JP6920551B2 - 移動通信システム、中継ノード、及び基地局 - Google Patents

移動通信システム、中継ノード、及び基地局 Download PDF

Info

Publication number
JP6920551B2
JP6920551B2 JP2020518332A JP2020518332A JP6920551B2 JP 6920551 B2 JP6920551 B2 JP 6920551B2 JP 2020518332 A JP2020518332 A JP 2020518332A JP 2020518332 A JP2020518332 A JP 2020518332A JP 6920551 B2 JP6920551 B2 JP 6920551B2
Authority
JP
Japan
Prior art keywords
base station
relay node
rrc
iab node
gnb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020518332A
Other languages
English (en)
Other versions
JPWO2019216371A1 (ja
Inventor
真人 藤代
真人 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2019216371A1 publication Critical patent/JPWO2019216371A1/ja
Priority to JP2021122004A priority Critical patent/JP7212112B2/ja
Application granted granted Critical
Publication of JP6920551B2 publication Critical patent/JP6920551B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Description

本開示は、移動通信システム、中継ノード、及び基地局に関する。
移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、IAB(Integrated Access and Backhaul)ノードと称される新たな中継ノードが検討されている。1又は複数の中継ノードが基地局とユーザ機器との間の通信に介在し、この通信に対する中継を行う。かかる中継ノードは、ユーザ機器機能及び基地局機能を有しており、ユーザ機器機能を用いて上位ノード(基地局又は上位の中継ノード)との無線通信を行うとともに、基地局機能を用いて下位ノード(ユーザ機器又は下位の中継ノード)との無線通信を行う。
ユーザ機器と、中継ノード又は基地局との間の無線区間は、アクセスリンクと称されることがある。中継ノードと、基地局又は他の中継ノードとの間の無線区間は、バックホールリンクと称されることがある。非特許文献1には、アクセスリンクのデータ通信及びバックホールリンクのデータ通信をレイヤ2において統合及び多重化し、バックホールリンクに動的に無線リソースを割り当てることにより、中継の経路を動的に切り替える方法が記載されている。
3GPP寄書 RP−170217 、「Motivation for Study on Integrated Access and Backhaul for NR」、[online]、[平成30年5月1日検索]、インターネット<1525835583096_0.zip>
一実施形態に係る移動通信システムは、基地局と、ユーザ機器機能と基地局機能とを有し、前記ユーザ機器機能を用いて前記基地局との第1の無線接続を確立する中継ノードと、を備える。前記基地局は、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する。
一実施形態に係る中継ノードは、ユーザ機器機能と基地局機能とを有する中継ノードであって、前記ユーザ機器機能を用いて基地局との第1の無線接続を確立する制御部と、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記基地局から受信する受信部と、を備える。
一実施形態に係る基地局は、ユーザ機器機能と基地局機能とを有する中継ノードとの第1の無線接続を確立する制御部と、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する送信部と、を備える。
実施形態に係る移動通信システムの構成を示す図である。 実施形態に係る基地局(gNB)の構成を示す図である。 実施形態に係る中継ノード(IABノード)の構成を示す図である。 実施形態に係るユーザ機器(UE)の構成を示す図である。 実施形態に係る移動通信システムにおけるユーザプレーンのプロトコルスタック構成の一例を示す図である。 実施形態に係る移動通信システムにおける通常動作シーケンスの一例を示す図である。 実施形態に係るコンテキスト転送先を決定するためのテーブルの一例を示す図である。 実施形態に係る移動通信システムにおける例外動作シーケンスの一例を示す図である。 実施形態に係る移動通信システムにおけるマルチホップ接続シーケンスの一例を示す図である。
図面を参照しながら、一実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
(移動通信システムの構成)
本実施形態に係る移動通信システムの構成について説明する。図1は、本実施形態に係る移動通信システム1の構成を示す図である。移動通信システム1は、3GPP規格に基づく第5世代(5G)移動通信システムである。具体的には、移動通信システム1における無線アクセス方式は、5Gの無線アクセス方式であるNRである。但し、移動通信システム1には、LTE(Long Term Evolution)が少なくとも部分的に適用されてもよい。
図1に示すように、移動通信システム1は、5Gコアネットワーク(5GC)10と、ユーザ機器(UE)100と、基地局(gNBと称される)200と、IABノード300とを備える。本実施形態において、基地局がNR基地局である一例について主として説明するが、基地局がLTE基地局(すなわち、eNB)であってもよい。
5GC10は、AMF(Access and Mobility Management Function)11及びUPF(User Plane Function)12を備える。AMF11は、UE100に対する各種モビリティ制御等を行う装置である。AMF11は、NAS(Non−Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するエリアの情報を管理する。UPF12は、ユーザデータの転送制御等を行う装置である。
gNB200は、NGインターフェイスと称されるインターフェイスを介して、5GC10に接続される。図1において、5GC10に接続された3つのgNB200−1〜gNB200−3を例示している。gNB200は、UE100との無線通信を行う固定の無線通信装置である。gNB200がドナー機能を有する場合、gNB200は、自身に無線で接続するIABノードとの無線通信を行ってもよい。
gNB200は、Xnインターフェイスと称される基地局間インターフェイスを介して、隣接関係にある他のgNB200と接続される。図1において、gNB200−1がgNB200−2及びgNB200−2に接続される一例を示している。
各gNB200は、1又は複数のセルを管理する。セルは、無線通信エリアの最小単位を示す用語として用いられる。セルは、UE100との無線通信を行う機能又はリソースを示す用語として用いられることがある。1つのセルは1つのキャリア周波数に属する。
UE100は、gNB200との無線通信を行う移動可能な無線通信装置である。UE100は、IABノード300との無線通信を行ってもよい。UE100は、gNB200又はIABノード300との無線通信を行う装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末やタブレット端末、ノートPC、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置である。
図1において、UE100−1がgNB200−1に無線で接続され、UE100−2がIABノード300−1に無線で接続され、UE100−3がIABノード300−2に無線で接続される一例を示している。UE100−1は、gNB200−1との通信を直接的に行う。UE100−2は、IABノード300−1を介してgNB200−1との通信を間接的に行う。UE100−3は、IABノード300−1及びIABノード300−2を介してgNB200−1との通信を間接的に行う。
IABノード300は、eNB200とUE100との間の通信に介在し、この通信に対する中継を行う装置(中継ノード)である。図1において、IABノード300−1がドナーであるgNB200−1に無線で接続され、IABノード300−2がIABノード300−1に無線で接続される一例を示している。各IABノード300は、セルを管理する。IABノード300が管理するセルのセルIDは、ドナーgNB200−1のセルのセルIDと同じであってもよいし、異なっていてもよい。
IABノード300は、UE機能(ユーザ機器機能)及びgNB機能(基地局機能)を有する。IABノード300は、UE機能を用いて上位ノード(gNB200又は上位のIABノード300)との無線通信を行うとともに、gNB機能を用いて下位ノード(UE100又は下位のIABノード300)との無線通信を行う。なお、UE機能とは、UE100が有する機能のうち少なくとも一部の機能を意味し、必ずしもUE100の全ての機能をIABノード300が有していなくてもよい。gNB機能とは、gNB200の機能のうち少なくとも一部の機能を意味し、必ずしもgNB200の全ての機能をIABノード300が有していなくてもよい。
UE100と、IABノード300又はgNB200との間の無線区間は、アクセスリンク(或いは、Uu)と称されることがある。IABノード300と、gNB200又は他のIABノード300との間の無線区間は、バックホールリンク(或いは、Un)と称されることがある。かかるバックホールリンクは、フロントホールリンクと称されてもよい。
アクセスリンクのデータ通信及びバックホールリンクのデータ通信をレイヤ2において統合及び多重化し、バックホールリンクのデータ通信に動的に無線リソースを割り当て、中継の経路を動的に切り替えることが可能である。なお、アクセスリンク及びバックホールリンクには、ミリ波帯が用いられてもよい。また、アクセスリンク及びバックホールリンクは、時分割及び/又は周波数分割により多重化されてもよい。
(gNBの構成)
本実施形態に係るgNB200の構成について説明する。図2は、gNB200の構成を示す図である。図2に示すように、gNB200は、無線通信部210と、ネットワーク通信部220と、制御部230とを備える。
無線通信部210は、UE100との無線通信及びIABノード300との無線通信に用いられる。無線通信部210は、受信部211及び送信部212を備える。受信部211は、制御部230の制御下で各種の受信を行う。受信部211はアンテナを含み、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。送信部212は、制御部230の制御下で各種の送信を行う。送信部212はアンテナを含み、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
ネットワーク通信部220は、5GC10との有線通信(又は無線通信)及び隣接する他のgNB200との有線通信(又は無線通信)に用いられる。ネットワーク通信部220は、受信部221及び送信部222を備える。受信部221は、制御部230の制御下で各種の受信を行う。受信部221は、外部から信号を受信して受信信号を制御部230に出力する。送信部222は、制御部230の制御下で各種の送信を行う。送信部222は、制御部230が出力する送信信号を外部に送信する。
制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサとCPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
(IABノードの構成)
本実施形態に係るIABノード300の構成について説明する。図3は、IABノード300の構成を示す図である。図2に示すように、IABノード300は、無線通信部310と、制御部320とを備える。
無線通信部310は、gNB200との無線通信(バックホールリンク)及びUE100との無線通信(アクセスリンク)に用いられる。無線通信部310は、受信部311及び送信部312を備える。受信部311は、制御部320の制御下で各種の受信を行う。受信部311はアンテナを含み、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部320に出力する。送信部312は、制御部320の制御下で各種の送信を行う。送信部312はアンテナを含み、制御部320が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
制御部320は、IABノード300における各種の制御を行う。制御部320は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサ及びCPUを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
(UEの構成)
本実施形態に係るUE100の構成について説明する。図4は、UE100の構成を示す図である。図4に示すように、UE100は、無線通信部110と、制御部120とを備える。
無線通信部110は、アクセスリンクにおける無線通信、すなわち、gNB200との無線通信及びIABノード300との無線通信に用いられる。無線通信部110は、受信部111及び送信部112を備える。受信部111は、制御部120の制御下で各種の受信を行う。受信部111はアンテナを含み、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部120に出力する。送信部112は、制御部120の制御下で各種の送信を行う。送信部112はアンテナを含み、制御部120が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
制御部120は、UE100における各種の制御を行う。制御部120は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサ及びCPUを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
(プロトコルスタック構成の一例)
本実施形態に係る移動通信システム1におけるプロトコルスタック構成の一例について説明する。図5は、ユーザプレーンのプロトコルスタック構成の一例を示す図である。ここでは、図1に示したUE100−3と5GC10のUPF12との間のユーザデータ伝送に関するプロトコルスタック構成の一例について説明する。
図5に示すように、UPF12は、GTP−U(GPRS Tunneling Protocol for User Plane)と、UDP(User Datagram Protocol)と、IP(Internet Protocol)と、レイヤ1/レイヤ2(L1/L2)とを備える。gNB200−1(ドナーgNB)には、これらに対応するプロトコルスタックが設けられる。
また、gNB200−1は、集約ユニット(CU:Central Unit)と分散ユニット(DU:Distributed Unit)とを備える。無線インターフェイスのプロトコルスタックのうちPDCP(Packet Data Convergence Protocol)以上の各レイヤをCUが有し、RLC(Radio Link Control)以下の各レイヤをDUが有し、F1インターフェイスと称されるインターフェイスを介してCU及びDUが接続される。
具体的には、CUは、SDAP(Service Data Adaptation Protocol)と、PDCPと、IPと、L1/L2とを備える。CUのSDAP及びPDCPは、DUと、IABノード300−1と、IABノード300−2とを介して、UE100のSDAP及びPDCPとの通信を行う。
また、DUは、無線インターフェイスのプロトコルスタックのうち、RLCと、アダプテーションレイヤ(Adapt)と、MAC(Medium Access Control)と、PHY(Physical layer)とを有する。これらのプロトコルスタックは、gNB向けのプロトコルスタックである。なお、アダプテーションレイヤ及びRLC(S−RLC)は上下関係が逆であってもよい。
IABノード300−1には、これらに対応するUE向けのプロトコルスタックST1が設けられる。さらに、IABノード300−1には、gNB向けのプロトコルスタックST2が設けられる。プロトコルスタックST1及びプロトコルスタックST2は、何れもレイヤ2以下の各レイヤ(各サブレイヤ)からなる。すなわち、IABノード300−1は、レイヤ2以下の各レイヤを用いてユーザデータの中継を行うレイヤ2中継ノードである。IABノード300−1は、レイヤ3以上のレイヤ(具体的には、PDCP以上のレイヤ)を用いることなくデータ中継を行う。なお、IABノード300−2は、IABノード300−1と同様なプロトコルスタック構成を有する。
ここではユーザプレーンにおけるプロトコルスタック構成について説明した。しかしながら、制御プレーンにおいて、gNB200−1、IABノード300−1、IABノード300−2、及びUE100−3のそれぞれは、レイヤ3に相当するRRC(Radio Resource Control)を備える。
gNB200−1(ドナーgNB)のRRCとIABノード300−1のRRCとの間にRRC接続が確立され、このRRC接続を用いてRRCメッセージが送受信される。また、gNB200−1のRRCとIABノード300−2のRRCとの間にRRC接続が確立され、このRRC接続を用いてRRCメッセージが送受信される。さらに、gNB200−1のRRCとUE100−3のRRCとの間にRRC接続が確立され、このRRC接続を用いてRRCメッセージが送受信される。
(移動通信システムにおける動作)
本実施形態に係る移動通信システム1における動作について説明する。具体的には、IABノード300−1がgNB200−1(ドナーgNB)に無線で接続する場合の動作について説明する。
かかる場合、最初に、IABノード300−1は、UE機能を用いてgNB200−1とのアクセスリンク接続(第1の無線接続)を確立する。言い換えると、IABノード300−1は、UE100として振る舞ってgNB200−1とのアクセスリンク接続を確立する。アクセスリンク接続の確立は、RRC接続の確立を含む。
次に、gNB200−1は、アクセスリンク接続を維持しつつ、IABノード300−1のgNB機能のためのバックホールリンク接続(第2の無線接続)をIABノード300−1とgNB200−1との間に確立させるメッセージをIABノード300−1に送信する。本実施形態において、かかるメッセージは、RRC接続を用いて送受信されるRRC再設定(RRC Reconfiguration)メッセージである。
その結果、バックホールリンク接続がIABノード300−1とgNB200−1との間に確立されるため、IABノード300−1とgNB200−1との間でバックホールリンクの通信を適切に開始可能とすることができる。
バックホールリンク接続を確立させるRRC再設定メッセージは、バックホールリンク接続を構成するベアラ(又はL2リンク)の設定情報、及びIABノード300−1が送信するべきセルID(具体的には、セルIDに関連付けられた参照信号及び同期信号の送信設定)を含んでもよい。以下において、かかるRRC再設定メッセージをIABノード設定メッセージと称する。
IABノード設定メッセージは、デフォルトベアラ(又はデフォルトリンク)の設定情報を含んでもよい。デフォルトベアラ(又はデフォルトリンク)は、例えば、SIBの中継やUEからのMsg3中継などを行うためのベアラ(又はリンク)である。
IABノード設定メッセージは、ドナーgNB200−1側のスタックの設定情報と、オプションでIABノード300−2(又はUE100)側のスタックの設定情報とを含んでもよい。IABノード300−2(又はUE100)側のスタックの設定情報は、暗示的にドナーgNB200−1のSIBで報知されている設定群を再利用してもよいし、オペレータ(OAM)から(事前に)設定されてもよい。
IABノード設定メッセージにおける設定内容としては、基本的にRRC再設定メッセージに含まれる設定全てが対象になり得るが、RLC設定(AM:Acknowledged Mode/UM:Unacknowledged Mode/TM:Transparent Mode等の動作モード、LCP(Logical Channel Prioritization)パラメータ等)、MAC設定(BSR:Buffer Status Report/TAG:Timing Advance Group/PHR:Power Headroomパラメータ、DRX:Discontinues Reception設定等)、PHY設定が含まれてもよい。
また、IABノード設定メッセージにおける設定内容には、アダプテーションレイヤの設定(下位側又は上位側の論理チャネルのマッピング(ルーティング)設定、優先度設定等)が含まれてもよい。
さらに、IABノード設定メッセージにおける設定内容には、必要に応じて、IABノード300−1の(仮想的な)IPアドレス(すなわち、L3アドレス)を含めてもよい。これは、例えばF1インターフェイスをL2リンク上に確立するために、F1のプロトコルスタックがSCTP over IPを想定しているためである。
なお、IABノード設定メッセージにおける設定内容は、NRプロトコルの設定情報に限らず、LTEプロトコル(RLC、MAC、PHY)の設定情報であってもよい。
本実施形態において、IABノード300−1は、バックホールリンク接続を確立するよりも前に、IABノードの機能(すなわち、レイヤ2中継機能)を有すること又はバックホールリンク接続の確立を要求することを示すインディケーションをgNB200−1に送信してもよい。これにより、gNB200−1は、バックホールリンク接続を確立するためのプロシージャを適切に開始できる。以下において、かかるインディケーションをIABインディケーションと称する。IABインディケーションは、IABノード300−1におけるUE機能向けリンクプロトコルスタックをLTEで準備するのか、NRで準備するのか、もしくはその両方か、という意図又は能力を示す情報を含んでもよい。
なお、IABノード300−1は、gNB200−1とのアクセスリンク接続の確立後にIABインディケーションを送信してもよいし、gNB200−1とのアクセスリンク接続を確立するプロシージャ中にIABインディケーションを送信してもよい。
また、IABインディケーションをgNBに送信可能とする条件として、このgNBから、ドナー機能を有することを示すドナー機能識別子を含むSIBを受信しているという条件があってもよい。かかる場合、IABノード300−1は、gNB200−1からSIBによりドナー機能識別子を受信している場合に限り、gNB200−1に対してIABインディケーションを送信する。
本実施形態において、IABノード300−1とのバックホールリンク接続を確立するドナー機能をgNB200−1が有する場合、gNB200−1は、IABノード300−1からIABインディケーションを受信した後、IABノード設定メッセージをIABノード300−1に送信する。一方、ドナー機能をgNB200−1が有しない場合、gNB200−1は、IABノード300−1からIABインディケーションを受信した後、IABノード設定メッセージをIABノード300−1に送信することに代えて、IABノード300−1のハンドオーバを要求するハンドオーバ要求を他のgNBに送信してもよい。ここで、gNB200−1は、ドナー機能を有する他のgNBの情報を予め記憶していることが好ましい。gNB200−1は、ドナー機能を有する他のgNBの情報をIABノード300−1から取得してもよい。IABノード300−1は、5GC10(コアネットワーク)から情報を入手、もしくは隣接セルのSIB(ドナー機能識別子)を確認することにより、ドナー機能を有する他のgNB(隣接セル)の情報を取得し、取得した情報をgNB200−1に通知する。gNB200−1は、記憶している情報又はIABノード300−1から取得した情報に基づいて、ドナー機能を有する他のgNBに対してハンドオーバ要求を送信する。これにより、IABノード300−1を他のgNBにハンドオーバさせた後に、IABノード300−1が当該他のgNBとのバックホールリンク接続を確立できる。或いは、ドナー機能をgNB200−1が有しない場合、IABノード300−1は、5GC10に対して、ドナー機能を有するセル(gNB)へハンドオーバさせることを要求し、5GC10がハンドオーバに係る処理を行ってもよい。
本実施形態において、gNB200−1は、IABノード300−1からIABインディケーションを受信したことに応じて、無線測定を設定する測定設定をIABノード300−1に送信してもよい。IABノード300−1は、gNB200−1から測定設定を受信した後、無線測定の結果を含む測定報告をgNB200−1に送信する。gNB200−1は、IABノード300−1からの測定報告に基づいて、自身(gNB200−1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。例えば、gNB200−1は、測定報告に基づいて、自身(gNB200−1)に対する測定結果よりも他のgNBに対する測定結果が良好であり、かつ、これらの測定報告の差が閾値よりも大きい場合に、他のgNBが適切なドナーgNBであると判断する。そうでなければ、gNB200−1は、自身が適切なドナーgNBであると判断する。
そして、自身(gNB200−1)が適切なドナーgNB200−1であると判断した場合、gNB200−1は、IABノード設定メッセージをIABノード300−1に送信する。一方、他のgNBが適切なドナーgNBであると判断した場合、gNB200−1は、IABノード設定メッセージをIABノード300−1に送信することに代えて、IABノード300−1のハンドオーバを要求するハンドオーバ要求を当該他のgNBに送信する。これにより、IABノード300−1をより無線状態の良好な他のgNBにハンドオーバさせて、IABノード300−1が当該他のgNBとのバックホールリンク接続を確立できる。
本実施形態において、gNB200−1は、バックホールリンク接続の確立後、IABノード300−1に関するコンテキスト情報を他のgNBに送信してもよい。このコンテキスト情報は、無線側のASレイヤの接続設定(RRC再設定の内容)、ネットワーク側のPDUセッションリソース設定(AMF又はRANのUE ID、セッションID、QoS/スライス設定等)、その他関連情報(IABノードの挙動や通信などの履歴情報、プリファレンス情報などを含む。
具体的には、gNB200−1は、IABノード300−1を他のgNBにハンドオーバさせるという判断を行っていなくても、IABノード300−1に関するコンテキスト情報を予め他のgNBに送信する。これにより、gNB200−1とIABノード300−1との間の無線状態が悪化し、IABノード300−1が他のgNBとの無線接続を再確立する場合に、予め共有したコンテキスト情報を用いて速やかな再確立を行うことができる。
ここで、gNB200−1は、IABノード300−1とIABノード300−1のドナーgNBの候補とを対応付けるテーブルを保持していることが好ましい。gNB200−1は、テーブル中の候補である他のgNBに対してコンテキスト情報を送信する。これにより、gNB200−1は、コンテキスト情報を適切な他のgNBと共有できる。
(1)通常動作シーケンスの一例
図6は、本実施形態に係る移動通信システム1における通常動作シーケンスの一例を示す図である。
図6に示すように、ステップS101において、IABノード300−1は、例えばgNB200−1に対してランダムアクセスプロシージャを行うことにより、gNB200−1とのアクセスリンク接続(RRC接続)を確立する。IABノード300−1は、ランダムアクセスプロシージャ中にgNB200−1に送信するメッセージ(例えば、Msg3)にIABインディケーションを含めてもよい。また、gNB200−1は、ステップS101において、IABノード300−1に関するコンテキスト情報を取得する。
ステップS102において、IABノード300−1は、gNB200−1を介して、5GC10(具体的には、AMF11)に対するアタッチプロシージャを行う。ここで、IABノード300−1は、IABインディケーションのような通知(つまり、IABノードとして動作したいことを示す通知)をAMF11に通知してもよい。これにより、IABノード300−1は、AMF11から、ドナーgNB(セル)の候補リストや下位ノードの有無などのルーティング情報、その他管理情報などを入手してもよい。もしくは、AMF11からドナーgNBの各候補に対して、IABノード300−1のアタッチがあった旨や、IABノード300−1のルーティング情報などのコンテキスト情報を通知してもよい。なお、IABノード300−1が既にアタッチしている場合は、ステップS102におけるアタッチ処理を省略可能である。具体的には、IABノード300−1は、ステップS101において、RRC再確立(Reestablishment)などのように、何らかのエラー発生によってドナーgNBとの接続を再確立しなければならない場合などにおいて、アタッチ処理を省略する。
ステップS103において、IABノード300−1は、IABインディケーションをgNB200−1に送信する。IABノード300−1は、次のイベントのうち1又は複数が満たされたことをトリガとしてIABインディケーションを送信してもよい。
・Msg5(RRC Complete)を送信する際。
・gNBとの接続が確立した際(Msg5以降でもよい。例えば最初のRRC再設定が行われた際)。
・AMFからIAB設定情報(上記参照)を入手した際(既にIAB設定情報を持っている場合も含む)。
・単純にIABノードとして動作したくなった際(上位レイヤからIABノードとして動作する指示を受信したことを含む)。
・下位のIABノード300−2又はUE100−3からIABノードとなるように要求された場合(その旨の要求を示す信号を下位のIABノード300−2又はUE100−3から受信した場合)。
・下位のIABノード300−2又はUE100−3が既に接続している場合。
IABノード300−1は、例えばgNB200−1に送信するRRCメッセージにIABインディケーションを含める。かかるRRCメッセージは、UEとしての能力を示す「UE Capability Information」メッセージであってもよい。但し、ステップS101においてIABインディケーションを送信している場合、ステップS103は省略可能である。
或いは、IABインディケーションは、AMF11からPDUセッションリソースの変更という形でgNB200−1に通知されてもよい。なお、AMFは、IAB管理用(専用)のAMFであってもよい。
本通常動作シーケンスにおいては、gNB200−1がドナー能力を有すると仮定して説明を進める。gNB200−1は、IABインディケーションに基づいて、バックホールリンク接続をIABノード300−1に確立させる必要があると判断する。
ステップS104において、gNB200−1は、無線測定を設定する測定設定をIABノード300−1に送信する。IABノード300−1は、測定設定に基づいて無線測定を行う。例えば、IABノード300−1は、現在のサービングセルであるgNB200−1のセルと、隣接セルであるgNB200−2のセルとに対して受信電力(セル固有参照信号の受信電力)の測定を行う。
ステップS105において、IABノード300−1は、無線測定の結果を含む測定報告をgNB200−1に送信する。gNB200−1は、測定報告に基づいて、自身(gNB200−1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。ここでは、gNB200−1が、自身(gNB200−1)が適切なドナーgNBであると判断したと仮定して説明を進める。なお、ステップS104及びステップS105の処理は必須ではなく、省略してもよい。
ステップS106において、gNB200−1は、IABノード設定メッセージ(RRC再設定メッセージ)をIABノード300−1に送信する。IABノード設定メッセージは、gNB200−1のセル(すなわち、IABノード300−1の現在のサービングセル)をハンドオーバ先として指定するハンドオーバ指示を含んでもよい。IABノード300−1は、IABノード設定メッセージに基づいて、バックホールリンク接続をgNB200−1と確立する処理を行う。かかる確立処理は、IABノード設定メッセージ中の設定情報に基づいて、バックホールリンク用のプロトコルスタック(アダプテーション/RLC/MAC/PHYエンティティ)を生成したり、パラメータ設定したりする処理を含む。かかる確立処理は、UE側(のアクセスリンク用)のプロトコルスタックを準備して、同期信号やセル固有参照信号の送信を開始する処理(もしくは、開始する準備をする処理)を含んでもよい。
ステップS107において、IABノード300−1は、バックホールリンク接続の確立を含むIABノード設定が完了したことを示す完了通知メッセージをgNB200−1に送信する。ステップS107以降は、IABノード300−1はgNB200−1に対してUEとして振る舞うのではなく、IABノードとして振る舞う。
ステップS108において、gNB200−1は、ステップS101において取得したコンテキスト情報を、Xnインターフェイス上でgNB200−2に転送する。gNB200−1は、IABノード300−1とIABノード300−1のドナーgNBの候補とを対応付けるテーブルを保持しており、このテーブルを参照してコンテキスト転送先を決定する。このようにして、gNB200−1が、他のgNBに対してコンテキストを事前に転送しておけば、IABノード300−1と接続しているgNBとの無線接続状態が悪化した場合に、直ぐに、当該他のgNBとの再接続を確立することができる。図7は、コンテキスト転送先を決定するためのテーブルの一例を示す図である。かかるテーブルは、例えばオペレータにより各gNBに対して予め設定される。図7に示すように、テーブルにおいて、IABノードごとに、そのドナーgNBの候補が対応けられている。具体的には、IABノードに関する識別子ごとに、そのドナーgNBの候補の識別子が対応けられている。例えば、IABノードに地理的に近いgNBがそのIABノードのドナーgNBの候補として設定される。なお、gNBとの対応付けの例を示したが、セルIDとの対応付けであってもよい。セルIDは、物理レイヤセルIDでもよく、グローバルセルIDでもよい。なお、gNB200−1は、IABノード300−1から受信した測定報告に基づいて、IABノード300−1に地理的に近いgNB200−1をドナー候補として決定してもよい。gNB200−1は、当該決定したドナー候補に基づいて、IABノード300−1と当該IABノード300−1のドナーgNBの候補とを対応付けるテーブルを作成又は既存のテーブルを更新してもよい。
ステップS109において、gNB200−1は、IABノード300−1とのバックホールリンク接続を確立したことを示す通知を5GC10に送信する。もしくは、gNB200−1は、IABノード用のPDUセッションの確立要求を5GC10に送信してもよい。なお、上述したように、PDUセッションの確立要求は、ステップS109よりも先に又はステップS109においてAMF11からgNB200−1に送信されてもよい。
(2)例外動作シーケンスの一例
図8は、本実施形態に係る移動通信システム1における例外動作シーケンスの一例を示す図である。例外動作シーケンスにおいて、gNB200−1は、IABノード300−1をgNB200−2にハンドオーバさせる。
図8に示すように、ステップS201において、IABノード300−1は、例えばgNB200−1に対してランダムアクセスプロシージャを行うことにより、gNB200−1とのアクセスリンク接続(RRC接続)を確立する。IABノード300−1は、ランダムアクセスプロシージャ中にgNB200−1に送信するメッセージ(例えば、Msg3)にIABインディケーションを含めてもよい。また、gNB200−1は、ステップS201において、IABノード300−1に関するコンテキスト情報を取得する。
ステップS202において、IABノード300−1は、gNB200−1を介して、5GC10(具体的には、AMF11)に対するアタッチプロシージャを行う。
ステップS203において、IABノード300−1は、IABインディケーションをgNB200−1に送信する。IABノード300−1は、例えばgNB200−1に送信するRRCメッセージにIABインディケーションを含める。かかるRRCメッセージは、UEの能力を示す「UE Capability Information」メッセージであってもよい。但し、ステップS201においてIABインディケーションを送信している場合、ステップS203は省略可能である。
ステップS204において、gNB200−1は、自身がドナー能力を有するか否かを判断する。gNB200−1がドナー能力を有しない場合(ステップS204:NO)、gNB200−1は、処理をステップS208に進める。
gNB200−1がドナー能力を有する場合(ステップS204:YES)、ステップS205において、gNB200−1は、無線測定を設定する測定設定をIABノード300−1に送信する。IABノード300−1は、測定設定に基づいて無線測定を行う。例えば、IABノード300−1は、現在のサービングセルであるgNB200−1のセルと、隣接セルであるgNB200−2のセルとに対して受信電力(セル固有参照信号の受信電力)の測定を行う。
ステップS206において、IABノード300−1は、無線測定の結果を含む測定報告をgNB200−1に送信する。
ステップS207において、gNB200−1は、測定報告に基づいて、自身(gNB200−1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。自身(gNB200−1)が適切なドナーgNBであると判断した場合(ステップS207:YES)、gNB200−1は、上述した通常動作シーケンス(図6参照)のステップS106に処理を進める。
一方、他のgNBが適切なドナーgNBであると判断した場合(ステップS207:NO)、gNB200−1は、ステップS208に処理を進める。
ステップS208において、gNB200−1は、IABノード300−1から受信したIABインディケーションを含むハンドオーバ要求メッセージをXnインターフェイス上でgNB200−2に転送する。gNB200−1は、ステップS201において取得したコンテキスト情報をハンドオーバ要求メッセージに含めてもよい。または、gNB200−1は、ハンドオーバ要求メッセージに、IABインディケーションを含める代わりに、IABノード300−1がgNBに対してドナーgNBとして機能することを要求する旨を示す情報を含めて送信してもよい。なお、ステップS208において、gNB200−1は、gNB200−2がドナー能力を有すると判断した上で、ハンドオーバ要求メッセージをXnインターフェイス上でgNB200−2に転送してもよい。具体的には、例えば、gNB200−1は、図7に示すテーブルにおいて、IABノード300−1にドナー候補としてgNB200−2が対応付けられていると判断した場合に、ハンドオーバ要求メッセージをgNB200−2に対して転送してもよい。この場合、gNB200−2がハンドオーバ要求を拒否する可能性が低減されるため、IABノード300−1のハンドオーバをより早急に実行することができる。または、互いに隣接する複数のgNB200間でXnインターフェイスを介して、自身のドナー能力に関する情報を事前に共有してもよい。これによって、gNB200−1は、ドナー能力を有する隣接のgNB200を特定することができ、当該特定した隣接のgNB200に対してハンドオーバ要求メッセージを転送することができる。
gNB200−2は、ハンドオーバ要求メッセージに含まれるIABインディケーションも考慮して、IABノード300−1のハンドオーバを受け入れるか否かを判断する。gNB200−2は、自身がドナー能力を有しない場合には、ハンドオーバ要求を拒否してもよい。ここではgNB200−2がIABノード300−1のハンドオーバを受け入れると判断したと仮定して説明を進める。
ステップS209において、gNB200−2は、ハンドオーバ肯定応答メッセージをXnインターフェイス上でgNB200−1に送信する。
ステップS210において、gNB200−1は、gNB200−2からのハンドオーバ肯定応答メッセージに基づいて、ハンドオーバ指示メッセージ(RRC再設定メッセージ)をIABノード300−1に送信する。ハンドオーバ指示メッセージは、ハンドオーバ先のgNB200−2(のセル)を指定する情報を含む。
ステップS211において、IABノード300−1は、gNB200からのハンドオーバ指示メッセージに基づいて、gNB200−2へのハンドオーバを行う。
(3)マルチホップ接続シーケンスの一例
図9は、本実施形態に係る移動通信システム1におけるマルチホップ接続シーケンスの一例を示す図である。マルチホップ接続シーケンスは、IABノード300−1とgNB200−1との間にバックホールリンク接続が接続された後において、IABノード300−1にIABノード300−2又はUE100−2が接続する場合のシーケンスである。ここではIABノード300−1にIABノード300−2が接続する場合について主として説明するが、IABノード300−2をUE100−2と適宜読み替えてもよい。また、上述した「(1)通常動作シーケンス」と重複する説明を省略する。
図9に示すように、ステップS301において、IABノード300−2は、IABノード300−1を介してgNB200−1に対してランダムアクセスプロシージャを行うことにより、gNB200−1とのアクセスリンク接続(RRC接続)を確立する。IABノード300−2は、ランダムアクセスプロシージャ中にgNB200−1に送信するメッセージ(例えば、Msg3)にIABインディケーションを含めてもよい。また、gNB200−1は、ステップS301において、IABノード300−2に関するコンテキスト情報を取得する。
ステップS302において、IABノード300−2は、IABノード300−2及びgNB200−1を介して、5GC10(具体的には、AMF11)に対するアタッチプロシージャを行う。ここで、IABノード300−2は、IABインディケーションのような通知(つまり、IABノードとして動作したいことを示す通知)をAMF11に通知してもよい。これにより、IABノード300−2は、AMF11から、ドナーgNB(セル)の候補リストや下位ノードの有無などのルーティング情報、その他管理情報などを入手してもよい。もしくは、AMF11からドナーgNBの各候補に対して、IABノード300−2のアタッチがあった旨や、IABノード300−2のルーティング情報などのコンテキスト情報を通知してもよい。なお、IABノード300−2が既にアタッチしている場合は、ステップS302におけるアタッチ処理を省略可能である。具体的には、IABノード300−2は、RRC再確立(Reestablishment)などのように、何らかのエラー発生によってドナーgNBとの接続を再確立しなければならない場合などにおいて、アタッチ処理を省略する。
ステップS303において、IABノード300−2は、IABノード300−1を介してIABインディケーションをgNB200−1に送信する。IABノード300−2は、上述した「(1)通常動作シーケンス」のステップS103において説明したトリガと同様なトリガに応じてIABインディケーションを送信してもよい。
IABノード300−2は、例えばgNB200−1に送信するRRCメッセージにIABインディケーションを含める。かかるRRCメッセージは、UEとしての能力を示す「UE Capability Information」メッセージであってもよい。但し、ステップS301においてIABインディケーションを送信している場合、ステップS303は省略可能である。
或いは、IABインディケーションは、AMF11からPDUセッションリソースの変更という形でgNB200−1に通知されてもよい。なお、AMFは、IAB管理用(専用)のAMFであってもよい。
本動作シーケンスにおいては、gNB200−1がドナー能力を有すると仮定しているため、gNB200−1は、IABインディケーションに基づいて、バックホールリンク接続をIABノード300−1とIABノード300−2との間に確立させる必要があると判断する。
ステップS304において、gNB200−1は、無線測定を設定する測定設定をIABノード300−2に送信する。IABノード300−2は、測定設定に基づいて無線測定を行う。
ステップS305において、IABノード300−2は、無線測定の結果を含む測定報告を、IABノード300−1を介してgNB200−1に送信する。gNB200−1は、測定報告に基づいて、自身(gNB200−1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。ここでは、gNB200−1が、自身(gNB200−1)が適切なドナーgNBであると判断したと仮定して説明を進める。なお、ステップS304及びステップS305の処理は必須ではなく、省略してもよい。
ステップS306において、gNB200−1は、IABノード設定メッセージ(RRC再設定メッセージ)をIABノード300−2に送信する。IABノード300−2は、IABノード設定メッセージに基づいて、バックホールリンク接続をIABノード300−1と確立する処理を行う。かかる確立処理は、IABノード設定メッセージ中の設定情報に基づいて、バックホールリンク用のプロトコルスタック(アダプテーション/RLC/MAC/PHYエンティティ)を生成したり、パラメータ設定したりする処理を含む。かかる確立処理は、UE側(のアクセスリンク用)のプロトコルスタックを準備して、同期信号やセル固有参照信号の送信を開始する処理(もしくは、開始する準備をする処理)を含んでもよい。
ステップS307において、gNB200−1は、RRC再設定メッセージをIABノード300−1に送信する。かかるRRC再設定メッセージは、IABノード300−2の追加に伴ってIABノード300−1における設定を変更するためのメッセージである。かかるRRC再設定メッセージは、例えば、IABノード300−2の論理チャネルとIABノード300−1のバックホールリンクの論理チャネルとの対応付けを示すマッピング情報を含む。なお、ステップS307は、ステップS306の前であってもよいし、ステップS306と同時であってもよい。
ステップS308において、IABノード300−2は、IABノード300−1とのバックホールリンク接続の確立を含むIABノード設定が完了したことを示す完了通知メッセージをgNB200−1に送信する。ステップS308以降は、IABノード300−2はgNB200−1に対してUEとして振る舞うのではなく、IABノードとして振る舞う。
ステップS309において、IABノード300−1は、IABノード300−2とのバックホールリンク接続の確立に伴う設定変更が完了したことを示す完了通知メッセージをgNB200−1に送信する。なお、ステップS309は、ステップS308の前であってもよいし、ステップS308と同時であってもよい。
ステップS310において、gNB200−1は、ステップS301において取得したIABノード300−2のコンテキスト情報を、Xnインターフェイス上でgNB200−2に転送する。
ステップS311において、gNB200−1は、IABノード300−2のバックホールリンク接続を確立したことを示す通知を5GC10に送信する。もしくは、gNB200−1は、IABノード300−2用のPDUセッションの確立要求を5GC10に送信してもよい。なお、上述したように、PDUセッションの確立要求は、ステップS311よりも先に又はステップS311においてAMF11からgNB200−1に送信されてもよい。
(その他の実施形態)
上述した実施形態において、IABノード300−1がgNB200−1に無線で接続した後に、gNB200−1がドナー能力を有しないことに応じてIABノード300−1をハンドオーバさせる一例について説明した。しかしながら、各gNB200は、自身がドナー能力を有するか否かに関する情報をIABノード300−1に提供してもよい。これにより、IABノード300−1は、ドナー能力を有するgNB200を選択したうえで接続することが可能になる。
例えば、ドナー能力を有するgNB200は、ドナー能力を有することを示す情報をシステム情報ブロック(SIB)に含めてブロードキャストする。IABノード300−1は、かかるSIBに基づいて、接続先とするgNB200を選択する。IABノード300−1は、ドナー能力を有するgNB200であって、且つ、このgNB200からの受信電力が閾値以上である場合に、このgNB200を接続先として選択してもよい。または、gNB200がドナー能力を有しない場合には、IABノード300−1は、gNB200から送信されたSIBを受信したことに応じて、他のgNB200を再選択してもよい。その後、他のgNB200から送信されたSIBにより当該他のgNB200がドナー能力を有することが示される場合には、IABノード300−1は、当該他のgNB200を接続先として、ランダムアクセスプロシージャを行うと共にIABインディケーションを送信してもよい。
上述した実施形態において、移動通信システム1が5G移動通信システムである一例について主として説明した。しかしながら、移動通信システム1における基地局はeNBであってもよい。また、移動通信システム1におけるコアネットワークはEPC(Evolved Packet Core)であってもよい。さらに、gNBがEPCに接続することもでき、eNBが5GCに接続することもでき、gNBとeNBとが基地局間インターフェイス(Xnインターフェイス、X2インターフェイス)を介して接続されることもできる。
なお、上述した実施形態に係る各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD−ROMやDVD−ROM等の記録媒体であってもよい。UE100及びeNB200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップセットが提供されてもよい。
なお、各図において示されるフローは、適宜組み合わされても良い。
[相互参照]
本願は、日本国特許出願第2018−90447号(2018年5月9日出願)の優先権を主張し、その内容のすべてが本願明細書に組み込まれている。

Claims (10)

  1. ユーザ機器機能と基地局機能とを有する中継ノードであって、
    前記ユーザ機器機能を用いて基地局とのRRC(Radio Resource Control)接続を確立する制御部と、
    前記RRC接続を用いて、バックホールRLC(Radio Link Control)チャネルを前記中継ノードと前記基地局との間に確立させる情報を含むRRC再設定メッセージを前記基地局から受信する受信部と、を備え
    前記RRC再設定メッセージは、前記中継ノードのIPアドレスを設定するための情報をさらに含む
    中継ノード。
  2. 前記バックホールRLCチャネルは、前記中継ノードと前記基地局との間のバックホールリンクにおいて確立される、前記中継ノードのRLCレイヤと前記基地局のRLCレイヤとの間のチャネルを含む、
    請求項1に記載の中継ノード。
  3. 前記IPアドレスは、前記中継ノードと前記基地局との間のF1インタフェースの確立に使用される
    請求項1に記載の中継ノード。
  4. 前記RRC接続の確立の完了を確認するためのRRCメッセージを前記基地局に送信する送信部を備え、
    前記送信部は、前記中継ノードが中継機能を有することを示すインディケーションを含む前記RRCメッセージを送信する
    請求項1に記載の中継ノード。
  5. 前記受信部は、前記基地局が前記中継機能をサポートすることを示す情報を含むシステム情報ブロック(SIB)を前記基地局から受信する
    請求項1に記載の中継ノード。
  6. 前記制御部は、前記情報を含む前記SIBに基づいて、前記基地局に対して前記RRC接続を確立する
    請求項に記載の中継ノード。
  7. ユーザ機器機能と基地局機能とを有する中継ノードを制御するプロセッサであって、 前記ユーザ機器機能を用いて基地局とのRRC(Radio Resource Control)接続を確立する処理と、
    前記RRC接続を用いて、バックホールRLC(Radio Link Control)チャネルを前記中継ノードと前記基地局との間に確立させる情報を含むRRC再設定メッセージを前記基地局から受信する処理と、を実行し、
    前記RRC再設定メッセージは、前記中継ノードのIPアドレスを設定するための情報をさらに含む
    プロセッサ。
  8. ユーザ機器機能と基地局機能とを有する中継ノードにおいて実行される方法あって、
    前記ユーザ機器機能を用いて基地局とのRRC(Radio Resource Control)接続を確立するステップと、
    前記RRC接続を用いて、バックホールRLC(Radio Link Control)チャネルを前記中継ノードと前記基地局との間に確立させる情報を含むRRC再設定メッセージを前記基地局から受信するステップと、を有し、
    前記RRC再設定メッセージは、前記中継ノードのIPアドレスを設定するための情報をさらに含む
    方法。
  9. ユーザ機器機能と基地局機能とを有する中継ノードとのRRC(Radio Resource Control)接続を確立する制御部と、
    前記RRC(Radio Resource Control)接続を用いて、バックホールRLC(Radio Link Control)チャネルを前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する送信部と、を備え
    前記RRC再設定メッセージは、前記中継ノードのIPアドレスを設定するための情報をさらに含む
    基地局。
  10. 基地局と、
    ユーザ機器機能と基地局機能とを有し、前記ユーザ機器機能を用いて前記基地局とのRRC(Radio Resource Control)接続を確立する中継ノードと、
    を備え、
    前記基地局は、前記RRC接続を用いて、バックホールRLC(Radio Link Control)チャネルを前記中継ノードと前記基地局との間に確立させる情報を含むRRC再設定メッセージを前記中継ノードに送信し、
    前記RRC再設定メッセージは、前記中継ノードのIPアドレスを設定するための情報をさらに含む
    移動通信システム。
JP2020518332A 2018-05-09 2019-05-09 移動通信システム、中継ノード、及び基地局 Active JP6920551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021122004A JP7212112B2 (ja) 2018-05-09 2021-07-26 移動通信システム、中継ノード、及び基地局

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018090447 2018-05-09
JP2018090447 2018-05-09
PCT/JP2019/018527 WO2019216371A1 (ja) 2018-05-09 2019-05-09 移動通信システム、中継ノード、及び基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021122004A Division JP7212112B2 (ja) 2018-05-09 2021-07-26 移動通信システム、中継ノード、及び基地局

Publications (2)

Publication Number Publication Date
JPWO2019216371A1 JPWO2019216371A1 (ja) 2021-02-12
JP6920551B2 true JP6920551B2 (ja) 2021-08-18

Family

ID=68467510

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020518332A Active JP6920551B2 (ja) 2018-05-09 2019-05-09 移動通信システム、中継ノード、及び基地局
JP2021122004A Active JP7212112B2 (ja) 2018-05-09 2021-07-26 移動通信システム、中継ノード、及び基地局

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021122004A Active JP7212112B2 (ja) 2018-05-09 2021-07-26 移動通信システム、中継ノード、及び基地局

Country Status (4)

Country Link
US (2) US11350467B2 (ja)
EP (2) EP4124115A1 (ja)
JP (2) JP6920551B2 (ja)
WO (1) WO2019216371A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349871A1 (en) * 2018-05-11 2019-11-14 At&T Intellectual Property I, L.P. Over the air synchronization for integrated access backhaul relay nodes
BR112020022142A2 (pt) * 2018-06-21 2021-01-26 Google Llc manutenção de interfaces de comunicação e sinalização por meio de uma transição de função de rede
WO2020006734A1 (en) * 2018-07-05 2020-01-09 Lenovo (Beijing) Limited Method and apparatus for backhaul link switching
WO2020051588A1 (en) * 2018-09-08 2020-03-12 Kyungmin Park Backhaul link connection information
US11076306B2 (en) * 2018-09-21 2021-07-27 Qualcomm Incorporated Relay nodes with multi-connected cellular backhaul
US11369005B2 (en) * 2020-02-06 2022-06-21 Qualcomm Incorporated IAB topology management based on synchronization capabilities of IAB-node
EP4104509A4 (en) * 2020-03-13 2023-04-12 ZTE Corporation METHODS AND DEVICES FOR UPDATING DATA TRANSMISSION DURING INTER-DONOR MIGRATION
US20220022214A1 (en) * 2020-07-20 2022-01-20 Qualcomm Incorporated Scheduling bias for radio link control (rlc) channels in integrated access and backhaul networks
CN117223330A (zh) * 2021-04-30 2023-12-12 联想(北京)有限公司 用于无线通信的方法及设备
CN117295129A (zh) * 2022-06-20 2023-12-26 北京三星通信技术研究有限公司 节点执行的方法以及节点
WO2024035839A1 (en) * 2022-08-11 2024-02-15 Iinnopeak Technology, Inc. Apparatuses and communication methods
WO2024048212A1 (ja) * 2022-08-30 2024-03-07 京セラ株式会社 通信方法及びネットワークノード

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305965B2 (en) * 2009-01-06 2012-11-06 Texas Instruments Incorporated Protocol stack and scheduler for L3 relay
US9609688B2 (en) * 2010-04-05 2017-03-28 Qualcomm Incorporated Methods and apparatus to facilitate relay startup and radio link failure (RLF) handling
US9258745B2 (en) * 2011-11-11 2016-02-09 Blackberry Limited Method and system for mobile relay enablement
HUE042235T2 (hu) * 2014-01-30 2019-06-28 Intel Ip Corp MTC UE és eljárás fedettség javításra rádiókapcsolat vezérlési konfiguráció használatával
WO2016133344A1 (en) * 2015-02-16 2016-08-25 Samsung Electronics Co., Ltd. Method for triggering transmission of user equipment (ue)-to-network relay indication
EP3280209A4 (en) * 2015-03-31 2018-07-04 NTT DoCoMo, Inc. User equipment and base station
US10375707B2 (en) * 2016-08-04 2019-08-06 Qualcomm Incorporated Dynamic resource allocation in wireless network
DE112017003920T5 (de) * 2016-08-05 2019-05-09 Intel IP Corporation Ue-kapazitätssignalisierung für eine make-before-break und rach-lose übergabe
CN112040516B (zh) * 2016-08-12 2021-11-26 华为技术有限公司 切换方法、基站及通信系统
WO2018063435A2 (en) * 2016-09-30 2018-04-05 Intel Corporation Pdcp, rlc handling in dc split bearer
US11483889B2 (en) * 2019-03-22 2022-10-25 Samsung Electronics Co., Ltd. Method and device for recovering connection failure to network in next generation mobile communication system

Also Published As

Publication number Publication date
JP7212112B2 (ja) 2023-01-24
US20220264665A1 (en) 2022-08-18
EP4124115A1 (en) 2023-01-25
WO2019216371A1 (ja) 2019-11-14
JPWO2019216371A1 (ja) 2021-02-12
EP3780901A4 (en) 2021-06-09
US11350467B2 (en) 2022-05-31
JP2021170830A (ja) 2021-10-28
EP3780901A1 (en) 2021-02-17
US20210058985A1 (en) 2021-02-25
EP3780901B1 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
JP6920551B2 (ja) 移動通信システム、中継ノード、及び基地局
EP3820242B1 (en) Relay device
JP6921336B2 (ja) 中継装置
JP6815427B2 (ja) 基地局及びユーザ端末
CN106686674B (zh) 无线通信系统中的电子设备和无线通信方法
JP6162209B2 (ja) ユーザ端末、プロセッサ、及び移動通信システム
CN108184249B (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
JP6773778B2 (ja) 無線端末及び基地局
WO2021033546A1 (ja) ハンドオーバ制御方法、中継装置、及びドナー装置
WO2018098708A1 (zh) 一种移动性管理方法、基站及可穿戴设备
JP5898396B1 (ja) ユーザ端末、プロセッサ、及び基地局
US20230059195A1 (en) Communication control method and relay node
JP7483864B2 (ja) 通信制御方法、中継ノード、移動通信システム、チップセット及びプログラム
WO2020158253A1 (ja) 中継装置及びその制御方法
JP6494524B2 (ja) 通信制御方法、ゲートウェイ装置及びユーザ端末

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201105

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R150 Certificate of patent or registration of utility model

Ref document number: 6920551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150