変更、障壁層の組成の変更などで、更に高い動作周波数が達成可能である。さらに、マイクロストリップの幾何形状や寸法の最適化によってもマイクロストリップの動作周波数の増大が可能である。
上述の議論から、マイクロストリップの幅Wは、マイクロストリップのシングルモードの動作に対応するものに制限される。更に、マイクロストリップの発振器で消費される全電流を減少させるために、マイクロストリップは比較的狭いものが好適である。従って、Wの値は略5μm以下に制限される。
上記分析はマイクロストリップに対する単純な伝送路モデルに基づくので、RTDの活性層を上部または下部導電体層101に近づけてもマイクロストリップのモードの伝搬特性には余り影響しない。よって、上記分析と結論は、図2(a)、(b)に示す形態のマイクロストリップにも同様に適用できる。
上記議論から以下のことも分かる。マイクロストリップの外縁部の電磁場は動作周波数の範囲に対して僅かな影響を持つに過ぎない。従って、下部導電体層101の幅を変えても(例えば、図3に示すように変更)、RTD付きマイクロストリップの動作周波数に大した影響を与えない。更に、上部導電体層102及び下部導電体層101の幅を半導体110の幅からずらすこともできる。上部、下部導電体層102、101の幅は半導体110の幅より狭くてもよいし、広くてもよく、その形状は、図1〜図3に示す単純なストライプ形状の他に、より複雑な幾何形状であってもよい。上部導電体層102及び下部導電体層101それぞれの幅が半導体110の幅程度に止まる限り、上部導電体層102及び下部導電体層101の幅は接触抵抗を余り変化させない。そのとき、上記議論はそのまま、変形タイプのマイクロストリップにも適用できる。適用の数値的限界は以下の如きものである。
まず、上部導電体層102及び下部導電体層101の幅の変化による第1、第2の半導体層103、104のそれぞれとの接触抵抗の変化が30%以下であることである。これを換言すると、接触面積が、活性層の面積の70%以上100%以下にある(70%を下回らない)ことである。また、図1に示すような単純な構造の素子100と比べて、上部導電体層102及び下部導電体層101それぞれの幅と形状の変化が、マイクロストリップの伝搬定数Re(γ)の50%以下の変化(50%を上回らない変化)しかもたらさないことである。
素子100を用いて発振器を実現するためには、マイクロストリップの伝搬方向(第1の方向)の長さを決める必要がある。このとき、長さがマイクロストリップのモードの半波長の整数倍の長さであれば、定在波を伴う共振が起こる。RTD105の活性層の厚さはdMMより遥かに小さいので、マイクロストリップのモードの実効誘電率は高く、空間(誘電率1)との界面であるマイクロストリップの開放端での反射は非常に強く、反射係数は1に近い。よって、開放端における放射損失は少なく、開放端を有するマイクロストリップの発振器の発振周波数は動作周波数の全領域(α<0で規定される領域)に亘る。
マイクロストリップから外部のアンテナへの電磁波の伝播を向上させるために整合素子を用いるとき、放射電磁波によるマイクロストリップ共振器の損失が大きくなる。この損失は、マイクロストリップ共振器の発振周波数の上限を低く制限する。この場合も、発振周波数の上限はα<0で規定される。
本実施形態によれば、0.1THz以上2THz以下の周波数領域の少なくとも一部において、RTDによる利得をより大きくして、導波路における損失を補償できる。
(第2実施形態)
第2実施形態は、0.3THzと1.4THzの周波数で動作する素子700に関する。本実施形態では、上部導電体層102の形状が第1実施形態と異なる。その他の構成は、第1実施形態と同様である。なお、第1実施形態と同様の構成には、図7に同じ符号を付し、詳細な説明は省略する。0.3THzの例に対しては、比較的大きいが容易に作製できる10Ωμmの接触抵抗を有する構造を用いる。活性層105としては、比較的大きい障壁層厚さ(dbar=1.4nm)のRTDを採用する。RTD(活性層)105の他のパラメータは図5で規定され、そのバンド構造は図4に示す。半導体110の幅Wと厚さdMMは、それぞれ、W=1μmでdMM=0.5μmである。
上述した通り、本実施形態では、断面の面積を増大するために上部導電体層102上に配置されている第3の導電体層301を有する点が第1実施形態と異なる。これは、RTD105に比較的大きい電流を供給するためである。図7は、素子700の構成を説明する断面図である。本実施形態では、幅が広い金属ストライプ(第3の導電体層)301を上部金属ストライプ(上部導電体層)102上に載せる。このような構成にすることより、半導体110の上部には、T字形状の金属ストライプ301が配置されたことになり、これは短いゲート長のHEMTのTゲートの通常の形状に似ている。HEMTでも素子100でも、T字状形態は同目的を有する。半導体110の上部に配置されている金属ストライプの断面積を大きくして大きな電流を受け入れ、抵抗を減らすためである。
一方、寄生容量は最小化するようにする。0.3THzの動作周波数に対しては、以下の寸法を採用する。T字状の金属ストライプについて、第1の半導体層103と接触する狭い底部の部分102の断面は約1μm×約1μmの四角形、底部の反対側の広い第3の導電体層301の断面形状は約1μm×約6μmの長方形とする。素子700の伝搬定数の計算には市販のソフトウエアを用いる。0.3THzでの共振における半波長は、マイクロストリップの52μmの長さに対応する。
他の例として、1.4THzの素子の共振器のパラメータを説明する。この場合、接触抵抗は2Ωμmに減らし、障壁層厚さ(dbar=1.0nm)のRTDを採用する。RTD(活性層)の他のパラメータは図5と図4に示すものと同じである。更に、半導体層の幅をW=0.5μmに低下させ、厚さはdMM=0.5μmのままとする。マイクロストリップの上部の金属ストライプはT字状のものを用いるが、その寸法は小さくする。部分102の断面形状は約0.5μm×約0.5μmの四角形、第3の導電体層301の断面形状は約1μm×約3μmの長方形とする。下部金属ストライプ101には、金属膜が表面に形成された基板を用いる。マイクロストリップのモードの伝搬定数の計算には市販の数値ソフトウエアを用いる。1.4THzでの共振における半波長は、マイクロストリップの約14μmの長さに対応する。
上記例から、サブTHzの周波数の素子とTHzオーダーの周波数の素子とが同じように実現できることが分かる。RTD105の構造パラメータに基づく例を示したが、パラメータは素子の設計のガイドラインを示すに過ぎない。実際の発振器の設計では、使用技術、個々のパラメータ、採用されるRTDの特性に応じて、調整される必要がある。
本実施形態によれば、0.1THz以上2THz以下の周波数領域の少なくとも一部において、RTDによる利得をより大きくして、導波路における損失を補償できる。
(第3実施形態)
第3実施形態の素子800は、バイアス線501を有する点が第1実施形態と異なる。バイアス線501は、素子800にバイアス電圧をかけるための配線である。ここでは、導波路の発振への影響を最小化するようなバイアス線501とマイクロストリップ構造との接続法を示す。図8(a)、図8(b)は、素子800の構成の一例を説明する図である。
共振周波数において、マイクロストリップの導波路に定在波が現れる。最も単純な場合、半波長の共振であり、これは、マイクロストリップの第1の方向の長さが半波長に等しいときに起こる。導波路に沿った電圧分布が図8(a)の上部に示されている。図8(a)に示すように、定在波の節の箇所(マイクロストリップの伸長方向の中央)でバイアス線501がマイクロストリップ(具体的には、上部導電体層102)に接続されるとき、バイアス線501は素子800の発振モードに影響を与えない。
より複雑なケースは、マイクロストリップの長さが共振周波数の半波長の複数倍であるときである。このとき、図8(b)に示すように、1以上のバイアス線501は定在波の1以上の節でマイクロストリップに接続される。図8(b)の上部にマイクロストリップに沿う電圧分布が示され、その下部に、共振定在波の全ての節でバイアス線501がマイクロストリップに接続されることが示されている。
マイクロストリップがその端部でアンテナ或いは適当な整合回路に接続されるとき、マイクロストリップのモードの端部における反射係数が変化する。その結果、開放端のマイクロストリップの位置から、定在波の節の位置がシフトする。定在波の共振の節の位置に合うように、バイアス線501のマイクロストリップへの接続点もシフトする必要がある。一般に、バイアス線501は定在波の節でマイクロストリップに接続する必要があるが、節の位置は、マイクロストリップの特性だけではなく、端部の反射状態(これは、例えば、接続されるアンテナや整合回路により影響を受ける)によっても影響される。
(第4実施形態)
本実施形態に係る発振器200について、図9を用いて説明する。図9(a)は本実施形態に係る発振器200の外観を示す斜視図であり、図9(b)はそのA−A’断面図、である。
発振器200は、アンテナ202と、活性層としてのRTD1005を含む利得部201と、が集積されたアクティブアンテナである。従って、発振器200の発振周波数fTHzは、アンテナ202のリアクタンスと利得部201のリアクタンスとを組み合わせた全並列共振回路の共振周波数として決定される。
具体的には、Jpn.J.Appl.Phys.,Vol.47,No.6(2008)に開示されたRTD発振器の等価回路から、RTDとアンテナのアドミタンス(YRTD及びYANT)を組み合わせた共振回路について発振周波数fTHzが決定される。具体的には、以下の(4)式で表わされる振幅条件と、(5)式で表わされる位相条件と、を満たす周波数が発振周波数fTHzとして決定される。ここで、Re[YRTD]は、微分負性抵抗素子のアドミタンスであり負の値を有す。
Re[YRTD]+Re[YANT]≦0 (4)
Im[YRTD]+Im[YANT]=0 (5)
発振器200は、アンテナ202、線路208、及びバイアス回路220、を有する。アンテナ202は、利得部201と、パッチ導体203と、接地導体204と、誘電体205aと、を有する。利得部201は、第1実施形態で開示された構造を備える。すなわち、利得部201は、活性層としてのRTD1005と、RTD1005を挟むキャリアドープされた半導体層1003、1004と、導電体層1001、1002と、有する。第1の半導体層1003は、第1の導電体層1002と接続されており、第2の半導体層1004は、第2の導電体層1001と接続されている。第2の導電体層1001は接地導体204と、第1の導電体層1002はパッチ導体203と、それぞれ電気的かつ機械的に接続されている。
導電体層1001、1002で用いる材料は、抵抗率が1×10−6Ω・m以上の導電体が用いられる。例えば、一般的な金属および金属化合物(Ag、Au、Cu、W、Ni、Cr、Ti、Al、AuIn合金、TiNなど)や、高濃度に不純物をドーピングされてキャリアが活性化された半導体等が好適に用いられる。半導体は、具体的には、ドナー又はアクセプターのドーピング濃度が1×1018cm−3以上の半導体が好適に用いられる。
本実施形態では、第2の導電体層1001は、第2の半導体層1004と同じく高濃度にキャリアドーピングされた半導体であるn−InGaAsを用いた。ドーパントはSiで、キャリア濃度は5×1.019cm−3であり、高濃度にドーピングしているため、金属に近い導電性を有する。第2の導電体層1001として金属に近い導電性を有する半導体層を用いる場合、直列抵抗による損失の観点から、第2の導電体層1001のx方向の幅は、幅Wより大きい方が好ましい。その場合、第2の導電体層1001と第2の半導体層1004とは、x方向の幅の違いから判別できる。また、第1実施形態と同様に第2の導電体層1001にAuやMoなどの金属を用いる構成であっても良い。第1の導電体層1002には、高濃度にキャリアドープしたInGaAsと低オーミック抵抗で接触可能なMoを用いた。
第4実施形態における半導体110は、RTD1005と、第1の半導体層1003と、第2の半導体層1004と、を含む。半導体110を構成するRTD1005、第1の半導体層1003、及び第2の半導体層1004は、図4及び図5で開示した構成を用いた。直列抵抗による損失の観点から、半導体110の厚さ(すなわち、RTD1005と第1の半導体層1003と第2の半導体層1004との総厚)は、0.1〜1μm(0.1μm以上5μm以下)の範囲で設定される。より好ましくは、0.2〜1μm(0.2μm以上5μm以下)の範囲で設定すると良い。
本実施形態の発振器200に用いるRTD1005を含む利得部201は、x方向の幅Wとy方向の長さが同じとなるメサ構造を備える。ここで、メサ構造を用いる場合は、z方向から見たメサ構造の形は、正方形であっても良いし、円であって良い。また、必ずしもx方向の幅Wとy方向の長さが一致する必要は無い。本実施形態では、円形メサ構造を用いた場合について説明する。
図10は、本実施形態で用いたRTD1005を含む利得部201のアドミタンス(Re[YRTD]及びIm[YRTD])のW依存性について解析した結果である。ここで、直線はRe[YRTD]を、点線はIm[YRTD]を示す。また、RTD1005の障壁層厚はdbar=1.0nm、コンタクト抵抗は4Ωμmとした。x方向の幅Wが増えるに従って利得は増加するか、リアクタンスも増加する為、高周波化に限界がある。
本解析結果から、W=0.5〜5μm(0.5μm以上5μm以下)が0.1THz以上2THz以下の周波数の電磁波を発振するのに最適な幅Wとなる。ここで、Wの下限は、微細化による利得低下に伴って式(4)の発振条件を満たさなくなることから決定される。また、上限は、容量増加による発振周波数の低周波化とアンテナの放射効率の低下から決定される。
図11は、本実施形態で用いたRTD1005を含む利得部201のアドミタンス(Re[YRTD]及びIm[YRTD])のdbar依存性について解析した結果である。ここで、直線はRe[YRTD]を、点線はIm[YRTD]を示す。また、RTD1005の幅Wは1.2μm、コンタクト抵抗は4Ωμmとした。RTD1005の障壁層厚さdbarが薄くなるに従って、高い動作周波数においても利得が顕著に高くなることが分かる。
本解析結果から、dbar=0.7〜2.0nm(0.7nm以上2.0nm以下)が0.1THzから2THzの発振を得るのに最適な障壁層厚dbarとなる。ここで、障壁層厚dbarの上限は、dbarが2.0nmより大きくなると利得低下に伴って式(4)の発振条件を満たさなくなることから決定される。また、障壁層厚dbarの下限は、エピタキシャル成長技術により実用的に制御できる膜厚で規定される。また、dbar=1nmにおいて、コンタクト抵抗を1Ωμmとした場合は、図11の破線のように高周波域における利得の増加が見込める。第1実施形態と同様にコンタクト抵抗は、損失の観点から、略1〜10Ωμm(1Ωμm以上10Ωμm以下)が最適である。
パッチ導体203と接地導体204との二導体で誘電体205aを挟む構成は、テラヘルツ波の共振器であり、有限な長さのマイクロストリップラインなどを用いたマイクロストリップ共振器である。本実施形態では、テラヘルツ波の共振器としてパッチアンテナを用いている。
パッチアンテナは、パッチ導体203と接地導体204との二導体で誘電体205aとを挟むように構成されており、パッチ導体203のA−A’方向の幅がλ/2共振器となるように設定される。また、パッチ導体203と接地導体204との間には、利得部201が配置されている。
RTD205を含む利得部201にバイアス電圧を供給するためのバイアス回路は、利得部201と並列に接続された抵抗210、抵抗210と並列に接続された容量209、電源212、配線211を含む。電源212は、利得部201のRTD105の駆動に必要な電流を供給し、バイアス電圧を調整する。バイアス電圧は、典型的には、RTD205の微分負性抵抗領域から選択される。
線路208は、分布定数線路であり、バイアス回路220からのバイアス電圧は、線路208を介してRTD1005に供給される。線路208は、マイクロストリップラインであり、ストリップ導体206と接地導体とで誘電体205bを挟んだ構成である。ストリップ導体206とパッチ導体203とは、導体207を介して接続されている。ここで、導体207は、パッチ導体203とストリップ導体206との間の段差(高低差)をつなぐためのプラグの役割がある。
導体207および線路208は、アンテナ202に定在する発振周波数fTHzのテラヘルツ波の電界の節に接続される。ここで、「アンテナ202に定在する発振周波数fTHzのテラヘルツ波の電界の節」は、アンテナ202に定在する発振周波数fTHzのテラヘルツ波の電界の実質的な節となる領域のことである。すなわち、テラヘルツ波の共振器であるパッチアンテナ内に定在する発振周波数fTHzのテラヘルツ波の電界の実質的な節となる領域であるとも言える。具体的には、アンテナ202に定在する発振周波数fTHzのテラヘルツ波の電界強度が、共振部に定在する発振周波数fTHzのテラヘルツ波の最大電界強度より1桁程度低い領域のことである。望ましくは、発振周波数fTHzのテラヘルツ波の電界強度が、アンテナ202に定在する発振周波数fTHzのテラヘルツ波の最大電界強度の1/e(eは自然対数の底)以下となる位置が好適である。
バイアス回路220の抵抗210及び容量209は、バイアス回路220に起因したDCから10GHzの周波数帯の寄生発振を抑制している。抵抗210の値は、RTD105の微分負性抵抗領域における微分負性抵抗の絶対値と等しいか少し小さい値が選択されることが好ましい。容量209も抵抗210と同様に、RTD1005の微分負性抵抗の絶対値と素子のインピーダンスが等しいか、少し低くなるように設定されることが好ましく、本実施形態では数十pF程度としている。
本実施形態に係る発振器200は、発振周波数fTHz=0.50THzを発振させる発振器として設計されており、アンテナ202は、パッチ導体203の一辺が150μmの正方形のパッチアンテナである。パッチ導体203と接地導体204との間には、誘電体205aとして3μm厚のBCB(ベンゾシクロブテン、ダウケミカル社製、ε=2.4)及び0.1μm厚の窒化シリコンを配置した。
パッチ導体203と接地導体204との間には、直径1.2μmのRTD1005を含む利得部201が接続される。利得部201は、パッチ導体203の重心から共振方向に15μmシフトした位置に配置した。パッチアンテナの単独の共振周波数は、約0.55THzであるが、利得部201のRTD1005のリアクタンスを考慮すると、発振器200の発振周波数fTHzは約0.50THzとなる。
マイクロストリップライン208は、ストリップ導体206と接地導体204との間に0.1μmの窒化シリコンからなる誘電体205bを配置した構造である。マイクロストリップライン208の具体的な寸法は、アンテナ202との接続部から、幅6μm、長さ100μmの線路が伸びており、さらに幅20μm、全長600μmの線路が伸びている。幅20μm、全長600μmの線路は、MIM容量209と接続されている。
なお、上述の実施形態では、テラヘルツ波の共振器として正方形パッチを用いているが、共振器の形状はこれに限られたものではなく、例えば、矩形及び三角形等の多角形、円形、楕円形等のパッチ導体を用いた構造の共振器等を用いてもよい。また、アンテナ202としてスロットアンテナやボウタイアンテナを用いてもよい。
本実施形態によれば、0.1THz以上2THz以下の周波数領域の少なくとも一部において、RTDによる利得をより大きくして、損失を補償できる。
(第5実施形態)
これまで説明してきた素子を用い、被検体の状態などの情報を取得する情報取得装置を提供することができる。図12に、情報取得装置の構成の一例を示す。例えば、上述の各実施形態の素子を発振器として用い、発振器の端部に被検体を配置する。被検体は導波路から射出される電磁波と相互作用するため、射出された電磁波は何らかの影響をうける。被検体に照射された電磁波は反射したり透過したりするため、それを検出器で検出する。その後、パソコン等の演算部で、検出した信号から被検体の情報(状態など)を取得する。具体的には、薬の状態などを検査する産業用検査装置などの応用が想定される。
以上の様にして、素子から出射した電磁波で照射された被検体からの電磁波を検出器で検出する情報取得装置を構成することができる。表示部は、演算部からの信号に基づいて被検体の画像を表示することができる。補正部は、演算部からの信号に基づいて発振器の発振状態(出力パワー、発振周波数など)を制御することができる。
本実施形態によれば、0.1THz以上2THz以下の周波数領域の少なくとも一部において、RTDによる利得をより大きくして、導波路における損失を補償できる。また、導波路における損失を補償できる素子を用いて情報取得装置を構成することにより、より精度の高い測定が可能となる。その結果、検出した信号等の測定結果から取得した被検体の情報の信頼性が向上することが期待できる。
以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、活性層105と第1、第2半導体層103、104との間に別の半導体層を設けてもよい。
100 素子
101 第2の導電体層
102 第1の導電体層
103 第1の半導体層
104 第2の半導体層
105 2重障壁共鳴トンネルダイオード(活性層、RTD)
110 半導体

Claims (12)

  1. 電磁波を放射することができる活性層を有する素子であって、
    第1の方向に延びる第1の導電体層と、前記第1の方向に延びる第2の導電体層と、前記第1の導電体層と前記第2の導電体層との間に配置されている半導体、とを有し、
    前記半導体は、前記第1の導電体層と接触している第1の半導体層と、前記第2の導電体層と接触している第2の半導体層と、前記第1の半導体層と前記第2の半導体層との間に配置されている前記活性層と、を有し、
    前記第1の半導体層、前記活性層及び前記第2の半導体層が積層されている方向を第2の方向とすると、
    前記半導体は、前記第1の方向及び前記第2の方向と交差する方向における幅が0.5μm以上5μm以下であり、且つ、前記第2の方向における厚さが0.1μm以上1.0μm以下であり、
    前記活性層は、2つの障壁層を有する2重障壁共鳴トンネルダイオードであり、
    前記2重障壁共鳴トンネルダイオードの前記2つの障壁層のそれぞれは、前記第2の方向における厚さが0.7nm以上2.0nm以下であり、
    金属である前記第1の導電体層と前記半導体との間の接触抵抗、及び、金属である前記第2の導電体層と前記半導体との間の接触抵抗は、それぞれ、1Ωμm以上10Ωμm以下の範囲にあり、
    前記第1の導電体層と前記半導体が同じ形状を有する場合と比べて、前記形状の異なりによる当該素子の伝搬定数の変化は、50%以下であることを特徴とする素子。
  2. 電磁波を放射することができる活性層を有する素子であって、
    第1の方向に延びる第1の導電体層と、前記第1の方向に延びる第2の導電体層と、前記第1の導電体層と前記第2の導電体層との間に配置されている半導体、とを有し、
    前記半導体は、前記第1の導電体層と接触している第1の半導体層と、前記第2の導電体層と接触している第2の半導体層と、前記第1の半導体層と前記第2の半導体層との間に配置されている前記活性層と、を有し、
    前記第1の半導体層、前記活性層及び前記第2の半導体層が積層されている方向を第2の方向とすると、
    前記半導体は、前記第1の方向及び前記第2の方向と交差する方向における幅が0.5μm以上5μm以下であり、且つ、前記第2の方向における厚さが0.1μm以上1.0μm以下であり、
    前記活性層は、2つの障壁層を有する2重障壁共鳴トンネルダイオードであり、
    前記2重障壁共鳴トンネルダイオードの前記2つの障壁層のそれぞれは、前記第2の方向における厚さが0.7nm以上2.0nm以下であり、
    前記第1の導電体層と前記半導体との間の接触面積は、前記2重障壁共鳴トンネルダイオードの前記面における面積の70%以上100%未満であり、
    前記第1の導電体層と前記半導体が同じ形状を有する場合と比べて、前記形状の異なりによる当該素子の伝搬定数の変化は、50%以下であることを特徴とする素子。
  3. 前記第1の導電体層はMoであることを特徴とする請求項1に記載の素子。
  4. 前記半導体は、前記第2の方向における厚さが0.2μm以上1.0μm以下であることを特徴とする請求項1から3の何れか1項に記載の素子。
  5. 前記第1の導電体層と前記半導体との間の接触抵抗及び前記第2の導電体層と前記半導体との間の接触抵抗は、それぞれ、1Ωμm以上10Ωμm以下の範囲にあることを特徴とする請求項1から4の何れか1項に記載の素子。
  6. 0.1THz以上2.0THz以下の範囲の周波数において、前記2重障壁共鳴トンネルダイオードにより付与される利得が当該素子における損失より大きいことを特徴とする請求項1から5の何れか1項に記載の素子。
  7. 前記第1の導電体層と前記第2の導電体層の少なくとも一方は、金属板、或いは金属膜が表面に形成された基板であることを特徴とする請求項2に記載の素子。
  8. 前記第1の導電体層と前記第2の導電体層のうちの少なくとも一方は、前記第1の方向と交差する面における断面がT字形状であり、
    前記T字形状の断面は、前記半導体と接触している狭い底部と該底部の反対側の広い上部とを持つことを特徴とする請求項1からの何れか1項に記載の素子。
  9. バイアス電圧をかけるための配線を更に有し、
    前記配線と前記第1の導電体層とは、前記第1の導電体層と前記第2の導電体層と前記半導体とを有するマイクロストリップの共振定在波の節で接続されていることを特徴とする請求項1からの何れか1項に記載の素子。
  10. 請求項1からの何れか1項に記載の素子を含み、0.1THz以上2.0THz以下の周波数の電磁波を発振することを特徴とする発振器。
  11. 0.1THz以上2.0THz以下の周波数の電磁波を発振する発振器であって、
    請求項1からの何れか1項に記載の素子を含む利得部と、電磁波を共振するアンテナと、を含むことを特徴とする発振器。
  12. 被検体の情報を取得する情報取得装置であって、
    前記被検体に電磁波を射出する発振器と、前記被検体からの電磁波を検出する検出器と、を有し、
    前記発振器が、請求項10又は11に記載の発振器であることを特徴とする情報取得装置。
JP2016093082A 2015-05-22 2016-05-06 素子、これを有する発振器及び情報取得装置 Active JP6921482B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/151,765 US9899959B2 (en) 2015-05-22 2016-05-11 Element, and oscillator and information acquiring device including the element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105012 2015-05-22
JP2015105012 2015-05-22

Publications (2)

Publication Number Publication Date
JP2016219796A JP2016219796A (ja) 2016-12-22
JP6921482B2 true JP6921482B2 (ja) 2021-08-18

Family

ID=57581614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093082A Active JP6921482B2 (ja) 2015-05-22 2016-05-06 素子、これを有する発振器及び情報取得装置

Country Status (1)

Country Link
JP (1) JP6921482B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878327A (ja) * 1994-09-06 1996-03-22 Toshiba Corp 半導体ウエハ
US6303941B1 (en) * 1999-10-25 2001-10-16 Hrl Laboratories Integrated asymmetric resonant tunneling diode pair circuit
JP4871816B2 (ja) * 2007-08-31 2012-02-08 キヤノン株式会社 レーザ素子
JP5717336B2 (ja) * 2009-03-27 2015-05-13 キヤノン株式会社 発振器
JP5606061B2 (ja) * 2009-12-25 2014-10-15 キヤノン株式会社 発振素子
JP5648915B2 (ja) * 2011-02-03 2015-01-07 日本電信電話株式会社 共鳴トンネルダイオードおよびテラヘルツ発振器
US9008983B2 (en) * 2011-05-17 2015-04-14 Canon Kabushiki Kaisha Waveguide, apparatus including the waveguide, and method of manufacturing the waveguide
JP2014175533A (ja) * 2013-03-11 2014-09-22 Canon Inc レーザ素子

Also Published As

Publication number Publication date
JP2016219796A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
JP5612842B2 (ja) 発振器
JP6280310B2 (ja) 発振器
US7622999B2 (en) Electromagnetic-wave oscillator
JP6570187B2 (ja) 周波数可変テラヘルツ発振器及びその製造方法
JP6296681B2 (ja) 発振素子、発振器及びこれを用いた撮像装置
EP4019918A1 (en) Element and method for manufacturing element
US10594260B2 (en) Element that oscillates or detects terahertz waves
JP2010252299A (ja) 発振器
US9899959B2 (en) Element, and oscillator and information acquiring device including the element
JP6415036B2 (ja) 発振器
JP2014158254A (ja) 電磁波発生素子及び検出素子
Ourednik et al. Double-resonant-tunneling-diode bridge-less patch-antenna oscillators operating up to 1.09 THz
Van Ta et al. Structure dependence of oscillation characteristics of structure-simplified resonant-tunneling-diode terahertz oscillator
JP6921482B2 (ja) 素子、これを有する発振器及び情報取得装置
Alharbi High performance terahertz resonant tunnelling diode sources and broadband antenna for air-side radiation
US9810808B2 (en) Oscillation device and measurement apparatus using the same
Maricar et al. Planar Gunn diode characterisation and resonator elements to realise oscillator circuits
WO2022024788A1 (ja) 半導体素子
JP6870135B2 (ja) 素子
Meng et al. High-power in-phase and anti-phase mode emission from linear arrays of resonant-tunneling-diode oscillators in the 0.4-to-0.8-THz frequency range
EP2962389A1 (en) Oscillator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20181204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210728

R151 Written notification of patent or utility model registration

Ref document number: 6921482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151