JP6918616B2 - 計測装置 - Google Patents

計測装置 Download PDF

Info

Publication number
JP6918616B2
JP6918616B2 JP2017146914A JP2017146914A JP6918616B2 JP 6918616 B2 JP6918616 B2 JP 6918616B2 JP 2017146914 A JP2017146914 A JP 2017146914A JP 2017146914 A JP2017146914 A JP 2017146914A JP 6918616 B2 JP6918616 B2 JP 6918616B2
Authority
JP
Japan
Prior art keywords
light
measuring unit
light emitting
emitting element
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017146914A
Other languages
English (en)
Other versions
JP2019024934A (ja
Inventor
智夫 五明
智夫 五明
敬佑 國井
敬佑 國井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2017146914A priority Critical patent/JP6918616B2/ja
Publication of JP2019024934A publication Critical patent/JP2019024934A/ja
Application granted granted Critical
Publication of JP6918616B2 publication Critical patent/JP6918616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本明細書に開示する技術は、計測装置に関する。
特許文献1には、管(血管)を流れる流体(血液)中の粒子(赤血球)の速度を計測する計測装置が開示されている。この計測装置は、発光素子と受光素子と処理部を備えている。発光素子は、管を流れる流体に向けて光を発光する。受光素子は、発光素子が発光した光が流体中の粒子で散乱することによって生じた散乱光を受光する。処理部は、受光素子が受光した散乱光の周波数に基づいて流体中の粒子の速度を演算する。
特開2008−272085号公報
特許文献1の計測装置では、管を流れる流体の流速が遅くなると、流体中の粒子の速度の実測値と理論値が乖離することがあり、粒子の速度を精度良く計測できないことがあった。この原因は、流体中の粒子がブラウン運動をしており、発光素子が発光した光が流体中の粒子で散乱するときに粒子のブラウン運動の影響を受けるからであると考えられる。そこで本明細書は、流体中の粒子の速度を精度良く計測することができる技術を提供する。
本明細書に開示する計測装置は、管を流れる流体中の粒子の速度を計測する。この計測装置は、前記管の軸方向に沿って並んでいる発光素子と受光素子を備えている第1計測部と、前記管の軸方向と直交する方向に沿って並んでいる発光素子と受光素子を備えている第2計測部と、処理部を備えている。前記第1計測部の発光素子が前記管を流れる流体に向けて光を発光し、その光が流体中の粒子で散乱し、それによって生じた散乱光のうち前記第1計測部に向かって進行する第1散乱光を前記第1計測部の受光素子が受光する。また、前記第2計測部の発光素子が前記管を流れる流体に向けて光を発光し、その光が流体中の粒子で散乱し、それによって生じた散乱光のうち前記第2計測部に向かって進行する第2散乱光を前記第2計測部の受光素子が受光する。前記処理部が、前記第1計測部の受光素子が受光した第1散乱光の周波数と前記第2計測部の受光素子が受光した第2散乱光の周波数に基づいて前記管の軸方向における流体中の粒子の速度を演算する。
管を流れる流体中の粒子はブラウン運動をしている。そのため、発光素子が発光した光が流体中の粒子で散乱するときに粒子のブラウン運動の影響を受けることになる。上記の構成では、第1計測部の発光素子と第2計測部の発光素子が発光した光が粒子で散乱するときに粒子のブラウン運動の影響を受けることになる。したがって、光の散乱によって生じる第1散乱光と第2散乱光が粒子のブラウン運動の影響を受けることになる。その第1散乱光を第1計測部の受光素子が受光し、第2散乱光を第2計測部の受光素子が受光する。上記の構成によれば、第1計測部の発光素子と受光素子が管の軸方向に沿って並んでいるので、第1計測部によって管の軸方向における計測を行うことができる。また、第2計測部の発光素子と受光素子が管の軸方向と直交する方向に沿って並んでいるので、第2計測部によって管の軸方向と直交する方向における計測を行うことができる。そして、処理部が第1散乱光の周波数と第2散乱光の周波数に基づいて管の軸方向における流体中の粒子の速度を演算するので、異なる方向(管の軸方向とそれに直交する方向)に進行する第1散乱光と第2散乱光を考慮することによって粒子のブラウン運動の影響を除去することができる。ブラウン運動の影響を除去することによって、流体中の粒子の速度を精度良く計測することができる。
上記の計測装置は、前記管を挟んで向かい合っている発光素子と受光素子を備えている第3計測部を更に備えていてもよい。前記第3計測部の発光素子が前記管を流れる流体に向けて光を発光し、その光が前記管と流体を通過し、前記管と流体を通過した光を前記第3計測部の受光素子が受光してもよい。また、前記処理部が、前記第3計測部の受光素子が受光した光の受光量に基づいて前記管を流れる流体中の散乱粒子密度を演算してもよい。
流体中の散乱粒子密度は流体中の粒子の速度を演算する際に影響を与えるので、この散乱粒子密度を演算することによって流体中の粒子の速度を更に精度良く求めることができる。
上記の計測装置では、前記第1計測部と前記第2計測部が、発光素子を共有していてもよい。
この構成では、第1計測部と第2計測部の共有の発光素子が発光した光が流体中の粒子で散乱し、それによって生じた散乱光のうち第1計測部に向かって進行する第1散乱光を第1計測部の受光素子が受光する。また、光の散乱によって生じた散乱光のうち第2計測部に向かって進行する第2散乱光を第2計測部の受光素子が受光する。したがって、第1計測部と第2計測部の共有の発光素子による一度の発光のみで第1散乱光と第2計測部を受光することができる。第1計測部と第2計測部で発光素子を共有することによって、計測装置をコンパクトにすることができ、コンパクトな計測装置によって流体中の粒子の速度を精度良く計測することができる。
上記の計測装置では、前記第1計測部と前記第2計測部が、受光素子を共有していてもよい。
この構成では、第1計測部の発光素子が発光した光の散乱によって生じる第1散乱光を第1計測部と第2計測部の共有の受光素子が受光する。また、第2計測部の発光素子が発光した光の散乱によって生じる第2散乱光を第1計測部と第2計測部の共有の受光素子が受光する。共有の受光素子が第1散乱光と第2散乱光の両方を受光する。この構成によれば、第1計測部と第2計測部で受光素子を共有することによって、計測装置をコンパクトにすることができ、コンパクトな計測装置によって流体中の粒子の速度を精度良く計測することができる。
上記の計測装置では、前記第1計測部と前記第3計測部が、発光素子を共有しており、前記第2計測部と前記第3計測部が、受光素子を共有していてもよい。
この構成では、第1計測部と第3計測部の共有の発光素子が発光した光の一部が流体中の粒子で散乱して散乱光が生じると共に、共有の発光素子が発光した光の他の一部が管と流体を通過する。光の散乱で生じた散乱光のうち第1計測部に向かって進行する第1散乱光を第1計測部の受光素子が受光する。また、管と流体を通過した光を第2計測部と第3計測部の共有の受光素子が受光する。したがって、第1計測部と第3計測部の共有の発光素子による一度の発光のみで第1散乱光と通過光を受光することができる。また、第2計測部の発光素子が発光した光の散乱によって生じる第2散乱光を第2計測部と第3計測部の共有の受光素子が受光する。第2計測部と第3計測部の共有の受光素子が、通過光と第2散乱光の両方を受光する。この構成によれば、第1計測部と第3計測部で発光素子を共有することによって、計測装置をコンパクトにすることができる。また、第2計測部と第3計測部で受光素子を共有することによって、計測装置をコンパクトにすることができる。よって、コンパクトな計測装置によって流体中の粒子の速度を精度良く計測することができる。
あるいは、上記の計測装置では、前記第2計測部と前記第3計測部が、発光素子を共有しており、前記第1計測部と前記第3計測部が、受光素子を共有していてもよい。
この構成では、第2計測部と第3計測部の共有の発光素子が発光した光の一部が流体中の粒子で散乱して散乱光が生じると共に、共有の発光素子が発光した光の他の一部が管と流体を通過する。光の散乱で生じた散乱光のうち第2計測部に向かって進行する第2散乱光を第2計測部の受光素子が受光する。また、管と流体を通過した光を第1計測部と第3計測部の共有の受光素子が受光する。したがって、第2計測部と第3計測部の共有の発光素子による一度の発光のみで第2散乱光と通過光を受光することができる。また、第1計測部の発光素子が発光した光の散乱によって生じる第1散乱光を第1計測部と第3計測部の共有の受光素子が受光する。第1計測部と第3計測部の共有の受光素子が、通過光と第1散乱光の両方を受光する。この構成によれば、第2計測部と第3計測部で発光素子を共有することによって、計測装置をコンパクトにすることができる。また、第1計測部と第3計測部で受光素子を共有することによって、計測装置をコンパクトにすることができる。よって、コンパクトな計測装置によって流体中の粒子の速度を精度良く計測することができる。
また、上記の計測装置では、前記処理部が、第1散乱光の周波数に基づいて前記管の軸方向における流体中の粒子の第1速度を演算し、第2散乱光の周波数に基づいて前記管の軸方向と直交する方向における流体中の粒子の第2速度を演算し、第1速度から第2速度を差し引くことによって流体中の粒子のブラウン運動の影響を除去した粒子の速度を演算してもよい。
この構成によれば、第1速度と第2速度を用いた簡易な演算によって流体中の粒子のブラウン運動の影響を除去することができ、粒子の速度の精度良い計測を簡易に行うことができる。
第1実施例に係る管と計測装置の平面図である。 図1のII−II断面図である。 図1のIII−III断面図である。 実施例に係る計測装置のブロック図である。 第2実施例に係る管と計測装置の平面図である。 図5のVI−VI断面図である。 図5のVII−VII断面図である。 第3実施例に係る管と計測装置の平面図である。 図8のIX−IX断面図である。 図8のX−X断面図である。 第4実施例に係る管と計測装置の平面図である。 図11のXII−XII断面図である。 図11のXIII−XIII断面図である。
[第1実施例]
実施例に係る計測装置1について図面を参照して説明する。第1実施例に係る計測装置1は、図1、図2及び図3に示すように、透明な管40に固定されて使用される。管40内には流路42が形成されており、その流路42に流体Fが流れている。流体Fは管40の軸方向(長手方向)に沿って流れている。管40を流れる流体F中には無数の粒子Rが存在している。無数の粒子Rは流体F中に拡散して存在している。
計測装置1は、管40を流れる流体F中の粒子Rの速度vを計測する装置である。これによって、流体Fの流速を知ることができる。管40を流れる流体Fは、例えば血液である。流体F中の粒子Rは、例えば血液中の赤血球である。計測装置1によって血液中の赤血球の速度を計測することができる。これによって、血液の流速を知ることができる。
医療現場では、患者の体内を流れる血液を体外に送り出し、体外に送り出した血液を再び体内に送り戻す体外循環が行われることがある。この体外循環では、体外循環用の管が患者の血管に接続され、患者の血管を流れる血液が体外循環用の管に流入し、体外循環用の管を流れた血液が再び患者の血管に戻される。実施例に係る計測装置1によって体外循環用の管40を流れる血液(流体F)中の赤血球(粒子R)の速度vを計測することができる。
図1、図2及び図3に示すように、計測装置1は、第1計測部11と第2計測部12を備えている。第1計測部11と第2計測部12は、管40に固定されて使用される。管40の外周面41に第1計測部11と第2計測部12が取り付けられる。第1計測部11と第2計測部12は、図示しない固定具によって管40に固定される。管40の断面形状は略楕円形である。
まず第1計測部11について説明する。第1計測部11は、第1発光素子21と第1受光素子31と第1カバー部材51を備えている。第1発光素子21と第1受光素子31が第1カバー部材51によって覆われている。第1発光素子21と第1受光素子31は、管40の軸方向(長手方向)に沿って並んで配置されている。すなわち、第1発光素子21と第1受光素子31は、流体Fの流れ方向に沿って並んで配置されている。第1発光素子21が第1受光素子31よりも流体Fの流れ方向の上流側に配置されている。第1受光素子31が第1発光素子21よりも流れ方向の下流側に配置されている。
第1発光素子21は、管40の外周面41と向かい合うように配置される。第1発光素子21は、発光面211を備えている。第1発光素子21の発光面211が管40の外周面41と対面している。第1発光素子21は、例えばレーザーダイオード(LD:Laser Diode)である。第1発光素子21は、管40を流れる流体Fに向けて第1レーザー光L1を発光する(図2参照)。第1発光素子21の発光面211から第1レーザー光L1が発光される。発光面211は、第1カバー部材51で覆われていない。第1発光素子21が発光した第1レーザー光L1は、管40を流れる流体F中に進行してゆく。また、第1発光素子21が発光した第1レーザー光L1は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、第1計測部11の第1受光素子31に向かって進行する第1散乱光S1が存在する。すなわち、管40の軸方向(長手方向)に沿って進行する第1散乱光S1が存在する。
第1受光素子31は、管40の外周面41と向かい合うように配置される。第1受光素子31は、受光面311を備えている。第1受光素子31の受光面311が管40の外周面41と対面している。第1受光素子31は、例えばフォトダイオード(PD:Photo Diode)である。第1受光素子31は、流体F中の粒子Rで散乱して第1受光素子31に向かって進行する第1散乱光S1を受光する。すなわち、第1受光素子31は、管40の軸方向(長手方向)に沿って進行する第1散乱光S1を受光する。第1受光素子31の受光面311から第1散乱光S1が受光される。受光面311は、第1カバー部材51で覆われていない。
第1カバー部材51は、第1発光素子21が発光した第1レーザー光L1が管40以外の第1計測部11の周囲に広がらないように第1発光素子21を覆っている。また、第1カバー部材51は、管40以外の第1計測部11の周囲から第1受光素子31に余分な光が入射しないように第1受光素子31を覆っている。
次に第2計測部12について説明する。第2計測部12は、第2発光素子22と第2受光素子32と第2カバー部材52を備えている。第2発光素子22と第2受光素子32が第2カバー部材52によって覆われている。第2発光素子22と第2受光素子32は、管40の周方向に沿って並んで配置されている。すなわち、第2発光素子22と第2受光素子32は、管40の軸方向(流体Fの流れ方向)と直交する方向に沿って並んで配置されている。第2計測部12の第2発光素子22と第2受光素子32が並ぶ方向は、第1計測部11の第1発光素子21と第1受光素子31が並ぶ方向と直交している。
第2発光素子22は、管40の外周面41と向かい合うように配置される。第2発光素子22は、発光面221を備えている。第2発光素子22の発光面221が管40の外周面41と対面している。第2発光素子22は、例えばレーザーダイオード(LD:Laser Diode)である。第2発光素子22は、管40を流れる流体Fに向けて第2レーザー光L2を発光する(図3参照)。第2発光素子22の発光面221から第2レーザー光L2が発光される。発光面221は、第2カバー部材52で覆われていない。第2発光素子22が発光した第2レーザー光L2は、管40を流れる流体F中に進行してゆく。また、第2発光素子22が発光した第2レーザー光L2は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、第2計測部12の第2受光素子32に向かって進行する第2散乱光S2が存在する。すなわち、管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2が存在する。
第2受光素子32は、管40の外周面41と向かい合うように配置される。第2受光素子32は、受光面321を備えている。第2受光素子32の受光面321が管40の外周面41と対面している。第2受光素子32は、例えばフォトダイオード(PD:Photo Diode)である。第2受光素子32は、流体F中の粒子Rで散乱して第2受光素子32に向かって進行する第2散乱光S2を受光する。すなわち、第2受光素子32は、管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2を受光する。第2受光素子32の受光面321から第2散乱光S2が受光される。受光面321は、第2カバー部材52で覆われていない。
第2カバー部材52は、第2発光素子22が発光した第2レーザー光L2が管40以外の第2計測部12の周囲に広がらないように第2発光素子22を覆っている。また、第2カバー部材52は、管40以外の第2計測部12の周囲から第2受光素子32に余分な光が入射しないように第2受光素子32を覆っている。
図4に示すように、計測装置1は、処理部90を更に備えている。処理部90は、第1計測部11と第2計測部12に電気的に接続されている。処理部90は、第1計測部11と第2計測部12の動作を制御すると共に種々の演算処理を実行する。この計測装置1では、処理部90が、まず第1計測部11の第1発光素子21を発光させる。第1発光素子21が発光すると、その光が流体F中の粒子Rに当たって散乱して第1散乱光S1が生じる。生じた第1散乱光S1を第1計測部11の第1受光素子31が受光する。続いて、処理部90が、第2計測部12の第2発光素子22を発光させる。第2発光素子22が発光すると、その光が流体F中の粒子Rに当たって散乱して第2散乱光S2が生じる。生じた第2散乱光S2を第2計測部12の第2受光素子32が受光する。
処理部90は、第1計測部11の第1受光素子31が受光した第1散乱光S1の周波数と第2計測部12の第2受光素子32が受光した第2散乱光S2の周波数に基づいて管40の軸方向(長手方向)における流体F中の粒子Rの速度vを演算する。処理部90は、流体F中の粒子Rのブラウン運動による影響を除去するように粒子Rの速度vを演算する。例えば、処理部90は、第1散乱光S1の周波数に基づいて管40の軸方向(長手方向)における粒子Rの第1速度v1を演算する。また、処理部90は、第2散乱光S2の周波数に基づいて管40の軸方向と直交する方向(短手方向)における粒子Rの第2速度v2を演算する。そして処理部90は、第1速度v1から第2速度v2を差し引くことによって管40の軸方向(長手方向)における流体F中の粒子Rの速度vを演算する。処理部90は、例えばヘテロダイン法によって第1速度v1と第2速度v2を演算する。ヘテロダイン法では、処理部90が、ドップラーシフトしていない参照光とドップラーシフトした第1散乱光S1を用いて第1速度v1を演算する。また、処理部90が、ドップラーシフトしていない参照光とドップラーシフトした第2散乱光S2を用いて第2速度v2を演算する。ヘテロダイン法についてはよく知られているので詳細な説明を省略する。また、処理部90が演算用の参照光の周波数を取得する方法は特に限定されない。
以上、第1実施例に係る計測装置1について説明した。上記の説明から明らかなように、上記の計測装置1では、第1計測部11の第1発光素子21が管40を流れる流体Fに向けて光を発光し、その光が流体F中の粒子Rで散乱し、それによって生じた散乱光のうち第1計測部11に向かって進行する第1散乱光S1を第1受光素子31が受光する。また、第2計測部12の第2発光素子22が管40を流れる流体Fに向けて光を発光し、その光が流体F中の粒子Rで散乱し、それによって生じた散乱光のうち第2計測部12に向かって進行する第2散乱光S2を第2受光素子32が受光する。そして処理部90が、第1計測部11の第1受光素子31が受光した第1散乱光S1の周波数と第2計測部12の第2受光素子32が受光した第2散乱光S2の周波数に基づいて管40の軸における流体F中の粒子Rの速度vを演算する。
管40を流れる流体Fでは、流体F中の粒子Rがブラウン運動をしているので、第1発光素子21と第2発光素子22が発光したレーザー光L1、L2が流体F中の粒子Rで散乱するときに粒子Rのブラウン運動の影響を受けると考えられる。そのため、第1発光素子21と第2発光素子22が発光したレーザー光L1、L2が粒子Rで散乱することによって生じる第1散乱光S1と第2散乱光S2が粒子Rのブラウン運動の影響を受けていると考えられる。上記の構成によれば、第1散乱光S1の周波数と第2散乱光S2の周波数に基づいて処理部90が粒子Rの速度vを演算するので、異なる方向(管40の軸方向とそれに直交する方向)に進行する第1散乱光S1と第2散乱光S2を考慮することによって粒子Rのブラウン運動の影響を除去することができる。ブラウン運動の影響を除去することによって、流体F中の粒子Rの速度vを精度良く計測することができる。
また、上記の計測装置1では、処理部90が、第1散乱光S1の周波数に基づいて管40の軸方向における流体F中の粒子Rの第1速度v1を演算し、第2散乱光S2の周波数に基づいて管40の軸方向と直交する方向における流体F中の粒子Rの第2速度v2を演算し、第1速度v1から第2速度v2を差し引くことによって流体F中の粒子Rのブラウン運動の影響を除去した粒子Rの速度vを演算している。そのため、第1速度v1と第2速度v2を用いた比較的簡易な演算によって粒子Rのブラウン運動の影響を除去することができ、粒子Rの速度vの精度良い計測を簡易に行うことができる。
以上、一実施例について説明したが、具体的な態様は上記の実施例に限定されるものではない。以下の説明において、上記の説明における構成と同様の構成については、同一の符号を付して説明を省略する。
上記の実施例では、第1計測部11の第1発光素子21が第1受光素子31よりも流体Fの流れ方向の上流側に配置されていたが、この構成に限定されるものではない。他の実施例では、第1計測部11の第1発光素子21と第1受光素子31の配置位置が反対であり、第1受光素子31が第1発光素子21よりも流体Fの流れ方向の上流側に配置されていてもよい。
また、上記の実施例では、処理部90がまず第1計測部11の第1発光素子21を発光させ、続いて第2計測部12の第2発光素子22を発光させる構成であったが、この構成に限定されるものではなく、発光順序が反対であってもよい。すなわち、処理部90がまず第2計測部12の第2発光素子22を発光させ、続いて第1計測部11の第1発光素子21を発光させてもよい。
[第2実施例]
第2実施例に係る計測装置1について説明する。第2実施例に係る計測装置1では、図5、図6及び図7に示すように、第1計測部11と第2計測部12が、発光素子を共有している。第1計測部11の発光素子と第2計測部12の発光素子が一体である。第1計測部11と第2計測部12が、両者で1個の共有発光素子23を備えている。なお、受光素子は共有されていない。第1計測部11の第1受光素子31と第2計測部12の第2受光素子32は別体である。また、第2実施例では、第1計測部11と第2計測部12が、両者で1個の発光共有カバー部材53を備えている。共有発光素子23と第1計測部11の第1受光素子31と第2計測部12の第2受光素子32が、発光共有カバー部材53によって覆われている。
共有発光素子23は、管40の外周面41と向かい合うように配置される。共有発光素子23は、発光面231を備えている。共有発光素子23の発光面231が管40の外周面41と対面している。共有発光素子23は、例えばレーザーダイオード(LD:Laser Diode)である。この構成では、第1計測部11と第2計測部12の共有発光素子23が、管40を流れる流体Fに向けて共有レーザー光L3を発光する(図6参照)。共有発光素子23の発光面231から共有レーザー光L3が発光される。共有発光素子23の発光面231は、発光共有カバー部材53で覆われていない。共有発光素子23が発光した共有レーザー光L3は、管40を流れる流体F中に進行してゆく。また、共有発光素子23が発光した共有レーザー光L3は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、第1計測部11の第1受光素子31に向かって進行する第1散乱光S1が存在する。すなわち、管40の軸方向(長手方向)に沿って進行する第1散乱光S1が存在する。また、様々な散乱光の中には、第2計測部12の第2受光素子32に向かって進行する第2散乱光S2が存在する(図7参照)。すなわち、管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2が存在する。管40の軸方向(長手方向)に沿って進行する第1散乱光S1を第1計測部11の第1受光素子31が受光する。また、管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2を第2計測部12の第2受光素子32が受光する。
この構成によれば、第1計測部11と第2計測部12の共有発光素子23による一度の発光のみで第1散乱光S1と第2散乱光S2を受光することができる。第1計測部11と第2計測部12で発光素子を共有することによって、計測装置1をコンパクトにすることができ、コンパクトな計測装置1によって流体F中の粒子Rの速度vを精度良く計測することができる。
[第3実施例]
第3実施例に係る計測装置1について説明する。第3実施例に係る計測装置1では、図8、図9及び図10に示すように、第1計測部11と第2計測部12が、受光素子を共有している。第1計測部11の受光素子と第2計測部12の受光素子が一体である。第1計測部11と第2計測部12が、両者で1個の共有受光素子33を備えている。なお、発光素子は共有されていない。第1計測部11の第1発光素子21と第2計測部12の第2発光素子22は別体である。また、第3実施例では、第1計測部11と第2計測部12が、両者で1個の受光共有カバー部材54を備えている。共有受光素子33と第1計測部11の第1発光素子21と第2計測部12の第2発光素子22が、受光共有カバー部材54によって覆われている。
共有受光素子33は、管40の外周面41と向かい合うように配置される。共有受光素子33は、受光面331を備えている。共有受光素子33の受光面331が管40の外周面41と対面している。共有受光素子33は、例えばフォトダイオード(PD:Photo Diode)である。
第3実施例では、処理部90が、まず第1計測部11の第1発光素子21を発光させ、その後に第2計測部12の第2発光素子22を発光させる。この構成では、まず第1計測部11の第1発光素子21が、管40を流れる流体Fに向けて第1レーザー光L1を発光する(図9参照)。第1発光素子21の発光面211から第1レーザー光L1が発光される。第1発光素子21の発光面211は、受光共有カバー部材54で覆われていない。第1発光素子21が発光した第1レーザー光L1は、管40を流れる流体F中に進行してゆく。また、第1発光素子21が発光した第1レーザー光L1は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、共有受光素子33に向かって進行する第1散乱光S1が存在する。すなわち、管40の軸方向(長手方向)に沿って進行する第1散乱光S1が存在する。管40の軸方向(長手方向)に沿って進行する第1散乱光S1を共有受光素子33が受光する。共有受光素子33の受光面331から第1散乱光S1が受光される。受光面331は、受光共有カバー部材54で覆われていない。
その後、第2計測部12の第2発光素子22が、管40を流れる流体Fに向けて第2レーザー光L2を発光する(図10参照)。第2発光素子22の発光面221から第2レーザー光L2が発光される。第2発光素子22の発光面221は、受光共有カバー部材54で覆われていない。第2発光素子22が発光した第2レーザー光L2は、管40を流れる流体F中に進行してゆく。また、第2発光素子22が発光した第2レーザー光L2は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、共有受光素子33に向かって進行する第2散乱光S2が存在する。すなわち、管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2が存在する。管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2を共有受光素子33が受光する。共有受光素子33の受光面331から第2散乱光S2が受光される。受光面331は、受光共有カバー部材54で覆われていない。
この構成によれば、共有受光素子33が第1散乱光S1と第2散乱光S2の両方を受光する。第1計測部11と第2計測部12で受光素子を共有することによって、計測装置1をコンパクトにすることができ、コンパクトな計測装置1によって流体F中の粒子Rの速度vを精度良く計測することができる。
上記の実施例では、まず第1計測部11の第1発光素子21が発光し、その後に第2計測部12の第2発光素子22が発光する構成であった。そのため、第1計測部11と第2計測部12の共有受光素子33が、まず第1散乱光S1を受光し、その後に第2散乱光S2を受光する構成であった。この構成に限定されるものではなく、他の実施例では順序が反対であってもよい。すなわち、まず第2計測部12の第2発光素子22が発光し、その後に第1計測部11の第1発光素子21が発光する構成であってもよい。つまり、第1計測部11と第2計測部12の共有受光素子33が、まず第2散乱光S2を受光し、その後に第1散乱光S1を受光する構成であってもよい。
[第4実施例]
第4実施例に係る計測装置1について説明する。第4実施例に係る計測装置1では、図11、図12及び図13に示すように、第1計測部11と第2計測部12が管40を挟んで互いに向かい合っている。第1計測部11と第2計測部12の間に管40が配置されている。管40の上側に第1計測部11が配置されており、管40の下側に第2計測部12が配置されている。
また、第4実施例に係る計測装置1は、第3計測部13を備えている。第3計測部13は、(第1計測部11の)第1発光素子21と、(第2計測部12の)第2受光素子32を備えている。第3計測部13の第1発光素子21と第2受光素子32が、管40を挟んで互いに向かい合っている。第3計測部13の第1発光素子21が第2受光素子32よりも流体Fの流れ方向の上流側に配置されている。第3計測部13は、処理部90に電気的に接続されている。
第1計測部11と第3計測部13が、第1発光素子21を共有している。第1計測部11の発光素子と第3計測部13の発光素子が一体である。第1計測部11と第3計測部13が、両者で1個の第1発光素子21を備えている。
また、第2計測部12と第3計測部13が、第2受光素子32を共有している。第2計測部12の受光素子と第3計測部13の受光素子が一体である。第2計測部12と第3計測部13が、両者で1個の第2受光素子32を備えている。
第3実施例では、処理部90が、まず第1計測部11と第3計測部13の共有の第1発光素子21を発光させ、その後に第2計測部12の第2発光素子22を発光させる。この構成では、まず第1計測部11と第3計測部13の共有の第1発光素子21が、管40を流れる流体Fに向けて第1レーザー光L1を発光する(図12参照)。第1発光素子21が発光した第1レーザー光L1は、管40を流れる流体F中に進行してゆく。また、第1発光素子21が発光した第1レーザー光L1の一部は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、第1計測部11の第1受光素子31に向かって進行する第1散乱光S1が存在する。すなわち、管40の軸方向(長手方向)に沿って進行する第1散乱光S1が存在する。管40の軸方向(長手方向)に沿って進行する第1散乱光S1を第1計測部11の第1受光素子31が受光する。
また、第1発光素子21が発光した第1レーザー光L1の他の一部は、流体F中の粒子Rで散乱せずに、管40と流体Fを通過して進行してゆく。管40と流体Fを通過する光を通過光Tという。この通過光Tを第3計測部13の第2受光素子32が受光する。
その後、第2計測部12の第2発光素子22が、管40を流れる流体Fに向けて第2レーザー光L2を発光する(図13参照)。第2発光素子22が発光した第2レーザー光L2は、管40を流れる流体F中に進行してゆく。また、第2発光素子22が発光した第2レーザー光L2は、流体F中の粒子Rに当たって散乱し、それによって散乱光が生じる。様々な方向に進行する様々な散乱光が生じる。様々な散乱光の中には、第2計測部12の第2受光素子32に向かって進行する第2散乱光S2が存在する。すなわち、管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2が存在する。管40の軸方向と直交する方向(短手方向)に沿って進行する第2散乱光S2を第2計測部12の第2受光素子32が受光する。
また、第4実施例に係る計測装置1では、処理部90が、第3計測部13の第2受光素子32が受光した通過光Tの受光量に基づいて流体F中の散乱粒子密度を演算する。散乱粒子密度は、流体F中に散乱して存在している無数の粒子Rの密度である。処理部90が流体F中の散乱粒子密度を演算する方法は特に限定されない。処理部90は、例えば下記の式(1)に基づいて流体F中の散乱粒子密度を演算する。ただし、下記の式(1)において、Iは、第1発光素子21の発光量であり、Iは、第2受光素子32の受光量であり、eは、流体Fに依存する所定の係数であり、cは、流体F中の散乱粒子密度であり、hは、流体Fの深さ(本実施例では管40の内径)である。
Figure 0006918616
以上、第4実施例に係る計測装置1について説明した。上記の説明から明らかなように、第4実施例では、第3計測部13の第1発光素子21が管40を流れる流体Fに向けて光を発光し、その光が管40と流体Fを通過し、管40と流体Fを通過した通過光Tを第3計測部13の第2受光素子32が受光する。また、処理部90が、第3計測部13の第2受光素子32が受光した通過光Tの受光量に基づいて流体F中の散乱粒子密度を演算する。
流体F中の散乱粒子密度は流体F中の粒子Rの速度vを演算する際に影響を与えるので、この散乱粒子密度を演算することによって流体F中の粒子Rの速度vを更に精度良く求めることができる。
また、第4実施例では、第1計測部11と第3計測部13が、第1発光素子21を共有しており、第2計測部12と第3計測部13が、第2受光素子32を共有している。そのため、第1計測部11と第3計測部13の共有の第1発光素子21が発光した第1レーザー光L1の一部が流体F中の粒子Rで散乱して散乱光が生じると共に、共有の第1発光素子21が発光した光の他の一部が管40と流体Fを通過する。光の散乱で生じた散乱光のうち第1計測部11に向かって進行する第1散乱光S1を第1計測部11の第1受光素子31が受光する。また、管40と流体Fを通過した通過光Tを第2計測部12と第3計測部13の共有の第2受光素子32が受光する。したがって、第1計測部11と第3計測部13の共有の第1発光素子21による一度の発光のみで第1散乱光S1と通過光Tを受光することができる。また、第2計測部12の第2発光素子22が発光した光の散乱によって生じる第2散乱光S2を第2計測部12と第3計測部13の共有の第2受光素子32が受光する。第2計測部12と第3計測部13の共有の第2受光素子32が、通過光Tと第2散乱光S2の両方を受光する。この構成によれば、第1計測部11と第3計測部13で第1発光素子21を共有することによって、計測装置1をコンパクトにすることができる。また、第2計測部12と第3計測部13で第2受光素子32を共有することによって、計測装置1をコンパクトにすることができる。よって、コンパクトな計測装置1によって流体F中の粒子Rの速度vを精度良く計測することができる。
上記の実施例では、第1計測部11と第3計測部13が、第1発光素子21を共有している構成であったが、この構成に限定されるものではない。他の実施例では、第2計測部12と第3計測部13が、第2発光素子22を共有すると考えてもよい。すなわち、第2計測部12の発光素子と第3計測部13の発光素子が一体であってもよい。第2計測部12と第3計測部13が、両者で1個の第2発光素子22を備えていてもよい。
また、上記の実施例では、第2計測部12と第3計測部13が、第2受光素子32を共有している構成であったが、この構成に限定されるものではない。他の実施例では、第1計測部11と第3計測部13が、第1受光素子31を共有すると考えてもよい。すなわち、第1計測部11の受光素子と第3計測部13の受光素子が一体であってもよい。第1計測部11と第3計測部13が、両者で1個の第1受光素子31を備えていてもよい。
すなわち、第3計測部13の発光素子と受光素子の関係は互いに入れ替え可能である。この変形例では、第2計測部12と第3計測部13の共有の第2発光素子22が発光した第2レーザー光L2の一部が、流体F中の粒子Rで散乱せずに、管40と流体Fを通過して進行してゆく。管40と流体Fを通過した通過光Tを、第1計測部11と第3計測部13の共有の第1受光素子31が受光する。
この構成では、上記と同様に、第2計測部12と第3計測部13の共有の第2発光素子22による一度の発光のみで第2散乱光S2と通過光Tを受光することができる。また、第1計測部11と第3計測部13の共有の第1受光素子31が、通過光Tと第1散乱光S1の両方を受光する。この構成によれば、第2計測部12と第3計測部13で第2発光素子22を共有することによって、計測装置1をコンパクトにすることができる。また、第1計測部11と第3計測部13で第1受光素子31を共有することによって、計測装置1をコンパクトにすることができる。よって、コンパクトな計測装置1によって流体F中の粒子Rの速度vを精度良く計測することができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
1 :計測装置
11 :第1計測部
12 :第2計測部
13 :第3計測部
21 :第1発光素子
22 :第2発光素子
23 :共有発光素子
31 :第1受光素子
32 :第2受光素子
33 :共有受光素子
40 :管
90 :処理部
F :流体
L1 :第1レーザー光
L2 :第2レーザー光
L3 :共有レーザー光
R :粒子
S1 :第1散乱光
S2 :第2散乱光
T :通過光

Claims (5)

  1. 管を流れる流体中の粒子の速度を計測する計測装置であって、
    前記管の軸方向に沿って並んでいる発光素子と受光素子を備えている第1計測部と、
    前記管の軸方向と直交する方向に沿って並んでいる発光素子と受光素子を備えている第2計測部と、
    処理部を備えており、
    前記第1計測部の発光素子が前記管を流れる流体に向けて光を発光し、その光が流体中の粒子で散乱し、それによって生じた散乱光のうち前記第1計測部に向かって進行する第1散乱光を前記第1計測部の受光素子が受光し、
    前記第2計測部の発光素子が前記管を流れる流体に向けて光を発光し、その光が流体中の粒子で散乱し、それによって生じた散乱光のうち前記第2計測部に向かって進行する第2散乱光を前記第2計測部の受光素子が受光し、
    前記処理部が、前記第1計測部の受光素子が受光した前記第1散乱光の周波数と前記第2計測部の受光素子が受光した前記第2散乱光の周波数に基づいて前記管の軸方向における流体中の粒子の速度を演算する、計測装置であって、
    前記処理部が、前記第1散乱光の周波数に基づいて前記管の軸方向における流体中の粒子の第1速度を演算し、前記第2散乱光の周波数に基づいて前記管の軸方向と直交する方向における流体中の粒子の第2速度を演算し、前記第1速度から前記第2速度を差し引くことによって流体中の粒子のブラウン運動の影響を除去した粒子の速度を演算する、計測装置。
  2. 前記管を挟んで向かい合っている発光素子と受光素子を備えている第3計測部を更に備えており、
    前記第3計測部の発光素子が前記管を流れる流体に向けて光を発光し、その光が前記管と流体を通過し、前記管と流体を通過した光を前記第3計測部の受光素子が受光し、
    前記処理部が、前記第3計測部の受光素子が受光した光の受光量に基づいて前記管を流れる流体中の散乱粒子密度を演算する、請求項1に記載の計測装置。
  3. 前記第1計測部と前記第2計測部が、発光素子を共有している、請求項1又は2に記載の計測装置。
  4. 前記第1計測部と前記第2計測部が、受光素子を共有しており、
    前記第1計測部の発光素子と前記第2計測部の発光素子が、異なるタイミングで光を発光する、請求項1又は2に記載の計測装置。
  5. 前記第1計測部と前記第3計測部が、発光素子を共有しており、前記第2計測部と前記第3計測部が、受光素子を共有しており、前記第2計測部の発光素子と前記第3計測部の発光素子が、異なるタイミングで光を発光する、あるいは、
    前記第2計測部と前記第3計測部が、発光素子を共有しており、前記第1計測部と前記第3計測部が、受光素子を共有しており、前記第1計測部の発光素子と前記第3計測部の発光素子が、異なるタイミングで光を発光する、請求項2に記載の計測装置。
JP2017146914A 2017-07-28 2017-07-28 計測装置 Active JP6918616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017146914A JP6918616B2 (ja) 2017-07-28 2017-07-28 計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146914A JP6918616B2 (ja) 2017-07-28 2017-07-28 計測装置

Publications (2)

Publication Number Publication Date
JP2019024934A JP2019024934A (ja) 2019-02-21
JP6918616B2 true JP6918616B2 (ja) 2021-08-11

Family

ID=65476912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146914A Active JP6918616B2 (ja) 2017-07-28 2017-07-28 計測装置

Country Status (1)

Country Link
JP (1) JP6918616B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE419678B (sv) * 1978-10-31 1981-08-17 Gert Erik Nilsson Sett och anordning for metning av stromningsrorelser i ett fluidum
JPH10290791A (ja) * 1997-04-18 1998-11-04 Advance Co Ltd レーザー血流計
DE10203720B4 (de) * 2001-02-02 2012-11-22 Nippon Telegraph And Telephone Corp. Blutflußmesser und Sensorteil des Blutflußmessers
JP2006102159A (ja) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 生体情報計測装置
JP5219440B2 (ja) * 2007-09-12 2013-06-26 キヤノン株式会社 測定装置
JP5785267B2 (ja) * 2010-11-10 2015-09-24 エルフィ−テック エルティーディー.Elfi−Tech Ltd. アナログ電気信号の操作による流体内光散乱粒子の運動に関するパラメータの光学的測定
JP2015039542A (ja) * 2013-08-22 2015-03-02 セイコーエプソン株式会社 脈波測定装置
GB2519335A (en) * 2013-10-17 2015-04-22 Univ Loughborough Opto-physiological sensor and method of design

Also Published As

Publication number Publication date
JP2019024934A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
Norgia et al. Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study
JP5901012B2 (ja) 血液情報の測定方法及び装置
ES2285200T3 (es) Procedimiento y dispositivo para efectuar mediciones en la sangre.
CN107430056B (zh) 粒子计数器
JP6667456B2 (ja) 対象のヘマトクリット値を非侵襲的に決定するプロセッサ、プログラム、デバイス及び方法
JP6614608B2 (ja) 流体評価装置及び方法、コンピュータプログラム並びに記録媒体
JP6918616B2 (ja) 計測装置
JPWO2016092681A1 (ja) 血流センサ
US10244952B2 (en) Measuring apparatus and measuring system
JP6404446B2 (ja) 流速計測装置とそれに用いる管
JP6908245B2 (ja) 計測装置
JP6735463B2 (ja) 計測装置
JP6909273B2 (ja) 光学的に流量を測定するための流量測定法および流量測定機器
JP7134430B2 (ja) 体液粘性測定装置
JP2007003474A (ja) 試料液中粒子の位置制御方法および粒子測定装置
JP2017063892A (ja) 測定装置及び測定システム
JP2017063893A (ja) 測定装置及び測定システム
Ishida et al. Measurement of swirling flow in a blood chamber by laser Doppler imaging system
WO2016092679A1 (ja) 血流センサ
WO2023100322A1 (ja) 遮光装置および測定装置
Murali et al. Exploring different source configurations for laser speckle-based blood flow measurement system
JP6966303B2 (ja) 測定装置
JP2019082396A (ja) 計測装置
JP6858875B2 (ja) 計測装置、計測方法、コンピュータプログラム及び記憶媒体
WO2015132878A1 (ja) 測定装置及び測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

R150 Certificate of patent or registration of utility model

Ref document number: 6918616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150