JP6912882B2 - Laminated rubber seismic isolation device or viscous mass damper with spring - Google Patents

Laminated rubber seismic isolation device or viscous mass damper with spring Download PDF

Info

Publication number
JP6912882B2
JP6912882B2 JP2016236392A JP2016236392A JP6912882B2 JP 6912882 B2 JP6912882 B2 JP 6912882B2 JP 2016236392 A JP2016236392 A JP 2016236392A JP 2016236392 A JP2016236392 A JP 2016236392A JP 6912882 B2 JP6912882 B2 JP 6912882B2
Authority
JP
Japan
Prior art keywords
pair
piezoelectric element
electric circuit
state
occurs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236392A
Other languages
Japanese (ja)
Other versions
JP2018091437A (en
Inventor
滋樹 中南
滋樹 中南
英範 木田
英範 木田
田中 久也
久也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2016236392A priority Critical patent/JP6912882B2/en
Publication of JP2018091437A publication Critical patent/JP2018091437A/en
Application granted granted Critical
Publication of JP6912882B2 publication Critical patent/JP6912882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、積層ゴム免震装置またはバネ付き粘性マスダンパーに係る。特に、小さな地震から大きな地震にまで対応可能な積層ゴム免震装置またはバネ付き粘性マスダンパーに関する。 The present invention relates to a laminated rubber seismic isolation device or a spring-loaded viscous mass damper. In particular, it relates to a laminated rubber seismic isolation device or a spring-loaded viscous mass damper that can handle small to large earthquakes.

地震による揺れを抑えるために免震装置が用いられる。
例えば、免震装置は、積層ゴム免震装置またはバネ付き粘性マスダンパーである。
たとえば、免震装置が上部構造物と基礎との間または上部構造物の内部に設けられる。
例えば、上部構造物は建物である。
積層ゴム免震装置は、上フランジと下フランジと積層ゴム部材とで構成される。
積層ゴム部材は、複数の金属製の板状部材と複数の弾性体製の板状部材とが上下方向に交互に積層された部材である。金属製の板状部材と複数の弾性体製の板状部材とは接着されてもよい。
上フランジは、積層ゴム部材の上部に配される部材である。
下フランジは、積層ゴム部材の下部に配される部材である。
下フランジは、基礎に固定される。
上フランジは、建物の下面に固定される。
バネ付き粘性マスダンパーは、粘性マスダンパーと弾性部材とを直接に接続したものである。
粘性マスダンパーは、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と前記雄ねじに嵌めあう雌ねじを設けられた回転体と前記回転体を回転自在に支持するフレームと前記フレームの内面と前記回転体との隙間に封入された粘性流体とで構成される。
弾性部材は、一対のフランジと複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材とが前記特定方向に交互に積層される積層ゴム部材とで構成される。
ここで、特定方向は直動変位の方向に交差する方向である。
Seismic isolation devices are used to suppress shaking caused by earthquakes.
For example, the seismic isolation device is a laminated rubber seismic isolation device or a spring-loaded viscous mass damper.
For example, a seismic isolation device is installed between the superstructure and the foundation or inside the superstructure.
For example, the superstructure is a building.
The laminated rubber seismic isolation device is composed of an upper flange, a lower flange, and a laminated rubber member.
The laminated rubber member is a member in which a plurality of metal plate-shaped members and a plurality of elastic plate-shaped members are alternately laminated in the vertical direction. The metal plate-shaped member and the plurality of elastic plate-shaped members may be adhered to each other.
The upper flange is a member arranged on the upper part of the laminated rubber member.
The lower flange is a member arranged below the laminated rubber member.
The lower flange is fixed to the foundation.
The upper flange is fixed to the underside of the building.
A viscous mass damper with a spring is a direct connection between a viscous mass damper and an elastic member.
The viscous mass damper rotatably supports a linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear displacement, a rotating body provided with a female screw that fits the male screw, and the rotating body. The frame is composed of a viscous fluid sealed in a gap between the frame, the inner surface of the frame, and the rotating body.
In the elastic member, a pair of flanges, a plurality of metal plate members which are a plurality of metal plate-shaped members, and a plurality of elastic plate members which are a plurality of elastic plate-shaped members are alternately laminated in the specific direction. It is composed of laminated rubber members.
Here, the specific direction is a direction that intersects the direction of linear displacement.

地震が発生すると、積層ゴム部材が剪断変位し、剪断力が複数の金属製の板状部材と複数の弾性体製の板状部材との間に発生する。
その結果、積層ゴム部材が剪断変位するのに従って、弾性変形する程度に応じて積層方向に直交する方向に反力が発生し、免震機能を発揮する。
When an earthquake occurs, the laminated rubber member is sheared and displaced, and a shearing force is generated between a plurality of metal plate-shaped members and a plurality of elastic plate-shaped members.
As a result, as the laminated rubber member is sheared and displaced, a reaction force is generated in a direction orthogonal to the laminating direction according to the degree of elastic deformation, and the seismic isolation function is exhibited.

地震が終了すると、積層ゴム部材の姿勢は元の姿勢に戻る。 When the earthquake ends, the posture of the laminated rubber member returns to its original posture.

そこで、従来の積層ゴム免震装置またはまたはバネ付き粘性マスダンパーと比較し、地震動の幅広い周波数に対応して免震効果を発揮する積層ゴム免震装置またはバネ付き粘性マスダンパーが求められていた。
また、従来の積層ゴム免震装置またはまたはバネ付き粘性マスダンパーと比較し、様々な大きさの地震動や地震動のもつ幅広い周波数に対応して免震効果を発揮し、かつ建築振動を利用した発電効果を有する積層ゴム免震装置またはバネ付き粘性マスダンパーが求められていた。
Therefore, there has been a demand for a laminated rubber seismic isolation device or a spring-loaded viscous mass damper that exhibits a seismic isolation effect in response to a wide range of frequencies of seismic motion, as compared with a conventional laminated rubber seismic isolation device or a spring-loaded viscous mass damper. ..
In addition, compared to conventional laminated rubber seismic isolation devices or viscous mass dampers with springs, seismic isolation effects are exhibited in response to a wide range of seismic motions of various sizes and seismic motions, and power generation using building vibration is used. There has been a demand for an effective laminated rubber seismic isolation device or a viscous mass damper with a spring.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構造により地震動の幅広い周波数に対応して免震効果を発揮する積層ゴム免震装置またはバネ付き粘性マスダンパーを提供しようとする。 The present invention has been devised in view of the above-mentioned problems, and will provide a laminated rubber seismic isolation device or a spring-loaded viscous mass damper that exhibits a seismic isolation effect in response to a wide range of frequencies of seismic motion with a simple structure. And.

上記目的を達成するため、本発明に係る基礎に設けられ上部構造物を支持する積層ゴム免震装置を、上下一対のフランジである上フランジと下フランジと、複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と複数の圧電素子を有し板状の輪郭をもつ部材である圧電素子部材とが上下方向に<交互に>積層される積層ゴム部材と、前記圧電素子の一対の端子間に電気的に接続される電気回路と、を備え、前記上フランジが前記積層ゴム部材の上部に配され、前記下フランジが前記積層ゴム部材の下部に配され、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生ずる、ものとした。 In order to achieve the above object, the laminated rubber seismic isolation device provided on the foundation according to the present invention and supporting the superstructure is provided with a pair of upper and lower flanges, an upper flange and a lower flange, and a plurality of metal plate-shaped members. A plurality of metal plate members, a plurality of elastic plate members which are plate-shaped members made of a plurality of elastic bodies, and a piezoelectric element member which has a plurality of piezoelectric elements and has a plate-like contour are alternately <alternately in the vertical direction. > The laminated rubber member to be laminated and an electric circuit electrically connected between the pair of terminals of the piezoelectric element are provided, the upper flange is arranged on the upper part of the laminated rubber member, and the lower flange is provided. It is arranged below the laminated rubber member, and when a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, a potential difference is generated between the pair of terminals of the piezoelectric element. did.

上記本発明の構成により、上フランジと下フランジは、上下一対のフランジである。積層ゴム部材は、複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と複数の圧電素子を有し板状の輪郭をもつ部材である圧電素子部材とが上下方向に積層される。電気回路は、前記圧電素子の一対の端子間に電気的に接続される。前記上フランジが前記積層ゴム部材の上部に配される。前記下フランジが前記積層ゴム部材の下部に配される。前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生ずる。
その結果、風または地震で上部構造部に揺れが発生すると複数の弾性板部材と電気回路に電気的に接続される圧電素子部材のに水平方向の剪断変形が生じて上部構造物の揺れに影響を与えることができる。
According to the configuration of the present invention, the upper flange and the lower flange are a pair of upper and lower flanges. The laminated rubber member has a plurality of metal plate members which are a plurality of metal plate-shaped members, a plurality of elastic plate members which are a plurality of elastic plate-shaped members, and a plurality of piezoelectric elements, and has a plate-like contour. The piezoelectric element member, which is a member to be held, is laminated in the vertical direction. The electric circuit is electrically connected between the pair of terminals of the piezoelectric element. The upper flange is arranged on the upper part of the laminated rubber member. The lower flange is arranged below the laminated rubber member. When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, a potential difference is generated between the pair of terminals of the piezoelectric element.
As a result, when the superstructure is shaken by wind or earthquake, horizontal shear deformation occurs in the plurality of elastic plate members and the piezoelectric element members electrically connected to the electric circuit, which affects the shaking of the superstructure. Can be given.

以下に、本発明の実施形態に係る積層ゴム免震装置を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The laminated rubber seismic isolation device according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係る積層ゴム免震装置は、複数の圧電素子が板状の前記輪郭の内部に水平方向に沿って整列される。
上記本発明に係る実施形態の構成により、複数の圧電素子が板状の前記輪郭の内部に水平方向に沿って整列される。
その結果、複数の圧電素子を数多く配置することができる。
Further, in the laminated rubber seismic isolation device according to the embodiment of the present invention, a plurality of piezoelectric elements are arranged along the horizontal direction inside the plate-shaped contour.
According to the configuration of the embodiment according to the present invention, a plurality of piezoelectric elements are aligned along the horizontal direction inside the plate-shaped contour.
As a result, a large number of a plurality of piezoelectric elements can be arranged.

また、本発明の実施形態に係る積層ゴム免震装置は、前記圧電素子部材は、上下一対の板状の仕切板と複数の前記圧電素子とを有し、複数の前記圧電素子は一対の前記仕切板に挟まれ水平方向に配列される。
上記本発明に係る実施形態の構成により、前記圧電素子部材は、上下一対の板状の仕切板と複数の前記圧電素子とを有する。複数の前記圧電素子は上下一対の前記仕切板に挟まれ水平方向に配列される。
その結果、電気回路の電気的な接続が容易になる。
Further, in the laminated rubber seismic isolation device according to the embodiment of the present invention, the piezoelectric element member has a pair of upper and lower plate-shaped partition plates and a plurality of the piezoelectric elements, and the plurality of the piezoelectric elements are a pair of the above. It is sandwiched between partition plates and arranged horizontally.
According to the configuration of the embodiment according to the present invention, the piezoelectric element member has a pair of upper and lower plate-shaped partition plates and a plurality of the piezoelectric elements. The plurality of piezoelectric elements are sandwiched between a pair of upper and lower partition plates and arranged in the horizontal direction.
As a result, the electrical connection of the electric circuit becomes easy.

また、本発明の実施形態に係る積層ゴム免震装置は、多前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に剪断歪みが生じ、複数の圧電素子に前記剪断歪みが生じると一対の端子間に電位差を生ずる。
上記本発明に係る実施形態の構成により、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に剪断歪みが生じる。複数の圧電素子に前記剪断歪みが生じると一対の端子間に電位差を生ずる。
その結果、電気回路に電気的に接続される複数の圧電素子の剪断歪みが前記圧電素子部材の剪断変形に影響を与える。
Further, in the laminated rubber seismic isolation device according to the embodiment of the present invention, when a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-like contour of the multiple piezoelectric element members, the plurality of piezoelectric elements are subjected to shear strain. When the shear strain occurs in a plurality of piezoelectric elements, a potential difference is generated between the pair of terminals.
According to the configuration of the embodiment according to the present invention, when shear deformation in the horizontal direction occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, shear strain is generated in the plurality of piezoelectric elements. When the shear strain occurs in a plurality of piezoelectric elements, a potential difference is generated between the pair of terminals.
As a result, the shear distortion of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.

また、本発明の実施形態に係る積層ゴム免震装置は、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じ、
複数の圧電素子に前記伸縮歪みが生ずると一対の端子間に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じる。複数の圧電素子に前記伸縮歪みが生ずると一対の端子間に電位差が生ずる。
その結果、電気回路に電気的に接続される複数の圧電素子の伸縮歪みが前記圧電素子部材の剪断変形に影響を与える。
Further, in the laminated rubber seismic isolation device according to the embodiment of the present invention, when a shear deformation in the horizontal direction occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, expansion and contraction strain occurs in the plurality of piezoelectric elements. ,
When the expansion and contraction strain occurs in a plurality of piezoelectric elements, a potential difference occurs between the pair of terminals.
According to the configuration of the embodiment according to the present invention, when shear deformation in the horizontal direction occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, expansion and contraction strain occurs in the plurality of piezoelectric elements. When the expansion and contraction strain occurs in a plurality of piezoelectric elements, a potential difference occurs between the pair of terminals.
As a result, the expansion and contraction distortion of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.

また、本発明の実施形態に係る積層ゴム免震装置は、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じ、複数の圧電素子に前記曲げによる歪みが生ずると一対の端子間に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じる。複数の圧電素子に前記曲げによる歪みが生ずると一対の端子間に電位差が生ずる。
その結果、電気回路に電気的に接続される複数の圧電素子の曲げによる歪みが前記圧電素子部材の剪断変形に影響を与える。
Further, in the laminated rubber seismic isolation device according to the embodiment of the present invention, when a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, the plurality of piezoelectric elements are distorted due to bending. When the plurality of piezoelectric elements are distorted due to the bending, a potential difference is generated between the pair of terminals.
According to the configuration of the embodiment according to the present invention, when shear deformation in the horizontal direction occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, distortion due to bending occurs in the plurality of piezoelectric elements. When distortion occurs in the plurality of piezoelectric elements due to the bending, a potential difference occurs between the pair of terminals.
As a result, distortion due to bending of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.

また、本発明の実施形態に係る積層ゴム免震装置は、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる。
上記本発明に係る実施形態の構成により、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる。
その結果、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
Further, the laminated rubber seismic isolation device according to the embodiment of the present invention changes the impedance of the electric circuit in response to a change in the maximum amplitude value of the acceleration generated on the foundation when it is determined that an earthquake has occurred.
According to the configuration of the embodiment according to the present invention, the impedance of the electric circuit is changed in response to a change in the maximum amplitude value of the acceleration that occurs in the foundation when it is determined that an earthquake has occurred.
As a result, the influence of the distortion of the plurality of piezoelectric elements electrically connected to the electric circuit on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.

また、本発明の実施形態に係る積層ゴム免震装置は、前記電気回路が複数の前記圧電素子の一対の端子間に電気的に接続されるコンデンサを有し、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路の前記コンデンサの静電容量を変化させる。
上記本発明に係る実施形態の構成により、前記電気回路が複数の前記圧電素子の一対の端子間に電気的に接続されるコンデンサを有する。地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路の前記コンデンサの静電容量を変化させる。
その結果、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
Further, the laminated rubber seismic isolation device according to the embodiment of the present invention has a capacitor in which the electric circuit is electrically connected between a pair of terminals of the plurality of piezoelectric elements, and when it is determined that an earthquake has occurred. The capacitance of the capacitor in the electrical circuit is changed in response to a change in the maximum amplitude value of the acceleration that occurs in the foundation.
According to the configuration of the embodiment according to the present invention, the electric circuit has a capacitor electrically connected between a pair of terminals of the plurality of piezoelectric elements. When it is determined that an earthquake has occurred, the capacitance of the capacitor in the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs in the foundation.
As a result, the influence of the distortion of the plurality of piezoelectric elements electrically connected to the electric circuit on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.

また、本発明の実施形態に係る積層ゴム免震装置は、前記電気回路の状態を一対の前記端子に生じた電位差で電流をながれるON状態と一対の前記端子の間に生じた電位差で電流をながれないOFF状態とに選択的に設定でき、地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で地震が継続中に前記ON状態から前記OFF状態にする、
上記本発明に係る実施形態の構成により、前記電気回路の状態を一対の前記端子に生じた電位差で電流をながれるON状態と一対の前記端子の間に生じた電位差で電流をながれないOFF状態とに選択的に設定できる。地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で地震が継続中に前記ON状態から前記OFF状態にする。
その結果、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震が発生してからの状態の遷移に対応して変化させることができる。
Further, in the laminated rubber seismic isolation device according to the embodiment of the present invention, the state of the electric circuit is changed by the potential difference generated between the pair of terminals and the ON state in which the current flows by the potential difference generated between the pair of terminals. It can be selectively set to an OFF state that does not flow, and when it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the state is changed from the ON state to the OFF state while the earthquake continues.
According to the configuration of the embodiment according to the present invention, the state of the electric circuit can be changed to an ON state in which a current can be passed by a potential difference generated in a pair of the terminals and an OFF state in which a current cannot be passed by a potential difference generated between the pair of the terminals. Can be selectively set to. When it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the state is changed from the ON state to the OFF state while the earthquake is continuing.
As a result, the influence of the distortion of the plurality of piezoelectric elements electrically connected to the electric circuit on the shear deformation of the piezoelectric element member can be changed according to the transition of the state after the occurrence of the earthquake.

上記目的を達成するため、本発明に係る基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するバネ付き粘性マスダンパーを、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と前記雄ねじに嵌めあう雌ねじを設けられた回転体と前記回転体を回転自在に支持するフレームと前記フレームの内面と前記回転体との隙間に封入された粘性流体とを有する粘性マスダンパーと、前記直動変位に対応して弾性反力を発生する弾性部材と、電気回路と、を備え、特定方向が前記直動変位に直交する方向であり、前記粘性ダンパーと前記弾性部材とを直列接続され、前記弾性部材が一対のフランジと複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と複数の圧電素子を有し板状の輪郭をもつ部材である圧電素子部材とが前記特定方向に積層される積層ゴム部材と、を有し、一対のうちの一つのフランジは複数のうちの一つの金属製部材に固定され、一対のうちの他の一つのフランジは複数のうちの他の一つの金属製部材に固定され、前記圧電素子部材の板状の輪郭の上面と下面との間に前記直動方位に沿って剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生じ、前記電気回路は前記圧電素子の一対の端子間に電気的に接続される、ものとした。 In order to achieve the above object, a spring-loaded viscous mass damper provided on the target structure supported by the foundation according to the present invention and generating a reaction force in response to the linear motion displacement is installed along the displacement direction of the linear motion displacement. A linear motion shaft provided with a male screw pointing in the screw feed direction, a rotating body provided with a female screw that fits the male screw, a frame that rotatably supports the rotating body, and a gap between the inner surface of the frame and the rotating body. A viscous mass damper having a viscous fluid enclosed in the above, an elastic member that generates an elastic reaction force in response to the linear motion displacement, and an electric circuit, and a specific direction is perpendicular to the linear motion displacement. The viscous damper and the elastic member are connected in series, and the elastic member is a pair of flanges, a plurality of metal plate members which are a plurality of metal plate members, and a plurality of elastic plate members. It has a laminated rubber member in which a plurality of elastic plate members and a piezoelectric element member having a plurality of piezoelectric elements and having a plate-like contour are laminated in the specific direction, and one of a pair. The flange is fixed to one of the plurality of metal members, the other one of the pair of flanges is fixed to the other one of the plurality of metal members, and the plate-like contour of the piezoelectric element member is fixed. When shear deformation occurs between the upper surface and the lower surface along the linear motion direction, a potential difference is generated between the pair of terminals of the piezoelectric element, and the electric circuit is electrically connected between the pair of terminals of the piezoelectric element. It was decided.

上記本発明の構成により、粘性マスダンパーは、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と前記雄ねじに嵌めあう雌ねじを設けられた回転体と前記回転体を回転自在に支持するフレームと前記フレームの内面と前記回転体との隙間に封入された粘性流体とを有する。弾性部材は、前記直動変位に対応して弾性反力を発生する。特定方向が前記直動変位に直交する方向である。前記粘性ダンパーと前記弾性部材とを直列接続される。積層ゴム部材は、複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と複数の圧電素子を有し板状の輪郭をもつ部材である圧電素子部材とが前記特定方向に積層される。一対のうちの一つのフランジは複数のうちの一つの金属製部材に固定される。一対のうちの他の一つのフランジは複数のうちの他の一つの金属製部材に固定される。前記圧電素子部材の板状の輪郭の上面と下面との間に前記直動方位に沿って剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生じる。前記電気回路は前記圧電素子の一対の端子間に電気的接続される。
その結果、風または地震で上部構造部に揺れが発生すると複数の弾性板部材と電気回路に電気的に接続される圧電素子部材のに水平方向の剪断変形が生じて上部構造物の揺れに影響を与えることができる。
According to the above-described configuration of the present invention, the viscous mass damper includes a linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear displacement, a rotating body provided with a female screw that fits the male screw, and the above. It has a frame that rotatably supports the rotating body, and a viscous fluid sealed in a gap between the inner surface of the frame and the rotating body. The elastic member generates an elastic reaction force in response to the linear displacement. The specific direction is the direction orthogonal to the linear displacement. The viscous damper and the elastic member are connected in series. The laminated rubber member has a plurality of metal plate members which are a plurality of metal plate-shaped members, a plurality of elastic plate members which are a plurality of elastic plate-shaped members, and a plurality of piezoelectric elements, and has a plate-like contour. The piezoelectric element member, which is a member to be held, is laminated in the specific direction. One of the pair of flanges is fixed to one of the plurality of metal members. The other one flange of the pair is fixed to the other one metal member of the plurality. When shear deformation occurs along the linear motion direction between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, a potential difference is generated between the pair of terminals of the piezoelectric element. The electric circuit is electrically connected between the pair of terminals of the piezoelectric element.
As a result, when the superstructure is shaken by wind or earthquake, horizontal shear deformation occurs in the plurality of elastic plate members and the piezoelectric element members electrically connected to the electric circuit, which affects the shaking of the superstructure. Can be given.

以下に、本発明の実施形態に係るバネ付き粘性マスダンパーを説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The spring-loaded viscous mass damper according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、複数の圧電素子が板状の前記輪郭の内部に特定方向に直交する面に沿って配列される。
上記本発明に係る実施形態の構成により、複数の圧電素子が板状の前記輪郭の内部に特定方向に直交する面に沿って配列される。
その結果、複数の圧電素子を数多く配置することができる。
Further, in the viscous mass damper with a spring according to the embodiment of the present invention, a plurality of piezoelectric elements are arranged along a plane orthogonal to a specific direction inside the plate-shaped contour.
According to the configuration of the embodiment according to the present invention, a plurality of piezoelectric elements are arranged inside the plate-shaped contour along a plane orthogonal to a specific direction.
As a result, a large number of a plurality of piezoelectric elements can be arranged.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、前記圧電素子部材は一対の板状の仕切板と複数の前記圧電素子とを有し、複数の前記圧電素子は一対の前記第仕切板に挟まれ特定方向に直交する面に沿って配列される。
上記本発明に係る実施形態の構成により、前記圧電素子部材は一対の板状の仕切板と複数の前記圧電素子とを有する。複数の前記圧電素子は一対の前記仕切板に挟まれ特定方向に直交する面に沿って配列される。
その結果、電気回路の電気的な接続が容易になる。
Further, in the spring-loaded viscous mass damper according to the embodiment of the present invention, the piezoelectric element member has a pair of plate-shaped partition plates and a plurality of the piezoelectric elements, and the plurality of the piezoelectric elements are a pair of the first partitions. It is sandwiched between plates and arranged along a plane orthogonal to a specific direction.
According to the configuration of the embodiment according to the present invention, the piezoelectric element member has a pair of plate-shaped partition plates and a plurality of the piezoelectric elements. The plurality of piezoelectric elements are sandwiched between the pair of partition plates and arranged along a plane orthogonal to a specific direction.
As a result, the electrical connection of the electric circuit becomes easy.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に剪断歪みが生じ、複数の圧電素子に前記剪断歪みが生じると一対の端子間に電位差を生ずる。
上記本発明に係る実施形態の構成により、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に剪断歪みが生じる。
複数の圧電素子に前記剪断歪みが生じると一対の端子間に電位差を生ずる。
その結果、電気回路に電気的に接続される複数の圧電素子の剪断歪みが前記圧電素子部材の剪断変形に影響を与える。
Further, the viscous mass damper with a spring according to the embodiment of the present invention shears a plurality of piezoelectric elements when a shear deformation in the direction of linear displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member. When strain occurs and the shear strain occurs in a plurality of piezoelectric elements, a potential difference is generated between the pair of terminals.
According to the configuration of the embodiment according to the present invention, when shear deformation in the direction of linear displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, shear distortion occurs in the plurality of piezoelectric elements.
When the shear strain occurs in a plurality of piezoelectric elements, a potential difference is generated between the pair of terminals.
As a result, the shear distortion of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じ、複数の圧電素子に前記伸縮歪みが生ずると一対の端子間に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じる。複数の圧電素子に前記伸縮歪みが生ずると一対の端子間に電位差が生ずる。
その結果、電気回路に電気的に接続される複数の圧電素子の伸縮歪みが前記圧電素子部材の剪断変形に影響を与える。
Further, the viscous mass damper with a spring according to the embodiment of the present invention expands and contracts to a plurality of piezoelectric elements when a shear deformation in the direction of linear displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member. When distortion occurs and the expansion and contraction distortion occurs in the plurality of piezoelectric elements, a potential difference occurs between the pair of terminals.
According to the configuration of the embodiment according to the present invention, when shear deformation in the direction of linear displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, expansion and contraction strain occurs in the plurality of piezoelectric elements. When the expansion and contraction strain occurs in a plurality of piezoelectric elements, a potential difference occurs between the pair of terminals.
As a result, the expansion and contraction distortion of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じ、複数の圧電素子に前記曲げによる歪みが生ずると一対の端子間に電位差が生ずる。
上記本発明に係る実施形態の構成により、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じる。複数の圧電素子に前記曲げによる歪みが生ずると一対の端子間に電位差が生ずる。
その結果、電気回路に電気的に接続される複数の圧電素子の曲げによる歪みが前記圧電素子部材の剪断変形に影響を与える。
Further, the viscous mass damper with a spring according to the embodiment of the present invention bends into a plurality of piezoelectric elements when a shear deformation in the direction of linear displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member. When the distortion due to the bending occurs in the plurality of piezoelectric elements and the distortion due to the bending occurs, a potential difference occurs between the pair of terminals.
According to the configuration of the embodiment according to the present invention, when shear deformation in the direction of linear displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, distortion due to bending occurs in the plurality of piezoelectric elements. When distortion occurs in the plurality of piezoelectric elements due to the bending, a potential difference occurs between the pair of terminals.
As a result, distortion due to bending of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.

-
また、本発明の実施形態に係るバネ付き粘性マスダンパーは、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる。
上記本発明に係る実施形態の構成により、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる。
その結果、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
---
Further, the spring-loaded viscous mass damper according to the embodiment of the present invention changes the impedance of the electric circuit in response to a change in the maximum amplitude value of the acceleration generated in the foundation when it is determined that an earthquake has occurred.
According to the configuration of the embodiment according to the present invention, the impedance of the electric circuit is changed in response to a change in the maximum amplitude value of the acceleration that occurs in the foundation when it is determined that an earthquake has occurred.
As a result, the influence of the distortion of the plurality of piezoelectric elements electrically connected to the electric circuit on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、前記電気回路が複数の前記圧電素子の一対の端子間に電気的に接続されるコンデンサを有し、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路の前記コンデンサの静電容量を変化させる。
上記本発明に係る実施形態の構成により、前記電気回路が複数の前記圧電素子の一対の端子間に電気的に接続されるコンデンサを有する。地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路の前記コンデンサの静電容量を変化させる。
その結果、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
Further, the spring-loaded viscous mass damper according to the embodiment of the present invention has a capacitor in which the electric circuit is electrically connected between a pair of terminals of the plurality of piezoelectric elements, and when it is determined that an earthquake has occurred. The capacitance of the capacitor in the electrical circuit is changed in response to a change in the maximum amplitude value of the acceleration that occurs in the foundation.
According to the configuration of the embodiment according to the present invention, the electric circuit has a capacitor electrically connected between a pair of terminals of the plurality of piezoelectric elements. When it is determined that an earthquake has occurred, the capacitance of the capacitor in the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs in the foundation.
As a result, the influence of the distortion of the plurality of piezoelectric elements electrically connected to the electric circuit on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.

また、本発明の実施形態に係るバネ付き粘性マスダンパーは、前記電気回路の状態を一対の前記端子に生じた電位差で電流をながれるON状態と一対の前記端子の間に生じた電位差で電流をながれないOFF状態とに選択的に設定でき、地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で地震が継続中に前記ON状態から前記OFF状態にする。
上記本発明に係る実施形態の構成により、前記電気回路の状態を一対の前記端子に生じた電位差で電流をながれるON状態と一対の前記端子の間に生じた電位差で電流をながれないOFF状態とに選択的に設定できる。地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で地震が継続中に前記ON状態から前記OFF状態にする。
その結果、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震が発生してからの状態の遷移に対応して変化させることができる。
Further, the viscous mass damper with a spring according to the embodiment of the present invention applies a current to the state of the electric circuit by a potential difference generated between the pair of terminals and an ON state in which a current flows by a potential difference generated between the pair of terminals. It can be selectively set to an OFF state that does not flow, and when it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the state is changed from the ON state to the OFF state while the earthquake is continuing.
According to the configuration of the embodiment according to the present invention, the state of the electric circuit can be changed to an ON state in which a current can be passed by a potential difference generated in a pair of the terminals and an OFF state in which a current cannot be passed by a potential difference generated between the pair of the terminals. Can be selectively set to. When it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the state is changed from the ON state to the OFF state while the earthquake is continuing.
As a result, the influence of the distortion of the plurality of piezoelectric elements electrically connected to the electric circuit on the shear deformation of the piezoelectric element member can be changed according to the transition of the state after the occurrence of the earthquake.

以上説明したように、本発明に係る積層ゴム免震装置は、その構成により、以下の効果を有する。
上下一対のフランジの間に配される積層ゴム部材が複数の金属板部材と複数の弾性板部材と圧電素子部材とが上下方向に積層され、圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生し、電気回路が前記圧電素子の一対の端子間に電気的に接続される様にしたので、風または地震で上部構造部に揺れが発生すると複数の弾性板部材と電気回路に電気的に接続される圧電素子部材のに水平方向の剪断変形が生じて上部構造物の揺れに影響を与えることができる。
また、複数の圧電素子が板状の前記輪郭の内部に水平面に沿って整列される様にしたので、複数の圧電素子を数多く配置することができる。
また、複数の前記圧電素子が上下一対の板状の前記仕切板に挟まれ水平方向に配列される様にしたので、電気回路の電気的な接続が容易になる。
また、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に剪断歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子の剪断歪みが前記圧電素子部材の剪断変形に影響を与える。
また、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子の伸縮歪みが前記圧電素子部材の剪断変形に影響を与える。
また、前記圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子の曲げによる歪みが前記圧電素子部材の剪断変形に影響を与える。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のコンデンサの静電容量を変化させる様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で地震が継続中に前記ON状態から前記OFF状態にする様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震が発生してからの状態の遷移に対応して変化させることができる。
As described above, the laminated rubber seismic isolation device according to the present invention has the following effects depending on its configuration.
A plurality of metal plate members, a plurality of elastic plate members, and a piezoelectric element member are laminated in the vertical direction in a laminated rubber member arranged between a pair of upper and lower flanges, and the upper surface and the lower surface of the plate-like contour of the piezoelectric element member are formed. When a horizontal shear deformation occurs between the two, a potential difference is generated between the pair of terminals of the piezoelectric element, and the electric circuit is electrically connected between the pair of terminals of the piezoelectric element. When shaking occurs in the superstructure due to an earthquake, horizontal shear deformation occurs in the plurality of elastic plate members and the piezoelectric element members that are electrically connected to the electric circuit, which can affect the shaking of the superstructure. ..
Further, since the plurality of piezoelectric elements are arranged along the horizontal plane inside the plate-shaped contour, a large number of the plurality of piezoelectric elements can be arranged.
Further, since the plurality of piezoelectric elements are sandwiched between the pair of upper and lower plate-shaped partition plates and arranged in the horizontal direction, the electrical connection of the electric circuit becomes easy.
Further, when horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, shear distortion occurs in the plurality of piezoelectric elements and a potential difference is generated between the pair of terminals. The shear strain of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.
Further, when horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, expansion and contraction distortion occurs in the plurality of piezoelectric elements, and a potential difference is generated between the pair of terminals. The expansion and contraction strain of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.
Further, when horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, distortion due to bending occurs in the plurality of piezoelectric elements, and a potential difference is generated between the pair of terminals. , Distortion due to bending of a plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.
In addition, since the impedance of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred, a plurality of piezoelectric elements electrically connected to the electric circuit are changed. The effect of the strain on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.
In addition, since the capacitance of the capacitor of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred, it is electrically connected to the electric circuit. The effect of the strain of the plurality of piezoelectric elements on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.
Further, when it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the state of the electric circuit is changed from the ON state to the OFF state while the earthquake is continuing. The influence of the strain of the plurality of connected piezoelectric elements on the shear deformation of the piezoelectric element member can be changed according to the transition of the state after the occurrence of the earthquake.

以上説明したように、本発明に係るバネ付き粘性マスダンパーは、その構成により、以下の効果を有する。
直動軸と直動軸により回転する回転体と回転体を回転自在に支持するフレームとフレームに封入された粘性流体とで構成される粘性マスダンパーと弾性反力を発生する弾性部材を直列接続し、弾性部材を上下一対のフランジの間に配される積層ゴム部材が複数の金属板部材と複数の弾性板部材と圧電素子部材とが特定方向に積層され、圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生し、電気回路が前記圧電素子の一対の端子間に電気的に接続される様にしたので、風または地震で上部構造部に揺れが発生すると複数の弾性板部材と電気回路に電気的に接続される圧電素子部材のに水平方向の剪断変形が生じて上部構造物の揺れに影響を与えることができる。
また、複数の圧電素子が板状の前記輪郭の内部に特定方向に直交する面に沿って整列される様にしたので、複数の圧電素子を数多く配置することができる。
また、複数の前記圧電素子が一対の板状の前記仕切板に挟まれ特定方向に配列される様にしたので、電気回路の電気的な接続が容易になる。
また、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向のの剪断変形が発生すると複数の圧電素子に剪断歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子の剪断歪みが前記圧電素子部材の剪断変形に影響を与える。
また、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子の伸縮歪みが前記圧電素子部材の剪断変形に影響を与える。
また、前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子の曲げによる歪みが前記圧電素子部材の剪断変形に影響を与える。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のコンデンサの制限容量を変化させる様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で地震が継続中に前記ON状態から前記OFF状態にする様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが前記圧電素子部材の剪断変形に与える影響を地震が発生してからの状態の遷移に対応して変化させることができる。
その結果、簡易な構造により地震動の幅広い周波数に対応して免震効果を発揮する積層ゴム免震装置またはバネ付き粘性マスダンパーを提供できる。
As described above, the spring-loaded viscous mass damper according to the present invention has the following effects depending on its configuration.
A viscous mass damper composed of a linear motion shaft, a rotating body that rotates by the linear motion shaft, a frame that rotatably supports the rotating body, and a viscous fluid enclosed in the frame, and an elastic member that generates an elastic reaction force are connected in series. A laminated rubber member in which the elastic member is arranged between a pair of upper and lower flanges is laminated with a plurality of metal plate members, a plurality of elastic plate members, and a piezoelectric element member in a specific direction, and a plate-like contour of the piezoelectric element member is provided. When shear deformation occurs between the upper surface and the lower surface in the direction of linear motion displacement, a potential difference is generated between the pair of terminals of the piezoelectric element, and an electric circuit is electrically connected between the pair of terminals of the piezoelectric element. Therefore, when the superstructure part is shaken by wind or earthquake, horizontal shear deformation occurs in the multiple elastic plate members and the piezoelectric element members that are electrically connected to the electric circuit, and the superstructure structure. It can affect the shaking.
Further, since the plurality of piezoelectric elements are arranged along the plane orthogonal to the specific direction inside the plate-shaped contour, a large number of the plurality of piezoelectric elements can be arranged.
Further, since the plurality of piezoelectric elements are sandwiched between the pair of plate-shaped partition plates and arranged in a specific direction, the electrical connection of the electric circuit becomes easy.
Further, when shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member in the direction of linear motion displacement, shear distortion occurs in the plurality of piezoelectric elements and a potential difference is generated between the pair of terminals. Therefore, the shear distortion of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.
Further, when shear deformation in the direction of linear motion displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, expansion and contraction distortion occurs in the plurality of piezoelectric elements and a potential difference is generated between the pair of terminals. Therefore, the expansion and contraction strain of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.
Further, when shear deformation in the direction of linear motion displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member, distortion due to bending occurs in the plurality of piezoelectric elements, and a potential difference is generated between the pair of terminals. Therefore, the strain due to bending of the plurality of piezoelectric elements electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member.
In addition, since the impedance of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred, a plurality of piezoelectric elements electrically connected to the electric circuit are changed. The effect of the strain on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.
In addition, since the limiting capacitance of the capacitor of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred, a plurality of capacitors electrically connected to the electric circuit are connected. The effect of the strain of the piezoelectric element on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.
Further, when it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the state of the electric circuit is changed from the ON state to the OFF state while the earthquake is continuing. The influence of the strain of the plurality of connected piezoelectric elements on the shear deformation of the piezoelectric element member can be changed according to the transition of the state after the occurrence of the earthquake.
As a result, it is possible to provide a laminated rubber seismic isolation device or a spring-loaded viscous mass damper that exhibits a seismic isolation effect in response to a wide range of frequencies of seismic motion with a simple structure.

本発明の実施形態に係る免震装置の概念図である。It is a conceptual diagram of the seismic isolation device which concerns on embodiment of this invention. 本発明の実施形態に係る積層ゴム免震装置の側面断面図である。It is a side sectional view of the laminated rubber seismic isolation device which concerns on embodiment of this invention. 本発明の実施形態に係る積層ゴム免震装置の断面図である。It is sectional drawing of the laminated rubber seismic isolation device which concerns on embodiment of this invention. 本発明の実施形態に係る圧電素子部材その1の概念図である。It is a conceptual diagram of the piezoelectric element member 1 which concerns on embodiment of this invention. 本発明の実施形態に係る圧電素子部材その2の概念図である。It is a conceptual diagram of the piezoelectric element member 2 which concerns on embodiment of this invention. 本発明の実施形態に係る圧電素子部材その3の概念図である。It is a conceptual diagram of the piezoelectric element member 3 which concerns on embodiment of this invention. 本発明の実施形態に係るバネ付き粘性マスダンパーの概念図である。It is a conceptual diagram of the viscous mass damper with a spring which concerns on embodiment of this invention. 本発明の実施形態に係る弾性部材の概念図である。It is a conceptual diagram of the elastic member which concerns on embodiment of this invention. 本発明の実施形態に係るバネ付き粘性マスダンパーの質点モデル図である。It is a mass model figure of the viscous mass damper with a spring which concerns on embodiment of this invention.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

本発明の実施形態に係る免震装置は、積層ゴム免震装置100またはバネ付き粘性マスダンパー(200、300)である。 The seismic isolation device according to the embodiment of the present invention is a laminated rubber seismic isolation device 100 or a spring-loaded viscous mass damper (200, 300).

図1には、対象構造物を免震、制振するために、対象物と基礎との間に積層ゴム免震装置100を設けるのが示される。 FIG. 1 shows that a laminated rubber seismic isolation device 100 is provided between an object and a foundation in order to seismically isolate and suppress vibration of the target structure.

図1には、対象構造物を制振するために、対象構造物の階層の間にバネ付き粘性マスダンパーを設けるのが示される。
バネ付き粘性マスダンパーが、一方の連結部材を下の階層に固定し、他方の連結部材を上の階層に固定される。
例えば、バネ付き粘性マスダンパーが、直動変位の方向を水平方向に沿わせて設けられる。
例えば、バネ付き粘性マスダンパーが、直動変位の方向を斜め方向に沿わせて設けられる。
例えば、バネ付き粘性マスダンパーが、直動変位の方向を垂直方向に沿わせて設けられる。
本発明の実施形態にかかるバネ付き粘性マスダンパーを用い、固有振動数、減衰係数等を最適化し、免震性能、制振性能を発揮させることをできる。
FIG. 1 shows that a spring-loaded viscous mass damper is provided between the layers of the target structure in order to dampen the target structure.
A spring-loaded viscous mass damper fixes one connecting member to the lower hierarchy and the other connecting member to the upper hierarchy.
For example, a spring-loaded viscous mass damper is provided with the direction of linear displacement along the horizontal direction.
For example, a spring-loaded viscous mass damper is provided with the direction of linear displacement along an oblique direction.
For example, a spring-loaded viscous mass damper is provided with the direction of linear displacement along the vertical direction.
By using the viscous mass damper with a spring according to the embodiment of the present invention, it is possible to optimize the natural frequency, damping coefficient, etc., and to exhibit seismic isolation performance and vibration damping performance.

図1には、対象構造物を制振するために、対象構造物の上部に設けたTMDにバネ付き粘性マスダンパーを設けるのが示される。
TMDは、支持構造40に支持され、図示しないその他のダンパーも設けられる。
図1には、対象構造物を制振するために、隣接する対象構造物との間にバネ付き粘性マスダンパーを設けるのが示される。
FIG. 1 shows that a spring-loaded viscous mass damper is provided on the TMD provided on the upper part of the target structure in order to suppress the vibration of the target structure.
The TMD is supported by the support structure 40, and other dampers (not shown) are also provided.
FIG. 1 shows that a spring-loaded viscous mass damper is provided between an adjacent target structure and the target structure in order to suppress vibration.

最初に、本発明の実施形態に係る積層ゴム免震装置100を、図を基に、説明する
図2は、本発明の実施形態に係る積層ゴム免震装置100の側面断面図である。図3は、本発明の実施形態に係る積層ゴム免震装置100の断面図である。
First, the laminated rubber seismic isolation device 100 according to the embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a side sectional view of the laminated rubber seismic isolation device 100 according to the embodiment of the present invention. FIG. 3 is a cross-sectional view of the laminated rubber seismic isolation device 100 according to the embodiment of the present invention.

本発明の実施形態に係る積層ゴム免震装置100は、積層ゴム部材110と一対のフランジ120とで構成される。
本発明の実施形態に係る積層ゴム免震装置100は、積層ゴム部材110と一対のフランジ120と制御装置400とで構成されてもよい。
本発明の実施形態に係る積層ゴム免震装置100は、積層ゴム部材110と一対のフランジ120と電気回路410とで構成されてもよい。
The laminated rubber seismic isolation device 100 according to the embodiment of the present invention is composed of a laminated rubber member 110 and a pair of flanges 120.
The laminated rubber seismic isolation device 100 according to the embodiment of the present invention may be composed of a laminated rubber member 110, a pair of flanges 120, and a control device 400.
The laminated rubber seismic isolation device 100 according to the embodiment of the present invention may be composed of a laminated rubber member 110, a pair of flanges 120, and an electric circuit 410.

積層ゴム部材110は、複数の金属板部材111と複数の弾性板部材112と圧電素子部材114とで構成される。
積層ゴム部材110は、複数の金属板部材111と複数の弾性板部材112と複数の圧電素子部材114とで構成される。
積層ゴム部材110は、複数の金属板部材111と複数の弾性板部材112と外周被覆材113と圧電素子部材114とで構成されてもよい。
積層ゴム部材110は、複数の金属板部材111と複数の弾性板部材112と外周被覆材113と複数の圧電素子部材114とで構成されてもよい。
The laminated rubber member 110 is composed of a plurality of metal plate members 111, a plurality of elastic plate members 112, and a piezoelectric element member 114.
The laminated rubber member 110 is composed of a plurality of metal plate members 111, a plurality of elastic plate members 112, and a plurality of piezoelectric element members 114.
The laminated rubber member 110 may be composed of a plurality of metal plate members 111, a plurality of elastic plate members 112, an outer peripheral covering material 113, and a piezoelectric element member 114.
The laminated rubber member 110 may be composed of a plurality of metal plate members 111, a plurality of elastic plate members 112, an outer peripheral covering material 113, and a plurality of piezoelectric element members 114.

複数の金属板部材111は、最上位金属板部材111aと複数の金属板部材111と最下位金属部材111bとで構成されてもよい。
金属板部材111は、金属製の板状部材である。
金属板部材111は、上から見て円形の外周をもつ金属製の板状部材であってもよい。
最上位金属板部材111aは、最も上位に位置する金属板部材111である。
最下位金属板部材111bは、最も下位に位置する金属板部材111である。
The plurality of metal plate members 111 may be composed of the uppermost metal plate member 111a, the plurality of metal plate members 111, and the lowermost metal plate member 111b.
The metal plate member 111 is a metal plate-shaped member.
The metal plate member 111 may be a metal plate-shaped member having a circular outer circumference when viewed from above.
The uppermost metal plate member 111a is the uppermost metal plate member 111.
The lowest metal plate member 111b is the lowest metal plate member 111.

弾性板部材112は、弾性体製の板状部材である。
弾性板部材112は、上から見て略円形の外周をもつ弾性体製の板状部材であってもよい。
The elastic plate member 112 is a plate-shaped member made of an elastic body.
The elastic plate member 112 may be a plate-shaped member made of an elastic body having a substantially circular outer circumference when viewed from above.

圧電素子部材114は、複数の圧電素子114aを有し板状の輪郭をもつ部材である。
圧電素子部材114は、複数の圧電素子114aと上下一対の仕切板114b、114cとで構成されてもよい。
上下一対の仕切り板は、上仕切板114bと下仕切板114cとで構成される。
The piezoelectric element member 114 is a member having a plurality of piezoelectric elements 114a and having a plate-like contour.
The piezoelectric element member 114 may be composed of a plurality of piezoelectric elements 114a and a pair of upper and lower partition plates 114b and 114c.
The upper and lower partition plates are composed of an upper partition plate 114b and a lower partition plate 114c.

以下に、本発明の実施形態にかかる圧電素子部材114の3つのタイプを、図を基に、説明する。 Hereinafter, three types of the piezoelectric element member 114 according to the embodiment of the present invention will be described with reference to the drawings.

図4は、本発明の実施形態に係る圧電素子部材その1の概念図である。
圧電素子部材114は、複数の圧電素子114aで構成される。
複数の圧電素子114aが板状の輪郭の内部に水平面に沿って整列される。
圧電素子部材114は、複数の圧電素子114aと上仕切板114bと下仕切板114cとで構成されてもよい。
複数の圧電素子114aは、上仕切板114bと下仕切板114cとに挟まれ水平方向に配列される。
上仕切板114bと下仕切板114cとは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上仕切板114bの上面は、圧電素子部材114の板状の輪郭の上面を形成する。
下仕切板114cの下面は、圧電素子部材114の板状の輪郭の下面を形成する。
圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子114aに剪断歪みが生じる。
複数の圧電素子114aに剪断歪みが生じると一対の端子間に電位差を生ずる。
図3の(a)は、1つの圧電素子部材114の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生する様子を示す。
図3の(b)は、他の1つの圧電素子部材114の板状の輪郭の上面と下面との間にY軸方向の剪断変形が発生する様子を示す。
図4は、圧電素子部材114の板状の輪郭の上面と下面との間にX軸方向またはY軸方向の剪断変形が発生すると、複数の圧電素子114aに剪断歪みが生じる様子を示す。
図4は、視線を水平にしてみたときに、複数の圧電素子114aに剪断歪みが生じる様子を示す。
視線を垂直にしてみたときに、複数の圧電素子114aに剪断歪みが生じる様にしてもよい。
圧電素子114aは、剪断変形により一対の端子間に電位差を生ずる圧電素子である。
図1は、複数のユニットが、水平方向に配列される。
ユニットは、複数の圧電素子114aが上下方向に積層されたものである。
圧電素子114a水平方向に剪断変形すると、一対の端子間に電位差を生ずる。
FIG. 4 is a conceptual diagram of the piezoelectric element member 1 according to the embodiment of the present invention.
The piezoelectric element member 114 is composed of a plurality of piezoelectric elements 114a.
A plurality of piezoelectric elements 114a are arranged along a horizontal plane inside a plate-shaped contour.
The piezoelectric element member 114 may be composed of a plurality of piezoelectric elements 114a, an upper partition plate 114b, and a lower partition plate 114c.
The plurality of piezoelectric elements 114a are sandwiched between the upper partition plate 114b and the lower partition plate 114c and arranged in the horizontal direction.
The upper partition plate 114b and the lower partition plate 114c may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 114b forms the upper surface of the plate-like contour of the piezoelectric element member 114.
The lower surface of the partition plate 114c forms the lower surface of the plate-like contour of the piezoelectric element member 114.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114, shear distortion occurs in the plurality of piezoelectric elements 114a.
When shear strain occurs in the plurality of piezoelectric elements 114a, a potential difference is generated between the pair of terminals.
FIG. 3A shows a state in which shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-shaped contour of one piezoelectric element member 114.
FIG. 3B shows a state in which shear deformation occurs in the Y-axis direction between the upper surface and the lower surface of the plate-shaped contour of the other piezoelectric element member 114.
FIG. 4 shows how a plurality of piezoelectric elements 114a are subjected to shear strain when shear deformation occurs in the X-axis direction or the Y-axis direction between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114.
FIG. 4 shows how shear strain occurs in the plurality of piezoelectric elements 114a when the line of sight is made horizontal.
Shear strain may be generated in the plurality of piezoelectric elements 114a when the line of sight is made vertical.
The piezoelectric element 114a is a piezoelectric element that causes a potential difference between a pair of terminals due to shear deformation.
In FIG. 1, a plurality of units are arranged in the horizontal direction.
The unit is a stack of a plurality of piezoelectric elements 114a in the vertical direction.
Piezoelectric element 114a When shear deformed in the horizontal direction, a potential difference is generated between the pair of terminals.

図5は、本発明の実施形態に係る圧電素子部材その2の概念図である。
圧電素子部材114は、複数の圧電素子114aとで構成される。
複数の圧電素子114aが板状の輪郭の内部に水平面に沿って整列される。
圧電素子部材114は、複数の圧電素子114aと上仕切板114bと下仕切板114cとで構成されてもよい。
複数の圧電素子114aは上仕切板114bと下仕切板114cとに挟まれ水平方向に配列される。
上仕切板114bと下仕切板114cとは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上仕切板114bの上面は、圧電素子部材114の板状の輪郭の上面を形成する。
下仕切板114cの下面は、圧電素子部材114の板状の輪郭の下面を形成する。
圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子114aに伸縮歪みが生じる。
複数の圧電素子114aに伸縮歪みが生じると一対の端子間に電位差を生ずる。
図3の(a)は、1つの圧電素子部材114の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生する様子を示す。
図3の(b)は、他の1つの圧電素子部材114の板状の輪郭の上面と下面との間にY軸方向の剪断変形が発生する様子を示す。
図5は、圧電素子部材114の板状の輪郭の上面と下面との間にX軸方向またはY軸方向の剪断変形が発生すると複数の圧電素子114aに伸縮歪みが生じる様子を示す。
図5は、視線を水平にしてみたときに、複数の圧電素子114aに水平方向に伸縮歪みが生じる様子を示す。
圧電素子114aは、伸縮変形により一対の端子間に電位差を生ずる圧電素子である。
図1は、複数のユニットが、水平方向に配列される。
ユニットは、複数の圧電素子114aが水平方向に積層されたものである。
圧電素子114aが水平方向に伸縮すると、一対の端子間に電位差を生ずる。
FIG. 5 is a conceptual diagram of the piezoelectric element member 2 according to the embodiment of the present invention.
The piezoelectric element member 114 is composed of a plurality of piezoelectric elements 114a.
A plurality of piezoelectric elements 114a are arranged along a horizontal plane inside a plate-shaped contour.
The piezoelectric element member 114 may be composed of a plurality of piezoelectric elements 114a, an upper partition plate 114b, and a lower partition plate 114c.
The plurality of piezoelectric elements 114a are sandwiched between the upper partition plate 114b and the lower partition plate 114c and arranged in the horizontal direction.
The upper partition plate 114b and the lower partition plate 114c may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 114b forms the upper surface of the plate-like contour of the piezoelectric element member 114.
The lower surface of the partition plate 114c forms the lower surface of the plate-like contour of the piezoelectric element member 114.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114, expansion and contraction strain occurs in the plurality of piezoelectric elements 114a.
When the plurality of piezoelectric elements 114a are strained by expansion and contraction, a potential difference is generated between the pair of terminals.
FIG. 3A shows a state in which shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-shaped contour of one piezoelectric element member 114.
FIG. 3B shows a state in which shear deformation occurs in the Y-axis direction between the upper surface and the lower surface of the plate-shaped contour of the other piezoelectric element member 114.
FIG. 5 shows how the plurality of piezoelectric elements 114a are strained when shear deformation occurs in the X-axis direction or the Y-axis direction between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114.
FIG. 5 shows how the plurality of piezoelectric elements 114a are subjected to expansion and contraction distortion in the horizontal direction when the line of sight is made horizontal.
The piezoelectric element 114a is a piezoelectric element that causes a potential difference between a pair of terminals due to expansion and contraction deformation.
In FIG. 1, a plurality of units are arranged in the horizontal direction.
The unit is a unit in which a plurality of piezoelectric elements 114a are laminated in the horizontal direction.
When the piezoelectric element 114a expands and contracts in the horizontal direction, a potential difference is generated between the pair of terminals.

図6は、本発明の実施形態に係る圧電素子部材その3の概念図である。
圧電素子部材114は、複数の圧電素子114aとで構成される。
複数の圧電素子114aが板状の輪郭の内部に水平面に沿って整列される。
圧電素子部材114は、複数の圧電素子114aと上仕切板114bと下仕切板114cとで構成されてもよい。
複数の圧電素子114aは上仕切板114bと下仕切板114cとに挟まれ水平方向に配列される。
上仕切板114bと下仕切板114cとは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上仕切板114bの上面は、圧電素子部材114の板状の輪郭の上面を形成する。
下仕切板114cの下面は、圧電素子部材114の板状の輪郭の下面を形成する。
圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子114aに曲げによる歪みが生じる。
複数の圧電素子114aに曲げによる歪みが生じると一対の端子間に電位差を生ずる。
図3の(a)は、1つの圧電素子部材114の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生する様子を示す。
図3の(b)は、他の1つの圧電素子部材114の板状の輪郭の上面と下面との間にY軸方向の剪断変形が発生する様子を示す。
図6は、圧電素子部材114の板状の輪郭の上面と下面との間にX軸方向またはY軸方向の剪断変形が発生すると複数の圧電素子114aに曲げによる歪みが生じる様子を示す。
図6は、視線を水平にしてみたときに、複数の圧電素子114aに曲げによる歪みが生じる様子を示す。
視線を垂直にしてみたときに、複数の圧電素子114aに曲げによる歪みが生じる様にしてもよい。
圧電素子114aは、曲げによ歪みにより一対の端子間に電位差を生ずる圧電素子である。
図3は、複数のユニットが、水平方向に配列される。
ユニットは、複数の圧電素子114aが水平方向に積層されたものである。
圧電素子114aが水平方向に曲げられると、一対の端子間に電位差を生ずる。
FIG. 6 is a conceptual diagram of the piezoelectric element member 3 according to the embodiment of the present invention.
The piezoelectric element member 114 is composed of a plurality of piezoelectric elements 114a.
A plurality of piezoelectric elements 114a are arranged along a horizontal plane inside a plate-shaped contour.
The piezoelectric element member 114 may be composed of a plurality of piezoelectric elements 114a, an upper partition plate 114b, and a lower partition plate 114c.
The plurality of piezoelectric elements 114a are sandwiched between the upper partition plate 114b and the lower partition plate 114c and arranged in the horizontal direction.
The upper partition plate 114b and the lower partition plate 114c may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 114b forms the upper surface of the plate-like contour of the piezoelectric element member 114.
The lower surface of the partition plate 114c forms the lower surface of the plate-like contour of the piezoelectric element member 114.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114, the plurality of piezoelectric elements 114a are distorted due to bending.
When the plurality of piezoelectric elements 114a are distorted due to bending, a potential difference is generated between the pair of terminals.
FIG. 3A shows a state in which shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-shaped contour of one piezoelectric element member 114.
FIG. 3B shows a state in which shear deformation occurs in the Y-axis direction between the upper surface and the lower surface of the plate-shaped contour of the other piezoelectric element member 114.
FIG. 6 shows how the plurality of piezoelectric elements 114a are distorted due to bending when shear deformation occurs in the X-axis direction or the Y-axis direction between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114.
FIG. 6 shows how the plurality of piezoelectric elements 114a are distorted due to bending when the line of sight is made horizontal.
When the line of sight is made vertical, the plurality of piezoelectric elements 114a may be distorted due to bending.
The piezoelectric element 114a is a piezoelectric element that causes a potential difference between a pair of terminals due to distortion due to bending.
In FIG. 3, a plurality of units are arranged in the horizontal direction.
The unit is a unit in which a plurality of piezoelectric elements 114a are laminated in the horizontal direction.
When the piezoelectric element 114a is bent in the horizontal direction, a potential difference is generated between the pair of terminals.

複数の金属板部材111と複数の弾性板部材112と圧電素子部材114が上下方向に交互に積層される。
複数の金属板部材111と複数の弾性板部材112と単数または複数の圧電素子部材114とが上下方向に交互に積層され、接着されていてもよい。
A plurality of metal plate members 111, a plurality of elastic plate members 112, and a piezoelectric element member 114 are alternately laminated in the vertical direction.
A plurality of metal plate members 111, a plurality of elastic plate members 112, and a single or a plurality of piezoelectric element members 114 may be alternately laminated and adhered in the vertical direction.

外周被覆材113は、複数の金属板部材111と複数の弾性板部材112と単数または複数の圧電素子部材114とが積層されたものの外周を被覆する部材である。
外周被覆材113は、弾性体製である。
The outer peripheral covering material 113 is a member that covers the outer periphery of a stack of a plurality of metal plate members 111, a plurality of elastic plate members 112, and a single or a plurality of piezoelectric element members 114.
The outer peripheral covering material 113 is made of an elastic body.

一対のフランジ120は上フランジ120uと下フランジ120dとで構成されてもい。 The pair of flanges 120 may be composed of an upper flange 120u and a lower flange 120d.

上フランジ120uは、積層ゴム部材110の上部に配されるフランジである。
上フランジ120uは、フランジ部材121と剪断キー122とで構成されてもよい。
フランジ部材121は、上部構造物の下部に当接する上に向いたフランジ面を形成する。
フランジ部材121は、上部構造物の下部に固定されるためのボルト孔を形成されてもよい。
剪断キー122は、フランジ部材121と積層ゴム部材10との間で剪断力を伝達する機械要素である。
剪断キー122は、フランジ部材121の下部と最上位金属板部材11aの上部に嵌合し剪断力を伝達する機械要素であってもよい。
The upper flange 120u is a flange arranged on the upper portion of the laminated rubber member 110.
The upper flange 120u may be composed of a flange member 121 and a shearing key 122.
The flange member 121 forms an upwardly facing flange surface that abuts against the lower part of the superstructure.
The flange member 121 may be formed with bolt holes for fixing to the lower part of the superstructure.
The shearing key 122 is a mechanical element that transmits a shearing force between the flange member 121 and the laminated rubber member 10.
The shear key 122 may be a mechanical element that fits into the lower part of the flange member 121 and the upper part of the uppermost metal plate member 11a to transmit the shearing force.

下フランジ120dは、積層ゴム部材110の下部に配されるフランジである。
下フランジ120dは、フランジ部材121と剪断キー122とで構成されてもよい。
フランジ部材121は、基礎の上部に当接する下に向いたフランジ面を形成する。
フランジ部材121は、基礎の上部に固定されるためのボルト孔を形成されてもよい。
剪断キー122は、フランジ部材121と積層ゴム部材110との間で剪断力を伝達する機械要素である。
剪断キー122は、フランジ部材121の下部と最下位金属板部材111bの下部に嵌合し剪断力を伝達する機械要素であってもよい。
The lower flange 120d is a flange arranged below the laminated rubber member 110.
The lower flange 120d may be composed of a flange member 121 and a shearing key 122.
The flange member 121 forms a downwardly facing flange surface that abuts on the top of the foundation.
The flange member 121 may be formed with bolt holes for fixing to the upper part of the foundation.
The shearing key 122 is a mechanical element that transmits a shearing force between the flange member 121 and the laminated rubber member 110.
The shear key 122 may be a mechanical element that fits into the lower part of the flange member 121 and the lower part of the lowermost metal plate member 111b to transmit the shearing force.

制御装置400は、圧電素子を制御する装置である。
制御装置400は、電気回路410を内蔵する。
電気回路410は、圧電素子の一対の端子間に電気的に接続される。
電気回路410は、複数の圧電素子の一対の端子間に電気的に接続されるコンデンサを有していてもよい。
電気回路410は、複数の圧電素子の一対の端子間に電気的に接続される静電容量を可変にできるコンデンサを有していてもよい。
制御装置400は、CPU、メモリ、I/O、センサで構成される電気機器である。
センサは、地震を検知できる。
センサは、地震波を評価できる。
制御装置400は、圧電素子を制御するソフトウエアがインストールされる。
ソフトウエアは、制御装置400に圧電素子を制御する機能を実現させる。
The control device 400 is a device that controls the piezoelectric element.
The control device 400 includes an electric circuit 410.
The electric circuit 410 is electrically connected between the pair of terminals of the piezoelectric element.
The electric circuit 410 may have a capacitor that is electrically connected between a pair of terminals of a plurality of piezoelectric elements.
The electric circuit 410 may have a capacitor capable of varying the capacitance electrically connected between a pair of terminals of a plurality of piezoelectric elements.
The control device 400 is an electric device including a CPU, a memory, an I / O, and a sensor.
The sensor can detect an earthquake.
The sensor can evaluate seismic waves.
Software for controlling the piezoelectric element is installed in the control device 400.
The software enables the control device 400 to realize a function of controlling the piezoelectric element.

以下に、制御装置400が圧電素子を制御する機能を説明する。
地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路410のインピーダンスを変化させてもよい。
The function of the control device 400 to control the piezoelectric element will be described below.
The impedance of the electric circuit 410 may be changed in response to a change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred.

地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路410のコンデンサの静電容量を変化させてもうよい。
コンデンサの静電容量を変化させると、電気回路410のインピーダンスが変化する。
When it is determined that an earthquake has occurred, the capacitance of the capacitor of the electric circuit 410 may be changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.
When the capacitance of the capacitor is changed, the impedance of the electric circuit 410 changes.

電気回路の状態を一対の端子に生じた電位差で電流をながれるON状態と一対の端子の間に生じた電位差で電流をながれないOFF状態とに選択的に設定できてもよい。
地震が発生しないと判断するとき電気回路の状態をOFF状態に設定し、地震が発生していると判断するとき基礎の加速度の最大振幅値が予め設定された設定を越えるときに電気回路の状態をOFF状態からON状態にした後で、地震が止まるときON状態からOFF状態に設定してもよい。ここで設定値は比較的大地震が発生したときの基礎に生ずる加速度の最大振幅値である。
The state of the electric circuit may be selectively set to an ON state in which a current can flow due to a potential difference generated between a pair of terminals and an OFF state in which a current cannot flow due to a potential difference generated between the pair of terminals.
When it is judged that an earthquake does not occur, the state of the electric circuit is set to the OFF state, and when it is judged that an earthquake has occurred, when the maximum amplitude value of the basic acceleration exceeds the preset setting, the state of the electric circuit May be set from the ON state to the OFF state when the earthquake stops after the is changed from the OFF state to the ON state. Here, the set value is the maximum amplitude value of the acceleration generated on the foundation when a relatively large earthquake occurs.

次に、本発明の実施形態にかかる積層ゴム免震装置100の作用を、図を基に、説明する。
対象構造物が風または地震で揺れると、積層ゴム免震装置100に水平方向の反力が作用する。
振動による反力が積層ゴム部材に作用する。
その結果、水平方向に沿った剪断変形が弾性板部材と圧電素子部材とに生じる。
圧電素子部材に直動変位の方向に沿ってプラスマイナスを繰り返す剪断変位が生ずると、圧電素子にプラスマイナスの歪みが生じる。
圧電素子に歪みが生ずると一対の端子間に交番の電位差が生ずる。
電気回路がON状態であるとき、電気回路のインピーダンスに対応して電流が電気回路に電流が流れ、電気回路の抵抗により振動エネルギーを熱エネルギーに変換する。
電気回路のインピーダンスを基礎に生ずる加速度の最大振幅値の変化に対応して変化させることで、電気回路の周波数特性を変化させることができる。
また、地震が発生していると判断するとき電気回路の状態をON状態にした後で地震が継続中にON状態からOFF状態にすることで、所望のタイミングで振動エネルギーを熱エネルギーに変換できる。
また、電気回路の流れる電流を直流変換し2次電池に蓄電できる。
Next, the operation of the laminated rubber seismic isolation device 100 according to the embodiment of the present invention will be described with reference to the drawings.
When the target structure is shaken by wind or an earthquake, a horizontal reaction force acts on the laminated rubber seismic isolation device 100.
The reaction force due to vibration acts on the laminated rubber member.
As a result, shear deformation along the horizontal direction occurs in the elastic plate member and the piezoelectric element member.
When a shear displacement that repeats plus and minus along the direction of linear motion displacement occurs in the piezoelectric element member, plus and minus distortion occurs in the piezoelectric element.
When the piezoelectric element is distorted, an alternating potential difference occurs between the pair of terminals.
When the electric circuit is in the ON state, a current flows through the electric circuit corresponding to the impedance of the electric circuit, and vibration energy is converted into thermal energy by the resistance of the electric circuit.
The frequency characteristics of an electric circuit can be changed by changing the impedance of the electric circuit in response to a change in the maximum amplitude value of acceleration that occurs on the basis of the impedance of the electric circuit.
In addition, when it is determined that an earthquake has occurred, the vibration energy can be converted into heat energy at a desired timing by turning the state of the electric circuit on and then turning it from the ON state to the OFF state while the earthquake is continuing. ..
In addition, the current flowing through the electric circuit can be converted to direct current and stored in the secondary battery.

次に、本発明の実施形態にかかるバネ付き粘性マスダンパーを、図を基に、説明する。
説明の便宜のため、バネ付き粘性マスダンパーを対象構造体に取り付ける場合を例に説明する。
Next, the spring-loaded viscous mass damper according to the embodiment of the present invention will be described with reference to the drawings.
For convenience of explanation, a case where a viscous mass damper with a spring is attached to the target structure will be described as an example.

最初に、本発明の実施形態に係るバネ付き粘性マスダンパーを、図を基に、説明する
図7は、本発明の実施形態に係るバネ付き粘性マスダンパーの概念図である。図8は、本発明の実施形態に係る弾性部材の概念図である。図9は、本発明の実施形態に係るバネ付き粘性マスダンパーの質点モデル図である。
First, the spring-loaded viscous mass damper according to the embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a conceptual diagram of the spring-loaded viscous mass damper according to the embodiment of the present invention. FIG. 8 is a conceptual diagram of an elastic member according to an embodiment of the present invention. FIG. 9 is a mass model diagram of a viscous mass damper with a spring according to an embodiment of the present invention.

バネ付き粘性マスダンパーは、直動変位に対応して反力を発生する機械要素であって、粘性マスダンパー200と弾性部材300とを直列接続されたものである。
粘性マスダンパー200は、直動変位に対応して反力を発生する機械要素であって、直動軸210と回転体220とフレーム230と粘性流体240とで構成される。
例えば、バネ付き粘性マスダンパーは、連結部材250を用いて対象構造物30に連結される。
対象構造物30は、バネ付き粘性マスダンパーにより免震または制振をされる構造物である。
免震のためには、バネ付き粘性マスダンパーを対象構造物30の基礎部分に設置される。
制振のためには、バネ付き粘性マスダンパーを構造体の主要構造部材の間に設置される。
The spring-loaded viscous mass damper is a mechanical element that generates a reaction force in response to a linear displacement, and is a viscous mass damper 200 and an elastic member 300 connected in series.
The viscous mass damper 200 is a mechanical element that generates a reaction force in response to a linear motion displacement, and is composed of a linear motion shaft 210, a rotating body 220, a frame 230, and a viscous fluid 240.
For example, the spring-loaded viscous mass damper is connected to the target structure 30 using a connecting member 250.
The target structure 30 is a structure that is seismically isolated or vibration-damped by a viscous mass damper with a spring.
For seismic isolation, a spring-loaded viscous mass damper is installed on the foundation of the target structure 30.
For vibration damping, a spring-loaded viscous mass damper is installed between the main structural members of the structure.

直動軸210は、直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた部材である。
例えば、直動軸210は、雄ねじ部材211と長手部材212とで構成される。
図7には、雄ねじを外周に形成された雄ねじ部材211と雄ねじ部材211に一体につながった長手部材とが示される。
The linear motion shaft 210 is a member provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement.
For example, the linear motion shaft 210 is composed of a male screw member 211 and a longitudinal member 212.
FIG. 7 shows a male screw member 211 formed on the outer periphery of the male screw and a longitudinal member integrally connected to the male screw member 211.

回転体220は、雄ねじに嵌めあう雌ねじを設けられた部材である。
回転体220は、雄ねじに嵌めあう雌ねじを設けられ円筒状の回転部材222を備える。
例えば、回転体220は、雌ねじ部材221と回転部材222とを備える。
雌ねじ部材221は、雌ねじが設けられた部材である。
回転部材222は、直動軸210の直動運動に対応して中心軸まわりに回転運動する。
雌ねじ部材221と回転部材222とが同軸上に配置される。
図7には、雌ねじを設けられた雌ねじ部材221と回転部材222とで構成される構造の回転体220が示される。
雄ねじ部材211の雄ねじと雌ねじ部材221の雌ねじとは、複数のボールを介してねじ状に組み合わされてもよい。
直動軸210が回転を拘束されて直動運動すると、ボールを介して雌ねじ部材221が回転され、雌ねじ部材221に同軸上に固定される回転部材222が回転する。
The rotating body 220 is a member provided with a female screw that fits into the male screw.
The rotating body 220 is provided with a female screw that fits into the male screw, and includes a cylindrical rotating member 222.
For example, the rotating body 220 includes a female screw member 221 and a rotating member 222.
The female screw member 221 is a member provided with a female screw.
The rotating member 222 rotates around the central axis in response to the linear motion of the linear motion shaft 210.
The female screw member 221 and the rotating member 222 are arranged coaxially.
FIG. 7 shows a rotating body 220 having a structure composed of a female screw member 221 provided with a female screw and a rotating member 222.
The male screw of the male screw member 211 and the female screw of the female screw member 221 may be combined in a screw shape via a plurality of balls.
When the linear motion shaft 210 is constrained to rotate and moves linearly, the female screw member 221 is rotated via the ball, and the rotary member 222 coaxially fixed to the female screw member 221 is rotated.

フレーム230は、回転体220を回転自在に支持する構造体である。
フレーム230は、フレームの内面と回転体との隙間の少なくとも一部の離間距離を変化させられる様になっていてもよい。
軸受235は、回転体220を回転自在に支持する機械要素である。
The frame 230 is a structure that rotatably supports the rotating body 220.
The frame 230 may be capable of changing at least a part of the distance between the inner surface of the frame and the rotating body.
The bearing 235 is a mechanical element that rotatably supports the rotating body 220.

粘性流体240は、フレーム230の内面と回転体220との隙間に封入された液体である。
回転体220がフレーム230に対して相対的に回転すると、粘性流体240は回転体に回転方向と逆方向の粘性力を作用させる。
粘性力は、回転体220に回転トルク反力を与える。
回転トルク反力は雄ねじと雌ねじとの作用により直動変位の方向に作用する反力に変換される。
この反力は、直動軸の直動変位の速度に略比例する。
The viscous fluid 240 is a liquid sealed in the gap between the inner surface of the frame 230 and the rotating body 220.
When the rotating body 220 rotates relative to the frame 230, the viscous fluid 240 exerts a viscous force on the rotating body in the direction opposite to the rotation direction.
The viscous force gives the rotating body 220 a rotational torque reaction force.
The rotational torque reaction force is converted into a reaction force acting in the direction of linear displacement by the action of the male screw and the female screw.
This reaction force is substantially proportional to the velocity of the linear displacement of the linear axis.

連結部材250は、バネ付き粘性マスダンパーを対象構造体に連結するための部材である。
連結部材250は、第一連結部材251と第二連結部材252とで構成される。
第一連結部材251は、直動変位の方向に交差するひとつの可動軸を中心に揺動可能になった連結部材である。
第一連結部材251は、対象構造体30とフレーム230とを連結する。
第二連結部材252は、直動変位の方向に交差するひとつの可動軸を中心に揺動可能になった連結部材である。
第二連結部材252は、直動軸210と弾性部材300とを連結する。
The connecting member 250 is a member for connecting the spring-loaded viscous mass damper to the target structure.
The connecting member 250 is composed of a first connecting member 251 and a second connecting member 252.
The first connecting member 251 is a connecting member that can swing around one movable shaft that intersects in the direction of linear displacement.
The first connecting member 251 connects the target structure 30 and the frame 230.
The second connecting member 252 is a connecting member that can swing around one movable shaft that intersects in the direction of linear displacement.
The second connecting member 252 connects the linear motion shaft 210 and the elastic member 300.

弾性部材300は、直動変位に対応して弾性反力を発生する部材である。
弾性部材300は、一対のフランジ340と積層ゴム部材とで構成される。
積層ゴム部材は、複数の金属板部材330と複数の弾性板部材310と圧電素子部材320とで構成される。
金属板部材330は、金属製の板状部材である。
弾性板部材310は、弾性体製の板状部材である。
圧電素子部材320は、複数の圧電素子を有し板状の輪郭をもつ部材である。
The elastic member 300 is a member that generates an elastic reaction force in response to a linear displacement.
The elastic member 300 is composed of a pair of flanges 340 and a laminated rubber member.
The laminated rubber member is composed of a plurality of metal plate members 330, a plurality of elastic plate members 310, and a piezoelectric element member 320.
The metal plate member 330 is a metal plate-shaped member.
The elastic plate member 310 is a plate-shaped member made of an elastic body.
The piezoelectric element member 320 is a member having a plurality of piezoelectric elements and having a plate-like contour.

一対のうちの一つのフランジ340は複数のうちの一つの金属板部材330に固定される。
一対のうちの他の一つのフランジ340は複数のうちの他の一つの金属板部材330に固定される。
図8に、第一フランジ341が第一金属板部材331に固定され、第二フランジ342が2つの第二金属板部材332に固定ねじ343で固定される様子が示される。
圧電素子部材320の板状の輪郭の上面と下面との間に直動方位に沿って剪断変形が発生すると圧電素子320aの一対の端子間に電位差を生じる。
電気回路410は圧電素子320aの一対の端子間に電気的に接続される。
One of the pair of flanges 340 is fixed to one of the plurality of metal plate members 330.
The other one flange 340 of the pair is fixed to the other one metal plate member 330 of the plurality.
FIG. 8 shows how the first flange 341 is fixed to the first metal plate member 331, and the second flange 342 is fixed to the two second metal plate members 332 with fixing screws 343.
When shear deformation occurs along the linear motion direction between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 320, a potential difference is generated between the pair of terminals of the piezoelectric element 320a.
The electric circuit 410 is electrically connected between the pair of terminals of the piezoelectric element 320a.

少なくとも一対の金属板部材330と単数または複数の弾性板部材310と圧電素子部材320とが特定方向に積層される。
一つの第一金属板部材331と2つの第二金属板部材332と2つの弾性板部材310と2つの圧電素子部材320とが特定方向に積層されてもよい。
ここで、特定方向は直動変位の変位方向に交差する方向である。
At least a pair of metal plate members 330, one or more elastic plate members 310, and a piezoelectric element member 320 are laminated in a specific direction.
One first metal plate member 331, two second metal plate members 332, two elastic plate members 310, and two piezoelectric element members 320 may be laminated in a specific direction.
Here, the specific direction is a direction that intersects the displacement direction of the linear displacement.

弾性板部材310は、直動変位に対応して剪断変形する部材である。
弾性板部材310は、板状であって、直動変位に対応して一対の面が面に平行な向きに沿って剪断変形する。
弾性板部材310は、直特定方向に向く面をもち直動変位に対応して剪断変形する部材であってもよい。
例えば、弾性板部材310は、弾性素材製の板材である。
例えば、弾性板部材310は、ゴム製の板材である。
The elastic plate member 310 is a member that is sheared and deformed in response to a linear displacement.
The elastic plate member 310 has a plate shape, and the pair of surfaces are sheared and deformed along the direction parallel to the surfaces in response to the linear displacement.
The elastic plate member 310 may be a member that has a surface facing in a direct specific direction and is sheared and deformed in response to a linear displacement.
For example, the elastic plate member 310 is a plate material made of an elastic material.
For example, the elastic plate member 310 is a rubber plate material.

圧電素子部材320の構造は、本発明の実施形態にかかる積層ゴム免震装置100の説明において説明したものと同じなので、説明を省略する。
説明中、水平方向のX軸方向は直動変位の方向に対応し、上下方向が特定方向に対応する。
Since the structure of the piezoelectric element member 320 is the same as that described in the description of the laminated rubber seismic isolation device 100 according to the embodiment of the present invention, the description thereof will be omitted.
In the explanation, the horizontal X-axis direction corresponds to the direction of linear displacement, and the vertical direction corresponds to a specific direction.

制御装置400は、バネ付き粘性マスダンパーを制御する装置である。
制御装置400は、電気回路410を内蔵する。
電気回路410は、圧電素子の一対の端子間に電気的に接続される。
電気回路410の構造は、本発明の実施形態にかかる積層ゴム免震装置100の説明において説明したものと同じなので、説明を省略する。
The control device 400 is a device that controls a viscous mass damper with a spring.
The control device 400 includes an electric circuit 410.
The electric circuit 410 is electrically connected between the pair of terminals of the piezoelectric element.
Since the structure of the electric circuit 410 is the same as that described in the description of the laminated rubber seismic isolation device 100 according to the embodiment of the present invention, the description thereof will be omitted.

以下に、制御装置400による圧電素子部材320の制御方法を説明する。 The method of controlling the piezoelectric element member 320 by the control device 400 will be described below.

地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路のインピーダンスを変化させる。
ここで、最大振幅値は、所定の時間内に発生した加速度の振幅値のうち最大値をいう。
When it is determined that an earthquake has occurred, the impedance of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.
Here, the maximum amplitude value means the maximum value among the amplitude values of accelerations generated within a predetermined time.

電気回路が複数の圧電素子の一対の端子間に電気的に接続されるコンデンサを有し、
地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路のコンデンサの静電容量を変化させる。
An electrical circuit has a capacitor that is electrically connected between a pair of terminals of a plurality of piezoelectric elements.
When it is determined that an earthquake has occurred, the capacitance of the capacitor in the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.

電気回路の状態を一対の端子に生じた電位差で電流をながれるON状態と一対の端子の間に生じた電位差で電流をながれないOFF状態とに選択的に設定でき、
地震が発生していると判断するとき電気回路の状態をON状態にした後で地震が継続中にON状態からOFF状態に設定する。
The state of the electric circuit can be selectively set to the ON state in which the current can flow due to the potential difference generated between the pair of terminals and the OFF state in which the current cannot flow due to the potential difference generated between the pair of terminals.
When it is determined that an earthquake has occurred, the state of the electric circuit is set to the ON state, and then the state is set from the ON state to the OFF state while the earthquake is continuing.

以下に、バネ付き粘性マスダンパーの運動特性、振動特性を、図を基に、説明する。
図9は、本発明の実施形態に係る振動系のモデル図である。
図9は、慣性接続要素11とダンパー要素12とが並列接続した系(「粘性マスダンパー」に相当する。)とバネ要素13とを直接接続した系(「バネ付き粘性マスダンパー」に相当する。)が対象構造体に接続されたモデルを示している。
対象構造体30は、主質量31と主弾性要素32とでモデル化される。
バネ要素20は、弾性部材300に相当する。
The motion characteristics and vibration characteristics of the spring-loaded viscous mass damper will be described below with reference to the drawings.
FIG. 9 is a model diagram of a vibration system according to an embodiment of the present invention.
FIG. 9 shows a system in which the inertial connection element 11 and the damper element 12 are connected in parallel (corresponding to a “viscous mass damper”) and a system in which the spring element 13 is directly connected (corresponding to a “spring-loaded viscous mass damper”). .) Indicates a model connected to the target structure.
The target structure 30 is modeled by a main mass 31 and a main elastic element 32.
The spring element 20 corresponds to the elastic member 300.

粘性マスダンパー10は、慣性接続要素11により、直動軸を所定の相対加速度で直動変位させたさいに作用する反力を直動変位の相対加速度で割った値であるみかけの慣性質量mrを持つ。
また、粘性マスダンパーは、ダンパー要素12により、直動軸を一定の相対速度で直動変位させた際に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
The viscous mass damper 10 is an apparent inertial mass mr which is a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced by a predetermined relative acceleration by the relative acceleration of the linear motion displacement by the inertial connection element 11. have.
Further, the viscous mass damper has a damping coefficient c corresponding to a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a constant relative velocity by the relative velocity by the damper element 12.

バネ付き粘性マスダンパーはバネ要素13を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrとに対応するダンパー固有振動数ωrを持つ。
また、バネ付き粘性マスダンパーは粘性マスダンパーの直動軸を一定の相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値に対応する減衰係数cを持つ。
The viscous mass damper with a spring has an elastic coefficient kb, which is the value obtained by dividing the reaction force generated when the spring element 13 is displaced in the linear motion direction by a relative distance, and the linear motion axis of the viscous mass damper in the linear motion direction. It has a damper natural frequency ωr corresponding to the apparent inertial mass mr, which is the value obtained by dividing the reaction force acting in the linear motion direction when linearly moving at a predetermined relative acceleration.
Further, the viscous mass damper with a spring has a damping coefficient c corresponding to the value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion axis of the viscous mass damper is linearly moved at a constant relative velocity. ..

フレームの内面と回転体との隙間の少なくとも一部の離間距離を変化させられるのに対応して、減衰係数cが変化する。 The damping coefficient c changes in response to changing the separation distance of at least a part of the gap between the inner surface of the frame and the rotating body.

次に、本発明の実施形態にかかるばね付き粘性ダンパーの作用を、図を基に、説明する。
図9中に、圧電素子の等価回路が示される。
対象構造物が風または地震で揺れると、バネ付き粘性マスダンパーに直動変位の方向の反力が作用する。
振動による反力が粘性マスダンパーと弾性部材とに作用する。
弾性部材の一対のフランジ340に直動変位の方向に沿った振動による力が作用する。
その結果、直動変位の方向に沿った剪断変形が弾性板部材と圧電素子部材とに生じる。
圧電素子部材に直動変位の方向に沿ってプラスマイナスを繰り返す剪断変位が生ずると、圧電素子にプラスマイナスの歪みが生じる。
圧電素子に歪みが生ずると一対の端子間に交番の電位差が生ずる。
電気回路がON状態であるとき、電気回路のインピーダンスに対応して電流が電気回路に電流が流れ、電気回路の抵抗により振動エネルギーを熱エネルギーに変換する。
電気回路のインピーダンスを基礎に生ずる加速度の最大振幅値の変化に対応して変化させることで、電気回路の周波数特性を変化させることができる。
また、地震が発生していると判断するとき電気回路の状態をON状態に設定した後で地震が継続中にON状態からOFF状態に設定することで、所望のタイミングで振動エネルギーを熱エネルギーに変換できる。
また、電気回路の流れる電流を直流変換し2次電池に蓄電できる。
Next, the action of the spring-loaded viscous damper according to the embodiment of the present invention will be described with reference to the drawings.
The equivalent circuit of the piezoelectric element is shown in FIG.
When the target structure sways due to wind or earthquake, a reaction force in the direction of linear displacement acts on the spring-loaded viscous mass damper.
The reaction force due to vibration acts on the viscous mass damper and the elastic member.
A force due to vibration along the direction of linear displacement acts on the pair of flanges 340 of the elastic member.
As a result, shear deformation along the direction of linear displacement occurs in the elastic plate member and the piezoelectric element member.
When a shear displacement that repeats plus and minus along the direction of linear motion displacement occurs in the piezoelectric element member, plus and minus distortion occurs in the piezoelectric element.
When the piezoelectric element is distorted, an alternating potential difference occurs between the pair of terminals.
When the electric circuit is in the ON state, a current flows through the electric circuit corresponding to the impedance of the electric circuit, and vibration energy is converted into thermal energy by the resistance of the electric circuit.
The frequency characteristics of an electric circuit can be changed by changing the impedance of the electric circuit in response to a change in the maximum amplitude value of acceleration that occurs on the basis of the impedance of the electric circuit.
In addition, when it is determined that an earthquake has occurred, the state of the electric circuit is set to the ON state, and then the vibration energy is converted to thermal energy at a desired timing by setting the state from the ON state to the OFF state while the earthquake is continuing. Can be converted.
In addition, the current flowing through the electric circuit can be converted to direct current and stored in the secondary battery.

以上説明したように、本発明の実施形態に係る積層ゴム免震装置100は、その構成により、以下の効果を有する。
上下一対のフランジ120の間に配される積層ゴム部材110が複数の金属板部材111と複数の弾性板部材112と圧電素子部材114とが上下方向に積層され、圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると圧電素子114aの一対の端子間に電位差を生し、電気回路410が圧電素子114aの一対の端子間に電気的に接続される様にしたので、風または地震で上部構造部に揺れが発生すると複数の弾性板部材112と電気回路に電気的に接続される圧電素子部材114に水平方向の剪断変形が生じて上部構造物の揺れに影響を与えることができる。
また、複数の圧電素子114aが板状の輪郭の内部に水平面に沿って整列される様にしたので、複数の圧電素子114aを数多く配置することができる。
また、複数の圧電素子114aが上下一対の板状の仕切板である上仕切板114bと下仕切板11cとに挟まれ水平方向に配列される様にしたので、電気回路410の電気的な接続が容易になる。
また、圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子114aに剪断歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路410に電気的に接続される複数の圧電素子114aの剪断歪みが圧電素子部材の剪断変形に影響を与える。
また、圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の伸縮変形が発生すると複数の圧電素子114aに伸縮歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路410に電気的に接続される複数の圧電素子114aの伸縮歪みが圧電素子部材の剪断変形に影響を与える。
また、圧電素子部材114の板状の輪郭の上面と下面との間に水平方向の伸縮変形が発生すると複数の圧電素子114aに曲げによる歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路410に電気的に接続される複数の圧電素子114aの曲げによる歪みが圧電素子部材の剪断変形に影響を与える。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路のインピーダンスを変化させる様にしたので、電気回路に電気的に接続される複数の圧電素子の歪みが圧電素子部材の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路のコンデンサの制限容量を変化させる様にしたので、電気回路に電気的に接続される複数の圧電素子114aの歪みが圧電素子部材114の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生していると判断するとき電気回路410の状態をON状態にした後で地震が継続中にON状態からOFF状態にする様にしたので、電気回路410に電気的に接続される複数の圧電素子114aの歪みが圧電素子部材114の剪断変形に与える影響を地震が発生してからの状態の遷移に対応して変化させることができる。
As described above, the laminated rubber seismic isolation device 100 according to the embodiment of the present invention has the following effects depending on its configuration.
A laminated rubber member 110 arranged between a pair of upper and lower flanges 120 is formed by laminating a plurality of metal plate members 111, a plurality of elastic plate members 112, and a piezoelectric element member 114 in the vertical direction, and the piezoelectric element member 114 has a plate shape. When a horizontal shear deformation occurs between the upper surface and the lower surface of the contour, a potential difference is generated between the pair of terminals of the piezoelectric element 114a, and the electric circuit 410 is electrically connected between the pair of terminals of the piezoelectric element 114a. Therefore, when the superstructure portion is shaken by a wind or an earthquake, the plurality of elastic plate members 112 and the piezoelectric element member 114 electrically connected to the electric circuit are subjected to shear deformation in the horizontal direction to cause the superstructure. It can affect the shaking.
Further, since the plurality of piezoelectric elements 114a are arranged along the horizontal plane inside the plate-shaped contour, a large number of the plurality of piezoelectric elements 114a can be arranged.
Further, since the plurality of piezoelectric elements 114a are sandwiched between the upper partition plate 114b and the lower partition plate 11c, which are a pair of upper and lower plate-shaped partition plates, and arranged in the horizontal direction, the electrical connection of the electric circuit 410 is made. Becomes easier.
Further, when a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114, shear distortion occurs in the plurality of piezoelectric elements 114a and a potential difference is generated between the pair of terminals. , The shear strain of the plurality of piezoelectric elements 114a electrically connected to the electric circuit 410 affects the shear deformation of the piezoelectric element member.
Further, when horizontal expansion and contraction deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114, expansion and contraction distortion occurs in the plurality of piezoelectric elements 114a, and a potential difference is generated between the pair of terminals. , The expansion and contraction strain of the plurality of piezoelectric elements 114a electrically connected to the electric circuit 410 affects the shear deformation of the piezoelectric element member.
Further, when horizontal expansion and contraction deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 114, distortion due to bending occurs in the plurality of piezoelectric elements 114a, and a potential difference is generated between the pair of terminals. Therefore, the strain due to bending of the plurality of piezoelectric elements 114a electrically connected to the electric circuit 410 affects the shear deformation of the piezoelectric element member.
In addition, since the impedance of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred, multiple piezoelectric elements that are electrically connected to the electric circuit can be used. The effect of strain on the shear deformation of the piezoelectric element member can be changed according to the degree of the earthquake.
In addition, since the limited capacitance of the capacitor of the electric circuit is changed in response to the change of the maximum amplitude value of the acceleration that occurs in the foundation when it is judged that an earthquake has occurred, multiple electric circuits are electrically connected to the electric circuit. The effect of the strain of the piezoelectric element 114a on the shear deformation of the piezoelectric element member 114 can be changed according to the degree of the earthquake.
Further, when it is determined that an earthquake has occurred, the state of the electric circuit 410 is turned on, and then the state is changed from the ON state to the OFF state while the earthquake is continuing, so that the electric circuit 410 is electrically connected. The effect of the strain of the plurality of piezoelectric elements 114a on the shear deformation of the piezoelectric element member 114 can be changed according to the transition of the state after the occurrence of the earthquake.

以上説明したように、本発明の実施形態に係るバネ付き粘性マスダンパーは、その構成により、以下の効果を有する。
直動軸210と直動軸210により回転する回転体220と回転体220を回転自在に支持するフレーム230とフレーム230に封入された粘性流体240とで構成される粘性マスダンパー200と弾性反力を発生する弾性部材300を直列接続し、弾性部材300を上下一対のフランジ340の間に配される積層ゴム部材が複数の金属板部材330と複数の弾性板部材310と圧電素子部材320とが特定方向に積層され、圧電素子部材320の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると圧電素子320aの一対の端子間に電位差を生し、電気回路410が圧電素子320aの一対の端子間に電気的に接続される様にしたので、風または地震で上部構造部に揺れが発生すると複数の弾性板部材310と電気回路に電気的に接続される圧電素子部材320とに水平方向の剪断変形が生じて上部構造物の揺れに影響を与えることができる。
また、複数の圧電素子320aが板状の輪郭の内部に特定方向に直交する面に沿って整列される様にしたので、複数の圧電素子を数多く配置することができる。
また、複数の圧電素子320aが一対の板状の仕切板である第一仕切板320bと第二仕切板320cとに挟まれ特定方向に配列される様にしたので、電気回路410の電気的な接続が容易になる。
また、圧電素子部材320の板状の輪郭の上面と下面との間に直動変位の方向のの剪断変形が発生すると複数の圧電素子320aに剪断歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路410に電気的に接続される複数の圧電素子320aの剪断歪みが圧電素子部材320の剪断変形に影響を与える。
また、圧電素子部材320の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路410に電気的に接続される複数の圧電素子320aの伸縮歪みが圧電素子部材320の剪断変形に影響を与える。
また、圧電素子部材320の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じて一対の端子間に電位差を生ずる様にしたので、電気回路に電気的に接続される複数の圧電素子320aの曲げによる歪みが圧電素子部材320の剪断変形に影響を与える。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路410のインピーダンスを変化させる様にしたので、電気回路410に電気的に接続される複数の圧電素子の歪みが圧電素子部材320の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して電気回路410のコンデンサの静電容量を変化させる様にしたので、電気回路410に電気的に接続される複数の圧電素子320aの歪みが圧電素子部材420の剪断変形に与える影響を地震の程度に対応して変化させることができる。
また、地震が発生していると判断するとき電気回路の状態をON状態にした後で地震が継続中にON状態からOFF状態にする様にしたので、電気回路410に電気的に接続される複数の圧電素子の歪みが圧電素子部材320の剪断変形に与える影響を地震が発生してからの状態の遷移に対応して変化させることができる。
その結果、従来構造と比較して簡易な構造により小さな地震から大きな地震にまで対応可能な免震装置を提供できる。
As described above, the spring-loaded viscous mass damper according to the embodiment of the present invention has the following effects depending on its configuration.
A viscous mass damper 200 composed of a linear motion shaft 210, a rotating body 220 rotated by the linear motion shaft 210, a frame 230 rotatably supporting the rotating body 220, and a viscous fluid 240 enclosed in the frame 230, and an elastic reaction force. The elastic members 300 are connected in series, and the elastic members 300 are arranged between the pair of upper and lower flanges 340. When the piezoelectric element members 320 are laminated in a specific direction and a shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 320 in the direction of linear motion displacement, a potential difference is generated between the pair of terminals of the piezoelectric element 320a, and an electric circuit is used. Since the 410 is electrically connected between the pair of terminals of the piezoelectric element 320a, it is electrically connected to the plurality of elastic plate members 310 and the electric circuit when the upper structure is shaken by a wind or an earthquake. Horizontal shear deformation occurs in the piezoelectric element member 320, which can affect the shaking of the superstructure.
Further, since the plurality of piezoelectric elements 320a are arranged inside the plate-shaped contour along the plane orthogonal to the specific direction, a large number of the plurality of piezoelectric elements can be arranged.
Further, since the plurality of piezoelectric elements 320a are sandwiched between the first partition plate 320b and the second partition plate 320c, which are a pair of plate-shaped partition plates, and arranged in a specific direction, the electrical circuit 410 is electrically connected. Easy to connect.
Further, when shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 320 in the direction of linear motion displacement, shear distortion occurs in the plurality of piezoelectric elements 320a and a potential difference is generated between the pair of terminals. Therefore, the shear distortion of the plurality of piezoelectric elements 320a electrically connected to the electric circuit 410 affects the shear deformation of the piezoelectric element member 320.
Further, when shear deformation in the direction of linear motion displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 320, expansion and contraction distortion occurs in the plurality of piezoelectric elements and a potential difference is generated between the pair of terminals. Therefore, the expansion and contraction strain of the plurality of piezoelectric elements 320a electrically connected to the electric circuit 410 affects the shear deformation of the piezoelectric element member 320.
Further, when shear deformation in the direction of linear motion displacement occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member 320, distortion due to bending occurs in the plurality of piezoelectric elements, and a potential difference is generated between the pair of terminals. Therefore, the strain due to bending of the plurality of piezoelectric elements 320a electrically connected to the electric circuit affects the shear deformation of the piezoelectric element member 320.
In addition, since the impedance of the electric circuit 410 is changed in response to the change in the maximum amplitude value of the acceleration that occurs in the foundation when it is determined that an earthquake has occurred, a plurality of piezoelectrics electrically connected to the electric circuit 410 are changed. The effect of the strain of the element on the shear deformation of the piezoelectric element member 320 can be changed according to the degree of the earthquake.
In addition, since the capacitance of the capacitor of the electric circuit 410 is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation when it is determined that an earthquake has occurred, it is electrically connected to the electric circuit 410. The effect of the strain of the plurality of piezoelectric elements 320a on the shear deformation of the piezoelectric element member 420 can be changed according to the degree of the earthquake.
In addition, when it is determined that an earthquake has occurred, the state of the electric circuit is turned on, and then the state is changed from the ON state to the OFF state while the earthquake is continuing, so that it is electrically connected to the electric circuit 410. The influence of the strain of the plurality of piezoelectric elements on the shear deformation of the piezoelectric element member 320 can be changed according to the transition of the state after the occurrence of the earthquake.
As a result, it is possible to provide a seismic isolation device capable of responding to a small earthquake to a large earthquake with a simple structure as compared with the conventional structure.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。 The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the invention.

10 粘性マスダンパー
11 慣性接続要素
12 ダンパー要素
13 バネ要素
30 対象構造物
31 主質量
32 主弾性要素
33 取付部
40 支持構造
100 積層ゴム免震装置
110 積層ゴム部材
111 金属板部材
111a 最上位金属板部材
111b 最下位金属板部材
112 弾性板部材
113 外周被覆材
114 圧電素子部材
114a 圧電素子
114b 上仕切板
114c 下仕切板
120 フランジ
120u 上フランジ
120d 下フランジ
121 フランジ部材
122 剪断キー
200 粘性マスダンパー
210 直動軸
211 雄ねじ部材
220 回転体
221 雌ねじ部材
222 回転部材
230 フレーム
235 軸受
240 粘性流体
250 連結部材
251 第一連結部材
252 第二連結部材
300 弾性部材
310 弾性板部材
320 圧電素子部材
320a 圧電素子
320b 第一仕切板
320c 第二仕切板
330 金属板部材
331 第一金属板部材
332 第二金属板部材
340 フランジ
341 第一フランジ
342 第二フランジ
343 固定ねじ
400 制御装置
410 電気回路
10 Viscous mass damper 11 Inertial connection element 12 Damper element 13 Spring element 30 Target structure 31 Main mass 32 Main elastic element 33 Mounting part 40 Support structure 100 Laminated rubber seismic isolation device 110 Laminated rubber member 111 Metal plate member 111a Top metal plate Member 111b Lowermost metal plate member 112 Elastic plate member 113 Outer peripheral covering material 114 piezoelectric element member 114a piezoelectric element 114b Upper partition plate 114c Lower partition plate 120 Flange 120u Upper flange 120d Lower flange 121 Flange member 122 Sheep key 200 Viscous mass damper 210 Straight Dynamic shaft 211 Male thread member 220 Rotating body 221 Female thread member 222 Rotating member 230 Frame 235 Bearing 240 Viscous fluid 250 Connecting member 251 First connecting member 252 Second connecting member 300 Elastic member 310 Elastic plate member 320 Piezoelectric element member 320a 1 partition plate 320c 2nd partition plate 330 metal plate member 331 1st metal plate member 332 2nd metal plate member 340 flange 341 1st flange 342 2nd flange 343 fixing screw 400 control device 410 electric circuit

特開2012−237413号Japanese Unexamined Patent Publication No. 2012-237413 特開2016−039686号Japanese Unexamined Patent Publication No. 2016-039686 特開2010−101129号JP-A-2010-101129 特開2008−259354号Japanese Patent Application Laid-Open No. 2008-259354 特開2008−190617号Japanese Patent Application Laid-Open No. 2008-190617 特開2006−207749号Japanese Patent Application Laid-Open No. 2006-207949 特開2000−120765号Japanese Patent Application Laid-Open No. 2000-120765 特開平10−30680号Japanese Patent Application Laid-Open No. 10-30680 特開2001−049894号JP 2001-0499894 特開平9−329168号Japanese Patent Application Laid-Open No. 9-329168 特開2012−37005号Japanese Patent Application Laid-Open No. 2012-37005

Claims (14)

基礎に設けられ上部構造物を支持する積層ゴム免震装置であって、
上下一対のフランジである上フランジと下フランジと、
複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と複数の圧電素子を有し板状の輪郭をもつ部材である複数の圧電素子部材とが上下方向に多段に積層される積層ゴム部材と、
前記圧電素子の一対の端子間に電気的に接続される電気回路と、
を備え、
前記上フランジが前記積層ゴム部材の上部に配され、
前記下フランジが前記積層ゴム部材の下部に配され、
上から見て交差する一対の水平方向をX軸方向、Y軸方向と呼称するときに、
多段に重なる複数の圧電素子部材のうちの一つの前記圧電素子部材の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生すると前記圧電素子にX軸方向の変形が生じて前記圧電素子の一対の端子間に電位差を生じ、
多段に重なる複数の圧電素子部材のうちの他の一つの前記圧電素子部材の板状の輪郭の上面と下面との間にY軸方向の剪断変形が発生すると前記圧電素子にY軸方向の変形が生じて前記圧電素子の一対の端子間に電位差を生ずる、
ことを特徴とする積層ゴム免震装置。
A laminated rubber seismic isolation device installed on the foundation to support the superstructure.
A pair of upper and lower flanges, an upper flange and a lower flange,
A plurality of metal plate members which are a plurality of metal plate-shaped members, a plurality of elastic plate members which are a plurality of elastic plate-shaped members, and a plurality of members having a plurality of piezoelectric elements and having a plate-like contour. A laminated rubber member in which the piezoelectric element members of the above are laminated in multiple stages in the vertical direction, and
An electric circuit electrically connected between the pair of terminals of the piezoelectric element and
With
The upper flange is arranged on the upper part of the laminated rubber member, and the upper flange is arranged.
The lower flange is arranged below the laminated rubber member,
When the pair of horizontal directions that intersect when viewed from above are called the X-axis direction and the Y-axis direction,
When shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-like contour of one of the plurality of piezoelectric element members that overlap in multiple stages, the piezoelectric element is deformed in the X-axis direction. A potential difference is generated between the pair of terminals of the piezoelectric element.
When a shear deformation in the Y-axis direction occurs between the upper surface and the lower surface of the plate-like contour of the other one of the plurality of piezoelectric element members overlapping in multiple stages, the piezoelectric element is deformed in the Y-axis direction. Causes a potential difference between the pair of terminals of the piezoelectric element.
A laminated rubber seismic isolation device characterized by this.
前記電気回路の状態を一対の前記端子に生じた電位差で電流がながれて振動エネルギーを熱エネルギーに変換するON状態と一対の前記端子の間に生じた電位差で電流がながれないOFF状態とに選択的に設定でき、
地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で振動エネルギーを熱エネルギーに変換するのを停止したい所望のタイミングに前記ON状態から前記OFF状態にする、
ことを特徴とする請求項1に記載の積層ゴム免震装置。
The state of the electric circuit is selected from the ON state in which the current flows due to the potential difference generated in the pair of the terminals to convert the vibration energy into thermal energy and the OFF state in which the current does not flow due to the potential difference generated between the pair of the terminals. Can be set as
When it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the conversion of the vibration energy to the thermal energy is changed from the ON state to the OFF state at a desired timing.
The laminated rubber seismic isolation device according to claim 1.
基礎に支持される対象構造物に設けられ直動変位に対応して反力を発生するバネ付き粘性マスダンパーであって、
直動変位の変位方向に沿ってねじ送り方向を向けた雄ねじを設けられた直動軸と前記雄ねじに嵌めあう雌ねじを設けられた回転体と前記回転体を回転自在に支持するフレームと前記フレームの内面と前記回転体との隙間に封入された粘性流体とを有する粘性マスダンパーと、
前記直動変位に対応して弾性反力を発生する弾性部材と、
電気回路と、
を備え、
特定方向が前記直動変位に直交する方向であり、
前記粘性マスダンパーと前記弾性部材とを直列接続され、
前記弾性部材が
一対のフランジと
複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と複数の圧電素子を有し板状の輪郭をもつ部材である圧電素子部材とが前記特定方向に積層される積層ゴム部材と、
を有し、
一対のうちの一つのフランジは複数のうちの一つの金属部材に固定され、
一対のうちの他の一つのフランジは複数のうちの他の一つの金属部材に固定され、
前記圧電素子部材の板状の輪郭の上面と下面との間に前記直動変位の方向に沿って剪断変形が発生すると前記圧電素子の一対の端子間に電位差を生じ、
前記電気回路は前記圧電素子の一対の端子間に電気的に接続される、
ことを特徴とするバネ付き粘性マスダンパー。
A viscous mass damper with a spring that is installed in a target structure supported by a foundation and generates a reaction force in response to linear displacement.
A linear motion shaft provided with a male screw whose screw feed direction is directed along the displacement direction of the linear motion displacement, a rotating body provided with a female screw that fits the male screw, a frame for rotatably supporting the rotating body, and the frame. A viscous mass damper having a viscous fluid enclosed in a gap between the inner surface of the rotating body and the rotating body.
An elastic member that generates an elastic reaction force in response to the linear displacement,
Electric circuit and
With
The specific direction is the direction orthogonal to the linear displacement.
The viscous mass damper and the elastic member are connected in series,
The elastic member has a pair of flanges, a plurality of metal plate members which are a plurality of metal plate-shaped members, a plurality of elastic plate members which are a plurality of elastic plate-shaped members, and a plurality of piezoelectric elements. A laminated rubber member in which a piezoelectric element member, which is a member having the contour of the above, is laminated in the specific direction, and a laminated rubber member.
Have,
One of the pair of flanges is fixed to one of the plurality of metal plate members,
The other one flange of the pair is fixed to the other one metal plate member of the plurality.
When shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member along the direction of the linear displacement, a potential difference is generated between the pair of terminals of the piezoelectric element.
The electric circuit is electrically connected between the pair of terminals of the piezoelectric element.
A viscous mass damper with a spring that is characterized by this.
複数の圧電素子が板状の前記輪郭の内部に特定方向に直交する面に沿って配列される、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
A plurality of piezoelectric elements are arranged inside the plate-shaped contour along a plane orthogonal to a specific direction.
The viscous mass damper with a spring according to claim 3.
前記圧電素子部材は一対の板状の仕切板と複数の前記圧電素子とを有し、
複数の前記圧電素子は一対の前記仕切板に挟まれ特定方向に直交する面に沿って配列される、
ことを特徴とする請求項4に記載のバネ付き粘性マスダンパー。
The piezoelectric element member has a pair of plate-shaped partition plates and a plurality of the piezoelectric elements.
The plurality of piezoelectric elements are sandwiched between the pair of partition plates and arranged along a plane orthogonal to a specific direction.
The viscous mass damper with a spring according to claim 4.
地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる、
ことを特徴とする請求項5に記載のバネ付き粘性マスダンパー。
When it is determined that an earthquake has occurred, the impedance of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.
The viscous mass damper with a spring according to claim 5.
前記電気回路が複数の前記圧電素子の一対の端子間に電気的に接続されるコンデンサを有し、
地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路の前記コンデンサの静電容量を変化させる、
ことを特徴とする請求項6に記載のバネ付き粘性マスダンパー。
The electric circuit has a capacitor that is electrically connected between a pair of terminals of the plurality of piezoelectric elements.
When it is determined that an earthquake has occurred, the capacitance of the capacitor in the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.
The viscous mass damper with a spring according to claim 6.
前記電気回路の状態を一対の前記端子に生じた電位差で電流がながれて振動エネルギーを熱エネルギーに変換するON状態と一対の前記端子の間に生じた電位差で電流がながれないOFF状態とに選択的に設定でき、
地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で振動エネルギーを熱エネルギーに変換するのを停止したい所望のタイミングに前記ON状態から前記OFF状態にする、
ことを特徴とする請求項7に記載のバネ付き粘性マスダンパー。
The state of the electric circuit is selected from the ON state in which the current flows due to the potential difference generated in the pair of the terminals to convert the vibration energy into thermal energy and the OFF state in which the current does not flow due to the potential difference generated between the pair of the terminals. Can be set as
When it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the conversion of the vibration energy to the thermal energy is changed from the ON state to the OFF state at a desired timing.
The viscous mass damper with a spring according to claim 7.
前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に剪断歪みが生じ、
複数の圧電素子に前記剪断歪みが生じると一対の端子間に電位差を生ずる、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
When shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member in the direction of linear displacement, shear distortion occurs in a plurality of piezoelectric elements.
When the shear strain occurs in a plurality of piezoelectric elements, a potential difference is generated between the pair of terminals.
The viscous mass damper with a spring according to claim 3.
前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に伸縮歪みが生じ、
複数の圧電素子に前記伸縮歪みが生ずると一対の端子間に電位差が生ずる、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
When shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member in the direction of linear displacement, expansion and contraction strain occurs in the plurality of piezoelectric elements.
When the expansion and contraction strain occurs in a plurality of piezoelectric elements, a potential difference occurs between the pair of terminals.
The viscous mass damper with a spring according to claim 3.
前記圧電素子部材の板状の輪郭の上面と下面との間に直動変位の方向の剪断変形が発生すると複数の圧電素子に曲げによる歪みが生じ、
複数の圧電素子に前記曲げによる歪みが生ずると一対の端子間に電位差が生ずる、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
When shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the piezoelectric element member in the direction of linear displacement, the plurality of piezoelectric elements are distorted due to bending.
When distortion occurs in a plurality of piezoelectric elements due to the bending, a potential difference occurs between the pair of terminals.
The viscous mass damper with a spring according to claim 3.
地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路のインピーダンスを変化させる、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
When it is determined that an earthquake has occurred, the impedance of the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.
The viscous mass damper with a spring according to claim 3.
前記電気回路が複数の前記圧電素子の一対の端子間に電気的に接続されるコンデンサを有し、
地震が発生したと判断したとき基礎に生ずる加速度の最大振幅値の変化に対応して前記電気回路の前記コンデンサの静電容量を変化させる、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
The electric circuit has a capacitor that is electrically connected between a pair of terminals of the plurality of piezoelectric elements.
When it is determined that an earthquake has occurred, the capacitance of the capacitor in the electric circuit is changed in response to the change in the maximum amplitude value of the acceleration that occurs on the foundation.
The viscous mass damper with a spring according to claim 3.
前記電気回路の状態を一対の前記端子に生じた電位差で電流がながれて振動エネルギーを熱エネルギーに変換するON状態と一対の前記端子の間に生じた電位差で電流がながれないOFF状態とに選択的に設定でき、
地震が発生していると判断するとき前記電気回路の状態を前記ON状態にした後で振動エネルギーを熱エネルギーに変換するのを停止したい所望のタイミングに前記ON状態から前記OFF状態にする、
ことを特徴とする請求項3に記載のバネ付き粘性マスダンパー。
The state of the electric circuit is selected from the ON state in which the current flows due to the potential difference generated in the pair of the terminals to convert the vibration energy into thermal energy and the OFF state in which the current does not flow due to the potential difference generated between the pair of the terminals. Can be set as
When it is determined that an earthquake has occurred, the state of the electric circuit is changed to the ON state, and then the conversion of the vibration energy to the thermal energy is changed from the ON state to the OFF state at a desired timing.
The viscous mass damper with a spring according to claim 3.
JP2016236392A 2016-12-06 2016-12-06 Laminated rubber seismic isolation device or viscous mass damper with spring Active JP6912882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236392A JP6912882B2 (en) 2016-12-06 2016-12-06 Laminated rubber seismic isolation device or viscous mass damper with spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236392A JP6912882B2 (en) 2016-12-06 2016-12-06 Laminated rubber seismic isolation device or viscous mass damper with spring

Publications (2)

Publication Number Publication Date
JP2018091437A JP2018091437A (en) 2018-06-14
JP6912882B2 true JP6912882B2 (en) 2021-08-04

Family

ID=62565463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236392A Active JP6912882B2 (en) 2016-12-06 2016-12-06 Laminated rubber seismic isolation device or viscous mass damper with spring

Country Status (1)

Country Link
JP (1) JP6912882B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109723755A (en) * 2018-12-10 2019-05-07 北京矿冶科技集团有限公司 Mining equiment vibrating isolation system
JP7357597B2 (en) * 2020-10-09 2023-10-06 大成建設株式会社 Joint hardware, joint structure of deformed steel pipes, column-beam joint structure of deformed steel pipes, and joint structure of steel pipe columns
CN112727122B (en) * 2020-12-31 2022-08-26 中铁三局集团建筑安装工程有限公司 Construction method of energy dissipation and shock absorption structure of public building

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231038A (en) * 1992-02-20 1993-09-07 Ohbayashi Corp Vibration control device
US6870303B2 (en) * 2002-05-08 2005-03-22 Pohang University Of Science And Technology Foundation Multi-mode vibration damping device and method using negative capacitance shunt circuits
JP2004100840A (en) * 2002-09-10 2004-04-02 Takenaka Komuten Co Ltd Vibration source support device
JP4810646B2 (en) * 2007-11-12 2011-11-09 国立大学法人名古屋大学 Vibration suppression device
JP5179314B2 (en) * 2008-10-04 2013-04-10 三井住友建設株式会社 Natural frequency identification method, structure isolation method and structural system vibration method
KR101069155B1 (en) * 2009-09-29 2011-09-30 건국대학교 산학협력단 A piezoelectric element type elastomeric bearing instrumented

Also Published As

Publication number Publication date
JP2018091437A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6912882B2 (en) Laminated rubber seismic isolation device or viscous mass damper with spring
US7637359B2 (en) Modular interface for damping mechanical vibrations
JP5123623B2 (en) Seismic isolation devices and vibration control devices
JP2011069104A (en) Seismic control device and seismic control structure
JP5179314B2 (en) Natural frequency identification method, structure isolation method and structural system vibration method
Rafieipour et al. A novel semi-active TMD with folding variable stiffness spring
JPH0552237A (en) Vibration controling device
JP2014163102A (en) Vibration suppression device
JP2011233563A (en) Piezoelectric power generation device and antivibration device
Karsten et al. Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation
JP6854116B2 (en) Damping wall
JP5601824B2 (en) Damper and seismic isolation mechanism
JP6726381B2 (en) Installation structure of rotary mass damper
JP4761347B2 (en) Building vibration control system.
JP2011106515A (en) Base isolation/vibration control mechanism
JP6704815B2 (en) Power generator
JP2020002545A (en) Pendulum type vibration control device
JP6289929B2 (en) Structure damping device and specification setting method thereof
JP2018087580A (en) Mass damper
JP6752683B2 (en) Viscous mass damper with spring
JP6538325B2 (en) Vibration suppressor for structure
JP5252227B2 (en) Seismic isolation system
JP2016056875A (en) Seismic base isolation structure with vibration control function
JP6456774B2 (en) Vibration control structure
WO2020044395A1 (en) Power generation element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6912882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250