JP6913941B2 - パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法 - Google Patents

パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法 Download PDF

Info

Publication number
JP6913941B2
JP6913941B2 JP2017127907A JP2017127907A JP6913941B2 JP 6913941 B2 JP6913941 B2 JP 6913941B2 JP 2017127907 A JP2017127907 A JP 2017127907A JP 2017127907 A JP2017127907 A JP 2017127907A JP 6913941 B2 JP6913941 B2 JP 6913941B2
Authority
JP
Japan
Prior art keywords
pattern
stamper
base material
resin layer
pattern structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127907A
Other languages
English (en)
Other versions
JP2019010776A (ja
Inventor
奈良崎 愛子
愛子 奈良崎
佐藤 正健
正健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017127907A priority Critical patent/JP6913941B2/ja
Publication of JP2019010776A publication Critical patent/JP2019010776A/ja
Application granted granted Critical
Publication of JP6913941B2 publication Critical patent/JP6913941B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、パターン形成用スタンパ及びその製造方法、並びに前記スタンパを用いてパターン構造体を製造する方法に関する。特に、単数あるいは複数の種類の高精細パターンの、レーザーによる転写を可能とするパターン形成用のスタンパ及びその製造方法、並びにパターン構造体の製造方法に関する。
近年、印刷技術を応用した極めて簡易なプロセスを用いた電子回路や配線構造が実現されている。例えば、特許文献1に開示された配線構造は、表面に凹凸パターンを持つ版の凸部に機能インクを塗付し、該版の凸部を基板に押し付けて該インクを転写することで形成されている。この工法はマイクロコンタクトプリント法と呼ばれる。
マイクロコンタクトプリント法では、液体状の機能インク(導電インク、絶縁インク、半導体インク等)を転写する。このとき、パターンの端部が滲むために高精細なパターンとはならず、特に、微細なパターンにおいては、配線の短絡等の不具合が発生する場合があった。特許文献2では、こうした不具合を避けるために、転写パターンに対応させて予め基板の表面自由エネルギーを変化させ、インクの濡れ性を変化させることで、インクが転写されやすい部分と転写されにくい部分とを形成する方法が開示されている。これによりインクの滲みを防止し、その後、マイクロコンタクトプリント法でインクを転写することで、微細で高精細なパターンを実現している。また特許文献3では、スタンパをマスクとして紫外光を転写先基材表面から照射し、大気中酸素と基材表面の光誘起反応を利用して、基材表面のインクへの濡れ性を変化させることで、インクの滲みの低減技術を開示している。
薄膜パターンを転写により形成する方法について、次の公知文献がある。特許文献4には、薄膜を支持構造物に臨時接合した後に、該支持構造物の薄膜側を、接合物質層を有する転写先基板に接触させて、前記薄膜を転写先基板に転写する方法が記載されている。特許文献4には、支持構造物の材料としてポリジメチルシロキサン又はシリコンラバー系ポリマーが挙げられている。
特開2009−028947号公報 特開2010−147408号公報 特開2014−013868号公報 特開2010−062527号公報
従来の印刷技術では、転写先基板表面でインクの滲みを避けるため、転写先基板表面の濡れ性をあらかじめパターンしておくといった別途処理工程を設ける必要があるため、プロセスのコストが高くなる。
従来技術のマイクロコンタクトプリント用スタンパは、スタンパ表面に形成されている凹凸構造の凸部分に特定のインクを付着させ、このインクを被転写材料に転写させることが想定されていた。よって、従来のスタンパでは、一度の転写工程では2種類以上のインクからなるパターンを転写することは不可能であった。このようなスタンパで複数インクからなるパターンを転写するためには、一度の転写工程のあと、マイクロ又はナノメートルのパターン分解能レベルで高精度に位置合わせして複数回の転写工程を続ける必要が生じるので、従来のスタンパは、複数インクからなるパターンのような複雑パターン形成適用に不向きであった。
また、従来のスタンパ表面にはマイクロ又はナノメートルサイズの凹凸構造を形成する必要があり、光・電子線リソグラフィーによって作製したマイクロ又はナノメートルの凹凸パターン(マスター)を、ゴム状プラスチックスに写し取りスタンパを作製する。このマスターからのスタンパ離型工程においては、構造の欠けが容易に発生するため各種のマスター又はスタンパの材料に適した離型剤が多くの場合用いられている。その場合においても構造の欠けを完全に防ぐことは難しかった。スタンパにおける凸部分の欠けは、被転写基板への転写パターンの欠陥に直接つながることから、転写パターンの品質低下を招く問題である。
本発明は、これらの問題を解決しようとするものであり、スタンパ表面への凹凸構造形成工程と凸形状への液体インクの塗布工程を要さず、スタンパ表面に直接転写ターゲット原料からなる凸部パターンを作製することを可能とする、パターン構造体形成用のスタンパ及びその製造方法並びにパターン構造体の製造方法を提供することを目的の1つとする。さらに、複数物質の一括転写を可能とする、パターン構造体形成用のスタンパ及びその製造方法並びにパターン構造体の製造方法を提供することを目的の1つとする。
本発明は、前記目的を達成するために、以下の特徴を有する。
(1) パターン構造体形成用のスタンパであって、透明基材と、該透明基材上の透明樹脂層と、該透明樹脂層上の凸部パターンとを備え、前記凸部パターンは、前記パターン構造体のパターンを構成する原料の単一又は複数の種類の無機物を含むことを特徴とするスタンパ。
(2) 前記凸部パターンは、溶媒を実質的に有しない、前記(1)に記載のスタンパ。
(3) 前記凸部パターンは、少なくとも1以上の層からなることを特徴とする前記(1)又は(2)記載のスタンパ。
(4) 前記凸部パターンは、無機物薄膜及び塗布膜のいずれか1以上の膜からなることを特徴とする前記(1)乃至(3)のいずれか1項記載のスタンパ。
(5) 前記透明樹脂層は、弾力性を有することを特徴とする前記(1)乃至(4)のいずれか1項記載のスタンパ。
(6) 前記透明樹脂層は、高密着性表面を有するポリジメチルシロキサンであることを特徴とする前記(1)乃至(5)のいずれか1項記載のスタンパ。
(7) 前記スタンパは、パターン構造体形成用のレーザー転写用スタンパであることを特徴とする、前記(1)乃至(6)のいずれか1項記載のスタンパ。
(8) パターン構造体形成用のスタンパの製造方法であって、パターンの原料となる原料膜を成膜した第1の基材と、透明樹脂層を備える透明基材とを、用意し、前記第1の基材と前記透明基材とを、前記原料膜と前記透明樹脂層とが対向するように接触させた状態で、前記第1の基材又は前記透明樹脂層側から、レーザー光を前記原料膜に照射して、前記原料膜の内レーザー光が照射されている部分のみを透明樹脂層側に転写堆積させるレーザー転写を行うことにより、凸部パターンを形成することを特徴とするスタンパの製造方法。
(9) 前記透明樹脂層側に転写堆積させるレーザー転写の工程において、レーザーエネルギーが、原料膜の少なくとも一部の溶融又は蒸発を起こすレーザーエネルギー以上であり、溶融物又は蒸発物が飛散し一つの照射区画から二つ以上の転写パターンが生じてしまうレーザーエネルギーより小さいエネルギー範囲に設定したレーザー光により、転写を行うことを特徴とする前記(8)記載のスタンパ製造方法。
(10) 前記(1)乃至(7)のいずれか1項記載のスタンパを用いてパターン構造体を製造する方法であって、前記スタンパとパターン構造体用基材とを、前記スタンパの凸部パターンと前記パターン構造体用基材とが対向するよう接触させた状態で、レーザー光を一様に照射することにより、前記凸パターンをパターン構造体用基材に転写させることを特徴とするパターン構造体の製造方法。
(11) 前記スタンパの前記透明樹脂層側から前記凸部パターンにレーザー光を照射し、光のオン/オフにより、対向配置されているパターン構造体用基材に前記凸部パターンを転写させることを特徴とする前記(10)記載のパターン構造体の製造方法。
(12) パターン構造体の製造方法であって、パターンの原料となる原料膜を成膜した第1の基材と、透明樹脂層を備える透明基材とを、用意し、前記第1の基材と前記透明基材とを、前記原料膜と前記透明樹脂層とが対向するように接触させた状態で、前記第1の基材又は前記透明樹脂層側から、レーザー光を前記原料膜に照射して、前記原料膜の内レーザー光が照射されている部分のみを透明樹脂層側に転写堆積させるレーザー転写を行い、スタンパを製造する工程と、前記スタンパを用いて、前記スタンパとパターン構造体用基材とを、前記スタンパの凸部パターンを前記パターン構造体用基材を対向するよう接触させた状態で、レーザー光を一様に照射することにより、前記凸パターンをパターン構造体用基材に転写させる工程とを、備えることを特徴とするパターン構造体の製造方法。
本発明のスタンパ及び該スタンパを用いたパターン構造体の製造方法によれば、転写時に溶剤を含むインクを用いないので、従来のようなインクを付けるスタンパの凸部の溶剤による膨潤や被転写基材表面でのインクの滲みが生じない。よって、本発明によれば、高精細な微細パターンを有するパターン構造体を実現できる。
本発明のスタンパの製造方法によれば、高精細なパターンを有するスタンパを実現できる。
また、本発明のパターン構造体の製造方法によれば、スタンパのパターン状の凸部に光照射することで初めて、被転写基材側に転写が起こる。よって、スタンパへの光のオン/オフで、転写のオン/オフを制御できる。よって、平面はもちろん曲面にも、自在にパターン形成が高精細で可能となる。
また、本発明のスタンパの製造方法によれば、スタンパの表面に、無機物を含む複数組成の物質からなる高精細パターンを形成可能である。よって、本発明のスタンパを用いるパターン構造体の製造方法によれば、複数組成からなるような複雑なパターンでも、高精度のアライメントを要せず、被転写基材に転写することができる。
以上より、本発明によると、通常の電子デバイスを真空・溶剤フリーで簡便に形成でき、また撓みや曲面を有するフレキシブル基板への微細パターン形成が可能である。例えば、本発明は、ウエアラブルデバイス作製にも利用可能である。また、パターンの材料として、生体親和性の無機酸化物などを使用すれば、インプラントなどの医用部材コーティング技術としても利用可能である。
本発明の実施の形態におけるスタンパの構造の例の模式図である。 本発明の実施の形態におけるスタンパの製造工程を示す図である。 本発明の実施の形態における、スタンパを用いたパターン構造体の製造工程を示す図である。 本発明の実施の形態における、スタンパ製造用の原料膜の例である。 実施例1に関するレーザー共焦点顕微鏡写真の図である。(a)(b)は、銀からなる凸部をPDMS層上に有するスタンパで、(c)(d)は、そのスタンパを用いて石英ガラス基板上に転写形成した銀パターン構造体である。 実施例2により調製された、石英ガラス基板上に転写形成したITOパターン構造体のレーザー共焦点顕微鏡写真の図である。 比較例1の場合のレーザー共焦点顕微鏡写真の図である。(a)はレーザー転写後のAg原料膜であり、(b)は転写したAgパターンである。
以下、本発明の実施の形態を詳細に説明する。
本発明者は、金属や金属酸化物等の無機物を含む固体膜である原料膜が表面に形成されたサポートの膜表面側に、透明で高密着性の樹脂層を有する透明基材を接触させ、サポート(原料膜裏面側)もしくは樹脂層側(原料膜表面側)から、光強度パターンを有するパルスレーザー光を照射すると、原料膜の光吸収による少なくとも一部の溶融・蒸発により、前記樹脂層を有する透明基材上に、光強度パターンに対応した原料膜の微細パターンを滲みなく高精度に転写堆積できることを見出した。さらに、この原料膜の微細パターンを有する透明樹脂層/透明基材の積層体を、微細パターン形成用スタンパとし、所望の転写先基材に接触させ、スタンパ側からパルスレーザー光を一様に照射することにより、無機等の凸部の光吸収とそれに続く凸部の少なくとも一部の溶融・蒸発を引き起こし、転写先基材に転写堆積できることを知見し、以下の本発明を完成するに至った。
[パターン構造体形成用スタンパ]
本発明の実施の形態のパターン構造体形成用のスタンパは、透明基材と、該透明基材上の透明樹脂層と、該透明樹脂層上の凸部パターンとを備え、前記凸部パターンは、前記パターン構造体の原料の無機物を含む。
図1は、本発明の実施の形態のスタンパを模式的に示す図である。図1(a)に示すように、スタンパは、スタンパ用の透明基材106と、該透明基材106上の透明樹脂層105と、該透明樹脂層105上の凸部パターン109とを備える。
図1(a)は、透明樹脂層105上に単一の物質からなる凸部パターン109を有する例である。図1(b)は、2種類の物質からなる凸部パターンを有する例であり、無機物Aを含む凸部パターン115と無機物Aとは異なる無機物Bを含む凸部パターン116を有する例である。このように1つのスタンパに2種類以上の物質からなる凸部パターンを設けることができる。図1(c)は、凸部パターンを多層膜の凸部パターン117から構成した例である。
スタンパ用の透明基材としては、透明で凸部パターンを支持可能な基材であればよい。本明細書において、「透明」とは、スタンパを使用するレーザー転写工程において、使用するパルスレーザーの波長を少なくとも透過可能であることをいう。透明基材の材料は、例えば、石英ガラス、ホウケイ酸ガラス、サファイヤ、イットリア安定化ジルコニアなどの無機材料やポリマーフィルムが好ましい。特に、寸法安定性のある無機材料基板や、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートなどの電子機器にも好適に用いられるような寸法安定性のある高分子材料基板がより好適である。最終物であるパターン構造体が平面であるか曲面であるか等の形状に応じて、スタンパ用の透明基材を適宜選択することができる。
パターン構造体形成用スタンパの凸部パターンは、スタンパを使用するレーザー転写工程において、転写先基材に転写される膜であるので、最終物であるパターン構造体のパターンの膜を構成する無機物を含む。パターン構造体形成用スタンパの凸部パターンの例として、スタンパを用いた、一様なレーザー照射によるレーザー転写において、レーザー転写可能な膜からなるものであれば、特に制限はない。即ち、詳しくは後述するように、透明樹脂層とスタンパ表面凸部の界面近傍で、レーザーパルスを吸収した光吸収層の一部でレーザーアブレーションを起こし、レーザーアブレーションに伴い、スタンパ表面凸部を転写的基材に転写堆積させられることが可能な膜であればよい。たとえば、固体の膜であればよい。無機物からなる固体膜や、主成分が無機物であって有機物を含む固体膜でもよい。ここで主成分とは50容量%以上の場合をいう。さらに、80容量%以上であればより好ましい。薄膜や塗布膜でもよい。ここで、スタンパにインクを付与して単に転写印刷するような従来技術は含まない。また、塗布膜として、最終物のパターンの無機物に加えてその他の溶剤を5%以下含んでいてもよい。塗布膜の具体例として、Agナノペースト膜やカーボンナノチューブ膜等が挙げられる。無機物として、Au、Ag、Cu、Mo、Cr等のいずれか1以上からなる金属又は合金、ITO、ZnO、TiO2、Al、BaTiO等のいずれか1以上からなる金属酸化物等が挙げられる。パターン構造体形成用スタンパの凸部パターンは、溶媒を実質的に有しないことがより好ましい。
パターン構造体形成用スタンパの透明樹脂層105の材質として、本発明で利用するレーザー光波長に透明な高分子材料が用いられる。例えば、ポリジメチルシロキサン(PDMS)、ポリウレタン、ポリアクリル酸、ポリメタクリル酸、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。透明樹脂層の材質は、前記高分子材料の中でも、高い密着性と弾力性を有するPDMSなどが好適である。また、樹脂層と原料膜の間にギャップがあると、原料膜の一部のレーザーアブレーション種の樹脂層への堆積時に、ある程度の拡がり角度を持ちながらギャップ距離に応じて飛散する結果、パターンの滲みが生じる可能性がある。このことから、樹脂層と原料膜のギャップをできる限りゼロにするため、樹脂層の密着性は重要である。また、レーザー照射時に、レーザーアブレーションによる推進力をもって、原料膜から透明樹脂層へ、あるいは透明樹脂層から最終の転写先基材へ、微細パターン構造体を転写堆積する際、転写先への固着力を生むようにある程度の衝撃力をもって堆積させるので、転写元あるいは転写先に弾力性がないと転写構造が破砕してしまう可能性が高い。よって、透明樹脂層の弾力性も高品質パターン形成のための重要な因子である。
パターン構造体形成用スタンパの製造方法、及び該スタンパを用いたレーザー転写によるパターン構造体の製造方法について、図2A、図2B及び図3を参照して以下説明する。図2Aは、スタンパの製造工程を示す図である。図2Bは、スタンパを用いてレーザー転写するパターン構造体の製造工程を示す図である。
[パターン構造体形成用スタンパの製造方法]
パターン構造体形成用スタンパの製造は、主として次の工程からなる。
(工程A1) パターンの原料となる原料膜を成膜した第1の基材と、透明樹脂層を備える透明基材とを、用意する工程。
(工程A2) 前記第1の基材と前記透明基材とを、前記原料膜と前記透明樹脂層とが対向するように接触させた状態で、前記第1の基材又は前記透明樹脂層側から、レーザー光を前記原料膜に照射して、前記原料膜の内レーザー光が照射されている部分のみを透明樹脂層側に転写堆積させるレーザー転写を行う工程。
(工程A3) 前記第1の基材と前記透明基材を分離して、凸部パターンを有するスタンパを得る工程。
(工程A1)を図示する図2Aの(a)の工程では、スタンパ用の透明基材106上の透明樹脂層105を、第1の基材101上の、パターン構造体と同じ材料の原料膜102と対向配置する。
図3は、(工程A1)で使用できるスタンパ製造用の原料膜の例である。図3(a)に示す例は、スタンパ製造工程で利用するレーザー光波長に透明なサポートである第1の基材101の表面に、同レーザー光に吸収を有する無機物の物質からなる原料膜102を製膜した構造を有する。図3(b)は、無機物の物質からなる原料膜102は必ずしもレーザー光に吸収を有する必要はない例である。透明サポートである第1の基材101と原料膜102の間に、レーザー光に吸収を有しレーザーパルス照射により大部分以上が蒸発する犠牲層103を設けた構造を有する。この犠牲層103の、レーザーパルス照射による瞬間的な蒸発(以下、簡単に「レーザーアブレーション」という。)による推進力により、犠牲層103上に積層された原料膜102はスタンパ用の透明基材表面にパターン積層される。図3(c)は、透明サポートである第1の基材101上に、2種類以上の層からなる多層膜原料104を設けた例である。第1の基材101側から下層と呼ぶと、多層膜原料104中の下層の一部のレーザーアブレーションにより、その層を含むより上層の多層膜を纏めてスタンパ用の透明基材表面にパターン積層できる。図3(c)に示す原料膜の多層積層構造を用いることにより、多層膜からなる凸部パターンを形成することができ、さらに最終物である、パターン構造体の多層膜構造のパターンを転写形成することができる。
第1の基材101は、透明であっても透明でなくともよい。透明の基材として、使用するレーザー波長で透明な無機材料やポリマーフィルムが挙げられ、例えば、石英ガラス、ホウケイ酸ガラス、サファイヤ、イットリア安定化ジルコニアなどが挙げられる。(工程A2)において、スタンパ用の透明基材側からレーザー照射する場合は、第1の基材101が透明である必要はない。
無機物の物質からなる原料膜102は、スパッタリング法、蒸着法、パルスレーザー堆積法などの気相法や、塗布法などの液相法などにより成膜できる。犠牲層についても、原料膜と同様に、スパッタリング法、蒸着法、パルスレーザー堆積法などの気相法や、塗布法などの液相法などで成膜できる。
図2Aでは、図3(a)に示す構造を有する原料膜を用いた例を示すが、原料膜の構造はもちろんこれに限定されるものではない。
(工程A2)を図示する図2A(b)は、第1の基材101とスタンパ用の透明基材とを、原料膜と透明樹脂層とが対向するように接触させた状態で、第1の基材101から、レーザーパルス107を前記原料膜102に照射して、前記原料膜102の内レーザー光が照射されている部分のみを透明樹脂層側に転写堆積させるレーザー転写を行う工程を示している。ここで、レーザー光を前記原料膜に照射する際には、レーザー光をパターン構造体のパターンと同形状のパターン状(光強度パターンなど)で、原料膜に照射する。よって、レーザー転写により、レーザー光が照射されている部分のみが転写堆積されて(工程A3)の凸部パターンとなる。
レーザー転写を行うためのレーザー光は、波長が、少なくとも原料膜や凸部パターンのレーザーアブレーションを誘起させる層が光吸収を有する波長である必要がある。
図2A(b)に示すように、対向配置した原料膜102と透明樹脂層105が密着すべく接触させた上で、必要があれば加重する。加重により高密度に接触させることが可能である。スタンパ作製過程での原料膜102とスタンパ用透明基材表面の透明樹脂層105との密着性は、スタンパ表面に形成される凸部パターン109のパターン品質を大きく左右するため大変重要である。もし密着性が低いと、レーザーパルス照射により誘起されたレーザーアブレーションにより形成された原子・分子・イオン・クラスター・微小液滴が対向する透明樹脂層105上に堆積する場合、そのパターンが原料膜と透明樹脂層間のギャップ距離に応じて拡がってしまい、凸部パターン109のパターン滲みを生じてしまう原因となり得る。よって、透明樹脂層105は高密着性が得られる材料を選択することが好ましい。また、加重により第1の基材101やスタンパ用の透明基材106の破損が生じる場合もあるため、1気圧以下の加重が好適である。
次に、図2A(b)に示すように、透明サポートである第1の基材101側から、レーザーパルス107をシングルショット照射する。原料膜102と透明サポートである第1の基材101との界面近傍部分は、レーザーパルスを吸収する光吸収層108となる。前記レーザーパルスは、光吸収層108でレーザーアブレーションを誘起し、アブレーションによる固体から気体・プラズマへの相変化に伴う急激な体積変化を推進力として、原料膜102の内、光吸収層108の上部に該当する部分(アブレーション部分より原料膜表面までの部分)のみを選択的に、対向する透明樹脂層105に押し出す。
前記レーザーパルス107のパルス幅は10フェムト秒から100ミリ秒の範囲が好ましい。ただし、推進力となるレーザーアブレーションを起こした後にもレーザーパルス幅に応じた時間範囲でのレーザー照射が続くと、原料膜102の照射箇所周辺の部位や、場合によっては第1の基材101や透明樹脂層105の周囲の部材へ、不要な熱ダメージを誘起することがあるため、10フェムト秒から100ナノ秒程度が好適である。
(工程A3)を図示する図2A(c)では、第1の基材101側と透明基材側を分離して、透明基材106と透明樹脂層105と凸部パターン109からなるスタンパ110を得る。即ち、図2A(c)において、第1の基材101とスタンパ110を剥がした結果、第1の基材101側にはレーザー照射後に第1の基材上に残った原料膜102aが、透明樹脂層105上には凸部パターン(以下、「スタンパ表面凸部」ともいう。)109がある。このスタンパ表面凸部が有する面内の微細パターンは、図2A(b)のレーザーパルスが有する光強度パターンに対応して形成される。
レーザーパルス107に光強度パターンを形成する手法として、通常知られている方法を用いることができ、特に制限はない。例えば、マスク縮小露光法が挙げられる。マスク縮小露光法では、トップハットビームのような平坦な光強度をもつ比較的大面積のレーザービームをマスクでパターン化した後、試料面で所望のサイズのパターンになるよう結像露光する。この手法では、マスク作製は必要となるが、試料表面の比較的大面積に均一性の高い微細パターンをシングルショットで形成することができる。また、マスクの代わりに空間光変調器やデジタルミラーデバイスを用いると、簡単にパターン変調可能であり、自在に光強度パターンを有するレーザーパルスを形成できる。さらに、ガルバノミラーを用いてレーザーパルスを試料表面上に自在に走査することで、シングルショットでは1集光点であるが、複数ショットの走査によるパターン形成も可能である。
スタンパ表面凸部、即ち凸部パターン109は、樹脂層表面からの高さが10nm以上100μm以下程度であることが好ましい。この高さの上限は原料膜の厚さで決まる。一方、この高さの下限は、元の原料膜102の厚さからレーザーパルスを吸収する光吸収層108の内レーザーアブレーションを起こす部分の厚さを差し引いた厚さで決まる。また、レーザーアブレーションにより得られる推進力エネルギーが、アブレーション部位の上部を押し出し、その後透明樹脂層上に堆積・固着させるエネルギーをまかなう必要があり、この点も上限膜厚の決定因子となる。
図1(b)のスタンパを製造するには、図2A(a)(b)(c)の工程を物質ごとに繰り返せば良い。この繰り返しを行う場合は、スタンパ表面に先に形成された微細パターンを観察しながら位置合わせを行うことや、スタンパ110と原料膜102/第1の基材101に位置合わせ用のマーキングをすることで位置合わせを行うことができる。どちらの場合についても、本発明の場合には、デバイス形状などを有する最終ターゲット113に複雑なアラインメントに備えたマーキングを施す必要はない。
図1(c)のスタンパを製造するには、図3(c)の原料膜を用いて製造することにより、多層膜からなる凸部パターンが得られる。
スタンパの製造方法は、図2Aの方法に限定されない。スタンパ表面の凸部パターンの製造は、無機物、例えば金属や金属酸化物の微細パターン形成方法として知られている方法を用いることができる。例えば、リソグラフィー法、インクジェット法などを用いることができる。図2Aの方法によれば、スタンパの微細凸部パターンを、より高精細で作成できるので、好適である。
[スタンパを用いたレーザー転写によるパターン構造体の製造方法]
パターン構造体の製造は、主として次の工程からなる。
(工程B1) 本発明の実施の形態のスタンパとパターン構造体用基材とを、前記スタンパの凸部パターンと前記パターン構造体用基材とが対向するよう接触させた状態で、レーザー光を照射することにより、前記凸パターンをパターン構造体用基材に転写させる工程。
(工程B2) 前記パターン構造体用基材と前記スタンパを分離して、パターンを有するパターン構造体を得る工程。
図2B(d)(e)は、図2A(c)で作製したスタンパ110を用いて、転写先基材113に微細パターン構造体を転写作製する様子を示す。スタンパ表面凸部109と転写先基材113を対向配置させる。この状態で、スタンパの裏面即ちスタンパ用の透明基材106側から、レーザーパルス111をシングルショット照射し、透明樹脂層105とスタンパ表面凸部109の界面近傍の、光吸収層112の位置で、レーザーパルス吸収を誘起する。その結果として光吸収層112の一部でレーザーアブレーションを起こし、レーザーアブレーションに伴う固体から気体・プラズマへの相変化による急激な体積増加により生じる圧力を推進力として、スタンパ表面凸部109を転写的基材113に転写堆積させ、図2B(e)の転写先基材に、転写された無機物物質からなる、パターン構造体のパターン114を得る。スタンパ表面凸部が多層膜である場合も、同様に、転写先基材に多層膜のパターンが転写される。
図2B(d)で照射するレーザーパルス111は、転写したいスタンパ表面凸部109をカバーする面積で一様に照射可能であればよく、均質であることが望ましい。そのレーザーフルエンスは、スタンパ表面凸部109のレーザーアブレーション閾値以上である必要がある。ただし結合を切断するエネルギーとしては、スタンパ表面凸部109は連続膜でないため膜内の結合を切るためのエネルギーは不要であり、透明樹脂層105との界面の結合を切るエネルギーのみでよいため、図2A(b)の工程に比べると同程度以下のレーザーフルエンスで良い。
最終物であるパターン構造体の製造におけるレーザー転写で使用するレーザー光は、レーザーエネルギーが、原料膜の少なくとも一部の溶融又は蒸発を起こすレーザーエネルギー以上であり、溶融物又は蒸発物が飛散し、元のパターンの例えば1.1倍以上に広がってしまうレーザーエネルギーより小さいエネルギー範囲に設定したレーザー光により、転写を行うことができる。なお、上記1.1倍は単なる例示であり、要求されるパターンの精細度により適宜選択設定することができる。
転写先基材としては、従来のパターン構造体の基材として使用されている部材であれば、特に制限はない。例えば、電子デバイス用の基板、フレキシブル基板、医用部材コーティング用基材等が挙げられる。材質としては、無機材、有機材、いずれでもよい。例えば、シリコン等の半導体ウェハ、アルミナ等のセラミックス、石英ガラス、ポリマーフィルム、高分子基板等が好ましい。
次に、実施例及び比較例により詳細に説明する。
(実施例1)
電子基板配線用金属の代表である銀(Ag)を無機物の原料膜102として用いた例である。Agを第1の基材(石英ガラス透明サポート)101上に、基板加熱することなくスパッタリング法により厚さ400nmで成膜したものを、原料膜/透明サポート(厚さ約2mm)として用いた。また、透明樹脂層105とスタンパ用の透明基材106を各々、PDMS(厚さ約1mm)と石英ガラス(厚さ約1mm)として用いた。Ag原料膜とPDMS透明樹脂層をコンタクトさせ、密着させるよう約0.1気圧の加圧を行った。
スタンパ製造工程で照射するレーザーパルス107は、波長248nmのKrFエキシマレーザー光、パルス半値幅は約20ナノ秒とした。このエキシマレーザー光はトップハットビーム形状を有し、400μm角のグリッドパターンを有するマスク透過後、8倍結像を実施、原料膜/透明サポート界面に50μm角のグリッドパターンを結像できる光学系を用いて、第1の基材(透明サポート)101側からシングルショット照射した。照射レーザーフルエンスは、1.2J/cm2とした。
前記スタンパ製造工程により得られたAg凸部パターンを表面に有するスタンパ110の表面をレーザー共焦点顕微鏡によって観察結果を、図4(a)(b)に示す。(b)は(a)の一部拡大図である。PDMS上に、照射したレーザー光強度パターンに対応した50μm角のAgパターンが均一に形成されている。
次に前記スタンパからの微細パターン構造体の転写作製について説明する。最終ターゲットである転写先基材113として石英ガラスを用いた。スタンパのスタンパ表面凸部と転写先基材の石英ガラスをコンタクトさせ、より密着させるために約0.1気圧の加圧を行った。この状態で、スタンパ用の透明基材106側から、波長248nmのKrFエキシマレーザー光(パルス半値幅 約20ナノ秒)をシングルショット照射した。この場合は、マスクは必要ないため用いず、トップハットビームの均一な光を、スタンパ表面凸部109と透明樹脂層105の界面に約1mm角となるよう照射した。照射レーザーフルエンスは、1.2J/cm2とした。
実施例1により作製した石英ガラス上のAg微細パターン構造体の表面をレーザー共焦点顕微鏡によって観察結果を、図4(c)(d)に示す。(d)は(c)の一部拡大図である。スタンパ表面のAg微細パターンが、パターン形状を保持した状態で最終ターゲットである石英ガラス上に転写堆積されていることがわかる。Agの平均膜厚は約100nmであった。得られる膜厚が当初の原料膜より薄い理由は、スタンパ製造時に第1の基板側に残った原料膜のレーザー照射部位は貫通孔を形成しているが、貫通孔周囲にはリム構造が形成されており、このリム構造形成に消費されるためである。これは、レーザー照射による原料膜内の高温分布形成時に、アブレーション温度以下かつ溶融温度以上の温度範囲にあり溶融した原料の一部が、流動により周囲にリム構造を形成したと考えられる。
(実施例2)
透明導電性酸化物の代表であるITO(酸化インジウムスズ)を無機酸化物の原料膜102として用いた例である。ITOを第1の基材(石英ガラス透明サポート)101上に、基板加熱することなくスパッタリング法により厚さ250nmで成膜したものを、原料膜/透明サポート(厚さ約2mm)として用いた。また、透明樹脂層105とスタンパ用の透明基材106を各々、PDMS(厚さ約1mm)と石英ガラス(厚さ約1mm)として用いた。Ag原料膜とPDMS透明樹脂層をコンタクトさせ、密着させるよう約0.1気圧の加圧を行った。
スタンパ製造工程で照射するレーザーパルス107は、波長248nmのKrFエキシマレーザー光、パルス半値幅は約20ナノ秒とした。このエキシマレーザー光はトップハットビーム形状を有し、400μm角のグリッドパターンを有するマスク透過後、8倍結像を実施、原料膜/透明サポート界面に50μm角のグリッドパターンを結像できる光学系を用いて、第1の基材(透明サポート)101側からシングルショット照射した。照射レーザーフルエンスは、0.8J/cm2とした。
次に前記スタンパからの微細パターン構造体の転写作製について説明する。最終ターゲットである転写先基材113として石英ガラスを用いた。スタンパのスタンパ表面凸部と転写先基材の石英ガラスをコンタクトさせ、より密着させるために約0.1気圧の加圧を行った。この状態で、スタンパ用の透明基材106側から、波長248nmのKrFエキシマレーザー光(パルス半値幅 約20ナノ秒)をシングルショット照射した。この場合は、マスクは必要ないため用いず、トップハットビームの均一な光を、スタンパ表面凸部109と透明樹脂層105の界面に約1mm角となるよう照射した。照射レーザーフルエンスは、0.8J/cm2とした。
実施例2により作製した石英ガラス上のITO微細パターン構造体の表面をレーザー共焦点顕微鏡によって観察結果を、図5(a)(b)に示す。(b)は(a)の一部拡大図である。スタンパ製造工程で用いたレーザーパルス107の50μmグリッドパターンに対応した約50μm角のITO微細パターン構造体が、石英ガラス上に転写形成されていることがわかる。ITOの平均膜厚は約100nmであった。
(比較例1)
実施例1及び2では、高い密着性と弾力性をもつ表面樹脂層コートのスタンパを用いた場合を示したが、これとは異なる比較例について、説明する。
Agを原料膜として、石英ガラス透明サポート上に、基板加熱することなくスパッタリング法により厚さ200nmで成膜したものを、原料膜/透明サポート(厚さ約2mm)として用いた。また、対向配置させる転写先基材は石英ガラス(厚さ2mm)とした。Ag原料膜と転写先基材をコンタクトさせ、さらに約0.1気圧の加圧を行った。
Ag原料膜と転写先基材をコンタクトさせた状態で、波長248nmのKrFエキシマレーザーからのパルス半値幅20ナノ秒のレーザーパルスを照射した。このエキシマレーザー光はトップハットビーム形状を有し、400μm角のグリッドパターンを有するマスク透過後、8倍結像を実施、原料膜/透明サポート界面に50μm角のグリッドパターンを結像できる光学系を用いて、透明サポート側からシングルショット照射した。照射レーザーフルエンスは、0.6J/cm2とした。
図6に、比較例1のレーザー転写法で、ガラス基板上のAg原料膜から、対向する石英ガラス基板上に直接転写堆積した場合の観察結果を示す。(a)は、レーザー転写後のAg原料膜(ガラス基板上に残った原料膜)で、そのうち、右の図が左の図の一部拡大図である。(b)は、転写したAgパターンのレーザー共焦点顕微鏡写真の図で、そのうち、左の図はライブ画像イメージで、右の図は超深度測定で得られたより焦点深度の深いイメージである。(a)より、原料膜のレーザー照射部位は貫通孔を形成していることがわかり、貫通孔周囲にはリム構造が形成されていることがわかる。一方、転写堆積させたAgのパターン(b)をみると、実施例1とは大きく異なり、約50μm角のパターンの周囲ほぼ100μm角にわたって、レーザーアブレーション種である原子・分子・イオンなどが堆積して滲んだとおもわれるパターンが見られる。さらに、中心部の50μm角のパターン内においても、多数のドット形成が確認され、スムースな転写構造体は得られておらず、高品質なパターン形成は困難であった。
上記実施の形態や実施例等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。
本発明のスタンパ及びこれを用いたパターン構造体の製造方法によれば、微細パターンを有する電子デバイス、フレキシブル電子デバイス、インプラントなどの医用部材コーティング材等の製造に適用可能であり、産業上有用である。
101 第1の基材
102 原料膜
102a レーザー照射後に第1の基材上に残った原料膜
103 犠牲層
104 多層膜原料
105 透明樹脂層
106 透明基材
107、111 レーザーパルス
108、112 光吸収層
109 凸部パターン、スタンパ表面凸部
110 スタンパ
113 転写先基材
114 パターン構造体のパターン
115、116 凸部パターン
117 多層膜の凸部パターン

Claims (13)

  1. パターン構造体形成用のスタンパであって、
    透明基材と、該透明基材上の透明樹脂層と、該透明樹脂層上の凸部パターンとを備え、
    前記凸部パターンは、前記パターン構造体のパターンを構成する原料の単一又は複数の種類の無機物を含み、
    前記透明樹脂層は、高密着性表面を有するポリジメチルシロキサンであることを特徴とするスタンパ。
  2. パターン構造体形成用のスタンパであって、
    レーザー転写用スタンパであり、
    透明基材と、該透明基材上の透明樹脂層と、該透明樹脂層上の凸部パターンとを備え、
    前記凸部パターンは、前記パターン構造体のパターンを構成する原料の単一又は複数の種類の無機物を含むことを特徴とするスタンパ。
  3. 前記透明樹脂層は、高密着性表面を有するポリジメチルシロキサンであることを特徴とする請求項2記載のスタンパ。
  4. 前記凸部パターンは、溶媒を実質的に有しない、請求項1乃至3のいずれか1項記載のスタンパ。
  5. 前記凸部パターンは、少なくとも1以上の層からなることを特徴とする請求項1乃至4のいずれか1項記載のスタンパ。
  6. 前記凸部パターンは、無機物薄膜及び塗布膜のいずれか1以上の膜からなることを特徴とする請求項1乃至5のいずれか1項記載のスタンパ。
  7. 前記透明樹脂層は、弾力性を有することを特徴とする請求項1乃至6のいずれか1項記載のスタンパ。
  8. パターン構造体形成用のスタンパの製造方法であって、
    レーザー光に吸収を有する犠牲層、及びパターンの原料となる、溶媒を実質的に有しない原料膜を順次積層した第1の基材と、透明樹脂層を備える透明基材とを、用意し、
    前記第1の基材と前記透明基材とを、前記原料膜と前記透明樹脂層とが対向するように接触させた状態で、前記第1の基材又は前記透明樹脂層側から、レーザー光を前記原料膜に照射して、前記原料膜の内レーザー光が照射されている部分のみを前記透明樹脂層側に転写堆積させるレーザー転写を行うことにより、溶媒を実質的に有しない凸部パターンを形成することを特徴とするスタンパの製造方法。
  9. 前記透明樹脂層側に転写堆積させるレーザー転写の工程において、
    レーザーエネルギーが、前記原料膜の少なくとも一部の溶融又は蒸発を起こすレーザーエネルギー以上であり、溶融物又は蒸発物が飛散し一つの照射区画から二つ以上の転写パターンが生じてしまうレーザーエネルギーより小さいエネルギー範囲に設定したレーザー光により、転写を行うことを特徴とする請求項8記載のスタンパの製造方法。
  10. 請求項1乃至7のいずれか1項記載のスタンパを用いてパターン構造体を製造する方法であって、
    前記スタンパとパターン構造体用基材とを、前記スタンパの前記凸部パターンと前記パターン構造体用基材とが対向するよう接触させた状態で、レーザー光を一様に照射することにより、前記凸部パターンを前記パターン構造体用基材に転写させることを特徴とするパターン構造体の製造方法。
  11. 前記スタンパの前記透明樹脂層側から前記凸部パターンにレーザー光を照射し、光のオン/オフにより、対向配置されている前記パターン構造体用基材に前記凸部パターンを転写させることを特徴とする請求項10記載のパターン構造体の製造方法。
  12. パターン構造体の製造方法であって、
    パターンの原料となる原料膜を成膜した第1の基材と、透明樹脂層を備える透明基材とを、用意し、
    前記第1の基材と前記透明基材とを、前記原料膜と前記透明樹脂層とが対向するように接触させた状態で、前記第1の基材又は前記透明樹脂層側から、レーザー光を前記原料膜に照射して、前記原料膜の内レーザー光が照射されている部分のみを前記透明樹脂層側に転写堆積させるレーザー転写を行い、スタンパを製造する工程と、
    前記スタンパを用いて、前記スタンパとパターン構造体用基材とを、前記スタンパの凸部パターンを前記パターン構造体用基材を対向するよう接触させた状態で、レーザー光を一様に照射することにより、前記凸部パターンを前記パターン構造体用基材に転写させる工程とを、備えることを特徴とするパターン構造体の製造方法。
  13. パターン構造体形成用のスタンパであって、透明基材と、該透明基材上の透明樹脂層と、該透明樹脂層上の凸部パターンとを備え、前記凸部パターンが、前記パターン構造体のパターンを構成する原料の単一又は複数の種類の無機物を含むスタンパ、を用いてパターン構造体を製造する方法であって、
    前記スタンパとパターン構造体用基材とを、前記スタンパの前記凸部パターンと前記パターン構造体用基材とが対向するよう接触させた状態で、レーザー光を一様に照射することにより、前記凸部パターンを前記パターン構造体用基材に転写させることを特徴とするパターン構造体の製造方法。
JP2017127907A 2017-06-29 2017-06-29 パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法 Active JP6913941B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127907A JP6913941B2 (ja) 2017-06-29 2017-06-29 パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127907A JP6913941B2 (ja) 2017-06-29 2017-06-29 パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法

Publications (2)

Publication Number Publication Date
JP2019010776A JP2019010776A (ja) 2019-01-24
JP6913941B2 true JP6913941B2 (ja) 2021-08-04

Family

ID=65226183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127907A Active JP6913941B2 (ja) 2017-06-29 2017-06-29 パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法

Country Status (1)

Country Link
JP (1) JP6913941B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142248B2 (ja) * 2006-03-20 2013-02-13 独立行政法人産業技術総合研究所 FeSi2ドットアレイ構造体の作製方法
JP2008193035A (ja) * 2007-02-08 2008-08-21 Matsushita Electric Ind Co Ltd 微細形状転写方法および微細形状転写装置
JP5555025B2 (ja) * 2010-03-25 2014-07-23 株式会社日立ハイテクノロジーズ 微細パターン転写用スタンパ及びその製造方法
KR20170070099A (ko) * 2014-10-04 2017-06-21 토야마켄 임프린트용 템플릿 및 그 제조 방법
JP6491928B2 (ja) * 2015-03-31 2019-03-27 株式会社協同インターナショナル レプリカモールドおよびその製造方法

Also Published As

Publication number Publication date
JP2019010776A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
CN108349120B (zh) 打印的三维结构的表面性质控制
EP1724616B1 (de) Verfahren zur Herstellung strukturierter optischer Filterschichten auf Substraten
US6815015B2 (en) Jetting behavior in the laser forward transfer of rheological systems
US8728589B2 (en) Laser decal transfer of electronic materials
KR100590727B1 (ko) 임프린트된 나노구조물을 이용한 미세접촉 인쇄기법과이의 나노 구조물
US20080176398A1 (en) High throughput, low cost dual-mode patterning method for large area substrates
JP4835277B2 (ja) パターン形成体の製造方法およびインプリント転写装置
JP4246174B2 (ja) ナノインプリント方法及び装置
JP2007298944A5 (ja)
CN106575077A (zh) Lift印刷系统
JP4542167B2 (ja) 微細構造転写装置
KR101039549B1 (ko) 레이저 직접 박막 패터닝 방법
JP2009260293A (ja) ナノインプリント方法及びナノインプリントに用いられるモールド
WO2013008745A1 (ja) 薄膜パターン形成方法及び有機el表示装置の製造方法
JP4048877B2 (ja) 樹脂版およびその製造方法
JP2022527870A (ja) 固体金属印刷
US8697196B2 (en) Method of forming a metal pattern
JP5211538B2 (ja) 凹凸形状を有するフィルムの製造方法、凹凸形状を有するフィルム、及び凹凸形状を有する支持体の製造方法、凹凸形状を有する支持体
JP6913941B2 (ja) パターン構造体形成用スタンパ及びその製造方法並びにパターン構造体の製造方法
JP7095898B2 (ja) 微細加工プロセスのための液体マスク
US20080217819A1 (en) Micro/Nano-Pattern Film Contact Transfer Process
US20080110363A1 (en) Physisorption-based microcontact printing process capable of controlling film thickness
JP2008207374A (ja) 樹脂モールドおよび樹脂モールドを利用した印刷版の製造方法
EP3015918B1 (en) Nanotransfer printing method and surface-enhanced raman scattering substrate
CN208922057U (zh) 具有表面凹槽结构的曲面基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R150 Certificate of patent or registration of utility model

Ref document number: 6913941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150