以下に、本願に係る情報処理装置、情報処理方法、及び情報処理プログラムを実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る情報処理装置、情報処理方法、及び情報処理プログラムが限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
(実施形態)
〔1.情報処理〕
図1を用いて、実施形態に係る情報処理の一例について説明する。図1は、実施形態に係る情報処理の一例を示す図である。具体的には、図1は、ユーザによる対象に関連する関連行動を示す行動情報と、関連行動時におけるユーザの対象に対する需要の度合いに関連する強度情報とに基づいて、対象に関する需要レベル(以下、単に「需要」ともいう)を予測する一例を示す図である。また、図1では、情報処理装置100は、予測した需要に関する情報を事業者へ提供する。ここでいう事業者は、事業を行うものであれば、個人(自然人)や法人等の種々の事業者が含まれてもよい。例えば、事業者は、商品またはサービスを提供(販売)する企業であってもよい。また、以下では、商品またはサービスを併せて「商品」と記載する場合がある。また、図1では、ユーザの検索行動を、ユーザによる対象に関連する行動(以下、「関連行動」ともいう)の一例として説明する。なお、後述するように関連行動は、検索行動に限らずユーザの種々の行動であってもよい。図1では、情報処理装置100は、ユーザが検索に用いたキーワード(以下、「検索クエリ」や「クエリ」ともいう)と、検索行動から所定の期間内におけるユーザの対象に対する需要を示す強度情報とに基づいて、需要を予測する場合を一例として説明する。
〔情報処理システムの構成〕
まず、図1及び図2に示す情報処理システム1について説明する。図2に示すように、情報処理システム1は、端末装置10と、事業者装置20と、情報処理装置100とが含まれる。端末装置10と、事業者装置20と、情報処理装置100とは所定のネットワークNを介して、有線または無線により通信可能に接続される。図2は、実施形態に係る情報処理システムの構成例を示す図である。なお、図2に示した情報処理システム1には、複数台の端末装置10や、複数台の事業者装置20や、複数台の情報処理装置100が含まれてもよい。
端末装置10は、ユーザによって利用される情報処理装置である。端末装置10は、例えば、スマートフォンや、タブレット型端末や、ノート型PC(Personal Computer)や、デスクトップPCや、携帯電話機や、PDA(Personal Digital Assistant)等により実現される。図1に示す例においては、端末装置10がユーザが利用するスマートフォンである場合を示す。なお、以下では、端末装置10をユーザと表記する場合がある。すなわち、以下では、ユーザを端末装置10と読み替えることもできる。
また、端末装置10は、種々のセンサにより検知された情報(以下、「センサ情報」ともいう)を収集する。例えば、端末装置10は、種々のセンサを有し、各種センサ情報を検知する。端末装置10は、画像センサの機能を有し、ユーザの画像情報(センサ情報)を検知し、取得する。また、端末装置10は、マイク等の音声センサの機能を有し、ユーザの音声情報(センサ情報)を検知し、取得する。また、端末装置10は、血糖値センサや心拍センサ等の種々の機能を有し、ユーザの血糖値(血糖値情報)や心拍数(心拍情報)等の生体情報(センサ情報)を検知し、取得可能であってもよい。なお、端末装置10は、自装置以外のセンサが検知したセンサ情報を収集し、情報処理装置100へ送信してもよい。
また、端末装置10は、GPS(Global Positioning System)センサ等の機能を有し、ユーザの位置情報を検知し、取得するものとする。また、端末装置10は、通信を行っている基地局の位置情報や、WiFi(登録商標)(Wireless Fidelity)の電波を用いてユーザの位置情報を推定し、取得してもよい。なお、以下では位置情報を単に「位置」と記載する場合がある。
また、端末装置10は、温度センサや気圧センサ等の種々の機能を有し、温度や気圧等のユーザの置かれている環境情報を検知し、取得可能であってもよい。また、端末装置10は、加速度センサの機能を有し、ユーザの移動における加速度情報を検知し、取得する。例えば、端末装置10を利用するユーザは、端末装置10と通信可能なウェアラブルデバイスを身に付けることにより、端末装置10によりユーザ自身のコンテキスト情報を取得可能としてもよい。例えば、端末装置10を利用するユーザは、端末装置10と通信可能なリストバンド型のウェアラブルデバイスを身に付けることにより、端末装置10によりユーザ自身の心拍(脈拍)に関する情報を端末装置10が取得可能としてもよい。
また、端末装置10は、ユーザによる操作を受け付ける。また、端末装置10は、情報処理装置100に種々の情報を送信する。例えば、端末装置10は、情報処理装置100に検索クエリや位置情報等の種々の行動情報等を送信する。
また、図1に示す例においては、端末装置10を利用するユーザに応じて、端末装置10を端末装置10−1〜10−5として説明する。例えば、端末装置10−1は、ユーザU1により使用される端末装置10である。また、例えば、端末装置10−2は、ユーザU2により使用される端末装置10である。また、以下では、端末装置10−1〜10−5について、特に区別なく説明する場合には、端末装置10と記載する。
上記のように「ユーザU*(*は任意の数値)」と記載した場合、そのユーザはユーザID「U*」により識別されるユーザであることを示す。例えば、「ユーザU2」と記載した場合、そのユーザはユーザID「U2」により識別されるユーザである。図1に示した情報処理システム1には、ユーザU1が利用する端末装置10や、ユーザU2が利用する端末装置10等の多数の端末装置10が含まれる。
情報処理装置100は、ユーザによる対象に関連する関連行動を示す行動情報と、関連行動時におけるユーザの前記対象に対する需要の度合いに関連する強度情報とに基づいて、対象に関する需要レベルを予測する情報処理装置である。また、例えば、情報処理装置100は、対象に関する需要を示す情報を、対象に関する事業者へ提供する。
また、情報処理装置100は、端末装置10から取得したクエリ(検索クエリ)に対する検索結果を端末装置10に提供する検索サービスを提供する。図1の例では、情報処理装置100は、クエリに対応する所定の情報を検索結果として、クエリの送信元である端末装置10へ提供する。
なお、図1では、情報処理装置100が検索サービスを提供する場合を示すが、外部の情報処理装置が検索サービスを提供する場合、情報処理装置100は検索サービスを提供しなくてもよい。この場合、情報処理装置100は、検索サービスを提供する外部の情報処理装置等から各種情報を取得し、取得した情報に基づく需要の予測や事業者への情報提供を行ってもよい。情報処理装置100は、端末装置10に限らず、種々の外部の情報処理装置からセンサ情報(センサデータ)を取得してもよい。
事業者装置20は、事業者(企業)によって利用される情報処理装置である。図1の例では、事業者装置20は、事業者であるラーメン店MAの管理者M1によって利用される情報処理装置である。例えば、ラーメン店MAの管理者M1は、事業者装置20を用いて、情報処理装置100に対してキーワードに関する指定を行う。また、事業者装置20は、例えば、スマートフォンや、タブレット型端末や、ノート型PCや、デスクトップPCや、携帯電話機や、PDA等により実現される。図1は、事業者装置20がノート型PCである場合を示す。
図1の例では、情報処理装置100は、ユーザU1〜U5等が利用する端末装置10が有するGPSセンサ等の機能により、ユーザU1〜U5が入力した検索クエリとともに端末装置10の位置を取得する。図1に示す地図情報MP1は、ユーザU1〜U5の位置を模式的に示す。
また、図1の例では、情報提供を受ける事業者が、ラーメン店MAである場合を示す。例えば、図1では、情報処理装置100は、ラーメン店MAからAエリアにおける対象「塩ラーメン」の需要に関する情報の要求を取得し、取得した要求が示すエリアにおける対象に対応する需要に関する情報をラーメン店MAに提供する。
まず、情報処理装置100は、ユーザU1が利用する端末装置10−1からクエリと位置情報とを取得する(ステップS1−1)。図1の例では、情報処理装置100は、日時DT1において、端末装置10−1からクエリ「塩ラーメン」と位置情報LC1とを取得する。なお、図1の例では位置情報LC1等の抽象的な符号で図示するが、位置情報は、具体的な緯度や経度を示す情報(緯度経度情報)等であってもよい。また、以下、「位置情報LC*(*は任意の数値)」を「位置LC*」と記載する場合がある。例えば、「位置LC1」と記載した場合、その位置は位置情報LC1に対応する位置であることを示す。図1の例では、位置LC1は、Aエリア内の位置であるものとする。
そして、情報処理装置100は、クエリ「塩ラーメン」に対応する検索結果を端末装置10−1へ提供する。また、情報処理装置100は、日時DT1に位置LC1において、ユーザU1がクエリ「塩ラーメン」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。図1の例では、情報処理装置100は、日時DT1にAエリア内の位置LC1において、ユーザU1がクエリ「塩ラーメン」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU2が利用する端末装置10−2からクエリと位置情報とを取得する(ステップS1−2)。図1の例では、情報処理装置100は、日時DT2において、端末装置10−2からクエリ「スマホSH 赤」と位置情報LC2とを取得する。そして、情報処理装置100は、クエリ「スマホSH 赤」に対応する検索結果を端末装置10−2へ提供する。また、情報処理装置100は、日時DT2に位置LC2において、ユーザU2がクエリ「スマホSH 赤」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU3が利用する端末装置10−3からクエリと位置情報とを取得する(ステップS1−3)。図1の例では、情報処理装置100は、日時DT3において、端末装置10−3からクエリ「塩ラーメン Aエリア」と位置情報LC3とを取得する。図1の例では、位置LC3は、Aエリア内の位置であるものとする。そして、情報処理装置100は、クエリ「塩ラーメン Aエリア」に対応する検索結果を端末装置10−3へ提供する。また、情報処理装置100は、日時DT3にAエリア内の位置LC3において、ユーザU3がクエリ「塩ラーメン Aエリア」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU4が利用する端末装置10−4からクエリと位置情報とを取得する(ステップS1−4)。図1の例では、情報処理装置100は、日時DT4において、端末装置10−4からクエリ「天気」と位置情報LC4とを取得する。そして、情報処理装置100は、クエリ「天気」に対応する検索結果を端末装置10−4へ提供する。また、情報処理装置100は、日時DT4に位置LC4において、ユーザU4がクエリ「天気」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU5が利用する端末装置10−5からクエリと位置情報とを取得する(ステップS1−5)。図1の例では、情報処理装置100は、日時DT5において、端末装置10−5からクエリ「スマホSH 高い」と位置情報LC5とを取得する。そして、情報処理装置100は、クエリ「スマホSH 高い」に対応する検索結果を端末装置10−5へ提供する。また、情報処理装置100は、日時DT5に位置LC5において、ユーザU5がクエリ「スマホSH 高い」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
以下、ステップS1−1〜S1−5を区別せずに説明する場合、ステップS1と総称する。また、ステップS1−1〜S1−5に限らず、各ユーザの検索は、複数回行われてもよい。なお、図1では、5人のユーザU1〜U5を図示するが、情報処理装置100は、ユーザU1〜U5に限らず、多数のユーザ(例えば、100万ユーザや1000万ユーザ等)が検索に用いたクエリを取得する。
ここで、図1の例では、情報処理装置100は、ユーザの需要の強度(度合い)を予測するために用いる情報(以下、「強度予測用情報」ともいう)として、センサにより検知されたセンサ情報を用いるものとする。ここでいう、ユーザの需要の強度(度合い)とは、ユーザがその対象を本当に欲する強度(深刻度)を示すものであってもよい。例えば、情報処理装置100は、ユーザの関連行動から所定の期間(例えば、関連行動時の前後5分)内のセンサ情報を用いて、ユーザの需要の強度を予測する。情報処理装置100は、ユーザの関連行動である検索行動から所定の期間内に検知されたセンサ情報を用いて、検索クエリに対応する対象に対するユーザの需要の強度を予測する。
情報処理装置100は、ユーザU1が利用する端末装置10−1からセンサ情報を取得する(ステップS2−1)。図1の例では、情報処理装置100は、日時DT1−1において、所定のセンサにより検知されたユーザU1の画像情報であるセンサ情報SN1を端末装置10−1から取得する。例えば、日時DT1−1は、日時DT1から所定の期間(日時DT1の前後5分)内の期間であるものとする。例えば、端末装置10−1は、画像センサによりユーザU1を撮像したセンサ情報SN1を情報処理装置100へ送信する。図1の例では、情報処理装置100は、日時DT1−1に、ユーザU1について種別「画像」のセンサ情報SN1が検知されたことを示す情報を強度情報記憶部124に記憶する。
また、情報処理装置100は、ユーザU2が利用する端末装置10−2からセンサ情報を取得する(ステップS2−2)。図1の例では、情報処理装置100は、日時DT2−1において、所定のセンサにより検知されたユーザU2の音声情報であるセンサ情報SN2を端末装置10−2から取得する。例えば、日時DT2−1は、日時DT2から所定の期間(日時DT2の前後5分)内の期間であるものとする。例えば、端末装置10−2は、音声センサにより検知したユーザU2の音声情報であるセンサ情報SN2を情報処理装置100へ送信する。図1の例では、情報処理装置100は、日時DT2−1に、ユーザU2について種別「音声」のセンサ情報SN2が検知されたことを示す情報を強度情報記憶部124に記憶する。
また、情報処理装置100は、ユーザU3が利用する端末装置10−3からセンサ情報を取得する(ステップS2−3)。図1の例では、情報処理装置100は、日時DT3−1において、所定のセンサにより検知されたユーザU3の生体情報であるセンサ情報SN3を端末装置10−3から取得する。例えば、日時DT3−1は、日時DT3から所定の期間(日時DT3の前後5分)内の期間であるものとする。例えば、端末装置10−3は、血糖値センサにより検知したユーザU3の血糖値情報であるセンサ情報SN3を情報処理装置100へ送信する。図1の例では、情報処理装置100は、日時DT3−1に、ユーザU3について種別「生体」のセンサ情報SN3が検知されたことを示す情報を強度情報記憶部124に記憶する。
また、情報処理装置100は、ユーザU4が利用する端末装置10−4からセンサ情報を取得する(ステップS2−4)。図1の例では、情報処理装置100は、日時DT4−1において、所定のセンサにより検知されたユーザU4の音声情報であるセンサ情報SN4を端末装置10−4から取得する。例えば、日時DT4−1は、日時DT4から所定の期間(日時DT4の前後5分)内の期間であるものとする。例えば、端末装置10−4は、音声センサにより検知したユーザU4の音声情報であるセンサ情報SN4を情報処理装置100へ送信する。図1の例では、情報処理装置100は、日時DT4−1に、ユーザU4について種別「音声」のセンサ情報SN4が検知されたことを示す情報を強度情報記憶部124に記憶する。
以下、ステップS2−1〜S2−4を区別せずに説明する場合、ステップS2と総称する。また、ステップS2−1〜S2−4に限らず、各ユーザの検索は、複数回行われてもよい。なお、図1では、ユーザU5のセンサ情報が取得されていない場合を図示するが、情報処理装置100は、ユーザU5のセンサ情報を取得してもよいし、センサ情報が取得されない場合、他の種別の情報を強度予測用情報として取得してもよい。
上記ステップS1〜S4の処理により、情報処理装置100は、ユーザによる対象に関連する関連行動を示す行動情報や、関連行動時におけるユーザの対象に対する需要の度合い(強度)の予測に用いる強度予測用情報を収集する。具体的には、情報処理装置100は、ユーザが検索に用いたクエリと、クエリによる検索時のユーザの位置情報との組合せを含む行動情報を収集する(ステップS3)。図1の例では、情報処理装置100は、行動情報記憶部123に示すように、ユーザU1〜U5等が検索に用いたクエリと、クエリによる検索時のユーザの位置LC1〜LC5等との組合せを収集する。また、情報処理装置100は、ユーザの関連行動から所定の期間内のセンサ情報を強度予測用情報として収集する(ステップS4)。図1の例では、情報処理装置100は、強度情報記憶部124に示すように、ユーザU1〜U4等のセンサ情報SN1〜SN4等を収集する。
そして、情報処理装置100は、対象に関する関連行動時におけるユーザの対象に対する需要の強度を予測する(ステップS5)。情報処理装置100は、強度予測用情報を用いて、ユーザの対象に対する需要の強度を予測する。情報処理装置100は、センサ情報を用いて、ユーザの対象に対する需要の強度を予測する。情報処理装置100は、ユーザの関連行動から所定の期間内の強度予測用情報を用いて、関連行動時におけるユーザの対象に対する需要の強度を予測する。図1の例では、情報処理装置100は、ユーザの関連行動から所定の期間内のセンサ情報を用いて、関連行動時におけるユーザの対象に対する需要の強度を予測する。
情報処理装置100は、日時DT1におけるクエリ「塩ラーメン」を用いた検索行動であるユーザU1の関連行動におけるユーザU1の対象「塩ラーメン」に対する需要の強度を、日時DT1−1に検知されたユーザU1のセンサ情報SN1を用いて予測する。例えば、情報処理装置100は、日時DT1−1におけるユーザU1の顔を撮像した画像情報であるセンサ情報SN1を用いて、ユーザU1の対象「塩ラーメン」に対する需要の強度を予測する。例えば、情報処理装置100は、ユーザU1の顔を撮像したセンサ情報SN1を画像解析等の種々の従来技術を適宜用いて解析することにより、ユーザU1の空腹度合いを予測し、予測したユーザU1の空腹度合いを、ユーザU1の対象「塩ラーメン」に対する需要の強度とする。例えば、情報処理装置100は、センサ情報SN1を画像解析し、ユーザU1の顔がユーザU1の通常時や満腹時や空腹時の顔のいずれであるかを判定し場合、その判定結果に基づいて、ユーザU1の対象「塩ラーメン」に対する需要の強度を予測する。例えば、情報処理装置100は、ユーザU1の空腹度合いが通常時である場合、ユーザの対象に対する需要の強度(予測強度)を「中」と予測する。情報処理装置100は、ユーザU1の空腹度合いが満腹時である場合、ユーザの対象に対する需要の強度を「低」と予測する。情報処理装置100は、ユーザU1の空腹度合いが空腹時である場合、ユーザの対象に対する需要の強度を「高」と予測する。
この場合、情報処理装置100は、ユーザU1の通常時の顔画像情報や満腹時の顔画像情報や空腹時の顔画像情報と、センサ情報SN1とを比較することにより、ユーザU1が通常状態、満腹状態、及び空腹状態のいずれであるかを判定してもよい。例えば、情報処理装置100は、ユーザU1の通常時の顔画像情報や満腹時の顔画像情報や空腹時の顔画像情報をユーザ情報記憶部122(図5参照)に記憶し、ユーザ情報記憶部122に記憶した各画像情報と、センサ情報SN1とを比較することにより、ユーザU1が通常状態、満腹状態、及び空腹状態のいずれであるかを判定してもよい。このように、情報処理装置100は、関連行動時におけるユーザU1の状態を示すユーザ情報に基づいて、ユーザU1の対象「塩ラーメン」に対する需要の強度を予測する。なお、上記は一例であり、情報処理装置100は、画像情報を種々の手法により解析することにより、ユーザの対象に対する需要の強度を予測してもよい。
図1の例では、センサ情報SN1は、ユーザU1の通常時の顔画像情報に最も類似するものとする。そのため、情報処理装置100は、ユーザU1の空腹度合いを通常時と予測し、ユーザU1の対象「塩ラーメン」に対する需要の強度(予測強度)を強度ILV1と予測する。具体的には、情報処理装置100は、ユーザU1の空腹度合いが通常時であるため、強度情報記憶部124に示すように、ユーザU1の対象「塩ラーメン」に対する需要の強度を「中」と予測する。
また、情報処理装置100は、日時DT2におけるクエリ「スマホSH 赤」を用いた検索行動であるユーザU2の関連行動におけるユーザの対象「スマホSH」に対する需要の強度を、日時DT2−1に検知されたユーザU2のセンサ情報SN2を用いて予測する。例えば、情報処理装置100は、日時DT2−1におけるユーザU2の音声情報であるセンサ情報SN2を用いて、ユーザの対象「スマホSH」に対する需要の強度を予測する。例えば、情報処理装置100は、ユーザU2の音声のセンサ情報SN2を音声解析等の種々の従来技術を適宜用いて解析することにより、ユーザU2の対象に対する評価を予測し、予測したユーザU2の対象に対する評価を、ユーザU2の対象「スマホSH」に対する需要の強度とする。
例えば、情報処理装置100は、ユーザU2が対象「スマホSH」について、「欲しい」や「デザインが良い」等の好意的(ポジティブ)な発話を行っている場合、ユーザU2の対象「スマホSH」に対する需要の強度を「高」と予測する。情報処理装置100は、ユーザU2が対象「スマホSH」について、「普通」や「まぁまぁ」等の中立的な発話を行っている場合、ユーザU2の対象「スマホSH」に対する需要の強度を「中」と予測する。情報処理装置100は、ユーザU2が対象「スマホSH」について、「要らない」や「デザインが悪い」等の否定的(ネガティブ)な発話を行っている場合、ユーザU2の対象「スマホSH」に対する需要の強度を「低」と予測する。なお、上記は一例であり、情報処理装置100は、音声情報を種々の手法により解析することにより、ユーザの対象に対する需要の強度を予測してもよい。
図1の例では、センサ情報SN2は、ユーザU2が対象「スマホSH」について、否定的な発話を行ったことを示す情報であるのとする。そのため、情報処理装置100は、ユーザU2の対象「スマホSH」に対する評価が、否定的な評価であると予測し、ユーザU2の対象「スマホSH」に対する需要の強度(予測強度)を強度ILV2と予測する。具体的には、情報処理装置100は、ユーザU2が対象「スマホSH」に対して否定的な評価であるため、強度情報記憶部124に示すように、ユーザU2の対象「スマホSH」に対する需要の強度を「低」と予測する。
情報処理装置100は、日時DT3における「塩ラーメン Aエリア」を用いた検索行動であるユーザU3の関連行動におけるユーザU3の対象「塩ラーメン」に対する需要の強度を、日時DT3−1に検知されたユーザU3のセンサ情報SN3を用いて予測する。例えば、情報処理装置100は、日時DT3−1におけるユーザU3の血糖値を示す生体情報であるセンサ情報SN3を用いて、ユーザU3の対象「塩ラーメン」に対する需要の強度を予測する。例えば、情報処理装置100は、ユーザU3の生体情報を種々の従来技術を適宜用いて解析することにより、ユーザU3の空腹度合いを予測し、予測したユーザU3の空腹度合いを、ユーザU3の対象「塩ラーメン」に対する需要の強度とする。例えば、情報処理装置100は、センサ情報SN3が示すユーザU3の血糖値が、ユーザU3の通常時や満腹時や空腹時の顔のいずれであるかを判定し場合、その判定結果に基づいて、ユーザU3の対象「塩ラーメン」に対する需要の強度を予測する。例えば、情報処理装置100は、ユーザU3の血糖値が通常時である場合、ユーザの対象に対する需要の強度(予測強度)を「中」と予測する。情報処理装置100は、ユーザU3の血糖値が満腹時である場合、ユーザの対象に対する需要の強度を「低」と予測する。情報処理装置100は、ユーザU3の血糖値が空腹時である場合、ユーザの対象に対する需要の強度を「高」と予測する。
この場合、情報処理装置100は、ユーザU3の通常時の血糖値情報や満腹時の血糖値情報や空腹時の血糖値情報と、センサ情報SN3とを比較することにより、ユーザU3が通常状態、満腹状態、及び空腹状態のいずれであるかを判定してもよい。例えば、情報処理装置100は、ユーザU3の通常時の血糖値情報や満腹時の血糖値情報や空腹時の血糖値情報をユーザ情報記憶部122(図5参照)に記憶し、ユーザ情報記憶部122に記憶した各血糖値情報(生体情報)と、センサ情報SN3とを比較することにより、ユーザU3が通常状態、満腹状態、及び空腹状態のいずれであるかを判定してもよい。このように、情報処理装置100は、関連行動時におけるユーザU3の状態を示すユーザ情報に基づいて、ユーザU3の対象「塩ラーメン」に対する需要の強度を予測する。なお、上記は一例であり、情報処理装置100は、生体情報を種々の手法により解析することにより、ユーザの対象に対する需要の強度を予測してもよい。
図1の例では、センサ情報SN3は、ユーザU3の通常時の血糖値情報に最も類似するものとする。そのため、情報処理装置100は、ユーザU3の空腹度合いを空腹時と予測し、ユーザU3の対象「塩ラーメン」に対する需要の強度(予測強度)を強度ILV3と予測する。具体的には、情報処理装置100は、ユーザU3の空腹度合いが通常時であるため、強度情報記憶部124に示すように、ユーザU3の対象「塩ラーメン」に対する需要の強度を「高」と予測する。
そして、情報処理装置100は、対象に関するスコアを生成する(ステップS6)。例えば、情報処理装置100は、関連行動に対応する対象に関する需要レベルを示すスコアを生成(算出)する。例えば、情報処理装置100は、関連行動に対応する対象について、複数のエリアごとのスコアを生成(算出)する。図1の例では、情報処理装置100は、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、情報処理装置100は、対象「塩ラーメン」について、各エリアにおける検索の回数と、各検索時におけるユーザの強度情報を用いてスコアを生成する。例えば、情報処理装置100は、対象「塩ラーメン」について、検索の回数と、各検索時におけるユーザの需要の強度に基づく値(以下、「強度スコア」ともいう)の平均とを乗算することにより、スコアを生成してもよい。また、情報処理装置100は、対象「塩ラーメン」について、各検索に対応する強度スコアを合算することにより、スコアを生成してもよい。情報処理装置100は、対象「塩ラーメン」について、各エリアにおける各検索に対応する強度スコアを合算することにより、各エリアに対応するスコアを生成してもよい。
図1の例では、情報処理装置100は、予測強度が「高」である場合の強度スコアを「5」とし、予測強度が「中」である場合の強度スコアを「1」とし、予測強度が「低」である場合の強度スコアを「0.1」として、スコアを生成する。例えば、情報処理装置100は、対象「塩ラーメン」について、予測強度「高」である検索が「10」回であり、予測強度「中」である検索が「100」回であり、予測強度「低」である検索が「10」回である場合、スコアを「151(=5*10+1*100+0.1*10)」と算出する。
なお、情報処理装置100は、検索が行われた位置や時間に基づいて各検索の重みを生成し、生成した各検索の重みを用いてスコアを生成してもよいが、詳細は後述する。この場合、情報処理装置100は、検索ごとに需要の強度に基づく値(強度スコア)と重みとを乗算した値(部分スコア)を算出し、その部分スコアを合算することにより、関連行動に対応する対象に関するスコアを生成(算出)してもよい。
図1の例では、情報処理装置100は、エリア別一覧ALT1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、情報処理装置100は、Aエリアにおける対象「塩ラーメン」のスコアを「15000」と算出する。例えば、情報処理装置100は、Bエリアにおける対象「塩ラーメン」のスコアを「20」と算出する。例えば、情報処理装置100は、Cエリアにおける対象「塩ラーメン」のスコアを「800」と算出する。例えば、情報処理装置100は、Dエリアにおける対象「塩ラーメン」のスコアを「200」と算出する。なお、情報処理装置100は、エリアを考慮せず、全体としての需要を予測してもよい。例えば、情報処理装置100は、エリア全体の需要を予測してもよいが、この点については後述する。
そして、情報処理装置100は、生成したスコアに関する情報に基づいて、需要を予測する(ステップS7)。図1の例では、情報処理装置100は、需要一覧DLT1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとの需要を予測する。例えば、情報処理装置100は、対象について、各エリアに対応するスコアと、所定の閾値との比較に基づいて、エリアごとの需要を予測する。図1の例では、情報処理装置100は、第1閾値「10000」と、第2閾値「750」とを用いて、エリアごとの需要を予測する。例えば、情報処理装置100は、スコアが第1閾値以上であるエリアについては、その対象の需要が「高」であると予測する。例えば、情報処理装置100は、スコアが第2閾値以上であるエリアについては、その対象の需要が「中」であると予測する。例えば、情報処理装置100は、スコアが第2閾値未満であるエリアについては、その対象の需要が「低」であると予測する。
図1の例では、情報処理装置100は、Aエリアにおける対象「塩ラーメン」のスコアが「15000」であり、第1閾値以上であるため、Aエリアにおける対象「塩ラーメン」の需要を「高」と予測する。また、情報処理装置100は、Bエリアにおける対象「塩ラーメン」のスコアが「20」であり、第1閾値未満、第2閾値以上であるため、Bエリアにおける対象「塩ラーメン」の需要を「低」と予測する。また、情報処理装置100は、Cエリアにおける対象「塩ラーメン」のスコアが「800」であり、第2閾値未満であるため、Cエリアにおける対象「塩ラーメン」の需要を「中」と予測する。また、情報処理装置100は、Dエリアにおける対象「塩ラーメン」のスコアが「200」であり、第2閾値未満であるため、Dエリアにおける対象「塩ラーメン」の需要を「低」と予測する。
そして、情報処理装置100は、事業者に需要情報を提供する(ステップS8)。図1の例では、情報処理装置100は、ラーメン店MAの管理者M1が利用する事業者装置20に需要情報を提供する。情報処理装置100は、ラーメン店MAの管理者M1が利用する事業者装置20に需要情報を送信する。ここで、ラーメン店MAは、Aエリアに位置し、しょうゆラーメンRMを提供する飲食店である。そのため、情報処理装置100は、事業者装置20にAエリアでは塩ラーメンの需要が高いことを示す情報を提供する。これにより、ラーメン店MAの管理者M1は、Aエリアにおいては塩ラーメンを提供した方が利益を上げる可能性が高いことを把握することができるため、提供物をしょうゆラーメンRMから塩ラーメンへ変更したり、提供物として塩ラーメンを追加したりする判断を行うことができる。なお、情報処理装置100は、需要一覧DLT1を事業者装置20に提供してもよい。これにより、ラーメン店MAの管理者M1は、Aエリアにおける塩ラーメンの需要が他のエリアよりも相対的に高いことを把握することができるため、より適切な判断を行うことができる。
このように、情報処理装置100は、ユーザによる対象に関連する関連行動を示す行動情報と、関連行動時におけるユーザの対象に対する需要の度合いに関連する強度情報とに基づいて、対象に関する需要を予測する。図1の例では、情報処理装置100は、ユーザの検索行動と、ユーザのセンサ情報とに基づいて、クエリに対応する対象に関する需要を予測する。そして、情報処理装置100は、予測した情報を事業者に提供する。これにより、情報の提供を受けた事業者は、提供された情報に基づいて、自身の事業についてより適切な判断を行うことができる。
なお、図1では、エリアごとに需要を予測する場合を示したが、情報処理装置100は、ユーザの行動情報と、ユーザの強度情報とに基づいて、エリア全体の需要を予測してもよい。例えば、情報処理装置100は、Aエリア〜Dエリア等のエリア全体におけるユーザの行動情報と、ユーザの強度情報とに基づいて、エリア全体の需要を予測してもよい。この場合、情報処理装置100は、ユーザの位置情報を取得することなく、ユーザの行動情報と、ユーザの強度情報とに基づいて、エリア全体の需要を予測してもよい。
〔1−1.利用する情報〕
情報処理装置100は、図1に示す情報に限らず、対象に関する需要を予測するために種々の情報を用いてもよい。この点について、以下説明する。
〔1−1−1.行動情報〕
図1の例では、情報処理装置100が検索に用いられたクエリを用いて需要を予測する場合を示したが、情報処理装置100は、種々の情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、ユーザの行動に関する種々情報を用いて、需要を予測してもよい。情報処理装置100は、ユーザの検索行動に限らず、種々の種別の関連行動の情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、ユーザの入力行動や購買行動や閲覧行動等の種々の種別の関連行動の情報を用いて、需要を予測してもよい。情報処理装置100は、ユーザの入力に関する情報やユーザの購買行動に関する情報やユーザのコンテンツ閲覧に関する情報などの種々の行動情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、ユーザが購入した商品やサービス等を対象として需要を予測してもよい。例えば、情報処理装置100は、ユーザにより商品Xが購入された回数を用いて、対象の需要を予測してもよい。また、情報処理装置100は、ユーザが閲覧したコンテンツに含まれる対象の需要を予測してもよい。例えば、情報処理装置100は、ユーザが閲覧したコンテンツY等に対象「塩ラーメン」が含まれる場合、コンテンツY等の閲覧回数を用いて、対象の需要を予測してもよい。
〔1−1−2.入力情報〕
情報処理装置100は、クエリに限らず、ユーザが入力する種々の情報(入力情報)を用いて、需要を予測してもよい。例えば、情報処理装置100は、所定のネットワークで通信される文字情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、ソーシャルネットワーキングサービスにおいてユーザが投稿した投稿情報とその投稿時のユーザの位置情報とを用いて、需要を予測してもよい。例えば、情報処理装置100は、所定のSNS(Social Networking Service)においてユーザが入力した入力情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、Twitter(登録商標)やFacebook(登録商標)等においてユーザが投稿(入力)した投稿情報(入力情報)を用いて、需要を予測してもよい。例えば、情報処理装置100は、ユーザがTwitterにおいて投稿した文章(文字情報)を用いて、需要を予測してもよい。
例えば、情報処理装置100は、ユーザがメッセージサービスにおいて入力した入力情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、ユーザがLINE(登録商標)等のメッセージサービスにおいて入力した入力情報を用いて、需要を予測してもよい。例えば、情報処理装置100は、電子メールにおいて入力した入力情報を用いて、需要を予測してもよい。
〔1−1−3.強度予測用情報〕
図1の例では、説明を簡単にするために、情報処理装置100がユーザの需要の強度(度合い)を予測するために用いる情報(強度予測用情報)として、センサ情報のみを用いる場合を示したが、情報処理装置100は、ユーザの需要の強度の予測に利用可能な情報であればどのような情報を用いてもよい。例えば、情報処理装置100は、強度予測用情報として、ユーザの関連行動時から所定の期間内のユーザの行動情報などの種々の情報を用いてもよい。
情報処理装置100は、ユーザが食べる食品や飲む飲料等(以下、「食品等」ともいう)に関連する関連行動後に、ユーザがその食品等を摂取したことを示す行動情報を、強度予測用情報として用いてもよい。情報処理装置100は、ユーザが摂取する食品等である対象に関連する関連行動後の所定期間内に、ユーザがその対象を購入したり、飲食したりしたことを示す行動情報に基づいて、ユーザの需要の強度(度合い)を予測してもよ
い。
例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内に、ユーザがその食品等を購入したり、飲食したりしたことを示す行動情報がある場合、その食品等に対するユーザの需要の強度を「高」と予測してもよい。また、例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内に、ユーザがその食品等を購入したり、飲食したりしたことを示す行動情報がない場合、その食品等に対するユーザの需要の強度を「低」と予測してもよい。また、例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内に、ユーザがその食品等と異なる他の食品等を購入したり、飲食したりしたことを示す行動情報がない場合、その食品等に対するユーザの需要の強度を「中」と予測してもよい。
また、例えば、情報処理装置100は、上記に限らずセンサ情報に基づく種々の情報を強度予測用情報として用いてもよい。情報処理装置100は、音声センサにより検知されたユーザのお腹が鳴る音等を強度予測用情報として用いてもよい。例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内に、ユーザのお腹が鳴る音等が検知された場合、その食品等に対するユーザの需要の強度を「高」と予測してもよい。例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内に、ユーザのお腹が鳴る音等が検知されなかった場合、その食品等に対するユーザの需要の強度を「低」と予測してもよい。例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内に、ユーザのお腹が鳴る音等が検知されなかった場合であっても、所定期間外にユーザのお腹が鳴る音等が検知された場、その食品等に対するユーザの需要の強度を「中」と予測してもよい。
また、情報処理装置100は、関連行動前後における血糖値の変化や、関連行動前後におけるユーザの画像を画像解析することによりユーザの需要の強度を予測してもよい。例えば、情報処理装置100は、食品等に関連する関連行動後の所定期間内のユーザの画像を画像解析し、ユーザの顔が「お腹が空いた顔」であると判定される場合、その食品等に対するユーザの需要の強度を「高」と予測してもよい。
また、情報処理装置100は、関連行動と他の行動との間の時間に基づいて、ユーザの需要の強度を予測してもよい。例えば、情報処理装置100は、食品等に関連する関連行動とそれ以前の最後の食事からの時間(以下、「食事後経過時間」ともいう)に基づいて、ユーザの需要の強度を予測してもよい。例えば、情報処理装置100は、食品等に関連する関連行動までの食事後経過時間が所定の閾値(例えば5時間等)以上である場合、その食品等に対するユーザの需要の強度を「高」と予測してもよい。
例えば、情報処理装置100は、強度予測用情報として、ユーザの関連行動時から所定の期間内のユーザの位置情報などの種々の情報を用いてもよい。例えば、情報処理装置100は、検索においてユーザが使用(入力)した検索ワード(入力情報)に基づいて、ユーザの需要の強度を予測してもよい。また、情報処理装置100は、SNSにおいてユーザが入力した入力情報(文字情報)の文脈に基づいて、ユーザの需要の強度を予測してもよい。例えば、情報処理装置100は、対象が食品等である場合、ユーザが入力した検索ワードや文字情報等である強度予測用情報中に、「腹ペコ」や「うまそう」などの文字列が含まれれば、その文字情報を基にユーザの需要の強度を予測してもよい。
また、情報処理装置100は、複数の強度予測用情報に基づいて、ユーザの需要の強度を予測してもよい。情報処理装置100は、センサ情報や行動情報や位置情報等の種々の強度予測用情報を組み合わせて、ユーザの需要の強度を予測してもよい。例えば、情報処理装置100は、ユーザの関連行動時から所定の期間内のセンサ情報や行動情報や位置情報等の種々の強度予測用情報に基づいて、ユーザの需要の強度を予測してもよい。
〔1−2.時間に応じた需要予測〕
また、情報処理装置100は、時間に応じて需要を予測してもよい。情報処理装置100は、所定の時間帯ごとに、クエリに対応する対象に関する需要を予測してもよい。例えば、情報処理装置100は、位置情報を用いずに、時間ごとの需要を予測してもよい。例えば、情報処理装置100は、所定の時間帯(朝、昼、夜等)ごとにクエリを収集し、各時間帯に対応するクエリごとにスコアを算出してもよい。そして、情報処理装置100は、時間帯ごとに対象に対する需要(レベル)を予測してもよい。
また、情報処理装置100は、位置と時間との組み合わせごとにクエリを収集し、各組み合わせに対応するクエリごとにスコアを算出してもよい。例えば、情報処理装置100は、エリアと時間帯(朝、昼、夜等)との組み合わせごとにクエリを収集し、各組み合わせにおけるクエリに対応する対象ごとにスコアを算出してもよい。例えば、情報処理装置100は、Aエリア、Bエリア等と、第1時間帯(4−12時)、第2時間帯(12−20時)、第3時間帯(20−4時)等との組み合わせごとにクエリを収集し、各組み合わせにおけるクエリに対応する対象ごとにスコアを算出してもよい。
例えば、情報処理装置100は、検索時の位置と検索時の時間帯またはクエリに含まれる時間を示す文字列等とに基づいて、クエリを組み合わせごとに収集し、各組み合わせにおけるクエリに対応する対象ごとにスコアを算出してもよい。例えば、情報処理装置100は、Bエリアと昼の時間帯との組合せにおける対象「塩ラーメン」のスコアが所定の閾値以上である場合、Bエリアにおける昼の時間帯に塩ラーメンの需要が高いとして、その情報を提供してもよい。例えば、情報処理装置100は、Bエリアにおける昼の時間帯に塩ラーメンの需要が高いことを示す情報を、Bエリアにおいて夜の時間帯のみが営業時間である居酒屋の事業者(事業者AB)に提供してもよい。これにより、事業者ABは、昼の時間帯における営業を行うかどうかや、どのような商品を提供するかを適切に判断することができる。
また、情報処理装置100は、検索された時間に応じて重みを変動させてスコアを生成してもよい。例えば、情報処理装置100は、食事の時間帯に食品等に関するクエリを用いた検索がされた場合、その検索の重みを大きくしてスコアを生成してもよい。例えば、情報処理装置100は、12−13時等の間にクエリ「塩ラーメン」を用いて検索された場合、その検索の重みを、他の時間帯(例えば7−9時等)におけるクエリ「塩ラーメン」を用いた検索の重みよりも重くしてもよい。例えば、情報処理装置100は、12−13時等の間にクエリ「塩ラーメン」を用いた検索の重みをスコア「1.5」と大きくし、他の時間帯(例えば7−9時等)におけるクエリ「塩ラーメン」を用いた検索の重みを「0.5」と小さくしてもよい。
例えば、情報処理装置100は、所定の対象を提供する店舗の営業時間内に検索された場合、その検索の重みを大きくしてスコアを生成してもよい。例えば、情報処理装置100は、所定の対象を提供する店舗の営業時間外に検索された場合、その検索の重みを小さくしてスコアを生成してもよい。
〔1−3.提供態様〕
また、例えば、情報処理装置100は、情報提供先となる事業者の事業規模(売上等)に応じて、情報の提供態様を変動させてもよい。例えば、情報処理装置100は、事業者の事業規模(売上等)が所定の閾値未満である場合、情報提供を行うごとに課金を行ってもよい。また、例えば、情報処理装置100は、事業者の事業規模(売上等)が所定の閾値以上である場合、定額制により情報提供を行ってもよい。例えば、情報処理装置100は、事業者の事業規模(売上等)が所定の閾値以上である場合、所定の期間ごとに設定される課金額を課金し、その所定の期間内に情報提供を行ってもよい。また、例えば、情報処理装置100は、情報提供先となる事業者の事業規模(売上等)に応じて、課金額を変動させてもよい。例えば、情報処理装置100は、事業者の事業規模(売上等)が所定の閾値未満である場合、事業規模が所定の閾値以上の事業者に情報提供する場合と比べて、同様の情報提供における課金額を低くしてもよい。
また、情報処理装置100は、種々の態様によって事業者に情報提供を行ってもよい。また、情報処理装置100は、事業者からの要求に応じて、事業者装置20に情報提供を行う場合に限らず、例えば、事業者からの対象の事前登録を受付けてもよい。この場合、情報処理装置100は、事業者が事前登録した対象に関する需要が所定の条件を満たす場合に、その事業者にその対象の需要に関する情報を提供してもよい。例えば、情報処理装置100は、事業者が事前登録した対象に関する需要が直近の実績(売上等)から大きく変化した場合に、その事業者にアラートを通知してもよい。
〔1−4.情報の利用〕
なお、図1の例では、説明を簡単にするために、クエリが対象を示す文字列に一致する場合を一例として示したが、情報処理装置100は、意味的に近い単語に関するクエリの情報も加味して需要の予測を行ってもよい。例えば、情報処理装置100は、上記に限らず、上位語、下位語、類義語等を示すコーパスや、word2vecのようなアルゴリズムからの分散表現などを利用し、意味的に近い単語に関するクエリの情報も加味して需要の予測を行ってもよい。
例えば、情報処理装置100は、需要を予測する対象と概念的な類似関係がある単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。例えば、情報処理装置100は、需要を予測する対象に対して上位概念の関係にある単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。図1の例では、情報処理装置100は、「ラーメン」や「さっぱり系ラーメン」等の対象「塩ラーメン」の上位概念に対応する単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。
例えば、情報処理装置100は、需要を予測する対象に対して下位概念の関係にある単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。図1の例では、情報処理装置100は、塩ラーメン店の具体的店名「ラーメン屋X」等の対象「塩ラーメン」の下位概念に対応する単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。
例えば、情報処理装置100は、需要を予測する対象を示す単語(文字列)の類義語となる単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。図1の例では、情報処理装置100は、「中華そば」や「とんこつラーメン」等の対象「塩ラーメン」の類義語に対応する単語(文字列)に関するクエリの情報も加味して需要の予測を行ってもよい。
〔1−5.関連商品の需要〕
なお、情報処理装置100は、クエリに対応する対象であれば、クエリが示す対象に限らず、種々の対象に関する需要を予測してもよい。例えば、情報処理装置100は、クエリと位置情報とに基づいて、クエリが示す商品に関連する関連商品であって、位置情報に対応するエリアにおける関連商品に関する需要を予測する。
例えば、情報処理装置100は、クエリ「スマホ」を用いた検索情報に基づいて、商品「スマホ」に関連する商品(関連商品)「スマホ」に関する需要を予測してもよい。例えば、情報処理装置100は、例えば検索時の位置情報が海A付近であり、その検索における検索クエリには「スマホ 水没」「スマホ 起動しなくなった」等が多数(例えば1万や全体の数%等)含まれる検索情報を取得するものとする。例えば、情報処理装置100は、例えば検索時の位置情報が海B付近である場合、その検索における検索クエリには「スマホ 水没」「スマホ 起動しなくなった」等がほとんど無い(例えば0または数件等)検索情報を取得するものとする。
この場合、例えば、海Aの近くで水没してしまったなど、海Aの近くではスマホが故障しやすいということが予測される。例えば、海Aの近くは、景色が綺麗で写真スポットだが、足元が悪く水没のケースが多いということが予測される。そのため、情報処理装置100は、例えば、海Aの付近では、スマホの防水ケース等のスマホの関連商品の需要が増大すると予測することができる。この場合、情報処理装置100は、例えば、海Aの付近で、スマホ防水ケースを販売することや、スマホの水没時に乾かすドライヤーを貸し出すなど等のサービスを行うことを事業者に提案してもよい。これにより、情報処理装置100は、海A付近におけるスマホの故障の予防や回復に貢献することができる。このように、情報処理装置100は、商品の状態などに関する検索クエリを用いて、その商品の故障等を予防したり回復したりするための付随的な商品(関連商品)の需要を予測してもよい。情報処理装置100は、クエリが示す対象自体ではなく、その対象に関連する対象の需要、すなわち間接的な需要を予測してもよい。
〔2.情報処理装置の構成〕
次に、図3を用いて、実施形態に係る情報処理装置100の構成について説明する。図3は、実施形態に係る情報処理装置の構成例を示す図である。図3に示すように、情報処理装置100は、通信部110と、記憶部120と、制御部130とを有する。なお、情報処理装置100は、情報処理装置100の管理者等から各種操作を受け付ける入力部(例えば、キーボードやマウス等)や、各種情報を表示するための表示部(例えば、液晶ディスプレイ等)を有してもよい。
(通信部110)
通信部110は、例えば、NIC(Network Interface Card)等によって実現される。そして、通信部110は、ネットワークと有線または無線で接続され、例えば情報処理システム1に含まれる端末装置10や事業者装置20との間で情報の送受信を行う。
(記憶部120)
記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。実施形態に係る記憶部120は、図3に示すように、事業者情報記憶部121と、ユーザ情報記憶部122と、行動情報記憶部123と、強度情報記憶部124と、需要情報記憶部125とを有する。
(事業者情報記憶部121)
実施形態に係る事業者情報記憶部121は、事業者に関する各種情報を記憶する。図4は、実施形態に係る事業者情報記憶部の一例を示す図である。図4に示す事業者情報記憶部121は、「事業者ID」、「事業者」、「業種」、「所在地」、「提供物」といった項目が含まれる。
「事業者ID」は、事業者を識別するための識別情報を示す。「事業者」は、対応する事業者IDにより識別される事業者を示す。例えば、「事業者」は、対応する事業者IDにより識別される事業者の名称を示す。「業種」は、対応する事業者IDにより識別される事業者の業種を示す。「所在地」は、対応する事業者IDにより識別される事業者の所在地を示す。「提供物」は、対応する事業者IDにより識別される事業者により提供される商品やサービスを示す。
例えば、図4に示す例において、事業者ID「EP1」により識別される事業者(事業者EP1)は、事業者が「ラーメン店MA」であり、業種が「飲食」であることを示す。また、ラーメン店MAの所在地は、Aエリア内の位置LC10であることを示す。なお、図4の例では位置を「LC10」等の抽象的な符号で図示するが、位置情報は、具体的な緯度経度情報等であってもよい。また、ラーメン店MAが提供する商品は、「しょうゆラーメンRM」であることを示す。
なお、事業者情報記憶部121は、上記に限らず、目的に応じて種々の情報を記憶してもよい。例えば、事業者情報記憶部121は、事業者の従業員数や売上高等の事業規模に関する情報を記憶してもよい。
(ユーザ情報記憶部122)
実施形態に係るユーザ情報記憶部122は、ユーザに関する各種情報を記憶する。例えば、ユーザ情報記憶部122は、ユーザ属性情報等の種々の情報を記憶する。図5は、実施形態に係るユーザ情報記憶部の一例を示す図である。図5に示すユーザ情報記憶部122は、「ユーザID」、「年齢」、「性別」、「自宅」、「勤務地」、「興味」といった項目が含まれる。
「ユーザID」は、ユーザを識別するための識別情報を示す。例えば、ユーザID「U1」により識別されるユーザは、図1の例に示したユーザU1に対応する。また、「年齢」は、ユーザIDにより識別されるユーザの年齢を示す。なお、「年齢」は、例えば35歳など、ユーザIDにより識別されるユーザの具体的な年齢であってもよい。また、「性別」は、ユーザIDにより識別されるユーザの性別を示す。
また、「自宅」は、ユーザIDにより識別されるユーザの自宅の位置情報を示す。なお、図5に示す例では、「自宅」は、「LC11」といった抽象的な符号を図示するが、緯度経度情報等であってもよい。また、例えば、「自宅」は、地域名や住所であってもよい。
また、「勤務地」は、ユーザIDにより識別されるユーザの勤務地の位置情報を示す。なお、図5に示す例では、「勤務地」は、「LC12」といった抽象的な符号を図示するが、緯度経度情報等であってもよい。また、例えば、「勤務地」は、地域名や住所であってもよい。
また、「興味」は、ユーザIDにより識別されるユーザの興味を示す。すなわち、「興味」は、ユーザIDにより識別されるユーザが関心の高い対象を示す。なお、図5に示す例では、「興味」は、各ユーザに1つずつ図示するが、複数であってもよい。
例えば、図5に示す例において、ユーザID「U1」により識別されるユーザの年齢は、「20代」であり、性別は、「男性」であることを示す。また、例えば、ユーザID「U1」により識別されるユーザは、自宅が「LC11」であることを示す。また、例えば、ユーザID「U1」により識別されるユーザは、勤務地が「LC12」であることを示す。また、例えば、ユーザID「U1」により識別されるユーザは、「スポーツ」に興味があることを示す。
なお、ユーザ情報記憶部122は、上記に限らず、目的に応じて種々の情報を記憶してもよい。例えば、ユーザ情報記憶部122は、ユーザのデモグラフィック属性に関する情報やサイコグラフィック属性に関する情報を記憶してもよい。例えば、ユーザ情報記憶部122は、氏名、家族構成、収入、興味、ライフスタイル等の情報を記憶してもよい。
(行動情報記憶部123)
実施形態に係る行動情報記憶部123は、ユーザの行動に関する各種情報を記憶する。図6は、実施形態に係る行動情報記憶部の一例を示す図である。例えば、行動情報記憶部123は、各ユーザの端末装置10を用いて行った検索等を含む種々の行動情報を記憶する。図6に示す行動情報記憶部123には、「行動ID」、「ユーザID」、「位置」、「日時」、「クエリ情報」といった項目が含まれる。また、「クエリ情報」には、「クエリ1」、「クエリ2」等といった項目が含まれる。なお、図6の例では、説明を簡単にするためにユーザの検索行動に関する情報のみを図示するが、行動情報記憶部123には、ユーザの種々の行動に関する情報が記憶される。例えば、行動情報記憶部123には、ユーザの入力に関する情報やユーザの購買行動に関する情報やユーザのコンテンツ閲覧に関する情報などの種々の情報が記憶される。
また、「行動ID」は、ユーザの行動を識別する情報を示す。「ユーザID」は、ユーザを識別するための識別情報を示す。例えば、ユーザID「U1」により識別されるユーザは、図1の例に示したユーザU1に対応する。
また、「位置」は、対応する行動が行われた位置を示す。例えば、「位置」は、対応するクエリによる検索時のユーザの位置を示す。なお、図6の例では位置を「LC1」等の抽象的な符号で図示するが、位置情報は、具体的な緯度経度情報等であってもよい。
また、「日時」は、対応するユーザの行動が行われた日時を示す。「日時」には、「DT1」等のように抽象的に図示するが、「2017年7月25日22時46分58秒」等の具体的な日時が記憶されてもよい。また、「クエリ情報」は、対応する検索において用いられたクエリに関する情報を示す。「クエリ1」や「クエリ2」は、対応する検索において用いられたクエリを示す。例えば、「クエリ1」は、第1クエリに対応し、「クエリ2」は、第2クエリに対応する。
例えば、図6に示す例において、ユーザID「U1」により識別されるユーザ(ユーザU1)は、位置LC1において行動AC11を行ったことを示す。具体的には、図6に示す例においてユーザU1は、第1クエリ「塩ラーメン」のみを用いた検索(行動AC11)を日時DT1に行ったことを示す。また、例えば、図6に示す例において、ユーザID「U2」により識別されるユーザ(ユーザU2)は、位置LC2において行動AC12を行ったことを示す。具体的には、図6に示す例においてユーザU2は、第1クエリ「スマホSH」と第2クエリ「赤」とを用いた検索(行動AC12)を日時DT2に行ったことを示す。
なお、行動情報記憶部123は、上記に限らず、目的に応じて種々の情報を記憶してもよい。また、図6では、ユーザIDごとに行動情報が行動情報記憶部123に記憶される場合を示したが、行動情報は、日時順に限らず、例えばユーザIDごとに記憶されてもよい。
(強度情報記憶部124)
実施形態に係る強度情報記憶部124は、ユーザの需要の強度(度合い)に関する各種情報を記憶する。例えば、強度情報記憶部124は、関連行動時におけるユーザの対象に対する需要の強度(度合い)に関連する強度情報を記憶する。図7の例では、強度情報記憶部124は、説明を簡単にするためにユーザの需要の強度(度合い)を予測するために用いる情報(強度予測用情報)として、センサ情報のみを図示するが、強度情報記憶部124には、ユーザの需要の強度の予測に利用可能な情報であればどのような情報が記憶されてもよい。例えば、強度情報記憶部124には、ユーザの関連行動時から所定の期間内のユーザの行動情報などの種々の情報が記憶されてもよい。図5は、実施形態に係る強度情報記憶部の一例を示す図である。図5に示す強度情報記憶部124は、「ユーザID」、「強度情報」といった項目が含まれる。「強度情報」には、「日時」、「種別」、「センサ情報」、「予測強度」といった項目が含まれる。
「ユーザID」は、ユーザを識別するための識別情報を示す。例えば、ユーザID「U1」により識別されるユーザは、図1の例に示したユーザU1に対応する。また、「強度情報」は、ユーザIDにより識別されるユーザについて検知されたセンサ情報に関する種々の情報を示す。「強度情報」の「日時」は、対応するセンサ情報が検知された日時を示す。「日時」には、「DT1」等のように抽象的に図示するが、「2018年6月12日11時23分49秒」等の具体的な日時が記憶されてもよい。「強度情報」の「種別」は、対応するセンサ情報の種別を示す。
「強度情報」の「センサ情報」は、検知されたセンサ情報を示す。図7では「センサ情報」に「SN1」といった概念的な情報が格納される例を示したが、実際には、具体的に検知された情報(センサデータ)、または、その格納場所を示すファイルパス名などが格納されてもよい。
「強度情報」の「予測強度」は、センサ情報等の情報から予測されるユーザの需要の強度を示す。図7では「予測強度」に「ILV1」といった概念的な情報が格納される例を示したが、実際には、予測した強度を示すレベルや具体的な数値などが格納されてもよい。例えば、「予測強度」には、括弧内に示すように「強度中」や「強度低」などの強度のレベルを示す情報が記憶されてもよい。
図7に示す例において、ユーザID「U1」により識別されるユーザ(ユーザU1)については、種別「画像」に対応するセンサ情報SN1が日時DT1−1に検知されたことを示す。例えば、日時DT1−1は、日時DT1から所定の期間内の期間であるものとする。また、ユーザU1については、センサ情報SN1により予測される需要の強度が強度ILV1(強度中)であることを示す。すなわち、ユーザU1については、日時DT1に入力したクエリに対応する対象「塩ラーメン」への需要の強度が「中レベル」であることを示す。
図7に示す例において、ユーザID「U2」により識別されるユーザ(ユーザU2)については、種別「音声」に対応するセンサ情報SN2が日時DT2−1に検知されたことを示す。例えば、日時DT2−1は、日時DT2から所定の期間内の期間であるものとする。また、ユーザU1については、センサ情報SN2により予測される需要の強度が強度ILV2(強度低)であることを示す。すなわち、ユーザU2については、日時DT2に入力したクエリに対応する対象「スマホSH」への需要の強度が「低レベル」であることを示す。
なお、強度情報記憶部124は、上記に限らず、目的に応じて種々の情報を記憶してもよい。例えば、強度情報記憶部124は、複数のセンサ情報に基づいて、強度を予測した場合、予測した強度と、予測に用いた複数のセンサ情報を対応付けて記憶してもよい。
(需要情報記憶部125)
実施形態に係る需要情報記憶部125は、需要に関する各種情報を記憶する。図8は、実施形態に係る需要情報記憶部の一例を示す図である。図8に示す需要情報記憶部125は、「対象」、「需要情報」、「検索者属性情報」といった項目を有する。
「対象」は、需要情報を生成する対象を示す。「対象」は、特定の商品名やサービス名に限らず、商品やサービスのカテゴリ(飲料やファッションや旅行等)であってもよい。
「需要情報」は、対応する対象に関する検索に用いられるクエリの需要情報を示す。「需要情報」には、「エリア」、「スコア」、「需要レベル」といった項目が含まれる。「エリア」は、予測対象となったエリアを示す。「スコア」は、対応するエリアにおける対象に関する需要の評価値となるスコアを示す。「需要レベル」は、対応するエリアにおける対象に関する需要レベルを示す。
「検索者属性情報」は、対応する対象に関する検索を行う検索者(ユーザ)の属性の需要情報を示す。「検索者属性情報」には、「カテゴリ」や「属性」や「割合」といった項目が含まれる。「カテゴリ」は、ユーザを分類するカテゴリを示す。「属性」は、対応するカテゴリにおける種別(属性)を示す。また、「割合」は、対応する属性のユーザが、対応する対象に対応するキーワードを用いた検索を行う割合を示す。
例えば、図8に示す例において、需要を予測する対象は、塩ラーメンであることを示す。また、対象「塩ラーメン」について、Aエリアにおける需要のスコアが「15000」であることを示す。また、Aエリアにおける塩ラーメンの需要レベルは、「高」であることを示す。
また、図8の例では、Aエリアにおいて対象「塩ラーメン」を検索するユーザのうち、男性が「20%」であり、女性が「80%」であることを示す。また、図8の例では、Aエリアにおいて対象「塩ラーメン」を検索するユーザのうち、10代が「65%」等であることを示す。
また、需要情報記憶部125は、上記に限らず、目的に応じて種々の情報を記憶してもよい。例えば、需要情報記憶部125は、需要が発生した日時に関する情報を記憶してもよい。例えば、需要情報記憶部125は、需要情報が生成された日時や生成に用いた情報が収集された期間に関する情報を記憶してもよい。
(制御部130)
図3の説明に戻って、制御部130は、コントローラ(controller)であり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、情報処理装置100内部の記憶装置に記憶されている各種プログラム(情報処理プログラムの一例に相当)がRAMを作業領域として実行されることにより実現される。また、制御部130は、コントローラであり、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
図3に示すように、制御部130は、取得部131と、生成部132と、予測部133と、提供部134とを有し、以下に説明する情報処理の機能や作用を実現または実行する。
(取得部131)
取得部131は、各種情報を取得する。取得部131は、記憶部120から各種情報を取得する。取得部131は、事業者情報記憶部121やユーザ情報記憶部122や行動情報記憶部123や強度情報記憶部124や需要情報記憶部125から各種情報を取得する。取得部131は、外部の情報処理装置から各種情報を取得する。取得部131は、端末装置10や事業者装置20から各種情報を取得する。取得部131は、ユーザが検索に用いたクエリと、クエリによる検索時のユーザの位置情報とを取得する。取得部131は、ユーザの検索時から所定の期間内におけるセンサ情報を取得する。
取得部131は、ユーザによる対象に関連する関連行動を示す行動情報と、関連行動時におけるユーザの対象に対する需要の度合いに関連する強度情報とを取得する。取得部131は、センサにより検知されるセンサ情報を含む強度情報を取得する。取得部131は、関連行動時におけるユーザの状態を示すユーザ情報を含む強度情報を取得する。
取得部131は、関連行動時におけるユーザの位置情報を取得する。予測部133は、位置情報に対応するエリアにおける需要レベルを予測する。取得部131は、対象に関してユーザが入力した入力情報を含む行動情報を取得する。取得部131は、対象に関してユーザが行った検索行動を示す検索情報を含む行動情報を取得する。取得部131は、ユーザが入力した対象に関連するクエリを含む行動情報を取得する。取得部131は、ユーザが入力した対象に対する需要の度合いに関連する入力情報を含む強度情報を取得する。
図1の例では、取得部131は、ユーザU1が利用する端末装置10−1からクエリと位置情報とを取得する。例えば、取得部131は、日時DT1において、端末装置10−1からクエリ「塩ラーメン」と位置情報LC1とを取得する。例えば、取得部131は、ユーザU2が利用する端末装置10−2からクエリと位置情報とを取得する。例えば、取得部131は、日時DT2において、端末装置10−2からクエリ「スマホSH 赤」と位置情報LC2とを取得する。例えば、取得部131は、ユーザU3が利用する端末装置10−3からクエリと位置情報とを取得する。例えば、取得部131は、日時DT3において、端末装置10−3からクエリ「塩ラーメン Aエリア」と位置情報LC3とを取得する。
また、例えば、取得部131は、ユーザU4が利用する端末装置10−4からクエリと位置情報とを取得する。例えば、取得部131は、日時DT4において、端末装置10−4からクエリ「天気」と位置情報LC4とを取得する。例えば、取得部131は、ユーザU5が利用する端末装置10−5からクエリと位置情報とを取得する。例えば、取得部131は、日時DT5において、端末装置10−5からクエリ「スマホSH 高い」と位置情報LC5とを取得する。例えば、取得部131は、ユーザU1〜U5に限らず、多数のユーザ(例えば、100万ユーザや1000万ユーザ等)が検索に用いたクエリを取得する。
図1の例では、取得部131は、日時DT1−1において、所定のセンサにより検知されたユーザU1の画像情報であるセンサ情報SN1を端末装置10−1から取得する。取得部131は、日時DT2−1において、所定のセンサにより検知されたユーザU2の音声情報であるセンサ情報SN2を端末装置10−2から取得する。取得部131は、日時DT3−1において、所定のセンサにより検知されたユーザU3の生体情報であるセンサ情報SN3を端末装置10−3から取得する。取得部131は、日時DT4−1において、所定のセンサにより検知されたユーザU4の音声情報であるセンサ情報SN4を端末装置10−4から取得する。
取得部131は、各種情報を外部の情報処理装置から取得する。例えば、取得部131は、行動情報記憶部123からユーザが検索に用いたクエリを取得する。取得部131は、端末装置10からユーザが検索に用いるクエリを取得する。
(生成部132)
生成部132は、種々の情報を生成する。生成部132は、記憶部120に記憶された情報に基づいて、種々の情報を生成する。生成部132は、事業者情報記憶部121やユーザ情報記憶部122や行動情報記憶部123や強度情報記憶部124や需要情報記憶部125に記憶された情報に基づいて、種々の情報を生成する。生成部132は、取得部131により取得された情報に基づいて、種々の情報を生成する。生成部132は、外部の情報処理装置から取得された情報に基づいて、種々の情報を生成する。生成部132は、端末装置10や事業者装置20から取得された情報に基づいて、種々の情報を生成する。生成部132は、生成部132により生成された情報に基づいて、種々の情報を生成する。生成部132は、対象と位置に関する情報(エリア)との組み合わせ毎にスコアを生成(算出)する。生成部132は、予測部133により予測された情報に基づいて、種々の情報を生成する。
図1の例では、生成部132は、対象に関するスコアを生成する。例えば、生成部132は、関連行動に対応する対象に関する需要レベルを示すスコアを生成(算出)する。例えば、生成部132は、関連行動に対応する対象について、複数のエリアごとのスコアを生成(算出)する。図1の例では、生成部132は、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、生成部132は、対象「塩ラーメン」について、各エリアにおける検索の回数と、各検索時におけるユーザの強度情報を用いてスコアを生成する。例えば、生成部132は、対象「塩ラーメン」について、検索の回数と、各検索時におけるユーザの需要の強度に基づく値(強度スコア)の平均とを乗算することにより、スコアを生成してもよい。また、生成部132は、対象「塩ラーメン」について、各検索に対応する強度スコアを合算することにより、スコアを生成してもよい。生成部132は、対象「塩ラーメン」について、各エリアにおける各検索に対応する強度スコアを合算することにより、各エリアに対応するスコアを生成してもよい。
生成部132は、予測強度が「高」である場合の強度スコアを「5」とし、予測強度が「中」である場合の強度スコアを「1」とし、予測強度が「低」である場合の強度スコアを「0.1」として、スコアを生成する。例えば、生成部132は、対象「塩ラーメン」について、予測強度「高」である検索が「10」回であり、予測強度「中」である検索が「100」回であり、予測強度「低」である検索が「10」回である場合、スコアを「151(=5*10+1*100+0.1*10)」と算出する。
図1の例では、生成部132は、エリア別一覧ALT1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、生成部132は、Aエリアにおける対象「塩ラーメン」のスコアを「15000」と算出する。例えば、生成部132は、Bエリアにおける対象「塩ラーメン」のスコアを「20」と算出する。例えば、生成部132は、Cエリアにおける対象「塩ラーメン」のスコアを「800」と算出する。例えば、生成部132は、Dエリアにおける対象「塩ラーメン」のスコアを「200」と算出する。
生成部132は、所定の対象に関するスコアを生成する。例えば、生成部132は、所定の対象について、複数のエリアごとのスコアを生成(算出)する。例えば、生成部132は、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、生成部132は、対象「塩ラーメン」について、各エリアにおける検索回数を用いてスコアを生成する。例えば、生成部132は、検索が行われた位置や時間に基づいて各検索の重みを生成し、生成した各検索の重みを用いてスコアを生成する。
(予測部133)
予測部133は、種々の情報を予測する。予測部133は、記憶部120に記憶された情報に基づいて、種々の情報を予測する。予測部133は、事業者情報記憶部121やユーザ情報記憶部122や行動情報記憶部123や強度情報記憶部124に記憶された情報に基づいて、種々の情報を予測する。予測部133は、取得部131により取得された情報に基づいて、種々の情報を予測する。予測部133は、外部の情報処理装置から取得された情報に基づいて、種々の情報を予測する。予測部133は、端末装置10や事業者装置20から取得された情報に基づいて、種々の情報を予測する。予測部133は、生成部132により生成された情報に基づいて、種々の情報を予測する。
予測部133は、取得部131により取得された行動情報と強度情報とに基づいて、対象に関する需要レベルを予測する。予測部133は、行動情報と強度情報とにより算出されるスコアに基づいて、需要レベルを予測する。予測部133は、関連行動の回数と強度情報とにより算出されるスコアに基づいて、需要レベルを予測する。予測部133は、関連行動が行われた時間に応じて変動する重みに基づいて、前記需要レベルを予測する。
図1の例では、予測部133は、対象に関する関連行動時におけるユーザの対象に対する需要の強度を予測する。予測部133は、強度予測用情報を用いて、ユーザの対象に対する需要の強度を予測する。予測部133は、センサ情報を用いて、ユーザの対象に対する需要の強度を予測する。予測部133は、ユーザの関連行動から所定の期間内の強度予測用情報を用いて、関連行動時におけるユーザの対象に対する需要の強度を予測する。図1の例では、予測部133は、ユーザの関連行動から所定の期間内のセンサ情報を用いて、関連行動時におけるユーザの対象に対する需要の強度を予測する。
予測部133は、日時DT1におけるクエリ「塩ラーメン」を用いた検索行動であるユーザU1の関連行動におけるユーザU1の対象「塩ラーメン」に対する需要の強度を、日時DT1−1に検知されたユーザU1のセンサ情報SN1を用いて予測する。予測部133は、ユーザU1の空腹度合いを通常時と予測し、ユーザU1の対象「塩ラーメン」に対する需要の強度(予測強度)を強度ILV1と予測する。具体的には、予測部133は、ユーザU1の空腹度合いが通常時であるため、強度情報記憶部124に示すように、ユーザU1の対象「塩ラーメン」に対する需要の強度を「中」と予測する。
また、予測部133は、日時DT2におけるクエリ「スマホSH 赤」を用いた検索行動であるユーザU2の関連行動におけるユーザの対象「スマホSH」に対する需要の強度を、日時DT2−1に検知されたユーザU2のセンサ情報SN2を用いて予測する。予測部133は、ユーザU2の対象「スマホSH」に対する評価が、否定的な評価であると予測し、ユーザU2の対象「スマホSH」に対する需要の強度(予測強度)を強度ILV2と予測する。具体的には、予測部133は、ユーザU2が対象「スマホSH」に対して否定的な評価であるため、強度情報記憶部124に示すように、ユーザU2の対象「スマホSH」に対する需要の強度を「低」と予測する。
予測部133は、日時DT3における「塩ラーメン Aエリア」を用いた検索行動であるユーザU3の関連行動におけるユーザU3の対象「塩ラーメン」に対する需要の強度を、日時DT3−1に検知されたユーザU3のセンサ情報SN3を用いて予測する。予測部133は、ユーザU3の空腹度合いを空腹時と予測し、ユーザU3の対象「塩ラーメン」に対する需要の強度(予測強度)を強度ILV3と予測する。具体的には、予測部133は、ユーザU3の空腹度合いが通常時であるため、強度情報記憶部124に示すように、ユーザU3の対象「塩ラーメン」に対する需要の強度を「高」と予測する。
図1の例では、予測部133は、生成したスコアに関する情報に基づいて、需要を予測する。予測部133は、需要一覧DLT1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとの需要を予測する。例えば、予測部133は、対象について、各エリアに対応するスコアと、所定の閾値との比較に基づいて、エリアごとの需要を予測する。予測部133は、第1閾値「10000」と、第2閾値「750」とを用いて、エリアごとの需要を予測する。例えば、予測部133は、スコアが第1閾値以上であるエリアについては、その対象の需要が「高」であると予測する。例えば、予測部133は、スコアが第2閾値以上であるエリアについては、その対象の需要が「中」であると予測する。例えば、予測部133は、スコアが第2閾値未満であるエリアについては、その対象の需要が「低」であると予測する。
予測部133は、Aエリアにおける対象「塩ラーメン」のスコアが「15000」であり、第1閾値以上であるため、Aエリアにおける対象「塩ラーメン」の需要を「高」と予測する。また、予測部133は、Bエリアにおける対象「塩ラーメン」のスコアが「20」であり、第1閾値未満、第2閾値以上であるため、Bエリアにおける対象「塩ラーメン」の需要を「低」と予測する。また、予測部133は、Cエリアにおける対象「塩ラーメン」のスコアが「800」であり、第2閾値未満であるため、Cエリアにおける対象「塩ラーメン」の需要を「中」と予測する。また、予測部133は、Dエリアにおける対象「塩ラーメン」のスコアが「200」であり、第2閾値未満であるため、Dエリアにおける対象「塩ラーメン」の需要を「低」と予測する。
予測部133は、取得部131により取得されたクエリと位置情報とに基づいて、クエリに対応する対象に関する需要を予測する。予測部133は、クエリと、位置情報とにより算出されるスコアに基づいて、対象に関する需要を予測する。予測部133は、クエリと、クエリとの関連性に応じて変動する位置情報の重みとに基づいて、対象に関する需要を予測する。
予測部133は、クエリと、クエリによる検索が行われた時間に応じて変動する位置情報の重みとに基づいて、対象に関する需要を予測する。予測部133は、クエリと位置情報とに基づいて、クエリに対応する商品であって、位置情報に対応するエリアにおいて提供される商品に関する需要を予測する。予測部133は、クエリと位置情報とに基づいて、クエリが示す商品に関連する関連商品であって、位置情報に対応するエリアにおける関連商品に関する需要を予測する。
(提供部134)
提供部134は、各種情報を提供する。提供部134は、外部の情報処理装置へ各種情報を提供する。提供部134は、端末装置10や事業者装置20等の外部の情報処理装置に各種情報を提供する。提供部134は、端末装置10や事業者装置20に各種情報を送信する。提供部134は、端末装置10や事業者装置20に各種情報を配信する。提供部134は、取得部131により取得された各種情報に基づいて、種々の情報を提供する。提供部134は、生成部132により生成された各種情報に基づいて、種々の情報を提供する。提供部134は、予測部133により予測された各種情報に基づいて、種々の情報を提供する。例えば、提供部134は、端末装置10へクエリに対応する検索結果を示す情報を提供する。例えば、提供部134は、事業者装置20へ需要情報を提供する。
提供部134は、予測部133により予測された需要レベルに関する情報を提供する。提供部134は、需要レベルに関する情報を、対象に関する事業者へ提供する。例えば、提供部134は、対象に関する需要を示す情報を、対象に関する事業者へ提供する。例えば、提供部134は、商品に関する需要を示す情報を、位置情報に対応するエリアに位置する事業者へ提供する。
図1の例では、提供部134は、ラーメン店MAの管理者M1が利用する事業者装置20に需要情報を提供する。提供部134は、ラーメン店MAの管理者M1が利用する事業者装置20に需要情報を送信する。提供部134は、事業者装置20にAエリアでは塩ラーメンの需要が高いことを示す情報を提供する。
〔3.情報処理のフロー〕
ここで、図9を用いて、実施形態に係る情報処理装置100による情報処理の手順について説明する。図9は、実施形態に係る情報処理の一例を示すフローチャートである。
図9に示すように、情報処理装置100は、ユーザによる対象に関連する関連行動を示す行動情報を取得する(ステップS101)。図1の例では、情報処理装置100は、日時DT1において、端末装置10−1からクエリ「塩ラーメン」と位置情報LC1とを取得する。図1の例では、情報処理装置100は、日時DT2において、端末装置10−2からクエリ「スマホSH 赤」と位置情報LC2とを取得する。図1の例では、情報処理装置100は、日時DT3において、端末装置10−3からクエリ「塩ラーメン Aエリア」と位置情報LC3とを取得する。図1の例では、情報処理装置100は、日時DT4において、端末装置10−4からクエリ「天気」と位置情報LC4とを取得する。図1の例では、情報処理装置100は、日時DT5において、端末装置10−5からクエリ「スマホSH 高い」と位置情報LC5とを取得する。
また、情報処理装置100は、行動時におけるユーザの対象に対する需要の度合いに関連する強度情報を取得する(ステップS102)。図1の例では、情報処理装置100は、日時DT1−1において、所定のセンサにより検知されたユーザU1の画像情報であるセンサ情報SN1を端末装置10−1から取得する。図1の例では、情報処理装置100は、日時DT2−1において、所定のセンサにより検知されたユーザU2の音声情報であるセンサ情報SN2を端末装置10−2から取得する。図1の例では、情報処理装置100は、日時DT3−1において、所定のセンサにより検知されたユーザU3の生体情報(血糖値情報)であるセンサ情報SN3を端末装置10−3から取得する。図1の例では、情報処理装置100は、日時DT2−4において、所定のセンサにより検知されたユーザU4の音声情報であるセンサ情報SN4を端末装置10−4から取得する。
そして、情報処理装置100は、行動情報と強度情報とに基づいて、対象に関する需要レベルを予測する(ステップS103)。図1の例では、情報処理装置100は、需要一覧DLT1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとの需要レベルを予測する。
そして、情報処理装置100は、所定の対象に関する需要情報を提供する(ステップS104)。図1の例では、情報処理装置100は、ラーメン店MAの管理者M1が利用する事業者装置20にAエリアでは塩ラーメンの需要レベルが「高」であり、Aエリアでの塩ラーメンの需要が高いことを示す情報を提供する。
〔4.他の情報処理例〕
なお、情報処理装置100は、上記に限らず、種々の情報を適宜用いて処理を行ってもよい。この点について図10を用いて説明する。図10は、実施形態に係る情報処理の他の一例を示す図である。具体的には、図10は、情報処理装置100がユーザの行動情報である検索情報に含まれるクエリと、ユーザの検索時の位置情報とに基づいて、対象に関する需要を予測する場合を示す。なお、図10では、図1と同様の点についての説明は適宜省略する。
まず、情報処理装置100は、ユーザU1が利用する端末装置10−1からクエリと位置情報とを取得する(ステップS11−1)。図10の例では、情報処理装置100は、日時DT1において、端末装置10−1からクエリ「塩ラーメン」と位置情報LC1とを取得する。図10の例では、位置LC1は、Aエリア内の位置であるものとする。
そして、情報処理装置100は、クエリ「塩ラーメン」に対応する検索結果を端末装置10−1へ提供する。また、情報処理装置100は、日時DT1に位置LC1において、ユーザU1がクエリ「塩ラーメン」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。図10の例では、情報処理装置100は、日時DT1にAエリア内の位置LC1において、ユーザU1がクエリ「塩ラーメン」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU2が利用する端末装置10−2からクエリと位置情報とを取得する(ステップS11−2)。図10の例では、情報処理装置100は、日時DT2において、端末装置10−2からクエリ「スマホSH 赤」と位置情報LC2とを取得する。そして、情報処理装置100は、クエリ「スマホSH 赤」に対応する検索結果を端末装置10−2へ提供する。また、情報処理装置100は、日時DT2に位置LC2において、ユーザU2がクエリ「スマホSH 赤」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU3が利用する端末装置10−3からクエリと位置情報とを取得する(ステップS11−3)。図10の例では、情報処理装置100は、日時DT3において、端末装置10−3からクエリ「塩ラーメン Aエリア」と位置情報LC3とを取得する。図10の例では、位置LC3は、Aエリア内の位置であるものとする。そして、情報処理装置100は、クエリ「塩ラーメン Aエリア」に対応する検索結果を端末装置10−3へ提供する。また、情報処理装置100は、日時DT3にAエリア内の位置LC3において、ユーザU3がクエリ「塩ラーメン Aエリア」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU4が利用する端末装置10−4からクエリと位置情報とを取得する(ステップS11−4)。図10の例では、情報処理装置100は、日時DT4において、端末装置10−4からクエリ「天気」と位置情報LC4とを取得する。そして、情報処理装置100は、クエリ「天気」に対応する検索結果を端末装置10−4へ提供する。また、情報処理装置100は、日時DT4に位置LC4において、ユーザU4がクエリ「天気」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
また、情報処理装置100は、ユーザU5が利用する端末装置10−5からクエリと位置情報とを取得する(ステップS11−5)。図10の例では、情報処理装置100は、日時DT5において、端末装置10−5からクエリ「スマホSH 高い」と位置情報LC5とを取得する。そして、情報処理装置100は、クエリ「スマホSH 高い」に対応する検索結果を端末装置10−5へ提供する。また、情報処理装置100は、日時DT5に位置LC5において、ユーザU5がクエリ「スマホSH 高い」を用いて検索を行ったことを示す行動情報を行動情報記憶部123に記憶する。
以下、ステップS11−1〜S11−5を区別せずに説明する場合、ステップS11と総称する。また、ステップS11−1〜S11−5に限らず、各ユーザの検索は、複数回行われてもよい。なお、図10では、5人のユーザU1〜U5を図示するが、情報処理装置100は、ユーザU1〜U5に限らず、多数のユーザ(例えば、100万ユーザや1000万ユーザ等)が検索に用いたクエリを取得する。
これにより、情報処理装置100は、ユーザが検索に用いたクエリと、クエリによる検索時のユーザの位置情報との組合せを収集する(ステップS12)。図10の例では、情報処理装置100は、行動情報記憶部123に示すように、ユーザU1〜U5等が検索に用いたクエリと、クエリによる検索時のユーザの位置LC1〜LC5等との組合せを収集する。
そして、情報処理装置100は、所定の対象に関するスコアを生成する(ステップS13)。例えば、情報処理装置100は、所定の対象について、複数のエリアごとのスコアを生成(算出)する。図10の例では、情報処理装置100は、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、情報処理装置100は、対象「塩ラーメン」について、各エリアにおける検索回数を用いてスコアを生成する。なお、情報処理装置100は、検索が行われた位置や時間に基づいて各検索の重みを生成し、生成した各検索に重みを用いてスコアを生成してもよいが、詳細は後述する。図10の例では、説明を簡単にするために、情報処理装置100は、各検索の重みを「1」として、各エリアにおける対象「塩ラーメン」のスコアを生成する。すなわち、図10の例では、情報処理装置100は、対象「塩ラーメン」について、各エリアにおける検索回数の合算をスコアとして生成する。
図10の例では、情報処理装置100は、エリア別一覧ADL1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとのスコアを生成する。例えば、情報処理装置100は、Aエリアにおける対象「塩ラーメン」のスコアを「10000」と算出する。例えば、情報処理装置100は、Bエリアにおける対象「塩ラーメン」のスコアを「500」と算出する。例えば、情報処理装置100は、Cエリアにおける対象「塩ラーメン」のスコアを「10」と算出する。例えば、情報処理装置100は、Dエリアにおける対象「塩ラーメン」のスコアを「200」と算出する。
そして、情報処理装置100は、生成したスコアに関する情報に基づいて、需要を予測する(ステップS14)。図10の例では、情報処理装置100は、需要一覧DDL1に示すように、対象「塩ラーメン」について、Aエリア〜Dエリア等の複数のエリアごとの需要を予測する。例えば、情報処理装置100は、対象について、各エリアに対応するスコアと、所定の閾値との比較に基づいて、エリアごとの需要を予測する。図10の例では、情報処理装置100は、第1閾値「5000」と、第2閾値「500」とを用いて、エリアごとの需要を予測する。例えば、情報処理装置100は、スコアが第1閾値以上であるエリアについては、その対象の需要が「高」であると予測する。例えば、情報処理装置100は、スコアが第2閾値以上であるエリアについては、その対象の需要が「中」であると予測する。例えば、情報処理装置100は、スコアが第2閾値未満であるエリアについては、その対象の需要が「低」であると予測する。
図10の例では、情報処理装置100は、Aエリアにおける対象「塩ラーメン」のスコアが「10000」であり、第1閾値以上であるため、Aエリアにおける対象「塩ラーメン」の需要を「高」と予測する。また、情報処理装置100は、Bエリアにおける対象「塩ラーメン」のスコアが「500」であり、第1閾値未満、第2閾値以上であるため、Bエリアにおける対象「塩ラーメン」の需要を「中」と予測する。また、情報処理装置100は、Cエリアにおける対象「塩ラーメン」のスコアが「10」であり、第2閾値未満であるため、Cエリアにおける対象「塩ラーメン」の需要を「低」と予測する。また、情報処理装置100は、Dエリアにおける対象「塩ラーメン」のスコアが「200」であり、第2閾値未満であるため、Dエリアにおける対象「塩ラーメン」の需要を「低」と予測する。
そして、情報処理装置100は、事業者に需要情報を提供する(ステップS15)。図10の例では、情報処理装置100は、ラーメン店MAの管理者M1が利用する事業者装置20に需要情報を提供する。ここで、ラーメン店MAは、Aエリアに位置し、しょうゆラーメンRMを提供する飲食店である。そのため、情報処理装置100は、事業者装置20にAエリアでは塩ラーメンの需要が高いことを示す情報を提供する。これにより、ラーメン店MAの管理者M1は、Aエリアにおいては塩ラーメンを提供した方が利益を上げる可能性が高いことを把握することができるため、提供物をしょうゆラーメンRMから塩ラーメンへ変更したり、提供物として塩ラーメンを追加したりする判断を行うことができる。なお、情報処理装置100は、需要一覧DDL1を事業者装置20に提供してもよい。これにより、ラーメン店MAの管理者M1は、Aエリアにおける塩ラーメンの需要が他のエリアよりも相対的に高いことを把握することができるため、より適切な判断を行うことができる。
このように、情報処理装置100は、ユーザが検索に用いたクエリと、クエリによる検索時のユーザの位置情報とに基づいて、クエリに対応する対象に関する需要を予測する。図10の例では、情報処理装置100は、クエリと位置情報とに基づいて、位置情報に対応するエリアにおけるクエリに対応する対象に関する需要を予測する。そして、情報処理装置100は、予測した情報を事業者に提供する。これにより、情報の提供を受けた事業者は、提供された情報に基づいて、自身の事業についてより適切な判断を行うことができる。
〔5.位置に応じた重みの変動〕
図1や図10の例では、説明を簡単にするために、各検索の重みを「1」としてスコアを生成(算出)する場合を示したが、情報処理装置100は、検索された位置に応じて重みを変動させてスコアを生成してもよい。この点について、図11を用いて説明する。実施形態に係る情報処理の他の一例を示す図である。なお、図11では、図1や図10と同様の点についての説明は適宜省略する。
図11中の行動情報記憶部123に示すように、同様のクエリ「スマホSH」を用いて検索を行ったユーザU2、U5の位置がスマホSHと関連する位置との近さに応じて、情報処理装置100は、各検索の重みを変動させてもよい。情報処理装置100は、ユーザの位置に応じて、各検索の重みを決定する(ステップS21)。図11の例では、情報処理装置100は、重み一覧WL21に示すように、対象「スマホSH」について各検索の重みを決定する。
例えば、情報処理装置100は、ユーザU2がスマホSHの販売店の範囲内でクエリ「スマホSH」を用いて検索を行っているため、ユーザU2の検索の重みを大きくする。具体的には、情報処理装置100は、ユーザU2がスマホSHの販売店の範囲内でクエリ「スマホSH」を用いて検索を行っているため、ユーザU2の検索の重みを「1」よりも大きい「1.5」とする。
また、例えば、情報処理装置100は、ユーザU5がスマホSHの販売店の範囲外でクエリ「スマホSH」を用いて検索を行っているため、ユーザU5の検索の重みを小さくする。具体的には、情報処理装置100は、ユーザU5がスマホSHの販売店の範囲外でクエリ「スマホSH」を用いて検索を行っているため、ユーザU5の検索の重みを「1」よりも小さい「0.2」とする。
そして、情報処理装置100は、対象「スマホSH」についてスコアを生成する(ステップS22)。図11の例では、情報処理装置100は、数式FC21に示すように、対象「スマホSH」について各検索の重みを合算することによりスコアを生成(算出)する。
また、例えば、情報処理装置100は、重みが大きい検索において対象に関する「クエリ」とともに用いられたクエリの情報を用いて需要を予測してもよい。例えば、情報処理装置100は、図11の例において、重みが大きい検索において第1クエリ「スマホSH」とともに用いられた第2クエリ「赤」を対象「スマホSH」について需要が高いと予測してもよい。この場合、情報処理装置100は、対象「スマホSH」について、色「赤」の需要が高いと予測してもよい。また、情報処理装置100は、対象「スマホSH」について、色「赤」の需要が高いことを示す情報を、対象「スマホSH」の製造元(メーカ)へ提供してもよい。
これにより、情報処理装置100から情報提供を受けたメーカは、自身が提供する商品または商品のカテゴリについて、新商品等の開発やマーケティング等を適切に行うことができる。
〔6.価格予測〕
また、例えば、情報処理装置100は、事業者へ種々の情報を提供してもよい。例えば、情報処理装置100は、事業者が提供する商品について、適切と予測される価格を示す情報を提供してもよい。この点について、図12を用いて説明する。図12は、実施形態に係る情報処理の他の一例を示す図である。なお、図12では、図1や図10と同様の点についての説明は適宜省略する。
また、図12の例では、情報提供を受ける事業者が、Aエリアで塩ラーメンを提供するラーメン店MXである場合を示す。例えば、図12では、情報処理装置100は、ラーメン店MXからAエリアにおける対象「ラーメン」に関する需要に関する情報の要求を取得し、取得した要求が示すエリアにおける対象に対応する需要に関する情報をラーメン店MXに提供する。例えば、情報処理装置100は、ラーメン店MXから、提供物が塩ラーメンであり、価格が「800」円であることを示す情報を取得済みであるものとする。
図12の例では、情報処理装置100は、事業者が提供する商品について、適切な価格を予測する(ステップS31)。ここで、情報処理装置100は、図1と同様に需要一覧DDL1に示すように、対象「塩ラーメン」について、Aエリアにおける需要が高いと予測するものとする。また、図12の例では、情報処理装置100は、需要状況DM31に示すように、対象「塩ラーメン」について、Aエリアにおける塩ラーメンを提供するお店における回転率等が高いことを示す実績情報RS31を取得しているものとする。そのため、情報処理装置100は、ラーメン店MXが提供する塩ラーメンについて、値上げが可能であると予測する。例えば、情報処理装置100は、Aエリアにおいて塩ラーメンを提供する店舗の塩ラーメンの価格の平均を値上げ後の価格として予測してもよい。また、例えば、情報処理装置100は、Aエリアにおいて塩ラーメンを提供する店舗のうち、回転率が所定の閾値以上の店舗、すなわち繁盛している店舗が提供する塩ラーメンの価格の平均を値上げ後の価格として予測してもよい。
そして、情報処理装置100は、事業者に情報を提供する(ステップS32)。例えば、情報処理装置100は、ラーメン店MXの管理者M31が利用する事業者装置20に情報を提供する。図12の例では、情報処理装置100は、ラーメン店MXが提供する塩ラーメンについて値上げが可能であることを示す情報を提供する。例えば、情報処理装置100は、ラーメン店MXが提供する塩ラーメンの価格を「800」円から「1000」円に値上げ可能であることを示す情報を提供する。これにより、ラーメン店MXの管理者M31は、値上げを行うことが可能であることを把握することができるため、適切な判断を行うことができる。
〔7.効果〕
上述してきたように、実施形態に係る情報処理装置100は、取得部131と、予測部133とを有する。取得部131は、ユーザによる対象に関連する関連行動を示す行動情報と、関連行動時におけるユーザの対象に対する需要の度合いに関連する強度情報とを取得する。予測部133は、取得部131により取得された行動情報と強度情報とに基づいて、対象に関する需要レベルを予測する。
このように、実施形態に係る情報処理装置100は、ユーザによる対象に関連する関連行動を示す行動情報と、関連行動時におけるユーザの対象に対する需要の度合いに関連する強度情報とに基づいて、対象に関する需要レベルを予測することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、センサにより検知されるセンサ情報を含む強度情報を取得する。
このように、実施形態に係る情報処理装置100は、センサにより検知されるセンサ情報を含む強度情報を取得することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、関連行動時におけるユーザの状態を示すユーザ情報を含む強度情報を取得する。
このように、実施形態に係る情報処理装置100は、関連行動時におけるユーザの状態を示すユーザ情報を含む強度情報を取得することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、予測部133は、行動情報と強度情報とにより算出されるスコアに基づいて、需要レベルを予測する。
このように、実施形態に係る情報処理装置100は、行動情報と強度情報とにより算出されるスコアに基づいて、需要レベルを予測することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、予測部133は、関連行動の回数と強度情報とにより算出されるスコアに基づいて、需要レベルを予測する。
このように、実施形態に係る情報処理装置100は、関連行動の回数と強度情報とにより算出されるスコアに基づいて、需要レベルを予測することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、関連行動時におけるユーザの位置情報を取得する。予測部133は、位置情報に対応するエリアにおける需要レベルを予測する。
このように、実施形態に係る情報処理装置100は、関連行動時におけるユーザの位置情報に対応するエリアにおける需要レベルを予測することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、対象に関してユーザが入力した入力情報を含む行動情報を取得する。
このように、実施形態に係る情報処理装置100は、対象に関してユーザが入力した入力情報を含む行動情報を取得することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、対象に関してユーザが行った検索行動を示す検索情報を含む行動情報を取得する。
このように、実施形態に係る情報処理装置100は、対象に関してユーザが行った検索行動を示す検索情報を含む行動情報を取得することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、ユーザが入力した対象に関連するクエリを含む行動情報を取得する。
このように、実施形態に係る情報処理装置100は、ユーザが入力した対象に関連するクエリを含む行動情報を取得することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100において、取得部131は、ユーザが入力した対象に対する需要の度合いに関連する入力情報を含む強度情報を取得する。
このように、実施形態に係る情報処理装置100は、ユーザが入力した対象に対する需要の度合いに関連する入力情報を含む強度情報を取得することにより、需要を適切に予測することができる。
また、実施形態に係る情報処理装置100は、提供部134を有する。提供部134は、予測部133により予測された需要レベルに関する情報を提供する。
このように、実施形態に係る情報処理装置100は、需要レベルに関する情報を提供することにより、需要に関する情報を適切に提供することができる。
また、実施形態に係る情報処理装置100において、提供部134は、需要レベルに関する情報を、対象に関する事業者へ提供する。
このように、実施形態に係る情報処理装置100は、需要レベルに関する情報を、対象に関する事業者へ提供することにより、事業者へ需要に関する情報を適切に提供することができる。
〔8.ハードウェア構成〕
上述してきた実施形態に係る情報処理装置100は、例えば図13に示すような構成のコンピュータ1000によって実現される。図13は、情報処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD(Hard Disk Drive)1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、及びメディアインターフェイス(I/F)1700を有する。
CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インターフェイス1500は、ネットワークNを介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータをネットワークNを介して他の機器へ提供する。
CPU1100は、入出力インターフェイス1600を介して、ディスプレイやプリンタ等の出力装置、及び、キーボードやマウス等の入力装置を制御する。CPU1100は、入出力インターフェイス1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インターフェイス1600を介して出力装置へ出力する。
メディアインターフェイス1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインターフェイス1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
例えば、コンピュータ1000が実施形態に係る情報処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部130の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置からネットワークNを介してこれらのプログラムを取得してもよい。
以上、本願の実施形態を図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の行に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
〔9.その他〕
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に生成することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
また、上述してきた実施形態に記載された各処理は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、取得部は、取得手段や取得回路に読み替えることができる。