JP2011106515A - Base isolation/vibration control mechanism - Google Patents

Base isolation/vibration control mechanism Download PDF

Info

Publication number
JP2011106515A
JP2011106515A JP2009260355A JP2009260355A JP2011106515A JP 2011106515 A JP2011106515 A JP 2011106515A JP 2009260355 A JP2009260355 A JP 2009260355A JP 2009260355 A JP2009260355 A JP 2009260355A JP 2011106515 A JP2011106515 A JP 2011106515A
Authority
JP
Japan
Prior art keywords
linear motion
motion shaft
force
shaft
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009260355A
Other languages
Japanese (ja)
Other versions
JP5555393B2 (en
Inventor
Hidenori Kida
英範 木田
Shigeki Nakaminami
滋樹 中南
Katsuhiro Higashi
勝広 東
Hisaya Tanaka
久也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2009260355A priority Critical patent/JP5555393B2/en
Publication of JP2011106515A publication Critical patent/JP2011106515A/en
Application granted granted Critical
Publication of JP5555393B2 publication Critical patent/JP5555393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation/vibration control mechanism disposed at a structural body, suitable for optimizing base isolation/vibration control performance by simple structure. <P>SOLUTION: The base isolation/vibration control mechanism includes: a damper 100 having a linearly moving shaft 110, a rotor 120 guided by a spiral groove G of the linearly moving shaft 110, and a frame 130; and a pair of connecting members 210, 220 connecting the linearly moving shaft 110 and the frame 130 at a pair of connection portions. At least one connecting member 210 restrains specific relative displacement between one of the linearly moving shaft 110 or the frame 130 and the connection portion by a specific force to allow the specific relative displacement when a force exceeding the specific force acts on the connection portion. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建造物に設けられる免制震機構に係る。   The present invention relates to a seismic isolation mechanism provided in a building.

地震が発生すると、建物、構造物等の構造体が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、構造体が損傷をうけたり、構造体の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から構造体へ伝達する振動エネルギーを減少させて振動を免震する免震装置、または構造体が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振装置として各種の構造の装置が試されている。
構造とその構造を構成する要素の諸元を適正に設定することにより、所望の免震性能や制振性能を発揮できる。
When an earthquake occurs, structures such as buildings and structures are shaken horizontally and vertically.
When the acceleration level due to an earthquake or the like is large, the structure is damaged, or an object in the structure receives an acceleration exceeding an expectation or a displacement exceeding the expectation.
Therefore, a seismic isolation device that reduces the vibration energy transmitted from the foundation to the structure to isolate the vibration, or a vibration suppression that absorbs the vibration energy and reduces the vibration level when the structure vibrates. Devices of various structures have been tried as devices.
By appropriately setting the specifications of the structure and the elements constituting the structure, desired seismic isolation performance and damping performance can be exhibited.

その様な目的で、回転運動と直線運動の変換機構を持つダンパーが用いられる。
例えば、ダンパーは、摩擦ダンパー、粘性ダンパー、マスダンパー、粘性マスダンパー、同調粘性マスダンパー等がある。
For this purpose, a damper having a conversion mechanism between rotational motion and linear motion is used.
For example, the damper includes a friction damper, a viscous damper, a mass damper, a viscous mass damper, a tuned viscous mass damper, and the like.

摩擦ダンパーは、長手方向に沿って所定のリードを持つ螺旋溝を設けられた直動軸と螺旋溝に倣って案内される回転体と回転体を回転自在に支持するフレームとで構成される。
摩擦ダンパーは、摩擦に起因して、直動軸を一定の相対速度で直動変位させた際に作用する反力を相対速度で割った値に対応する減衰係数cを持つ。
The friction damper includes a linear motion shaft provided with a spiral groove having a predetermined lead along the longitudinal direction, a rotating body guided along the spiral groove, and a frame that rotatably supports the rotating body.
The friction damper has a damping coefficient c corresponding to a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a constant relative speed by the relative speed due to friction.

粘性ダンパーは、長手方向に沿って所定のリードを持つ螺旋溝を設けられた直動軸と螺旋溝に倣って案内される回転体と回転体を回転自在に支持するフレームとフレームの内面と回転体との隙間に封入された粘性流体とで構成される。
粘性ダンパーは、粘性に起因して、直動軸を一定の相対速度で直動変位させた際に作用する反力を相対速度で割った値に対応する減衰係数cを持つ。
The viscous damper includes a linear motion shaft provided with a spiral groove having a predetermined lead along the longitudinal direction, a rotating body guided along the spiral groove, a frame that rotatably supports the rotating body, an inner surface of the frame, and rotation. It is composed of a viscous fluid enclosed in a gap with the body.
The viscous damper has a damping coefficient c corresponding to a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a constant relative speed by the relative speed due to the viscosity.

マスダンパーは、長手方向に沿って所定のリードを持つ螺旋溝を設けられた直動軸と螺旋溝に倣って案内される回転体と回転体を回転自在に支持するフレームとで構成される。
マスダンパーは、回転体の回転慣性モーメントに起因して、直動軸を所定の相対加速度で直動変位させたさいに作用する反力を直動変位の相対加速度で割った値であるみかけの慣性質量mrを持つ。
The mass damper includes a linear motion shaft provided with a spiral groove having a predetermined lead along the longitudinal direction, a rotating body guided along the spiral groove, and a frame that rotatably supports the rotating body.
The mass damper is an apparent value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a predetermined relative acceleration due to the rotational inertia moment of the rotating body by the relative acceleration of the linear motion displacement. It has an inertial mass mr.

粘性マスダンパーは、長手方向に沿って所定のリードを持つ螺旋溝を設けられた直動軸と螺旋溝に倣って案内される回転体と回転体を回転自在に支持するフレームとフレームの内面と回転体との隙間に封入された粘性流体とで構成される。
粘性マスダンパーは、粘性と回転慣性モーメントに起因して、直動軸を所定の相対加速度で直動変位させたさいに作用する反力を直動変位の相対加速度で割った値であるみかけの慣性質量mrと直動軸を一定の相対速度で直動変位させた際に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
The viscous mass damper includes a linear motion shaft provided with a spiral groove having a predetermined lead along the longitudinal direction, a rotating body guided along the spiral groove, a frame that rotatably supports the rotating body, an inner surface of the frame, It is comprised with the viscous fluid enclosed with the clearance gap between rotating bodies.
The viscous mass damper is an apparent value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a predetermined relative acceleration due to the viscosity and rotational moment of inertia by the relative acceleration of the linear motion displacement. It has an inertial mass mr and a damping coefficient c corresponding to a value obtained by dividing the reaction force acting when the linear motion shaft is linearly displaced at a constant relative velocity by the relative velocity.

同調粘性マスダンパーは、粘性マスダンパーに弾性体を直列接続されたものである。
同調粘性マスダンパーは、バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrとに対応するダンパー固有振動数ωrと粘性マスダンパーの直動軸を一定の相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
The tuned viscous mass damper is obtained by connecting an elastic body in series to a viscous mass damper.
The tuned viscous mass damper has the elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element is displaced by a relative distance in the linear motion direction, and the linear motion axis of the viscous mass damper in the linear motion direction. The damper natural frequency ωr corresponding to the apparent inertia mass mr, which is a value obtained by dividing the reaction force acting in the linear motion direction when the linear motion is performed at a predetermined relative acceleration, and the linear motion axis of the viscous mass damper And a damping coefficient c corresponding to a value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the lens is linearly moved at a constant relative velocity.

直動軸が直動変位すると回転体が回転する。
回転体の回転慣性能率に対応した回転反力が発生する。回転反力は螺旋溝と回転体との作用で直動変位する方向の反力に変換される。
回転体が回転すると回転体とフレームとの隙間に封入した粘性流体に剪断力が生じ、その剪断力に対応した回転反力が発生する。回転反力は、雄ねじと雌ねじの作用で直動変位する方向の反力に変換される。
この慣性力と剪断力による反力は回転体の質量と粘性流体の量に比較してみかけ上の大きな質量と大きな減衰により組み合わされた動特性をもつ。
粘性マスダンパーと弾性体が直列接続されるので、見掛け上の大きな質量と大きな減衰により組み合わされた動特性をもつ。
When the linear motion shaft is linearly displaced, the rotating body rotates.
A rotational reaction force corresponding to the rotational inertia ratio of the rotating body is generated. The rotational reaction force is converted into a reaction force in the direction of linear displacement by the action of the spiral groove and the rotating body.
When the rotating body rotates, a shearing force is generated in the viscous fluid enclosed in the gap between the rotating body and the frame, and a rotational reaction force corresponding to the shearing force is generated. The rotational reaction force is converted into a reaction force in the direction of linear displacement by the action of the male screw and the female screw.
The reaction force due to the inertial force and the shearing force has a dynamic characteristic combined with a large apparent mass and a large damping compared with the mass of the rotating body and the amount of the viscous fluid.
Since the viscous mass damper and the elastic body are connected in series, it has dynamic characteristics combined with a large apparent mass and a large damping.

発明者らは、これらのダンパーを構造体に連結し、構造体の固有振動数と同調粘性マスダンパーの固有振動数とを適当な関係にすると、構造体を効率よく免震し、制振できることを見いだした。   By connecting these dampers to the structure and making the natural frequency of the structure and the natural frequency of the tuned viscous mass damper an appropriate relationship, the inventors are able to efficiently isolate and suppress the structure. I found.

地震が発生しないときは、風等の力により揺すられ、構造体は構造体の固有振動数に対応して微小に揺れる。
地震が発生すると、地盤の加速度により構造体が強制的に揺すられ、構造体は地震の加振力に対応して大きく揺れる。
従って、地震が発生せずに構造体が微小に揺れるときと地震が発生し構造体がゆれるときで、ダンパーの最適の特性が異なる場合がある。
When an earthquake does not occur, the structure is shaken by a force such as wind, and the structure is slightly shaken corresponding to the natural frequency of the structure.
When an earthquake occurs, the structure is forcibly shaken by the acceleration of the ground, and the structure shakes greatly in response to the excitation force of the earthquake.
Therefore, the optimal characteristics of the damper may differ between when the structure is shaken slightly without an earthquake and when the earthquake occurs and the structure is shaken.

またダンパーの構造的特徴として、直動体の直進変位の速度、加速度が大きくなると直動軸またはフレームと構造体との連結箇所に大きな反力が発生する。
地震が発生した際に、ダンパーに予期しない大きさの速度または加速度が作用した場合であっても、連結部に大きな反力が発生しないようにしたい場合がある。
Further, as a structural feature of the damper, when the speed and acceleration of the linear movement of the linear motion body increase, a large reaction force is generated at the linear motion shaft or at the connecting portion between the frame and the structural body.
Even when an unexpectedly large speed or acceleration is applied to the damper when an earthquake occurs, it may be desired to prevent a large reaction force from being generated at the connecting portion.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構成で免震・制振性能を最適化するのに適した構造体に設けられる免制震機構を提供しようとする。   The present invention has been devised in view of the above-described problems, and intends to provide a seismic isolation mechanism provided in a structure suitable for optimizing seismic isolation / damping performance with a simple configuration. .

上記目的を達成するため、本発明に係る揺れに伴って相対変位する1対の連結箇所を持つ構造体に設けられる免制震機構を、外周面に長手方向に沿って所定のピッチを持つ螺旋状の溝である螺旋溝を設けられた軸体である直動軸と前記螺旋溝に倣って案内される回転体と前記回転体を回転自在に支持するフレームとを有するダンパーと、1対の連結箇所に前記直動軸と前記フレームとを各々に連結する1対の連結部材と、を備え、1対の前記連結部材のうちの少なくとも1つの連結部材が前記直動軸または前記フレームのうちの一方と前記直動軸または前記フレームのうちの一方の連結される前記連結箇所との間の特定の相対変位である特定相対変位を特定の力である特定力で拘束し前記直動軸または前記フレームのうちの一方の連結される前記連結箇所に当該特定力を越える力が作用すると前記特定相対変位を許す、ものとした。   In order to achieve the above object, a seismic isolation mechanism provided in a structure having a pair of connecting points that are displaced relative to a swing according to the present invention is provided with a spiral having a predetermined pitch along the longitudinal direction on the outer peripheral surface. A damper having a linear motion shaft that is a shaft body provided with a spiral groove that is a groove, a rotating body that is guided along the spiral groove, and a frame that rotatably supports the rotating body; A pair of connecting members for connecting the linear motion shaft and the frame to each other at a connection location, wherein at least one of the pair of connection members is the linear motion shaft or the frame A specific relative displacement, which is a specific relative displacement between one of the linear movement shaft and the connecting portion to which one of the frames is connected, is limited by a specific force, which is a specific force, and the linear movement shaft or One of the frames is connected Force exceeding the specific force in the serial connection points allows the specific relative displacement to act, and the things.

上記本発明の構成により、ダンパーが、外周面に長手方向に沿って所定のピッチを持つ螺旋状の溝である螺旋溝を設けられた軸体である直動軸と前記螺旋溝に倣って案内される回転体と前記回転体を回転自在に支持するフレームとを有する。1対の連結部材が、1対の連結箇所に前記直動軸と前記フレームとを各々に連結する。1対の前記連結部材のうちの少なくとも1つの連結部材が前記直動軸または前記フレームのうちの一方と前記直動軸または前記フレームのうちの一方の連結される前記連結箇所との間の特定の相対変位である特定相対変位を特定の力である特定力で拘束する。前記直動軸または前記フレームのうちの一方の連結される前記連結箇所に当該特定力を越える力が作用すると前記特定相対変位を許す。
その結果、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると特定相対変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
According to the configuration of the present invention, the damper is guided along the linear motion shaft that is a shaft body provided with a spiral groove that is a spiral groove having a predetermined pitch along the longitudinal direction on the outer peripheral surface and the spiral groove. And a frame that rotatably supports the rotating body. A pair of connecting members connect the linear motion shaft and the frame to a pair of connecting portions, respectively. Identification of at least one of the pair of connecting members between one of the linear motion shaft or the frame and the connection location to which one of the linear motion shaft or the frame is connected The specific relative displacement, which is the relative displacement of, is constrained by the specific force, which is the specific force. The specific relative displacement is allowed when a force exceeding the specific force is applied to the connecting portion to which one of the linear motion shaft or the frame is connected.
As a result, the damper can suppress the shaking of the structure, and when a force exceeding a specific force is applied to the connecting portion, a specific relative displacement is allowed and an excessive force is prevented from being generated at the connecting portion.

以下に、本発明の実施形態に係る免制震機構を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Below, the seismic isolation mechanism which concerns on embodiment of this invention is demonstrated. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態に係る免制震機構は、前記特定相対変位が前記直動軸または前記フレームのうちの一方と連結箇所との間の前記直動軸の中心軸の回りの相対的な回転変位である。
上記の実施形態の構成により、前記特定相対変位が前記直動軸または前記フレームのうちの一方と連結箇所との間の前記直動軸の中心軸の回りの相対的な回転変位である。
その結果、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、ダンパーと連結箇所との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to the embodiment of the present invention, the specific relative displacement is a relative rotation around the central axis of the linear motion shaft between one of the linear motion shaft or the frame and a connecting portion. Displacement.
According to the configuration of the above-described embodiment, the specific relative displacement is a relative rotational displacement around the central axis of the linear motion shaft between one of the linear motion shaft or the frame and a connection portion.
As a result, the damper can suppress the shaking of the structure, and when a force exceeding a specific force acts on the connection location, the relative rotational displacement between the damper and the connection location is allowed, and the connection location The generation of excessive force can be suppressed.

本発明の実施形態に係る免制震機構は、前記直動軸は端部に雄ねじを形成され、1対の前記連結部材のうちの少なくとも一つの連結部材は前記直動軸の前記雄ねじに嵌合する雌ねじが形成される取付部材を有し、前記取付部材が構造体に連結箇所で固定され、前記特定力が前記取付部材と前記直動軸との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
上記の実施形態の構成により、前記直動軸は端部に雄ねじを形成される。1対の前記連結部材のうちの少なくとも一つの連結部材は取付部材を有する。取付部材は、前記直動軸の前記雄ねじに嵌合する雌ねじが形成される。前記取付部材が構造体に連結箇所で固定される。前記特定力が前記取付部材と前記直動軸との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
その結果、前記取付部材と前記直動軸との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーの前記直動軸と連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to an embodiment of the present invention, the linear motion shaft is formed with a male screw at an end, and at least one of the pair of connection members is fitted into the male screw of the linear motion shaft. The mounting member is formed with a mating female screw, the mounting member is fixed to the structure at a connection point, and the specific force is generated by friction between the mounting member and the linear motion shaft. It is the force by the torque around the central axis.
With the configuration of the above-described embodiment, the linear motion shaft is formed with a male screw at the end. At least one connecting member of the pair of connecting members has an attachment member. The mounting member is formed with a female screw that fits into the male screw of the linear motion shaft. The attachment member is fixed to the structure at a connection location. The specific force is a force generated by a torque around the central axis of the linear motion shaft generated by friction between the mounting member and the linear motion shaft.
As a result, when a force exceeding the force due to the torque generated by the friction between the mounting member and the linear motion shaft acts on the connecting portion, the mounting member fixed to the linear motion shaft and the connecting portion of the damper; Relative rotational displacement between the two can be allowed, and an excessive force can be prevented from being generated at the connecting portion.

本発明の実施形態に係る免制震機構は、前記直動軸は端部に雄ねじと平坦な外周面とを形成され、1対の前記連結部材のうちの少なくとも一つの連結部材は前記直動軸の前記雄ねじに嵌合する雌ねじと前記直動軸の前記外周面に接触可能な接触面を形成される取付部材と該接触面を前記直動軸の前記外周面に押付ける押付部材とを有し、前記取付部材が構造体に連結箇所で固定され、前記特定力が前記取付部材と前記直動軸との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
上記の実施形態の構成により、前記直動軸は端部に雄ねじと平坦な外周面とを形成される。1対の前記連結部材のうちの少なくとも一つの連結部材は取付部材と押付部材とを有する。取付部材は、前記直動軸の前記雄ねじに嵌合する雌ねじと前記直動軸の前記外周面に接触可能な接触面を形成される。押付部材は、該接触面を前記直動軸の前記外周面に押付ける。前記取付部材が構造体に連結箇所で固定される。前記特定力が前記取付部材と前記直動軸との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
その結果、前記取付部材と前記直動軸との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーの前記直動軸と連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to an embodiment of the present invention, the linear motion shaft is formed with an external thread and a flat outer peripheral surface at an end, and at least one of the pair of connection members is the linear motion. A female screw that fits into the male screw of the shaft, a mounting member that forms a contact surface that can contact the outer peripheral surface of the linear motion shaft, and a pressing member that presses the contact surface against the outer peripheral surface of the linear motion shaft. And the mounting member is fixed to the structure at a connection location, and the specific force is generated by friction between the mounting member and the linear motion shaft, and is caused by a torque by the torque around the central axis of the linear motion shaft. is there.
With the configuration of the above-described embodiment, the linear motion shaft is formed with an external thread and a flat outer peripheral surface at the end. At least one connecting member of the pair of connecting members includes an attachment member and a pressing member. The attachment member is formed with a female screw that fits into the male screw of the linear motion shaft and a contact surface that can contact the outer peripheral surface of the linear motion shaft. The pressing member presses the contact surface against the outer peripheral surface of the linear motion shaft. The attachment member is fixed to the structure at a connection location. The specific force is a force generated by a torque around the central axis of the linear motion shaft generated by friction between the mounting member and the linear motion shaft.
As a result, when a force exceeding the force due to the torque generated by the friction between the mounting member and the linear motion shaft acts on the connecting portion, the mounting member fixed to the linear motion shaft and the connecting portion of the damper; Relative rotational displacement between the two can be allowed, and an excessive force can be prevented from being generated at the connecting portion.

本発明の実施形態に係る免制震機構は、1対の前記連結部材のうちの少なくとも一つの連結部材は雄ねじを形成された軸部材と該軸部材の前記雄ねじに嵌合する雌ねじが形成される取付部材とを有し、前記軸部材又は前記取付部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定され、前記軸部材又は前記取付部材のうちの他方が構造体に連結箇所で固定され、前記特定力が前記取付部材と前記軸部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
上記の実施形態の構成により、1対の前記連結部材のうちの少なくとも一つの連結部材は軸部材と取付部材とを有する。軸部材は、雄ねじを形成される。取付部材は、該軸部材の前記雄ねじに嵌合する雌ねじが形成される。前記軸部材又は前記取付部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定される。前記軸部材又は前記取付部材のうちの他方が構造体に連結箇所で固定される。前記特定力が前記取付部材と前記軸部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
その結果、前記取付部材と前記軸部材との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to the embodiment of the present invention, at least one of the pair of connecting members includes a shaft member in which a male screw is formed and a female screw that fits the male screw of the shaft member. One of the shaft member or the mounting member is fixed to one of the linear motion shaft or the frame, and the other of the shaft member or the mounting member is a structure. The specific force is a force generated by a torque around the central axis of the linear motion shaft, which is fixed at a connecting portion and the specific force is generated by friction between the mounting member and the shaft member.
According to the configuration of the above embodiment, at least one of the pair of connecting members includes a shaft member and an attachment member. The shaft member is formed with a male screw. The mounting member is formed with a female screw that fits into the male screw of the shaft member. One of the shaft member or the mounting member is fixed to one of the linear motion shaft or the frame. The other of the shaft member or the mounting member is fixed to the structure at a connection location. The specific force is a force due to a torque around the central axis of the linear motion shaft generated by friction between the mounting member and the shaft member.
As a result, when a force exceeding the force due to the torque generated by the friction between the mounting member and the shaft member is applied to the connecting portion, the relative relationship between the damper and the mounting member fixed to the connecting portion is increased. Rotational displacement is allowed and it can suppress that excessive force arises in a connection location.

本発明の実施形態に係る免制震機構は、1対の前記連結部材のうちの少なくとも一つの連結部材は雄ねじと平坦な外周面とを形成される軸部材と前記軸部材の前記雄ねじに嵌合する雌ねじと前記軸部材の前記外周面に接触可能な接触面を形成される取付部材と該接触面を前記軸部材の前記外周面に押付ける押付部材とを有し、前記軸部材又は前記取付部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定され、前記軸部材又は前記取付部材のうちの他方が構造体に連結箇所で固定され、前記特定力が前記取付部材と前記軸部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
上記の実施形態の構成により、1対の前記連結部材のうちの少なくとも一つの連結部材は軸部材と取付部材と押付部材とを有する。軸部材は、雄ねじと平坦な外周面とを形成される。取付部材は、前記軸部材の前記雄ねじに嵌合する雌ねじと前記軸部材の前記外周面に接触可能な接触面を形成される。押付部材は、該接触面を前記軸部材の前記外周面に押付ける。前記軸部材又は前記取付部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定される。前記軸部材又は前記取付部材のうちの他方が構造体に連結箇所で固定される。前記特定力が前記取付部材と前記軸部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
その結果、前記取付部材と前記軸部材との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to the embodiment of the present invention, at least one of the pair of connecting members is fitted to a shaft member in which a male screw and a flat outer peripheral surface are formed, and the male screw of the shaft member. A fitting member that forms a contact surface that can come into contact with the outer peripheral surface of the shaft member, and a pressing member that presses the contact surface against the outer peripheral surface of the shaft member. One of the mounting members is fixed to one of the linear motion shaft or the frame, the other of the shaft member or the mounting member is fixed to a structure at a connection location, and the specific force is applied to the mounting member And a force due to torque around the central axis of the linear motion shaft caused by friction between the shaft member and the shaft member.
According to the configuration of the above-described embodiment, at least one of the pair of connecting members includes a shaft member, an attachment member, and a pressing member. The shaft member is formed with a male screw and a flat outer peripheral surface. The attachment member is formed with a female screw that fits into the male screw of the shaft member and a contact surface that can contact the outer peripheral surface of the shaft member. The pressing member presses the contact surface against the outer peripheral surface of the shaft member. One of the shaft member or the mounting member is fixed to one of the linear motion shaft or the frame. The other of the shaft member or the mounting member is fixed to the structure at a connection location. The specific force is a force due to a torque around the central axis of the linear motion shaft generated by friction between the mounting member and the shaft member.
As a result, when a force exceeding the force due to the torque generated by the friction between the mounting member and the shaft member is applied to the connecting portion, the relative relationship between the damper and the mounting member fixed to the connecting portion is increased. Rotational displacement is allowed and it can suppress that excessive force arises in a connection location.

本発明の実施形態に係る免制震機構は、1対の前記連結部材のうちの少なくとも一つの連結部材は前記直動軸の中心軸に一致する中心軸を持つ円板状の部材である円板部材と該円板部材を円板状の両面の側から挟み込む挟持部材とを有し、前記円板部材または前記挟持部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定され、前記円板部材または前記挟持部材のうちの他方が構造体に連結箇所で固定され、前記特定力が前記円板状部材と前記挟持部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
上記の実施形態の構成により、1対の前記連結部材のうちの少なくとも一つの連結部材は円板部材と1対の挟持部材とを有する。円板部材は、前記直動軸の中心軸に一致する中心軸を持つ円板状の部材である。挟持部材は、該円板部材を円板状の両面の側から挟み込む。前記円板部材または前記挟持部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定される。前記円板部材または前記挟持部材のうちの他方が構造体に連結箇所で固定される。前記特定力が前記円板状部材と前記挟持部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である。
その結果、前記円板部材と前記挟持部材との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーと前記ダンパーの連結する連結箇所との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
The seismic isolation mechanism according to the embodiment of the present invention is a circle in which at least one of the pair of connecting members is a disk-shaped member having a central axis that coincides with the central axis of the linear motion shaft. A plate member and a sandwiching member for sandwiching the disc member from both sides of the disc shape, and one of the disc member or the sandwiching member is fixed to one of the linear motion shaft or the frame And the other of the disk member or the clamping member is fixed to the structure at a connection location, and the specific force is generated by friction between the disk-shaped member and the clamping member. This is the force due to the torque around the central axis.
According to the configuration of the above embodiment, at least one of the pair of connecting members includes a disk member and a pair of clamping members. The disc member is a disc-like member having a central axis that coincides with the central axis of the linear motion shaft. The sandwiching member sandwiches the disk member from both sides of the disk shape. One of the disk member or the clamping member is fixed to one of the linear motion shaft or the frame. The other of the disk member or the clamping member is fixed to the structure at a connection location. The specific force is a force generated by a torque around the central axis of the linear motion shaft generated by friction between the disk-shaped member and the clamping member.
As a result, when a force exceeding the force caused by the torque generated by the friction between the disk member and the clamping member acts on the connecting portion, the relative rotation between the damper and the connecting portion where the damper is connected is performed. Displacement is allowed and it can suppress that excessive force arises in a connection location.

本発明の実施形態に係る免制震機構は、前記特定相対変位が前記直動軸または前記フレームのうちの一方と前記連結箇所との間の前記直動軸の中心軸に沿った相対的な直線変位である。
上記の実施形態の構成により、前記特定相対変位が前記直動軸または前記フレームのうちの一方と前記連結箇所との間の前記直動軸の中心軸に沿った相対的な直線変位である。
その結果、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、ダンパーと連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to the embodiment of the present invention, the specific relative displacement is relatively relative to a center axis of the linear motion shaft between one of the linear motion shaft or the frame and the connection portion. Linear displacement.
According to the configuration of the above-described embodiment, the specific relative displacement is a relative linear displacement along the central axis of the linear motion shaft between one of the linear motion shaft or the frame and the connecting portion.
As a result, the damper can suppress the shaking of the structure, and when a force exceeding a specific force is applied to the connection location, the relative linear displacement between the damper and the connection location is allowed, and the connection location is The generation of excessive force can be suppressed.

本発明の実施形態に係る免制震機構は、1対の前記連結部材のうちの少なくとも一つの連結部材は固定端と自由端とをもつ長尺の部材であり該固定端の端面を構造体の連結箇所に設けられた取付面に離間可能に接触させ該取付面に平行な方向への移動を拘束される支持部材と該支持部材を所定の弾性力で自由端から固定端へ向いた方向に引っ張る緊張部材とを有し、前記支持部材が自由端の側を前記直動軸または前記フレームのうちの一方に固定され、前記特定力が前記自由端を前記取付面に対して相対変位させたときに前記緊張部材の前記弾性力により前記支持部材と前記直動軸または前記フレームのうちの一方との固定部に生ずる前記直動軸の前記中心軸に沿った力である。
上記の実施形態の構成により、1対の前記連結部材のうちの少なくとも一つの連結部材は支持部材と緊張部材とを有する。支持部材は、固定端と自由端とをもつ長尺の部材であり該固定端の端面を構造体の連結箇所に設けられた取付面に離間可能に接触させ該取付面に平行な方向への移動を拘束される。緊張部材は、該支持部材を所定の弾性力で自由端から固定端へ向いた方向に引っ張る。前記支持部材が自由端の側を前記直動軸または前記フレームのうちの一方に固定される。前記特定力が前記自由端を前記取付面に対して相対変位させたときに前記緊張部材の前記弾性力により前記支持部材と前記直動軸または前記フレームのうちの一方との固定部に生ずる前記直動軸の前記中心軸に沿った力である。
その結果、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to the embodiment of the present invention, at least one of the pair of connecting members is a long member having a fixed end and a free end, and the end surface of the fixed end is a structure. A support member that is detachably brought into contact with a mounting surface provided at a connecting portion of the connecting member and is restricted from moving in a direction parallel to the mounting surface, and a direction in which the support member is directed from a free end to a fixed end with a predetermined elastic force A tension member that pulls on the free end, and the support member is fixed at one of the linear motion shaft and the frame on the free end side, and the specific force displaces the free end relative to the mounting surface. And a force along the central axis of the linear motion shaft that is generated in a fixed portion between the support member and the linear motion shaft or one of the frames by the elastic force of the tension member.
According to the configuration of the above embodiment, at least one of the pair of connecting members includes a support member and a tension member. The support member is an elongate member having a fixed end and a free end, and the end surface of the fixed end is brought into contact with a mounting surface provided at a connection portion of the structure so as to be separated from each other in a direction parallel to the mounting surface. The movement is restrained. The tension member pulls the support member in a direction from the free end to the fixed end with a predetermined elastic force. The support member has a free end fixed to one of the linear motion shaft and the frame. When the specific force causes the free end to be displaced relative to the mounting surface, the elastic force of the tension member causes the support member and one of the linear motion shaft and the frame to be fixed to each other. This is a force along the central axis of the linear motion shaft.
As a result, the damper can suppress the shaking of the structure, and when a force exceeding a specific force is applied to the connecting portion, a relative linear displacement between the damper and the connecting portion is allowed, and the connecting portion It is possible to suppress the generation of excessive force.

本発明の実施形態に係る免制震機構は、1対の前記連結部材のうちの少なくとも一つの連結部材は、前記直動軸の前記中心軸に平行な面である第一面を形成された第一板部材と前記直動軸の前記中心軸に平行な面である第二面を形成された第二板部材と前記第一板部材の前記第一面と前記第二板部材の前記第二面とを所定の力で押付け合わせる押付部材とを有し、前記第一板部材または前記第二板部材の一方が構造体に連結箇所で固定され、前記第一板部材または前記第二板部材の他方が前記直動軸または前記フレームのうちの一方に固定され、前記特定力が前記第一面と前記第二面との間の摩擦により生ずる前記直動軸の前記中心軸に沿った力である。
上記の実施形態の構成により、1対の前記連結部材のうちの少なくとも一つの連結部材は、第一板部材と第二板部材と押付部材とを有し、第一板部材は、前記直動軸の前記中心軸に平行な面である第一面を形成される。第二板部材は、前記直動軸の前記中心軸に平行な面である第二面を形成される。押付部材は、前記第一板部材の前記第一面と前記第二連結部材の前記第二面とを所定の力で押付け合わせる。前記第一板部材または前記第二板部材の一方が構造体に連結箇所で固定される。前記第一板部材または前記第二板部材の他方が前記直動軸または前記フレームのうちの一方に固定される。前記特定力が前記第一面と前記第二面との間の摩擦により生ずる前記直動軸の前記中心軸に沿った力である。
その結果、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、ダンパーと連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
In the seismic isolation mechanism according to the embodiment of the present invention, at least one of the pair of coupling members is formed with a first surface that is a plane parallel to the central axis of the linear motion shaft. A first plate member, a second plate member formed with a second surface that is parallel to the central axis of the linear motion shaft, the first surface of the first plate member, and the second plate member. A pressing member that presses the two surfaces together with a predetermined force, and one of the first plate member or the second plate member is fixed to the structure at a connection location, and the first plate member or the second plate The other of the members is fixed to one of the linear motion shaft or the frame, and the specific force is along the central axis of the linear motion shaft generated by friction between the first surface and the second surface. It is power.
According to the configuration of the above-described embodiment, at least one of the pair of connection members includes a first plate member, a second plate member, and a pressing member, and the first plate member is the linear motion A first surface which is a surface parallel to the central axis of the shaft is formed. The second plate member is formed with a second surface which is a surface parallel to the central axis of the linear motion shaft. The pressing member presses the first surface of the first plate member and the second surface of the second connecting member together with a predetermined force. One of the first plate member or the second plate member is fixed to the structure at a connection location. The other of the first plate member or the second plate member is fixed to one of the linear motion shaft or the frame. The specific force is a force along the central axis of the linear motion shaft generated by friction between the first surface and the second surface.
As a result, the damper can suppress the shaking of the structure, and when a force exceeding a specific force is applied to the connection location, the relative linear displacement between the damper and the connection location is allowed, and the connection location is The generation of excessive force can be suppressed.

以上説明したように、本発明に係る免制震機構は、その構成により、以下の効果を有する。
前記直動軸と前記回転体と前記フレームとを有する前記ダンパーの前記直動軸と前記フレームとを1対の連結箇所に各々に連結し、前記連結部材が前記ダンパーと連結箇所との間の特定の相対変位を特定の力で拘束し、特定の力を越える力が作用すると特定の相対変位を許す様にしたので、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、特定相対変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記ダンパーの前記直動軸と前記フレームとを1対の連結箇所に各々に連結し、連結部材がダンパーと連結箇所との間の直動軸の中心軸の回りの相対的な回転変位を特定の力で拘束し、特定の力を越える力が作用するとその回転変位を許す様にしたので、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記直動軸の雄ねじと前記取付部材の雌ねじとが嵌合し、前記取付部材と前記直動軸との間の摩擦により生ずるトルクによる力が前記ダンパーと連結箇所との間の相対的な回転変位を拘束する様にしたので、前記取付部材と前記直動軸との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーの前記直動軸と連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記直動軸の雄ねじと前記取付部材の雌ねじとが嵌合し、前記押付部材が前記取付部材を前記直動軸に押付け、前記取付部材と前記直動軸との間の摩擦により生ずるトルクによる力が前記ダンパーと連結箇所との間の相対的な回転変位を拘束する様にしたので、前記取付部材と前記直動軸との間の摩擦により生ずるトルクによる力を越える力が連結箇所に作用すると、前記ダンパーの前記直動軸と連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記ダンパー又は構造体の一方に固定される前記軸部材の雄ねじと前記ダンパー又は構造体の他方に固定される前記取付部材の雌ねじとが嵌合し、前記取付部材と前記軸部材との間の摩擦により生ずるトルクによる力が前記ダンパーと連結箇所との間の相対的な回転変位を拘束する様にしたので、前記取付部材と前記軸部材との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所に固定される取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記ダンパー又は構造体の一方に固定される前記軸部材の前記雄ねじと前記ダンパー又は構造体の他方に固定される前記取付部材の雌ねじとが嵌合し、前記押付部材が前記取付部材を前記軸部材に押付け、前記取付部材と前記軸部材との間の摩擦により生ずるトルクによる力が前記ダンパーと連結箇所との間の相対的な回転変位を拘束する様にしたので、前記取付部材と前記軸部材との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所に固定される前記取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、1対の前記挟持部材が前記円板部材を両側から挟み、一方を前記直動軸または前記フレームに固定し、他方を構造体に固定し、前記円板部材と前記挟持部材との間の摩擦により生ずるトルクによる力で前記ダンパーと構造体との間の相対的な回転変位を拘束する様にしたので、前記円板部材と前記挟持部材との間の摩擦により生ずるトルクによる力を越える力が前記連結箇所に作用すると、前記ダンパーとダンパーの連結する連結箇所との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記ダンパーの前記直動軸と前記フレームとを1対の連結箇所に連結し、前記連結部材が前記ダンパーと連結箇所との間の前記直動軸の中心軸に沿った相対的な直線変位を特定の力で拘束し、特定の力を越える力が作用するとその直線変位を許す様にしたので、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、長尺の前記支持部材の前記固定端を構造体の連結箇所に設けられた取付面に離間可能に接触させ、前記自由端の側に前記ダンパーを固定し、前記緊張部材の弾性力で前記支持部材を前記固定端の側へ引っ張り、前記緊張部材の前記弾性力により前記支持部材と前記ダンパーとの固定部に生ずる前記直動軸の前記中心軸に沿った力が前記特定相対変位を拘束する様にしたので、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、前記押付部材が構造体に固定される前記第一板部材の前記第一面とダンパーに固定される前記第二板部材の前記第二面とを所定の力で押付けあい、前記第一面と前記第二面との間の摩擦により生ずる力が前記ダンパーと連結箇所との間の相対的な回転変位を拘束する様にしたので、前記ダンパーが構造体の揺れを押さえることをでき、特定の力を越える力が前記連結箇所に作用すると、前記ダンパーと連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
従って、簡易な構成で免震・制振性能を最適化するのに適した構造体に設けられる免制震機構を提供できる。
As described above, the seismic isolation mechanism according to the present invention has the following effects due to its configuration.
The linear motion shaft and the frame of the damper having the linear motion shaft, the rotating body, and the frame are connected to a pair of connection locations, respectively, and the connection member is between the damper and the connection location. A specific relative displacement is constrained by a specific force, and when a force exceeding a specific force is applied, the specific relative displacement is allowed, so that the damper can suppress the shaking of the structure and exceed the specific force. When a force acts on the connecting portion, a specific relative displacement is allowed, and an excessive force can be prevented from being generated at the connecting portion.
Further, the linear motion shaft of the damper and the frame are coupled to a pair of coupling locations, respectively, and the coupling member is a relative rotational displacement around the central axis of the linear motion shaft between the damper and the coupling location. Is restricted by a specific force, and when a force exceeding a specific force is applied, the rotational displacement is allowed, so that the damper can suppress the shaking of the structure, and the force exceeding the specific force If it acts on, the relative rotational displacement between the said damper and a connection location is permitted, and it can suppress that an excessive force arises in a connection location.
Further, the male screw of the linear motion shaft and the female screw of the mounting member are fitted, and a force caused by the friction between the mounting member and the linear motion shaft causes a relative force between the damper and the connecting portion. When the force exceeding the force due to the torque generated by the friction between the mounting member and the linear motion shaft is applied to the connection location, the linear motion shaft and the connection location of the damper are restricted. It is possible to allow relative rotational displacement between the mounting member and the mounting member, and to prevent an excessive force from being generated at the connection location.
Further, the male screw of the linear motion shaft and the female screw of the mounting member are fitted, and the pressing member presses the mounting member against the linear motion shaft, and is generated by friction between the mounting member and the linear motion shaft. Since the force due to the torque restrains the relative rotational displacement between the damper and the connecting portion, the force exceeding the force due to the torque generated by the friction between the mounting member and the linear motion shaft is connected to the connecting portion. If it acts on, the relative rotational displacement between the said linear motion shaft of the said damper and the said attachment member fixed to a connection location is permitted, and it can suppress that an excessive force arises in a connection location.
The male screw of the shaft member fixed to one of the damper or the structure and the female screw of the mounting member fixed to the other of the damper or the structure are fitted, and the mounting member and the shaft member Since the force due to the torque generated by the friction restrains the relative rotational displacement between the damper and the connecting portion, the force due to the torque generated by the friction between the mounting member and the shaft member is exceeded. When a force acts on the connection location, relative rotational displacement between the damper and the mounting member fixed to the connection location is allowed, and an excessive force can be prevented from being generated at the connection location.
Further, the male screw of the shaft member fixed to one of the damper or the structure and the female screw of the mounting member fixed to the other of the damper or the structure are fitted, and the pressing member uses the mounting member. Since the force due to the torque generated by the friction between the mounting member and the shaft member presses against the shaft member restrains the relative rotational displacement between the damper and the connecting portion, the mounting member and When a force exceeding the force due to the torque generated by the friction with the shaft member acts on the connecting part, the relative displacement between the damper and the mounting member fixed to the connecting part is allowed, and the connecting part is connected. It is possible to suppress an excessive force from being generated at the location.
In addition, a pair of the clamping members sandwich the disk member from both sides, one is fixed to the linear motion shaft or the frame, and the other is fixed to the structure, and between the disk member and the clamping member Since the relative rotational displacement between the damper and the structure is constrained by the force caused by the torque generated by the friction, the force caused by the torque generated by the friction between the disk member and the clamping member is exceeded. When the force acts on the connecting portion, a relative rotational displacement between the damper and the connecting portion where the damper is connected can be allowed to prevent an excessive force from being generated at the connecting portion.
Further, the linear motion shaft of the damper and the frame are connected to a pair of connection locations, and the connection member is a relative straight line along the central axis of the linear motion shaft between the damper and the connection locations. Since the displacement is constrained by a specific force and the force exceeding the specific force is applied, the linear displacement is allowed, so that the damper can suppress the shaking of the structure, and the force exceeding the specific force If it acts on a location, the relative linear displacement between the said damper and a connection location is permitted, and it can suppress that an excessive force arises in a connection location.
Further, the fixed end of the long support member is brought into contact with a mounting surface provided at a connection portion of the structure so as to be separable, the damper is fixed to the free end side, and the elastic force of the tension member is used. The support member is pulled toward the fixed end, and the force along the central axis of the linear motion shaft generated in the fixing portion between the support member and the damper is caused by the elastic force of the tension member to reduce the specific relative displacement. Since the damper can restrain the vibration of the structure, if a force exceeding a specific force is applied to the connecting portion, a relative linear displacement between the damper and the connecting portion is allowed. Thus, it is possible to suppress an excessive force from being generated at the connection portion.
The pressing member is pressed against the first surface of the first plate member fixed to the structure and the second surface of the second plate member fixed to the damper with a predetermined force. Since the force generated by the friction between the surface and the second surface restrains the relative rotational displacement between the damper and the connecting portion, the damper can suppress the shaking of the structure, When a force exceeding a specific force is applied to the connecting portion, relative linear displacement between the damper and the connecting portion is allowed, and an excessive force can be prevented from being generated at the connecting portion.
Therefore, the seismic isolation mechanism provided in the structure suitable for optimizing the seismic isolation / damping performance with a simple configuration can be provided.

本発明の実施形態に係るダンパーの斜視断面図である。It is a perspective sectional view of a damper concerning an embodiment of the present invention. 本発明の実施形態に係るダンパーの断面図である。It is sectional drawing of the damper which concerns on embodiment of this invention. 本発明の実施形態に係るダンパーの質点系モデル図である。It is a mass point system model figure of a damper concerning an embodiment of the present invention. 本発明の第一、三の実施形態に係る免制震機構の部分図である。It is a fragmentary figure of the seismic isolation mechanism which concerns on 1st, 3rd embodiment of this invention. 本発明の第二、四の実施形態に係る免制震機構の部分図である。It is a fragmentary figure of the seismic isolation mechanism which concerns on 2nd, 4th embodiment of this invention. 本発明の第五の実施形態に係る免制震機構の部分図である。It is a fragmentary figure of the seismic isolation mechanism which concerns on 5th embodiment of this invention. 本発明の第五の実施形態に係る免制震機構のC−C断面図である。It is CC sectional drawing of the seismic isolation mechanism which concerns on 5th embodiment of this invention. 本発明の第五の実施形態に係る免制震機構のD−D断面図である。It is DD sectional drawing of the seismic isolation mechanism which concerns on 5th embodiment of this invention. 本発明の第六の実施形態に係る免制震機構の全体図である。It is a general view of the seismic isolation mechanism which concerns on 6th embodiment of this invention. 本発明の第六の実施形態に係る免制震機構の部分図である。It is a fragmentary figure of the seismic isolation mechanism which concerns on 6th embodiment of this invention. 本発明の第六の実施形態に係る免制震機構の特性図である。It is a characteristic view of the seismic isolation mechanism which concerns on 6th embodiment of this invention. 本発明の第七の実施形態に係る免制震機構の分解斜視図である。It is a disassembled perspective view of the seismic isolation mechanism which concerns on 7th embodiment of this invention. 本発明の第一〜七の実施形態に係る免制震機構の応用図である。It is an application figure of the seismic isolation mechanism which concerns on the 1st-7th embodiment of this invention.

以下、本発明を実施するための形態を、図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

本発明の実施形態にかかる免制震機構は、揺れに伴って相対変位する1対の連結箇所を持つ構造体に設けられる機構である。
本発明の実施形態にかかる免制震機構は、ダンパー100と1対の連結部材200とで構成される。
本発明の実施形態にかかるダンパー100は、直動軸110と回転体120とフレーム130とで構成される。
直動軸110は、外周面に長手方向に沿って所定のピッチを持つ螺旋状の溝である螺旋溝を設けられた軸体である。
回転体120は、螺旋溝に倣って案内される。
フレーム130は、回転体を回転自在に支持する。
The seismic isolation mechanism according to the embodiment of the present invention is a mechanism provided in a structure having a pair of connecting portions that are relatively displaced in accordance with shaking.
The seismic isolation mechanism according to the embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
The damper 100 according to the embodiment of the present invention includes a linear motion shaft 110, a rotating body 120, and a frame 130.
The linear motion shaft 110 is a shaft body provided with a spiral groove which is a spiral groove having a predetermined pitch along the longitudinal direction on the outer peripheral surface.
The rotating body 120 is guided following the spiral groove.
The frame 130 rotatably supports the rotating body.

最初に、本発明の実施形態にかかるダンパーの一例を詳述する。
図1は、本発明の実施形態に係るダンパーの斜視断面図である。図2は、本発明の実施形態に係るダンパーの断面図である。図3は、本発明のの実施形態に係るダンパーの質点系モデル図である。
First, an example of a damper according to an embodiment of the present invention will be described in detail.
FIG. 1 is a perspective sectional view of a damper according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the damper according to the embodiment of the present invention. FIG. 3 is a mass system model diagram of the damper according to the embodiment of the present invention.

本発明の実施形態に係るダンパー100は、直動軸110と回転体120とフレーム130とで構成される。
本発明の実施形態に係るダンパー100は、直動軸110と回転体120とフレーム130と粘性体140とで構成されてもよい。
本発明の実施形態に係るダンパー100は、直動軸110と回転体120とフレーム130と付加回転部材150とで構成されてもよい。
本発明の実施形態に係るダンパー100は、直動軸110と回転体120とフレーム130と付加回転部材150と外部付加回転部材160とで構成されてもよい。
本発明の実施形態に係るダンパー100は、直動軸110と回転体120とフレーム130と粘性体140と付加回転部材150とで構成されてもよい。
本発明の実施形態に係るダンパー100は、直動軸110と回転体120とフレーム130と粘性体140と付加回転部材150と外部付加回転部材160とで構成されてもよい。
図2は、ダンパー100が直動軸110と回転体120とフレーム130と粘性体140と付加回転部材150と外部付加回転部材160とで構成され、ダンパー100と弾性体300とが連結部材200により直列に繋がれた様子を示す、
The damper 100 according to the embodiment of the present invention includes a linear motion shaft 110, a rotating body 120, and a frame 130.
The damper 100 according to the embodiment of the present invention may include a linear motion shaft 110, a rotating body 120, a frame 130, and a viscous body 140.
The damper 100 according to the embodiment of the present invention may include a linear motion shaft 110, a rotating body 120, a frame 130, and an additional rotating member 150.
The damper 100 according to the embodiment of the present invention may include a linear motion shaft 110, a rotating body 120, a frame 130, an additional rotating member 150, and an external additional rotating member 160.
The damper 100 according to the embodiment of the present invention may include a linear motion shaft 110, a rotating body 120, a frame 130, a viscous body 140, and an additional rotating member 150.
The damper 100 according to the embodiment of the present invention may include a linear motion shaft 110, a rotating body 120, a frame 130, a viscous body 140, an additional rotating member 150, and an external additional rotating member 160.
2, the damper 100 includes a linear motion shaft 110, a rotating body 120, a frame 130, a viscous body 140, an additional rotating member 150, and an external additional rotating member 160. The damper 100 and the elastic body 300 are connected by a connecting member 200. Showing how they are connected in series,

直動軸110は、外周面に長手方向に沿って所定のピッチPを持つ螺旋状の溝である螺旋溝Gを設けられた軸体である。
螺旋溝Gが直動軸110の外周面の一部または全部に設けられる。
一条または複数条の螺旋溝Gが、直動軸110の外周面に設けられる。
The linear motion shaft 110 is a shaft body provided with a spiral groove G which is a spiral groove having a predetermined pitch P along the longitudinal direction on the outer peripheral surface.
The spiral groove G is provided in part or all of the outer peripheral surface of the linear motion shaft 110.
One or a plurality of spiral grooves G are provided on the outer peripheral surface of the linear motion shaft 110.

回転体120は、螺旋溝Gに倣って案内される機構である。
例えば、回転体120は、直動軸110の外周面に設けられた螺旋溝Gに倣って、直動軸110に対して相対的に螺旋運動をする。
回転体120の長手方向への移動を拘束しつつ、直動軸110を長手方向に移動させると、回転体120は回転運動をする。
回転体120は、回転体本体121と回転体ボール122とで構成されてもよい。
回転体ボール122は、回転体本体121に保持され、直動軸110の螺旋溝Gに案内される。
複数の回転体ボール122は、回転体本体121に保持され、循環移動して直動軸110の螺旋溝Gに案内される。
The rotating body 120 is a mechanism guided along the spiral groove G.
For example, the rotating body 120 performs a spiral motion relative to the linear motion shaft 110 following the spiral groove G provided on the outer peripheral surface of the linear motion shaft 110.
When the linear motion shaft 110 is moved in the longitudinal direction while restricting the movement of the rotator 120 in the longitudinal direction, the rotator 120 rotates.
The rotating body 120 may be composed of a rotating body main body 121 and a rotating body ball 122.
The rotating body ball 122 is held by the rotating body main body 121 and guided to the spiral groove G of the linear motion shaft 110.
The plurality of rotating body balls 122 are held by the rotating body main body 121, circulated and guided to the spiral groove G of the linear motion shaft 110.

フレーム130は、回転体120を回転自在に支持する構造体である。
フレーム130は、フレーム本体131と回転体軸受132とで構成される。
回転体軸受132は、フレーム本体131を基礎として回転体120を直動軸の長手方向の移動を拘束し、回転自在に支持する。
The frame 130 is a structure that rotatably supports the rotating body 120.
The frame 130 includes a frame main body 131 and a rotating body bearing 132.
The rotator bearing 132 supports the rotator 120 on the basis of the frame main body 131 so as to restrain the movement of the linear motion shaft in the longitudinal direction and to rotate freely.

直動体110と回転体120とが長手方向に相対変位するときに、直動軸110の直動変位に応じて回転体が回転変位する。
直動体110と回転体120とが長手方向に相対変位するときに、相対変位に対応して直動軸110の直動変位と回転体120の回転変位との比が変化する様になっていてもよい。
When the linear motion body 110 and the rotary body 120 are relatively displaced in the longitudinal direction, the rotary body is rotationally displaced according to the linear motion displacement of the linear motion shaft 110.
When the linear motion body 110 and the rotary body 120 are relatively displaced in the longitudinal direction, the ratio of the linear motion displacement of the linear motion shaft 110 and the rotational displacement of the rotational body 120 changes corresponding to the relative displacement. Also good.

粘性体140は、回転体120とフレーム130との隙間に充填される粘性流体である。
粘性体140は、後述する付加回転部材150とフレーム130との隙間に充填させれてもよい。
粘性体140が充填されたダンパーを、粘性ダンパーと呼称する。
The viscous body 140 is a viscous fluid that fills the gap between the rotating body 120 and the frame 130.
The viscous body 140 may be filled in a gap between the additional rotating member 150 and the frame 130 described later.
The damper filled with the viscous body 140 is referred to as a viscous damper.

付加回転部材150は、回転体120に同期して回転する部材である。
付加回転部材150は、回転体120に互いの回転軸を一致して固定されてもよい。
付加回転部材軸受133が、フレーム本体131を基礎として付加回転部材150を回転自在に支持してもよい。
粘性体140は、付加回転部材150とフレーム130との隙間に充填されてもよい。
The additional rotating member 150 is a member that rotates in synchronization with the rotating body 120.
The additional rotating member 150 may be fixed to the rotating body 120 so that their rotational axes coincide.
The additional rotating member bearing 133 may rotatably support the additional rotating member 150 based on the frame main body 131.
The viscous body 140 may be filled in a gap between the additional rotating member 150 and the frame 130.

外部付加回転部材160は、回転体120に同期して回転する部材である。
外部付加回転部材160は、回転体120に脱着可能に付加される。
外部付加回転部材160は、複数の部分で構成され、複数の部分を脱着することで、回転慣性能率を増減できる。
The external additional rotating member 160 is a member that rotates in synchronization with the rotating body 120.
The external additional rotating member 160 is detachably added to the rotating body 120.
The external additional rotating member 160 includes a plurality of portions, and the rotational inertia ratio can be increased or decreased by detaching the plurality of portions.

1対の連結部材200は、1対の連結箇所に直動軸110とフレーム130とを各々に連結する部材である。
図2は、トラニオン形式の連結部材210が、直動軸110を弾性体300を介して連結箇所に連結し、フレーム130を連結箇所に連結する様子を占めす。
但し、図2に示す連結部材200は、本願の「直動軸またはフレームのうちの一方の連結される連結箇所に特定力を越える力が作用すると特定相対変位を許す、」という技術的特徴を有しないものである。
本願に係る連結部材の説明を後述する。
The pair of connecting members 200 are members that connect the linear motion shaft 110 and the frame 130 to a pair of connecting portions, respectively.
FIG. 2 occupies a state where the trunnion-type connecting member 210 connects the linear motion shaft 110 to the connecting portion via the elastic body 300 and connects the frame 130 to the connecting portion.
However, the connecting member 200 shown in FIG. 2 has the technical feature of “a specific relative displacement is permitted when a force exceeding a specific force is applied to a connecting portion to which one of the linear motion shaft or the frame is connected”. It does not have.
A description of the connecting member according to the present application will be described later.

弾性体300は、直動軸の長手方向に弾性変形する部材である。
例えば、弾性体300は、直動軸の長手方向に弾性変形する弾性部材と弾性部材を間に挟んだ1対のフランジ構造とで構成される。
The elastic body 300 is a member that is elastically deformed in the longitudinal direction of the linear motion shaft.
For example, the elastic body 300 includes an elastic member that is elastically deformed in the longitudinal direction of the linear motion shaft and a pair of flange structures that sandwich the elastic member therebetween.

図3は、粘性マスダンパーと弾性体300とを直接に接続した同調粘性マスダンパーを構造物に固定した場合の、質点系モデルを示す。
ここで、mrは、直動軸110と回転体120または直動軸110と回転体120と付 加回転部材150とを組み合わされた構造による見かけの慣性質量である。
cは、直動軸110と粘性体140の構造による見かけの減衰係数である。
Kbは、弾性体300の長手方向に沿った変位に係る弾性係数である。
mは、構造体の同調粘性ダンパーを取り付けた箇所の見かけの質量である。
Kは、構造体の同調粘性ダンパーを取り付けた箇所の見かけの弾性係数である。
FIG. 3 shows a mass system model when a tuned viscous mass damper in which a viscous mass damper and an elastic body 300 are directly connected is fixed to a structure.
Here, mr is an apparent inertial mass due to a structure in which the linear motion shaft 110 and the rotary body 120 or the linear motion shaft 110, the rotary body 120, and the additional rotary member 150 are combined.
c is an apparent attenuation coefficient due to the structure of the linear motion shaft 110 and the viscous body 140.
Kb is an elastic coefficient related to the displacement along the longitudinal direction of the elastic body 300.
m is the apparent mass of the location where the tuned viscous damper of the structure is attached.
K is an apparent elastic coefficient at the location where the tuned viscous damper of the structure is attached.

本発明の実施形態にかかる1対の連結部材200は、1対の連結箇所に直動軸110とフレーム130とを各々に連結する部材である。
1対の連結部材のうちの少なくとも1つの連結部材200が、直動軸110またはフレーム130のうちの一方と直動軸110またはフレーム130のうちの一方の連結される連結箇所との間の特定の相対変位である特定相対変位を特定の力である特定力で拘束し、直動軸110またはフレーム130のうちの一方の連結される連結箇所に特定力を越える力が作用すると特定相対変位を許す。
例えば、連結箇所に直動軸110を連結する連結部材200は、直動軸110と直動軸110の連結される連結箇所との間の特定の相対変位である特定相対変位を特定の力である特定力で拘束し、直動軸110の連結される連結箇所に特定力を越える力が作用すると特定相対変位を許す。
例えば、連結箇所にフレーム130を連結する連結部材200は、フレーム130とフレーム130の連結される連結箇所との間の特定の相対変位である特定相対変位を特定の力である特定力で拘束し、フレームの連結される連結箇所に特定力を越える力が作用すると特定相対変位を許す。
The pair of connecting members 200 according to the embodiment of the present invention are members that connect the linear motion shaft 110 and the frame 130 to a pair of connecting portions, respectively.
The at least one connecting member 200 of the pair of connecting members is identified between one of the linear motion shaft 110 or the frame 130 and the connection location where one of the linear motion shaft 110 or the frame 130 is connected. When the force exceeding the specific force is applied to one of the connecting portions of the linear motion shaft 110 or the frame 130, the specific relative displacement that is the relative displacement of the linear motion shaft 110 or the frame 130 is restricted. forgive.
For example, the coupling member 200 that couples the linear motion shaft 110 to the coupling location is a specific relative displacement that is a specific relative displacement between the linear motion shaft 110 and the coupling location to which the linear motion shaft 110 is coupled with a specific force. When a force exceeding a specific force is applied to a connecting portion where the linear motion shaft 110 is connected, the specific relative displacement is allowed.
For example, the connecting member 200 that connects the frame 130 to the connecting portion restrains a specific relative displacement that is a specific relative displacement between the frame 130 and the connecting portion to which the frame 130 is connected with a specific force that is a specific force. When a force exceeding a specific force is applied to a connecting portion where the frames are connected, a specific relative displacement is allowed.

以下に、本発明の第一〜第五の実施形態に係る免制震機構の構造を、図を基に、個別に説明する。
特定相対変位が、直動軸110またはフレーム130のうちの一方と連結箇所との間の直動軸110の中心軸の回りの相対的な回転変位である。
例えば、特定相対変位が、直動軸110と直動軸110の連結する連結箇所との間の直動軸110の中心軸の回りの相対的な回転変位である。
例えば、特定相対変位が、フレーム130とフレーム130の連結する連結箇所との間の直動軸110の中心軸の回りの相対的な回転変位である。
特定力は、直動軸110の中心軸の回りのトルクによる力である。
Below, the structure of the seismic isolation mechanism which concerns on the 1st-5th embodiment of this invention is demonstrated individually based on a figure.
The specific relative displacement is a relative rotational displacement around the central axis of the linear motion shaft 110 between one of the linear motion shaft 110 or the frame 130 and the connecting portion.
For example, the specific relative displacement is a relative rotational displacement about the central axis of the linear motion shaft 110 between the linear motion shaft 110 and a connecting portion where the linear motion shaft 110 is connected.
For example, the specific relative displacement is a relative rotational displacement around the central axis of the linear motion shaft 110 between the frame 130 and the connecting portion where the frame 130 is connected.
The specific force is a force due to a torque around the central axis of the linear motion shaft 110.

本発明の第一、第三の実施形態に係る免制震機構の構造を、個別に、説明する。
図4は、本発明の第一、三の実施形態に係る免制震機構の部分図である。
The structure of the seismic isolation mechanism according to the first and third embodiments of the present invention will be described individually.
FIG. 4 is a partial view of the seismic isolation mechanism according to the first and third embodiments of the present invention.

本発明の第一の実施形態にかかる免制震機構は、ダンパー100と1対の連結部材200とで構成される。
直動軸110は、端部に雄ねじHを形成される。
1対の連結部材200のうちの少なくとも一つの連結部材200が、直動軸110の雄ねじHに嵌合する雌ねじIが形成される取付部材230で構成する。
取付部材230が構造体に連結箇所で固定される。
特定力が取付部材230と直動軸110との間の摩擦により生ずる直動軸110の中心軸の回りのトルクによる力である。
The seismic isolation mechanism according to the first embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
The linear motion shaft 110 is formed with a male screw H at the end.
At least one connecting member 200 of the pair of connecting members 200 is constituted by an attachment member 230 on which a female screw I that fits with the male screw H of the linear motion shaft 110 is formed.
The attachment member 230 is fixed to the structure at the connection location.
The specific force is a force generated by a torque around the central axis of the linear motion shaft 110 generated by friction between the mounting member 230 and the linear motion shaft 110.

図4は、本発明の実施形態に係る連結部材200が直動軸110の雄ねじHに固定される構造を図示する。
取付部材230は、取付部材本体231で構成される。
取付部材本体231は、フランジ部と胴部とで構成される。
フランジ部は、第一連結部材210又は第二連結部材220を介して、連結箇所に固定される。
FIG. 4 illustrates a structure in which the connecting member 200 according to the embodiment of the present invention is fixed to the male screw H of the linear motion shaft 110.
The attachment member 230 includes an attachment member main body 231.
The attachment member main body 231 includes a flange portion and a trunk portion.
The flange portion is fixed to the connection location via the first connection member 210 or the second connection member 220.

取付部材230の雌ねじIと直動軸110の雄ねじHとの摩擦により生ずる直線軸110の中心軸の回りのトルクによる力を、特定力と呼称する。
取付部材230と直動軸110との間の相対的な回転変位を、特定相対変位と呼称する。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラスとが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するトルクによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するトルクによる力がさらに大きくなる。
転慣性能率に対応するトルクが特定力を越えると、特定相対変位を許す。
その結果、連結箇所に過大な力が生ずるのを抑制できる。
A force generated by friction between the female screw I of the mounting member 230 and the male screw H of the linear motion shaft 110 due to the torque around the central axis of the linear shaft 110 is referred to as a specific force.
The relative rotational displacement between the attachment member 230 and the linear motion shaft 110 is referred to as a specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotator 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force due to the torque acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the torque acting on the connection points further increases.
When the torque corresponding to the rolling inertia ratio exceeds a specific force, a specific relative displacement is allowed.
As a result, it is possible to suppress an excessive force from being generated at the connection location.

本発明の第三の実施形態にかかる免制震機構は、ダンパー100と1対の連結部材200とで構成される。
1対の連結部材200のうちの少なくとも一つの連結部材200が、雄ねじHを形成された軸部材(図示せず)と軸部材の雄ねじHに嵌合する雌ねじIが形成される取付部材230とで構成される。
軸部材(図示せず)または取付部材230のうちに一方が直動軸110またはフレーム130のうちの一方に固定される。
軸部材(図示せず)または取付部材230のうちに他方が構造体に連結箇所で固定される。
特定力が取付部材230と軸部材との間の摩擦により生ずる直動軸110の中心軸の回りのトルクによる力である。
The seismic isolation mechanism according to the third embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
At least one connecting member 200 of the pair of connecting members 200 includes a shaft member (not shown) in which a male screw H is formed, and a mounting member 230 in which a female screw I that fits the male screw H of the shaft member is formed. Consists of.
One of the shaft member (not shown) or the attachment member 230 is fixed to one of the linear motion shaft 110 or the frame 130.
The other of the shaft member (not shown) or the attachment member 230 is fixed to the structure at the connection location.
The specific force is a force generated by a torque around the central axis of the linear motion shaft 110 generated by friction between the mounting member 230 and the shaft member.

取付部材230の雌ねじIと軸部材の雄ねじHとの摩擦により生ずる直線軸110の中心軸の回りのトルクによる力を、特定力と呼称する。
取付部材230と軸部材との間の相対的な回転変位を、特定相対変位と呼称する。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラスとが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するトルクによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するトルクによる力がさらに大きくなる。
回転慣性能率に対応するトルクが特定力を越えると、特定相対変位を許す。
その結果、連結箇所に過大な力が生ずるのを抑制できる。
The force generated by the friction between the female screw I of the mounting member 230 and the male screw H of the shaft member due to the torque around the central axis of the linear shaft 110 is referred to as a specific force.
The relative rotational displacement between the attachment member 230 and the shaft member is referred to as a specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotator 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force due to the torque acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the torque acting on the connection points further increases.
When the torque corresponding to the rotational inertia ratio exceeds a specific force, a specific relative displacement is allowed.
As a result, it is possible to suppress an excessive force from being generated at the connection location.

次に、本発明の第二、第四の実施形態に係る免制震機構の構造を、個別に、説明する。
図5は、本発明の第二、四の実施形態に係る免制震機構の部分図である。
Next, the structure of the seismic isolation mechanism according to the second and fourth embodiments of the present invention will be described individually.
FIG. 5 is a partial view of the seismic isolation mechanism according to the second and fourth embodiments of the present invention.

本発明の第二の実施形態にかかる免制震機構は、ダンパー100と1対の連結部材200とで構成される。
直動軸110は、端部に雄ねじHと平坦な外周面Jとを形成される。
例えば、直動軸110は、端部に雄ねじHと雄ねじHに隣り合う平坦な外周面Jとを形成される。
1対の連結部材200のうちの少なくとも一つの連結部材200は、直動軸110の雄ねじHに嵌合する雌ねじIと直動軸110の外周面Jに接触可能な接触面Kを形成される取付部材230と接触面Kを直動軸110の外周面Jに押付ける押付部材240とで構成する。
取付部材230が構造体に連結箇所で固定される。
特定力が、取付部材230と直動軸110との間の摩擦により生ずる直動軸110の中心軸の回りのトルクによる力である。
The seismic isolation mechanism according to the second embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
The linear motion shaft 110 is formed with a male screw H and a flat outer peripheral surface J at the end.
For example, the linear motion shaft 110 is formed with a male screw H and a flat outer peripheral surface J adjacent to the male screw H at the end.
At least one connecting member 200 of the pair of connecting members 200 is formed with a contact surface K that can come into contact with a female screw I fitted to a male screw H of the linear motion shaft 110 and an outer peripheral surface J of the linear motion shaft 110. The mounting member 230 and the pressing member 240 that presses the contact surface K against the outer peripheral surface J of the linear motion shaft 110 are configured.
The attachment member 230 is fixed to the structure at the connection location.
The specific force is a force due to torque around the central axis of the linear motion shaft 110 generated by friction between the mounting member 230 and the linear motion shaft 110.

図5は、本発明の実施形態に係る連結部材200が直動軸110の雄ねじHに固定される構造を図示する。
取付部材230は、取付部材本体231と摩擦部材232とで構成される。
取付部材本体231は、フランジ部と胴部とで構成される。
フランジ部は、第一連結部材210又は第二連結部材220を介して、連結箇所に固定される。
摩擦部材232は、取付部材本体231の貫通孔の内周面に設けられた窪みに嵌め込まれ、接触面Kを直動軸110の外周面Jに接触する様に取付部材本体231に保持される。
押付部材240は、摩擦部材232を直動軸110に押付けて、接触面Kを直動軸110の外周面Jに押付ける。
FIG. 5 illustrates a structure in which the connecting member 200 according to the embodiment of the present invention is fixed to the male screw H of the linear motion shaft 110.
The attachment member 230 includes an attachment member main body 231 and a friction member 232.
The attachment member main body 231 includes a flange portion and a trunk portion.
The flange portion is fixed to the connection location via the first connection member 210 or the second connection member 220.
The friction member 232 is fitted into a recess provided on the inner peripheral surface of the through hole of the mounting member main body 231, and is held by the mounting member main body 231 so that the contact surface K contacts the outer peripheral surface J of the linear motion shaft 110. .
The pressing member 240 presses the friction member 232 against the linear motion shaft 110 and presses the contact surface K against the outer peripheral surface J of the linear motion shaft 110.

取付部材230の雌ねじIと直動軸110の雄ねじHとの摩擦と取付部材230の接触面Kと直動軸110の外周面Jとの摩擦とにより生ずる直線軸110の中心軸の回りのトルクによる力が、特定力である。
取り付部材230と直動軸110との間の相対的な回転変位を、特定相対変位と呼称する。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラストが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するトルクによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するトルクによる力がさらに大きくなる。
回転慣性能率に対応するトルクが特定力を越えると、特定相対変位を許す。
その結果、連結箇所に過大な力が生ずるのを抑制できる。
Torque around the central axis of the linear shaft 110 caused by the friction between the internal thread I of the mounting member 230 and the external thread H of the linear motion shaft 110 and the friction between the contact surface K of the mounting member 230 and the outer peripheral surface J of the linear motion shaft 110 The force by is the specific force.
A relative rotational displacement between the mounting member 230 and the linear motion shaft 110 is referred to as a specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotating body 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force due to the torque acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the torque acting on the connection points further increases.
When the torque corresponding to the rotational inertia ratio exceeds a specific force, a specific relative displacement is allowed.
As a result, it is possible to suppress an excessive force from being generated at the connection location.

本発明の第四の実施形態にかかる免制震機構は、ダンパー100と1対の連結部材200とで構成される。
1対の連結部材200のうちの少なくとも一つの連結部材200は、雄ねじHと雄ねじHに隣り合う平坦な外周面Jとを形成される軸部材(図示せず)と軸部材の雄ねじHに嵌合する雌ねじIと軸部材の外周面Jに接触可能な接触面Kを形成される取付部材230と接触面Kを軸部材の外周面Jに押付ける押付部材240とで構成する。
軸部材(図示せず)または取付部材230のうちの一方が直動軸110またはフレーム130のうちの一方に固定される。
軸部材(図示せず)または取付部材230のうちの他方が構造体に連結箇所で固定される。
特定力が取付部材230と軸部材との間の摩擦により生ずる直動軸110の中心軸の回りのトルクによる力である。
例えば、軸部材(図示せず)が直動軸110またはフレーム130のうちの一方に固定され、取付部材230が構造体に連結箇所で固定される。
例えば、取付部材230が直動軸110またはフレーム130のうちの一方に固定され、軸部材(図示せず)が構造体に連結箇所で固定される。
The seismic isolation mechanism according to the fourth embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
At least one connecting member 200 of the pair of connecting members 200 is fitted into a shaft member (not shown) formed with a male screw H and a flat outer peripheral surface J adjacent to the male screw H, and a male screw H of the shaft member. A fitting member 230 that forms a contact surface K that can contact the outer peripheral surface J of the shaft member and a pressing member 240 that presses the contact surface K against the outer peripheral surface J of the shaft member.
One of a shaft member (not shown) or the attachment member 230 is fixed to one of the linear motion shaft 110 or the frame 130.
The other of the shaft member (not shown) or the attachment member 230 is fixed to the structure at the connection location.
The specific force is a force generated by a torque around the central axis of the linear motion shaft 110 generated by friction between the mounting member 230 and the shaft member.
For example, a shaft member (not shown) is fixed to one of the linear motion shaft 110 or the frame 130, and the attachment member 230 is fixed to the structure at a connection location.
For example, the attachment member 230 is fixed to one of the linear motion shaft 110 or the frame 130, and a shaft member (not shown) is fixed to the structure at a connection location.

取付部材230の雌ねじIと軸部材(図示せず)の雄ねじHとの摩擦と取り付部材230の接触面Kと軸部材の外周面Jとの摩擦とにより生ずる直線軸110の中心軸の回りのトルクによる力を、特定力と呼称する。
取り付部材230と軸部材との間の相対的な回転変位を、特定相対変位と呼称する。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラスとが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するトルクによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するトルクによる力がさらに大きくなる。
回転慣性能率に対応するトルクが特定力を越えると、特定相対変位を許す。
その結果、連結箇所に過大な力が生ずるのを抑制できる。
Around the central axis of the linear shaft 110 generated by the friction between the female thread I of the mounting member 230 and the male thread H of the shaft member (not shown) and the friction between the contact surface K of the mounting member 230 and the outer peripheral surface J of the shaft member. The force due to the torque is referred to as a specific force.
The relative rotational displacement between the mounting member 230 and the shaft member is referred to as a specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotator 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force due to the torque acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the torque acting on the connection points further increases.
When the torque corresponding to the rotational inertia ratio exceeds a specific force, a specific relative displacement is allowed.
As a result, it is possible to suppress an excessive force from being generated at the connection location.

次に、本発明の第五の実施形態に係る免制震機構の構造を、個別に、説明する。
図6は、本発明の第五の実施形態に係る免制震機構の部分図である。図7は、本発明の第五の実施形態に係る免制震機構のC−C断面図である。図8は、本発明の第五の実施形態に係る免制震機構のD−D断面図である。
Next, the structure of the seismic isolation mechanism according to the fifth embodiment of the present invention will be described individually.
FIG. 6 is a partial view of the seismic isolation mechanism according to the fifth embodiment of the present invention. FIG. 7 is a CC cross-sectional view of the seismic isolation mechanism according to the fifth embodiment of the present invention. FIG. 8 is a DD cross-sectional view of the seismic isolation mechanism according to the fifth embodiment of the present invention.

本発明の第五の実施形態に係る免制震機構は、ダンパー100と1対の連結部材200とで構成される。
1対の連結部材200のうちの少なくとも一つの連結部材200は、直動軸110の中心軸に一致する中心軸を持つ円板状の部材である円板部材250と円板部材250を円板状の両面の側から挟み込む挟持部材260とで構成される。
円板部材250または挟持部材260のうちの一方が、直動軸110またはフレーム130のうちの一方に固定される。
円板部材250または挟持部材260のうちの他方が、構造体に連結箇所で固定される。
特定力が、円板部材250と挟持部材260との間の摩擦により生ずる直動軸の中心軸の回りのトルクによる力である。
例えば、円板部材250が直動軸110またはフレーム130のうちの一方に固定され、挟持部材260が構造体に連結箇所で固定される。
例えば、挟持部材260が直動軸110またはフレーム130のうちの一方に固定され、円板部材250が構造体に連結箇所で固定される。
The seismic isolation mechanism according to the fifth embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
At least one of the pair of connecting members 200 includes a disk member 250 and a disk member 250 that are disk-shaped members having a central axis that coincides with the central axis of the linear motion shaft 110. And a sandwiching member 260 sandwiched from both sides of the shape.
One of the disc member 250 or the clamping member 260 is fixed to one of the linear motion shaft 110 or the frame 130.
The other of the disc member 250 or the pinching member 260 is fixed to the structure at the connection location.
The specific force is a force due to torque around the central axis of the linear motion shaft generated by friction between the disc member 250 and the clamping member 260.
For example, the disk member 250 is fixed to one of the linear motion shaft 110 or the frame 130, and the clamping member 260 is fixed to the structure at the connection location.
For example, the clamping member 260 is fixed to one of the linear motion shaft 110 and the frame 130, and the disk member 250 is fixed to the structure at the connection location.

図6は、円板部材250が直動軸110に固定され、1対の挟持部材260が第一連結部材210を介して構造体の連結箇所に固定される様子を示している。
円板部材250は、円板部材本体251と第一摩擦円板252と第二摩擦円板253とで構成される。
第一摩擦円板252と第二摩擦円板253とは摩擦材料でできた環状の部材である。
第一摩擦円板252が、円板部材本体251の一方の面に固定される。
第二摩擦円板253が、円板部材本体251の他方の面に固定される。
挟持部材260が、第一挟持部材261と第二挟持部材262と複数の締付ロッド263とで構成される。
例えば、締付ロッド263は、ボルトとナットとで構成される。
第一挟持部材261と第二挟持部材262とが円板部材250の両面を挟む。
複数の締付ロッド263が、第一挟持部材261と第二挟持部材262とを貫通する。
第一挟持部材261が第一摩擦円板252に当接して摩擦によるトルクを生じさせる。
第二挟持部材262が第二摩擦円板153に当接して摩擦によるトルクを生じさせる。
FIG. 6 shows a state in which the disc member 250 is fixed to the linear motion shaft 110 and the pair of clamping members 260 is fixed to the connecting portion of the structure via the first connecting member 210.
The disk member 250 includes a disk member main body 251, a first friction disk 252, and a second friction disk 253.
The first friction disk 252 and the second friction disk 253 are annular members made of a friction material.
The first friction disk 252 is fixed to one surface of the disk member main body 251.
The second friction disk 253 is fixed to the other surface of the disk member main body 251.
The clamping member 260 includes a first clamping member 261, a second clamping member 262, and a plurality of clamping rods 263.
For example, the tightening rod 263 includes a bolt and a nut.
The first clamping member 261 and the second clamping member 262 sandwich both surfaces of the disk member 250.
A plurality of clamping rods 263 penetrates the first clamping member 261 and the second clamping member 262.
The first clamping member 261 abuts on the first friction disk 252 to generate torque due to friction.
The second clamping member 262 comes into contact with the second friction disk 153 to generate torque due to friction.

円板部材250と挟持部材260との摩擦とにより生ずる直線軸110の中心軸の回りのトルクによる力が、特定力である。
円板部材250と挟持部材260との間の相対的な回転変位を、特定相対変位と呼称する。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラストが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するトルクによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するトルクによる力がさらに大きくなる。
回転慣性能率に対応するトルクが特定力を越えると、特定相対変位を許す。
その結果、連結箇所に過大な力が生ずるのを抑制できる。
The force generated by the friction between the disc member 250 and the clamping member 260 due to the torque around the central axis of the linear shaft 110 is the specific force.
The relative rotational displacement between the disc member 250 and the clamping member 260 is referred to as a specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotating body 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force due to the torque acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the torque acting on the connection points further increases.
When the torque corresponding to the rotational inertia ratio exceeds a specific force, a specific relative displacement is allowed.
As a result, it is possible to suppress an excessive force from being generated at the connection location.

以下に、本発明の第六〜七の実施形態に係る免制震機構の構造を、図を基に、個別に説明する。
特定相対変位が、直動軸110またはフレーム130のうちの一方と連結箇所との間の直動軸110の中心軸に沿った相対的な直線変位である。
例えば、特定相対変位が、直動軸110と連結箇所との間の直動軸110の中心軸に沿った相対的な直線変位である。
例えば、特定相対変位が、フレーム130と連結箇所との間の直動軸110の中心軸に沿った相対的な直線変位である。
特定力は、直動軸110の中心軸に沿った相対的な直線変位である。
Below, the structure of the seismic isolation mechanism which concerns on 6th-7th embodiment of this invention is demonstrated individually based on a figure.
The specific relative displacement is a relative linear displacement along the central axis of the linear motion shaft 110 between one of the linear motion shaft 110 or the frame 130 and the connecting portion.
For example, the specific relative displacement is a relative linear displacement along the central axis of the linear motion shaft 110 between the linear motion shaft 110 and the connection portion.
For example, the specific relative displacement is a relative linear displacement along the central axis of the linear motion shaft 110 between the frame 130 and the connection portion.
The specific force is a relative linear displacement along the central axis of the linear motion shaft 110.

本発明の第六の実施形態に係る免制震機構の構造を、個別に、説明する。
図9は、本発明の第六の実施形態に係る免制震機構の全体図である。図10は、本発明の第六の実施形態に係る免制震機構の部分図である。図11は、本発明の第六の実施形態に係る免制震機構の特性図である。
The structure of the seismic isolation mechanism according to the sixth embodiment of the present invention will be described individually.
FIG. 9 is an overall view of the seismic isolation mechanism according to the sixth embodiment of the present invention. FIG. 10 is a partial view of the seismic isolation mechanism according to the sixth embodiment of the present invention. FIG. 11 is a characteristic diagram of the seismic isolation mechanism according to the sixth embodiment of the present invention.

本発明の第六の実施形態に係る免制震機構は、ダンパー100と1対の連結部材200とで構成される。
1対の連結部材のうちの少なくとも一つの連結部材は、支持部材270と緊張部材280とで構成される。
支持部材270は、固定端と自由端とをもつ長尺の部材であり、固定端の端面を構造体の連結箇所に設けられた取付面に離間可能に接触させ、取付面と平行な方向への移動を拘束される。
緊張部材280は、支持部材を所定の弾性力で自由端から固定端へ向いた方向に引っ張る。
支持部材270が、自由端の側を直動軸110またはフレーム130のうちの一方に固定される。
特定力が自由端が取付面に対して相対変位したときに緊張部材280の弾性力により支持部材270と直動軸110またはフレーム130のうちの一方との固定部に生ずる直動軸110の中心軸に沿った力である。
The seismic isolation mechanism according to the sixth embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
At least one connecting member of the pair of connecting members includes a support member 270 and a tension member 280.
The support member 270 is a long member having a fixed end and a free end. The end surface of the fixed end is brought into contact with a mounting surface provided at a connection portion of the structure so as to be separated from each other, and in a direction parallel to the mounting surface. Is restricted from moving.
The tension member 280 pulls the support member in a direction from the free end to the fixed end with a predetermined elastic force.
The support member 270 is fixed to one of the linear motion shaft 110 and the frame 130 on the free end side.
The center of the linear motion shaft 110 generated at the fixed portion between the support member 270 and the linear motion shaft 110 or the frame 130 by the elastic force of the tension member 280 when the specific end is displaced relative to the mounting surface. Force along the axis.

図9、10は、直動軸110の中心軸を水平にしたダンパー100を構造体の上層と下層との間に配し、軸心を垂直にした支持部材270の固定端の支持面Mを構造体10の上層に設けられた取付用構造体15の取付面Lに離間可能に接触させ、支持部材270の自由端の側にフレーム130が第二連結部材220を介して固定され、直動軸110が第一連結部材210を介して下層に固定される様子を示す。   9 and 10, the damper 100 with the central axis of the linear motion shaft 110 placed horizontally is disposed between the upper layer and the lower layer of the structure, and the support surface M at the fixed end of the support member 270 with the axis center vertical. The frame 130 is fixed to the free end side of the support member 270 via the second connecting member 220 so as to be detachably contacted with the mounting surface L of the mounting structure 15 provided in the upper layer of the structure 10. A mode that the axis | shaft 110 is fixed to a lower layer through the 1st connection member 210 is shown.

支持部材270は、支持部材本体271と滑り拘束部材272とで構成される。
支持部材本体271は、固定端と自由端とを持つ構造体である。
例えば、支持部材本体271は、H型鋼材でできている。
H型鋼材の固定端の端面は、フランジ状の支持面Mが形成される。
例えば、支持面Mにはダボ用穴が設けられる。
滑り拘束部材272は、支持面Mが取付面Lに対して平行に移動するのを阻止する部材である。
例えば、滑り拘束部材272は、ダボ用穴に嵌まりあうダボである。
The support member 270 includes a support member main body 271 and a slip restraining member 272.
The support member main body 271 is a structure having a fixed end and a free end.
For example, the support member main body 271 is made of an H-shaped steel material.
A flange-shaped support surface M is formed on the end surface of the fixed end of the H-shaped steel material.
For example, the support surface M is provided with a dowel hole.
The slip restraining member 272 is a member that prevents the support surface M from moving parallel to the mounting surface L.
For example, the slip restraining member 272 is a dowel that fits into a dowel hole.

緊張部材280は、支持部材を所定の弾性力で自由端から固定端へ向いた方向に引っ張る部材である。
例えば、緊張部材280は、緊張ロッド281と弾性力調整部材282とで構成される。
緊張ロッド281は、両端にナットをねじ込まれた長尺の鋼材である。
緊張ロッド281は、一端を構造体の取り付け構造部材に固定され他端を支持部材270に固定され、予め張力を与えられる。
弾性力調整部材282は、緊張部材280の弾性力を調整する部材である。
例えば、弾性力調整部材282は、さらばね、圧縮ばね、等である。
緊張ロッド281の長さと弾性力調整部材282とにより、弾性力の大きさを調整できる。
The tension member 280 is a member that pulls the support member with a predetermined elastic force in a direction from the free end to the fixed end.
For example, the tension member 280 includes a tension rod 281 and an elastic force adjustment member 282.
The tension rod 281 is a long steel material having nuts screwed into both ends.
One end of the tension rod 281 is fixed to the attachment structure member of the structure, and the other end is fixed to the support member 270, and tension is applied in advance.
The elastic force adjusting member 282 is a member that adjusts the elastic force of the tension member 280.
For example, the elastic force adjusting member 282 is a spring spring, a compression spring, or the like.
The magnitude of the elastic force can be adjusted by the length of the tension rod 281 and the elastic force adjusting member 282.

支持部材270の自由端を取付面Lに対して軸心に交差する向きに相対変位させたときに、緊張部材280の弾性力により支持部材270とフレーム130との固定部に生ずる直動軸110の中心軸に沿った力が、特定力である。
取付部材230と直動軸110との間の相対的な直線変位が、特定相対変位である。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラスとが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するスラストによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するスラストによる力がさらに大きくなる。
スラストによる力が特定力を越えると、特定相対変位を許す。
その結果、連結箇所に過大な力が生ずるのを抑制できる。
When the free end of the support member 270 is relatively displaced with respect to the mounting surface L in the direction intersecting the axis, the linear motion shaft 110 generated at the fixing portion between the support member 270 and the frame 130 by the elastic force of the tension member 280. The force along the central axis is the specific force.
The relative linear displacement between the attachment member 230 and the linear motion shaft 110 is a specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotator 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force by the thrust acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the thrust acting on the connection points further increases.
If the thrust force exceeds a specific force, a specific relative displacement is allowed.
As a result, it is possible to suppress an excessive force from being generated at the connection location.

図11は、特定力と相対直線変位との関係を示す。
図11において、原点からP1までの実線は、支持部材270と緊張部材280との弾性変形により水平方向のスラストによる力を示す。P1からP2までの実線は、支持部材270の支持面Mと取付用構造体の取付面Lとの一部が離間した状態での水平方向のスラストによる力を示す。P2から外部への実線は、緊張部材280が降伏した状態での水平方向のスラストによる力を示す。
FIG. 11 shows the relationship between the specific force and the relative linear displacement.
In FIG. 11, the solid line from the origin to P <b> 1 indicates the force due to the thrust in the horizontal direction due to the elastic deformation of the support member 270 and the tension member 280. The solid lines from P1 to P2 indicate the force due to the thrust in the horizontal direction in a state where a part of the support surface M of the support member 270 and the mounting surface L of the mounting structure are separated from each other. The solid line from P2 to the outside indicates the force due to the thrust in the horizontal direction when the tension member 280 is yielded.

本発明の第七の実施形態に係る免制震機構の構造を、個別に、説明する。
図12は、本発明の第七の実施形態に係る免制震機構の分解斜視図である。
The structure of the seismic isolation mechanism according to the seventh embodiment of the present invention will be described individually.
FIG. 12 is an exploded perspective view of the seismic isolation mechanism according to the seventh embodiment of the present invention.

本発明の第七の実施形態に係る免制震機構は、ダンパー100と1対の連結部材200とで構成される。
1対の連結部材200のうちの少なくとも一つの連結部材200は、第一板部材291と第二板部材292と押付部材294とで構成される。
第一板部材291は、直動軸110の中心軸に平行な面である第一面を形成される部材である。
第二板部材292は、直動軸110の中心軸に平行な面である第二面を形成される部材である。
押付部材294は、第一連結部材291の第一面と第二連結部材292の第二面とを所定の力で押付け合わせる部材である。
第一板部材291又は第二板部材292のうちの一方が、構造体に連結箇所で固定される。
第一板部材291又は第二板部材292のうちの他方が、直動軸110またはフレーム130のうちの一方に固定される。
特定力が、第一面と第二面との間の摩擦により生ずる直動軸の中心軸に沿った力である。
The seismic isolation mechanism according to the seventh embodiment of the present invention includes a damper 100 and a pair of connecting members 200.
At least one of the pair of connecting members 200 includes a first plate member 291, a second plate member 292, and a pressing member 294.
The first plate member 291 is a member that forms a first surface that is a surface parallel to the central axis of the linear motion shaft 110.
The second plate member 292 is a member that forms a second surface that is a surface parallel to the central axis of the linear motion shaft 110.
The pressing member 294 is a member that presses the first surface of the first connecting member 291 and the second surface of the second connecting member 292 with a predetermined force.
One of the first plate member 291 or the second plate member 292 is fixed to the structure at the connection location.
The other of the first plate member 291 or the second plate member 292 is fixed to one of the linear motion shaft 110 or the frame 130.
The specific force is a force along the central axis of the linear motion axis generated by friction between the first surface and the second surface.

図12は、第一板部材291がフランジとフランジのフランジ面に直角に交差して固定された1枚の板部材とで構成されて板部材の面が第一面を形成し、第二板部材292がフランジとフランジのフランジ面に直角に交差して固定された2枚の板部材とで構成され板部材の面が第二面を形成し、押付部材294が第一面と第二面とを摩擦板材293を介して押付けている様子を示している。
第二板部材929の2枚の板部材には、直動軸110の中心軸に沿って延びる長穴が設けられる。
押付部材294は、ボルトとナットとで構成される。
ボルトが第二板部材292の長穴を貫通する。
第一面と第二面との間に摩擦が生じる。
In FIG. 12, the first plate member 291 is composed of a flange and a single plate member fixed perpendicularly to the flange surface of the flange, and the surface of the plate member forms the first surface. The member 292 is composed of a flange and two plate members fixed at right angles to the flange surface of the flange, the surface of the plate member forms a second surface, and the pressing member 294 is the first surface and the second surface Are pressed through the friction plate 293.
The two plate members of the second plate member 929 are provided with elongated holes extending along the central axis of the linear motion shaft 110.
The pressing member 294 includes a bolt and a nut.
The bolt penetrates the long hole of the second plate member 292.
Friction occurs between the first surface and the second surface.

第一面と第二面との間の摩擦により生ずる直動軸110の中心軸に沿った力が、特定力である。。
直動軸110またはフレーム130のうちの一方と連結箇所との間の直動軸の中心軸に沿った相対的な直線変位が、特定相対変位である。
特定力が、特定相対変位を拘束する。
1対の連結箇所が相対的に直線変位すると、直動軸110と回転体120が相対的に直線変位する。直動軸110が直線変位すると、回転体120が回転する。
回転体120と付加回転部材150と外部付加回転部材160との回転慣性能率に対応するトルクとスラスとが、直動軸110とフレーム130とを介して連結箇所に作用する。
1対の連結箇所の相対直線変位の変位速度が小さいとき、連結箇所に作用するスラストによる力が特定力より小さい。
1対の連結箇所の相対直線変位の変位速度が大きくなると、連結箇所に作用するスラストによる力がさらに大きくなる。
スラストによる力が特定力を越えると、特定相対変位を許す。
この様にすると、連結箇所に過大な力が生ずるのを抑制できる。
The force along the central axis of the linear motion shaft 110 generated by the friction between the first surface and the second surface is the specific force. .
The relative linear displacement along the central axis of the linear motion shaft between one of the linear motion shaft 110 or the frame 130 and the connecting portion is the specific relative displacement.
A specific force constrains a specific relative displacement.
When the pair of connecting portions are relatively linearly displaced, the linear motion shaft 110 and the rotating body 120 are relatively linearly displaced. When the linear motion shaft 110 is linearly displaced, the rotating body 120 rotates.
Torque and thrust corresponding to the rotational inertia ratio of the rotator 120, the additional rotating member 150, and the external additional rotating member 160 act on the connection location via the linear motion shaft 110 and the frame 130.
When the displacement speed of the relative linear displacement of the pair of connection points is small, the force by the thrust acting on the connection points is smaller than the specific force.
As the displacement speed of the relative linear displacement of the pair of connection points increases, the force due to the thrust acting on the connection points further increases.
If the thrust force exceeds a specific force, a specific relative displacement is allowed.
If it does in this way, it can control that excessive force arises in a connecting part.

本発明の第一〜第七の実施形態にかかる免制震機構の構造体10への取り付け構造を、図を基に、説明する。
図13は、本発明の第一〜第七の実施形態に係るダンパーの応用を示す概念図その1である。
The attachment structure to the structure 10 of the seismic isolation mechanism concerning the 1st-7th embodiment of this invention is demonstrated based on a figure.
FIG. 13 is a first conceptual diagram showing an application of the damper according to the first to seventh embodiments of the present invention.

図13は、ダンパー100を構造体10の層間、構造体10と基礎との間、または構造体と構造体との間に設ける形式を示している。
図13(A)は、ダンパー100を構造体10の層間に配し、構造体10が上層に剛性の大きな取付用構造体15を設けられ、直動軸110の長手方向を水平方向に沿わせ、第一連結部材210が直動軸110の両端を構造体10の下層に各々に連結し、第二連結部材220がフレーム130を取付用構造体15に連結する様子を示している。
図13(B)は、ダンパー100を構造体10の層間に配し、構造体10が上層に弾性を持つ取付用構造体15を設けて、直動軸110の長手方向を水平方向に沿わせて、第一連結部材210が直動軸110を取付用構造体15に連結し、第二連結部材220がフレーム130を構造体10の下層に連結する様子を示している。
図13(C)は、ダンパー100を構造体10の層間に配し、構造体10が上層に剛性の大きな取付用構造体15を設けて、直動軸110の長手方向を水平方向に沿わせ、第一連結部材210が直動軸110を取付用構造体15に連結し、第二連結部材220がフレーム130を構造体10の下層に連結する様子を示している。
図13(D)は、ダンパー100を構造体10の層間に配し、直動軸110の長手方向を構造体10の層間の対角方向に沿わせ、第一連結部材210が直動軸110を構造物の上層に連結し、第二連結部材がフレーム130を構造体10の下層に連結する様子を示している。
図13(E)は、ダンパー100を構造体10の層間に配し、直動軸110の長手方向を垂直方向に沿わせ、第一連結部材210が直動軸110を構造物の上層に連結し、第二連結部材がフレーム130を構造体10の下層に連結する様子を示している。
図13(F)は、ダンパー100を構造体10と基礎との間に配し、直動軸110の長手方向を水平方向に沿わせ、第一連結部材210が直動軸110を構造物に連結し、第二連結部材がフレーム130を基礎に連結する様子を示している。
図13(G)は、ダンパー100を1対の構造体10の間に配し、直動軸110の長手方向を水平方向に沿わせ、第一連結部材210が直動軸110を一方の構造物に連結し、第二連結部材がフレーム130を他方の構造体に連結する様子を示している。
FIG. 13 shows a form in which the damper 100 is provided between the structures 10, between the structure 10 and the foundation, or between the structure and the structure.
In FIG. 13A, the damper 100 is arranged between the layers of the structure body 10, the structure body 10 is provided with a rigid mounting structure 15 on the upper layer, and the longitudinal direction of the linear motion shaft 110 is set along the horizontal direction. The first connecting member 210 connects both ends of the linear motion shaft 110 to the lower layer of the structure 10, and the second connecting member 220 connects the frame 130 to the mounting structure 15.
In FIG. 13B, the damper 100 is disposed between the layers of the structure 10, the structure 10 is provided with an attachment structure 15 having elasticity in the upper layer, and the longitudinal direction of the linear motion shaft 110 is set along the horizontal direction. The first connecting member 210 connects the linear motion shaft 110 to the mounting structure 15, and the second connecting member 220 connects the frame 130 to the lower layer of the structure 10.
In FIG. 13C, the damper 100 is disposed between the layers of the structure body 10, the structure body 10 is provided with a rigid mounting structure 15 on the upper layer, and the longitudinal direction of the linear motion shaft 110 is set along the horizontal direction. The first connecting member 210 connects the linear motion shaft 110 to the mounting structure 15, and the second connecting member 220 connects the frame 130 to the lower layer of the structure 10.
In FIG. 13D, the damper 100 is arranged between the layers of the structure 10, the longitudinal direction of the linear motion shaft 110 is along the diagonal direction between the layers of the structural body 10, and the first connecting member 210 is the linear motion shaft 110. Are connected to the upper layer of the structure, and the second connecting member connects the frame 130 to the lower layer of the structure 10.
In FIG. 13E, the damper 100 is disposed between the layers of the structure 10, the longitudinal direction of the linear motion shaft 110 is set in the vertical direction, and the first connecting member 210 connects the linear motion shaft 110 to the upper layer of the structure. The second connecting member connects the frame 130 to the lower layer of the structure 10.
In FIG. 13F, the damper 100 is arranged between the structure 10 and the foundation, the longitudinal direction of the linear motion shaft 110 is set along the horizontal direction, and the first connecting member 210 makes the linear motion shaft 110 a structure. It shows a state in which the second connecting member is connected based on the frame 130.
In FIG. 13G, the damper 100 is arranged between the pair of structures 10, the longitudinal direction of the linear motion shaft 110 is set along the horizontal direction, and the first connecting member 210 has the linear motion shaft 110 in one structure. The second connecting member connects the frame 130 to the other structure.

本発明の実施形態に係る免制震機構は、その構成により、以下の効果を有する。
直動軸110と回転体120とフレーム130とを有するダンパー100の直動軸110とフレーム130とを1対の連結箇所200に連結し、連結部材200がダンパー100と連結箇所との間の特定の相対変位を特定の力で拘束し、特定の力を越える力が作用すると特定の相対変位を許す様にしたので、ダンパー100が構造体の揺れを押さえることをでき、特定の力を越える力が連結箇所に作用すると、特定相対変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、ダンパー100の直動軸110とフレーム130とを1対の連結箇所に連結し、連結部材200がダンパー100と連結箇所との間の直動軸110の中心軸の回りの相対的な回転変位を特定の力で拘束し、特定の力を越える力が作用するとその回転変位を許す様にしたので、ダンパー100が構造体の揺れを押さえることをでき、特定の力を越える力が連結箇所に作用すると、ダンパーと連結箇所との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、直動軸110の雄ねじと取付部材230の雌ねじとが嵌合し、取付部材230と直動軸110との間の摩擦により生ずるトルクによる力がダンパー100と連結箇所との間の相対的な回転変位を拘束する様にしたので、取付部材230と直動軸110との間の摩擦により生ずるトルクによる力を越える力が連結箇所に作用すると、ダンパー100の直動軸110と連結箇所に固定される取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、直動軸110の雄ねじと取付部材230の雌ねじとが嵌合し、押付部材240が取付部材230を直動軸110に押付け、取付部材230と直動軸110との間の摩擦により生ずるトルクによる力がダンパー100と連結箇所との間の相対的な回転変位を拘束する様にしたので、取付部材230と直動軸110との間の摩擦により生ずるトルクによる力を越える力が連結箇所に作用すると、ダンパー100の直動軸110と連結箇所に固定される取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、フレーム130に固定される軸部材の雄ねじHと構造体に固定される取付部材230の雌ねじIとが嵌合し、取付部材230と軸部材との間の摩擦により生ずるトルクによる力がダンパー100と連結箇所との間の相対的な回転変位を拘束する様にしたので、取付部材と軸部材との間の摩擦により生ずるトルクによる力を越える力が連結箇所に作用すると、ダンパー100と連結箇所に固定される取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、フレーム130に固定される軸部材の雄ねじHと構造体に固定される取付部材の雌ねじとが嵌合し、押付部材240が取付部材230を軸部材に押付け、取付部材230と軸部材との間の摩擦により生ずるトルクによる力がダンパー100と連結箇所との間の相対的な回転変位を拘束する様にしたので、取付部材230と軸部材との間の摩擦により生ずるトルクによる力を越える力が連結箇所に作用すると、ダンパー100と連結箇所に固定される取付部材との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、1対の挟持部材260が円板部材250を両側から挟み、一方を直動軸110またはフレーム130に固定し、他方を構造体に固定し、円板部材250と挟持部材260との間の摩擦により生ずるトルクによる力でダンパー100と構造体との間の想定的な回転変位を拘束する様にしたので、円板部材250と挟持部材260との間の摩擦により生ずるトルクによる力を越える力が連結箇所に作用すると、ダンパー100とダンパー100の連結する連結箇所との間の相対的な回転変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、ダンパー100の直動軸110とフレーム130とを1対の連結箇所に連結し、連結部材200がダンパー100と連結箇所との間の直動軸110の中心軸に沿った相対的な直線変位を特定の力で拘束し、特定の力を越える力が作用するとその直線変位を許す様にしたので、ダンパー100が構造体の揺れを押さえることをでき、特定の力を越える力が連結箇所に作用すると、ダンパー100と連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、長尺の支持部材270の固定端を構造体の連結箇所に設けられた取付面Lに離間可能に接触させ、自由端の側にダンパー100を固定し、緊張部材280の弾性力で支持部材を固定端の側へ引っ張り、緊張部材280の弾性力により支持部材270とダンパー100との固定部に生ずる直動軸110の中心軸に沿った力が特定相対変位を拘束する様にしたので、ダンパー100が構造体の揺れを押さえることをでき、特定の力を越える力が連結箇所に作用すると、ダンパー100と連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
また、押付部材294が構造体に固定される第一板部材291の第一面とダンパーに固定される第二板部材292の第二面とを所定の力で押付けあい、第一面と第二面との間の摩擦により生ずる力がダンパー100と連結箇所との間の相対的な回転変位を拘束する様にしたので、ダンパー100が構造体の揺れを押さえることをでき、特定の力を越える力が連結箇所に作用すると、ダンパー100と連結箇所との間の相対的な直線変位を許して、連結箇所に過大な力が生ずるのを抑制できる。
The seismic isolation mechanism according to the embodiment of the present invention has the following effects due to its configuration.
The linear motion shaft 110 and the frame 130 of the damper 100 having the linear motion shaft 110, the rotating body 120, and the frame 130 are connected to a pair of connection points 200, and the connection member 200 is specified between the damper 100 and the connection points. The relative displacement of the structure is constrained by a specific force, and when a force exceeding a specific force is applied, the specific relative displacement is allowed. Therefore, the damper 100 can suppress the shaking of the structure, and the force exceeds the specific force. When this acts on the connection location, it is possible to allow a specific relative displacement and suppress an excessive force from being generated at the connection location.
Further, the linear motion shaft 110 of the damper 100 and the frame 130 are connected to a pair of connection locations, and the connection member 200 is relatively rotated about the central axis of the linear motion shaft 110 between the damper 100 and the connection locations. Since the displacement is restrained by a specific force and the rotation displacement is allowed when a force exceeding a specific force is applied, the damper 100 can suppress the shaking of the structure, and the force exceeding the specific force If it acts on, the relative rotational displacement between a damper and a connection location is permitted, and it can suppress that an excessive force arises in a connection location.
Further, the male screw of the linear motion shaft 110 and the female screw of the mounting member 230 are fitted, and the force due to the torque generated by the friction between the mounting member 230 and the linear motion shaft 110 causes the relative force between the damper 100 and the connecting portion. Therefore, if a force exceeding the force due to the torque generated by the friction between the mounting member 230 and the linear movement shaft 110 is applied to the connecting portion, the linear movement shaft 110 and the connecting portion of the damper 100 are applied to the connecting portion. It is possible to allow relative rotational displacement between the mounting member to be fixed and to prevent an excessive force from being generated at the connection point.
Further, the male screw of the linear motion shaft 110 and the female screw of the mounting member 230 are fitted, and the pressing member 240 presses the mounting member 230 against the linear motion shaft 110, and is generated by friction between the mounting member 230 and the linear motion shaft 110. Since the force due to the torque restrains the relative rotational displacement between the damper 100 and the connecting portion, the force exceeding the force due to the torque generated by the friction between the mounting member 230 and the linear motion shaft 110 is connected to the connecting portion. If it acts on, the relative rotational displacement between the linear_motion | direct_drive shaft 110 of the damper 100 and the attachment member fixed to a connection location is permitted, and it can suppress that an excessive force arises in a connection location.
Further, the male screw H of the shaft member fixed to the frame 130 and the female screw I of the mounting member 230 fixed to the structure are fitted, and the force due to the torque generated by the friction between the mounting member 230 and the shaft member is a damper. Since the relative rotational displacement between 100 and the connecting portion is constrained, if a force exceeding the force generated by the friction between the mounting member and the shaft member is applied to the connecting portion, the damper 100 is connected to the connecting portion. It is possible to allow relative rotational displacement between the mounting member fixed to the location and suppress an excessive force from being generated at the connection location.
Further, the male screw H of the shaft member fixed to the frame 130 and the female screw of the mounting member fixed to the structure are fitted, and the pressing member 240 presses the mounting member 230 against the shaft member. Since the force due to the torque generated by the friction between the damper 100 and the connecting portion restrains the relative rotational displacement, the force due to the torque generated by the friction between the mounting member 230 and the shaft member is exceeded. When the force acts on the connection location, relative rotational displacement between the damper 100 and the mounting member fixed to the connection location is allowed, and an excessive force can be prevented from being generated at the connection location.
Further, a pair of clamping members 260 sandwich the disc member 250 from both sides, one is fixed to the linear motion shaft 110 or the frame 130, and the other is fixed to the structure, and between the disc member 250 and the clamping member 260. Since the assumed rotational displacement between the damper 100 and the structure is constrained by the force caused by the torque generated by the friction, the force caused by the torque generated by the friction between the disc member 250 and the clamping member 260 is exceeded. When the force acts on the connecting portion, it is possible to allow relative rotational displacement between the damper 100 and the connecting portion to which the damper 100 is connected, thereby suppressing an excessive force from being generated at the connecting portion.
Further, the linear motion shaft 110 of the damper 100 and the frame 130 are connected to a pair of connection locations, and the connection member 200 is a relative straight line along the central axis of the linear motion shaft 110 between the damper 100 and the connection locations. Since the displacement is constrained by a specific force, and the force exceeding the specific force is applied, the linear displacement is allowed, so the damper 100 can suppress the shaking of the structure, and the force exceeding the specific force If it acts on, the relative linear displacement between the damper 100 and a connection location is permitted, and it can suppress that an excessive force arises in a connection location.
Further, the fixed end of the long support member 270 is brought into contact with the mounting surface L provided at the connection portion of the structure so as to be separable, the damper 100 is fixed to the free end side, and is supported by the elastic force of the tension member 280. Since the member is pulled to the fixed end side, the force along the central axis of the linear motion shaft 110 generated at the fixing portion between the support member 270 and the damper 100 by the elastic force of the tension member 280 restrains the specific relative displacement. When the damper 100 can suppress the shaking of the structure and a force exceeding a specific force is applied to the connecting portion, the relative displacement of the damper 100 and the connecting portion is allowed, and the connecting portion is excessive. The generation of force can be suppressed.
Further, the first surface of the first plate member 291 to which the pressing member 294 is fixed to the structure and the second surface of the second plate member 292 to be fixed to the damper are pressed with a predetermined force, and the first surface and the first surface Since the force generated by the friction between the two surfaces restrains the relative rotational displacement between the damper 100 and the connecting portion, the damper 100 can suppress the shaking of the structure, and a specific force can be applied. When the exceeding force acts on the connecting portion, a relative linear displacement between the damper 100 and the connecting portion is allowed, and an excessive force can be prevented from being generated at the connecting portion.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
第一〜第七の実施形態にかかる免制震機構の説明において、ダンパーが、外部付加回転部材を備えることを前提に説明したが、これに限定されず、例えば、回転部材、粘性体、外部付加回転部材を備えていなくてもよい。
第六の実施形態にかかる免制震機構の説明において、緊張部材280は緊張ロッド281と弾性力調整部材282とで構成されるとして説明したが、これに限定されず、例えば、緊張部材280は緊張ロッド281のみであってもよい。
第五、第七の実施形態にかかる免制震機構の説明において、連結部材100が摩擦板を備えるとして説明したが、これに限定されず、摩擦板を備えていなくてもよい。
第六の実施形態にかかる免制震機構の説明において、支持部材270は支持部材本体271と滑り拘束部材272とを備え、滑り拘束部材272はダボであるとして説明したがこれに限定されず、例えば、支持部材270の固定端の端面に凸凹の形状があり、その凸凹の形状が取付用構造体16の取付面にくい込んでいても良い。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
In the description of the seismic isolation mechanism according to the first to seventh embodiments, the description has been made on the assumption that the damper includes the external additional rotation member. However, the present invention is not limited to this. For example, the rotation member, the viscous body, the external The additional rotating member may not be provided.
In the description of the seismic isolation mechanism according to the sixth embodiment, it has been described that the tension member 280 includes the tension rod 281 and the elastic force adjustment member 282. However, the tension member 280 is not limited thereto. Only the tension rod 281 may be used.
In the description of the seismic isolation mechanism according to the fifth and seventh embodiments, the connecting member 100 has been described as including a friction plate. However, the present invention is not limited to this, and the friction plate may not be included.
In the description of the seismic isolation mechanism according to the sixth embodiment, the support member 270 includes the support member main body 271 and the slip restraining member 272, and the slip restraining member 272 is described as a dowel. For example, the end surface of the fixed end of the support member 270 may have an uneven shape, and the uneven shape may be difficult to attach to the attachment surface of the attachment structure 16.

G 螺旋溝
H 雄ねじ
I 雌ねじ
J 外周面
K 接触面
L 取付面
M 支持面
10 構造体
15 取付用構造体
100 ダンパー
110 直動軸
120 回転体
121 回転体本体
122 回転体ボール
130 フレーム
131 フレーム本体
132 回転体軸受
133 付加回転部材軸受
140 粘性体
150 付加回転部材
160 外部付加回転部材
200 連結部材
210 第一連結部材
220 第二連結部材
230 取付部材
231 取付部材本体
232 摩擦部材
240 押付部材
250 円板部材
251 円板部材本体
252 第一摩擦円板
253 第二摩擦円板
260 挟持部材
261 第一挟持部材
262 第二挟持部材
263 締付ロッド
270 支持部材
271 支持部材本体
272 滑り拘束部材
280 緊張部材
281 緊張ロッド
282 弾性力調整部材
291 第一板部材
292 第二板部材
293 摩擦板材
294 押付部材
300 弾性体
G spiral groove H male thread I female thread J outer peripheral surface K contact surface L mounting surface M support surface 10 structure 15 mounting structure 100 damper 110 linear motion shaft 120 rotating body 121 rotating body main body 122 rotating body ball 130 frame 131 frame main body 132 Rotating body bearing 133 Additional rotating member bearing 140 Viscous body 150 Additional rotating member 160 External additional rotating member 200 Connecting member 210 First connecting member 220 Second connecting member 230 Mounting member 231 Mounting member main body 232 Friction member 240 Pressing member 250 Disk member 251 disc member body 252 first friction disc 253 second friction disc 260 clamping member 261 first clamping member 262 second clamping member 263 tightening rod 270 support member 271 support member body 272 slip restraining member 280 tension member 281 tension Rod 282 Elasticity Adjustment member 291 first plate member 292 second plate member 293 friction plate 294 pressing member 300 elastic member

特開平10−100945号Japanese Patent Laid-Open No. 10-100955 特開平10−184757号JP-A-10-184757 特開2000−017885号JP 2000-017885 A 特開2003−138784号JP 2003-138784 A 特開2004−239411号JP 2004-239411 A 特開2005−180492号JP 2005-180492 A 特開2005−207547号JP 2005-207547 A 特開平05−263891号JP 05-263891 特開2009−029246号JP 2009-029246 特開2005−096587号JP 2005-096587 A

Claims (10)

揺れに伴って相対変位する1対の連結箇所を持つ構造体に設けられる免制震機構であって、
外周面に長手方向に沿って所定のピッチを持つ螺旋状の溝である螺旋溝を設けられた軸体である直動軸と前記螺旋溝に倣って案内される回転体と前記回転体を回転自在に支持するフレームとを有するダンパーと、
1対の連結箇所に前記直動軸と前記フレームとを各々に連結する1対の連結部材と、
を備え、
1対の前記連結部材のうちの少なくとも1つの連結部材が前記直動軸または前記フレームのうちの一方と前記直動軸または前記フレームのうちの一方の連結される前記連結箇所との間の特定の相対変位である特定相対変位を特定の力である特定力で拘束し、
前記直動軸または前記フレームのうちの一方の連結される前記連結箇所に当該特定力を越える力が作用すると前記特定相対変位を許す、
ことを特徴とする免制震機構。
A seismic isolation mechanism provided in a structure having a pair of connection points that are displaced relative to each other,
A linear motion shaft that is a shaft body provided with a spiral groove having a predetermined pitch along the longitudinal direction on the outer peripheral surface, a rotating body guided along the spiral groove, and the rotating body are rotated. A damper having a freely supporting frame;
A pair of connecting members for connecting the linear motion shaft and the frame to a pair of connecting points, respectively;
With
Identification of at least one of the pair of connecting members between one of the linear motion shaft or the frame and the connection location to which one of the linear motion shaft or the frame is connected The specific relative displacement that is the relative displacement of is restricted with the specific force that is the specific force,
Allowing a specific relative displacement when a force exceeding the specific force is applied to the connecting portion to which one of the linear motion shaft or the frame is connected;
A seismic isolation mechanism characterized by that.
前記特定相対変位が前記直動軸または前記フレームのうちの一方と連結箇所との間の前記直動軸の中心軸の回りの相対的な回転変位である、
ことを特徴とする請求項1に記載の免制震機構。
The specific relative displacement is a relative rotational displacement around a central axis of the linear motion shaft between one of the linear motion shaft or the frame and a connection point;
The seismic isolation mechanism according to claim 1.
前記直動軸は端部に雄ねじを形成され、
1対の前記連結部材のうちの少なくとも一つの連結部材は前記直動軸の前記雄ねじに嵌合する雌ねじが形成される取付部材を有し、
前記取付部材が構造体に連結箇所で固定され、
前記特定力が前記取付部材と前記直動軸との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である、
ことを特徴とする請求項2に記載に免制震機構。
The linear motion shaft is formed with a male screw at the end,
At least one of the pair of connecting members has a mounting member on which a female screw that fits into the male screw of the linear motion shaft is formed,
The mounting member is fixed to the structure at a connection point;
The specific force is a force generated by a torque around the central axis of the linear motion shaft generated by friction between the mounting member and the linear motion shaft;
The seismic isolation mechanism according to claim 2.
前記直動軸は端部に雄ねじと平坦な外周面とを形成され、
1対の前記連結部材のうちの少なくとも一つの連結部材は前記直動軸の前記雄ねじに嵌合する雌ねじと前記直動軸の前記外周面に接触可能な接触面を形成される取付部材と該接触面を前記直動軸の前記外周面に押付ける押付部材とを有し、
前記取付部材が構造体に連結箇所で固定され、
前記特定力が前記取付部材と前記直動軸との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である、
ことを特徴とする請求項2に記載に免制震機構。
The linear motion shaft is formed with an external thread and a flat outer peripheral surface at an end,
At least one of the pair of connecting members includes a female screw fitted to the male screw of the linear motion shaft, a mounting member formed with a contact surface that can contact the outer peripheral surface of the linear motion shaft, A pressing member that presses the contact surface against the outer peripheral surface of the linear motion shaft;
The mounting member is fixed to the structure at a connection point;
The specific force is a force generated by a torque around the central axis of the linear motion shaft generated by friction between the mounting member and the linear motion shaft;
The seismic isolation mechanism according to claim 2.
1対の前記連結部材のうちの少なくとも一つの連結部材は雄ねじを形成された軸部材と該軸部材の前記雄ねじに嵌合する雌ねじが形成される取付部材とを有し、
前記軸部材又は前記取付部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定され、
前記軸部材又は前記取付部材のうちの他方が構造体に連結箇所で固定され、
前記特定力が前記取付部材と前記軸部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である、
ことを特徴とする請求項2に記載に免制震機構。
At least one of the pair of connecting members has a shaft member formed with a male screw and a mounting member formed with a female screw that fits the male screw of the shaft member;
One of the shaft member or the mounting member is fixed to one of the linear motion shaft or the frame,
The other of the shaft member or the mounting member is fixed to the structure at a connection location,
The specific force is a force generated by a torque around the central axis of the linear motion shaft caused by friction between the mounting member and the shaft member;
The seismic isolation mechanism according to claim 2.
1対の前記連結部材のうちの少なくとも一つの連結部材は雄ねじと平坦な外周面とを形成される軸部材と前記軸部材の前記雄ねじに嵌合する雌ねじと前記軸部材の前記外周面に接触可能な接触面を形成される取付部材と該接触面を前記軸部材の前記外周面に押付ける押付部材とを有し、
前記軸部材又は前記取付部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定され、
前記軸部材又は前記取付部材のうちの他方が構造体に連結箇所で固定され、
前記特定力が前記取付部材と前記軸部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である、
ことを特徴とする請求項2に記載に免制震機構。
At least one of the pair of connecting members is in contact with a shaft member formed with a male screw and a flat outer peripheral surface, a female screw fitted to the male screw of the shaft member, and the outer peripheral surface of the shaft member. A mounting member that forms a possible contact surface, and a pressing member that presses the contact surface against the outer peripheral surface of the shaft member;
One of the shaft member or the mounting member is fixed to one of the linear motion shaft or the frame,
The other of the shaft member or the mounting member is fixed to the structure at a connection location,
The specific force is a force generated by a torque around the central axis of the linear motion shaft caused by friction between the mounting member and the shaft member;
The seismic isolation mechanism according to claim 2.
1対の前記連結部材のうちの少なくとも一つの連結部材は前記直動軸の中心軸に一致する中心軸を持つ円板状の部材である円板部材と該円板部材を円板状の両面の側から挟み込む挟持部材とを有し、
前記円板部材または前記挟持部材のうちの一方が前記直動軸または前記フレームのうちの一方に固定され、
前記円板部材または前記挟持部材のうちの他方が構造体に連結箇所で固定され、
前記特定力が前記円板状部材と前記挟持部材との間の摩擦により生ずる前記直動軸の前記中心軸の回りのトルクによる力である、
ことを特徴とする請求項2に記載の免制震機構。
At least one of the pair of connecting members is a disk member that is a disk-shaped member having a central axis that coincides with the central axis of the linear motion shaft, and the disk member is disposed on both disk-shaped surfaces. A sandwiching member sandwiched from the side of the
One of the disk member or the clamping member is fixed to one of the linear motion shaft or the frame,
The other of the disk member or the clamping member is fixed to the structure at a connection location,
The specific force is a force generated by a torque around the central axis of the linear motion shaft generated by friction between the disk-shaped member and the clamping member;
The seismic isolation mechanism according to claim 2.
前記特定相対変位が前記直動軸または前記フレームのうちの一方と前記連結箇所との間の前記直動軸の中心軸に沿った相対的な直線変位である、
ことを特徴とする請求項1に記載の免制震機構。
The specific relative displacement is a relative linear displacement along a central axis of the linear motion shaft between one of the linear motion shaft or the frame and the connecting portion.
The seismic isolation mechanism according to claim 1.
1対の前記連結部材のうちの少なくとも一つの連結部材は固定端と自由端とをもつ長尺の部材であり該固定端の端面を構造体の連結箇所に設けられた取付面に離間可能に接触させ該取付面に平行な方向への移動を拘束される支持部材と該支持部材を所定の弾性力で自由端から固定端へ向いた方向に引っ張る緊張部材とを有し、
前記支持部材が自由端の側を前記直動軸または前記フレームのうちの一方に固定され、
前記特定力が前記自由端を前記取付面に対して相対変位させたときに前記緊張部材の前記弾性力により前記支持部材と前記直動軸または前記フレームのうちの一方との固定部に生ずる前記直動軸の前記中心軸に沿った力である、
ことを特徴とする請求項8に記載の免制震機構。
At least one of the pair of connecting members is a long member having a fixed end and a free end, and the end surface of the fixed end is separable from a mounting surface provided at a connection location of the structure. A support member that is contacted and restrained from moving in a direction parallel to the mounting surface; and a tension member that pulls the support member in a direction from the free end to the fixed end with a predetermined elastic force,
The support member is fixed to one of the linear motion shaft or the frame on the free end side;
When the specific force causes the free end to be displaced relative to the mounting surface, the elastic force of the tension member causes the support member and one of the linear motion shaft and the frame to be fixed to each other. A force along the central axis of the linear axis;
The seismic isolation mechanism according to claim 8.
1対の前記連結部材のうちの少なくとも一つの連結部材は、前記直動軸の前記中心軸に平行な面である第一面を形成された第一板部材と前記直動軸の前記中心軸に平行な面である第二面を形成された第二板部材と前記第一板部材の前記第一面と前記第二板部材の前記第二面とを所定の力で押付け合わせる押付部材とを有し、
前記第一板部材または前記第二板部材の一方が構造体に連結箇所で固定され、
前記第一板部材または前記第二板部材の他方が前記直動軸または前記フレームのうちの一方に固定され、
前記特定力が前記第一面と前記第二面との間の摩擦により生ずる前記直動軸の前記中心軸に沿った力である、
ことを特徴とする請求項8に記載の免制震機構。
At least one of the pair of connecting members includes a first plate member having a first surface that is parallel to the central axis of the linear motion shaft and the central axis of the linear motion shaft. And a pressing member that presses the first surface of the first plate member and the second surface of the second plate member with a predetermined force. Have
One of the first plate member or the second plate member is fixed to the structure at the connection location,
The other of the first plate member or the second plate member is fixed to one of the linear motion shaft or the frame,
The specific force is a force along the central axis of the linear motion shaft generated by friction between the first surface and the second surface;
The seismic isolation mechanism according to claim 8.
JP2009260355A 2009-11-13 2009-11-13 Seismic isolation mechanism Active JP5555393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260355A JP5555393B2 (en) 2009-11-13 2009-11-13 Seismic isolation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260355A JP5555393B2 (en) 2009-11-13 2009-11-13 Seismic isolation mechanism

Publications (2)

Publication Number Publication Date
JP2011106515A true JP2011106515A (en) 2011-06-02
JP5555393B2 JP5555393B2 (en) 2014-07-23

Family

ID=44230219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260355A Active JP5555393B2 (en) 2009-11-13 2009-11-13 Seismic isolation mechanism

Country Status (1)

Country Link
JP (1) JP5555393B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529900A (en) * 2015-08-14 2018-10-11 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Apparatus and method for mechanical coupling of at least one vibrationally mounted object and its use as a tunable damping element
CN111441995A (en) * 2020-04-02 2020-07-24 殷镜波 Electric control element heat dissipation system of high-speed magnetic suspension blower
JP2022003259A (en) * 2020-06-23 2022-01-11 清水建設株式会社 Rotary inertia mass damper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015003668A (en) * 2015-03-23 2016-09-22 Gabriel Zavala Casarreal José Energy dissipator with hysteretic horizontal damping behaviour.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482844U (en) * 1977-11-24 1979-06-12
JPS62171558A (en) * 1986-01-24 1987-07-28 Fuji Electric Co Ltd Ball screw shaft fixing apparatus
JPS6362632U (en) * 1986-10-15 1988-04-25
JPH07174187A (en) * 1993-12-20 1995-07-11 Toshiba Corp Vibration damping device
JP2005009565A (en) * 2003-06-18 2005-01-13 Tokkyokiki Corp Vibration damping apparatus
JP2005207547A (en) * 2004-01-26 2005-08-04 Sumitomo Mitsui Construction Co Ltd Clevis as well as damping device connected thereto and building structure with damping device
JP2005331035A (en) * 2004-05-19 2005-12-02 Sumitomo Mitsui Construction Co Ltd Seismic response control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482844U (en) * 1977-11-24 1979-06-12
JPS62171558A (en) * 1986-01-24 1987-07-28 Fuji Electric Co Ltd Ball screw shaft fixing apparatus
JPS6362632U (en) * 1986-10-15 1988-04-25
JPH07174187A (en) * 1993-12-20 1995-07-11 Toshiba Corp Vibration damping device
JP2005009565A (en) * 2003-06-18 2005-01-13 Tokkyokiki Corp Vibration damping apparatus
JP2005207547A (en) * 2004-01-26 2005-08-04 Sumitomo Mitsui Construction Co Ltd Clevis as well as damping device connected thereto and building structure with damping device
JP2005331035A (en) * 2004-05-19 2005-12-02 Sumitomo Mitsui Construction Co Ltd Seismic response control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529900A (en) * 2015-08-14 2018-10-11 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Apparatus and method for mechanical coupling of at least one vibrationally mounted object and its use as a tunable damping element
JP7011576B2 (en) 2015-08-14 2022-01-26 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Devices and methods for mechanical coupling of at least one oscillatingly mounted object, and its use as a variable adjustable damping element.
CN111441995A (en) * 2020-04-02 2020-07-24 殷镜波 Electric control element heat dissipation system of high-speed magnetic suspension blower
JP2022003259A (en) * 2020-06-23 2022-01-11 清水建設株式会社 Rotary inertia mass damper
JP7438863B2 (en) 2020-06-23 2024-02-27 清水建設株式会社 Rotating inertial mass damper

Also Published As

Publication number Publication date
JP5555393B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
TWI703283B (en) Rotating inertial mass damper
US9316297B2 (en) Screw motion mechanism and damping apparatus using same
JP5555393B2 (en) Seismic isolation mechanism
JP6529884B2 (en) SPRING MECHANISM AND VIBRATION CONTROL DEVICE HAVING SPRING MECHANISM
JP6075125B2 (en) Vibration damper device
JP5601825B2 (en) Damper and seismic isolation mechanism
JP5861883B2 (en) Rotating inertia mass damper and brace damper and brace frame
JP5314201B1 (en) Vibration suppression device
KR20190089972A (en) Tuned dynamic damper and method for reducing amplitude of vibration
JP5601824B2 (en) Damper and seismic isolation mechanism
JP2014122514A (en) Vibration control device for structure
JP5318483B2 (en) Vibration control device
JP6912882B2 (en) Laminated rubber seismic isolation device or viscous mass damper with spring
JPH10280730A (en) Insulation bearing device and construction of vibration isolation using it
JP2011236632A (en) Seismic control structure
JP4162078B2 (en) Seismic isolation device
JP2001082542A (en) Three-dimensional base isolation device
JP5646393B2 (en) Compound damping damper
JP2003056204A (en) Coupling vibration control device utilizing rotational inertia force
JP6143613B2 (en) Anti-shake device
JP3954019B2 (en) Friction damper
JP5646392B2 (en) Compound damping damper
JP5996018B2 (en) Damper and seismic isolation mechanism
JP6538325B2 (en) Vibration suppressor for structure
JP5781660B2 (en) Damper and seismic isolation mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140531

R150 Certificate of patent or registration of utility model

Ref document number: 5555393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250