JP2005331035A - Seismic response control device - Google Patents

Seismic response control device Download PDF

Info

Publication number
JP2005331035A
JP2005331035A JP2004149823A JP2004149823A JP2005331035A JP 2005331035 A JP2005331035 A JP 2005331035A JP 2004149823 A JP2004149823 A JP 2004149823A JP 2004149823 A JP2004149823 A JP 2004149823A JP 2005331035 A JP2005331035 A JP 2005331035A
Authority
JP
Japan
Prior art keywords
cylinder
steel plate
viscous
wall steel
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149823A
Other languages
Japanese (ja)
Inventor
Eiji Kuroda
英二 黒田
Takeshi Furuhashi
剛 古橋
Yuji Kousaka
勇治 光阪
Kenji Saiki
健司 齊木
Toru Suzuki
亨 鈴木
Shigeki Nakaminami
滋樹 中南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2004149823A priority Critical patent/JP2005331035A/en
Publication of JP2005331035A publication Critical patent/JP2005331035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic response control device for improving damping capacity of vibration by restraining a slipping phenomenon between a vessel structure and a viscous body. <P>SOLUTION: This seismic response control device is stored via the viscous body inside a fixed part fixed to one of a structure, and has a movable body movably connected to the other of the structure, and is characterized by preventing slipping between the viscous body and respective surfaces by including a resistance element in at least one area of an inner surface of the fixed part and an outside surface of the movable part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粘性制震装置を用いた建築構造物に関し、特に粘性体と容器構造のすべりによる振動減衰能力の低下を防止する粘性制震装置に関する。   The present invention relates to a building structure using a viscous damping device, and more particularly to a viscous damping device that prevents a decrease in vibration damping capability due to slippage of a viscous body and a container structure.

耐震設計の観点から開発されてきた技術としては空間ユニット用免震支承、粘性ダンパーサポート、ブレースダンパー、スリット耐震壁をはじめとする可撓耐震壁、鋼板内臓RC耐震壁等がある。   Technologies that have been developed from the viewpoint of seismic design include space unit seismic isolation bearings, viscous damper supports, brace dampers, flexible seismic walls including slit seismic walls, and steel plate built-in RC seismic walls.

特に、建築物の高層化を実現するためには耐震壁の変形能力を改善することが不可欠で、数多くの可撓耐震壁が提案されている。その目的とするところは、耐震壁の変形能力を大きくして剛性の低くて変形能力の大きなフレーム構造と共同して地震力に抵抗させるとともに、建築構造物の剛性も適度に高めようとするものである。   In particular, in order to realize a high-rise building, it is essential to improve the deformation capacity of the earthquake-resistant wall, and many flexible earthquake-resistant walls have been proposed. The purpose is to increase the deformation capacity of the seismic wall to resist the seismic force in cooperation with the frame structure with low rigidity and large deformation capacity, and to increase the rigidity of the building structure appropriately. It is.

しかし、これまでの耐震設計における耐震要素はフレーム構造、耐震壁、ブレース構造等のいずれにおいても、その本質はその構造要素が水平変形を生じることによってはじめて水平抵抗力が発生することにある。しかも、大地震時においてはこれらの耐震要素の弾性変形内で抵抗力では不十分であるため、その塑性化を許容し、塑性域におけるエネルギー吸収能力によって地震エネルギーに耐えようという基本思想に立脚した耐震設計が行われている。これは換言するまでもなく、大地震時においては、建築構造物がかなりの損傷を受けることを前提としている。   However, the seismic elements in the conventional seismic design are frame structures, seismic walls, brace structures, etc. The essence is that the horizontal resistance is generated only when the structural elements undergo horizontal deformation. Moreover, in the event of a large earthquake, the resistance force is insufficient within the elastic deformation of these seismic elements. Therefore, the plasticization is allowed, and the basic idea is to endure the earthquake energy by the energy absorption ability in the plastic region. Seismic design is being carried out. Needless to say, this is based on the premise that the building structure will be considerably damaged during a major earthquake.

従来の耐震設計におけるもう一つの問題点は非常によく耐震設計された建築構造物が大地震に耐え得たとした場合でも、これらの建築物は地震動の継続時間中に非常に大きな水平加速度を経験する可能性が極めて高いということである。このことは、建築構造体はたとえ損傷を受けなかったとしても、建物内での家具の設備機器等が転倒したり、落下物が生じたり、また人間と物との衝突等という災害の発生する危険性が極めて高いことを意味している。   Another problem with conventional seismic design is that even if well-designed building structures can withstand a large earthquake, these buildings experience very high horizontal acceleration during the duration of the ground motion. It is very likely that This means that even if the building structure is not damaged, the equipment of the furniture in the building falls, a falling object occurs, and a disaster such as a collision between a person and an object occurs. It means that the risk is extremely high.

これに対し、鋼板の板からなる抵抗板間に粘性物質を充填介在せしめてなる振動減衰装置を構造物の化粧部材間に組み込んだものも提案されている。上記装置は左右の柱と上下の梁に囲まれた空間においてブレースあるいは垂れ壁、腰壁状の取付け部材によって支持され、粘性物質の粘性せん断力抵抗によって板面に沿った方向に抵抗力を発生させて振動を減衰させるようにしたものである。   On the other hand, there has also been proposed a structure in which a vibration damping device in which a viscous material is interposed between resistance plates made of steel plates is incorporated between decorative members of a structure. The above device is supported by brace or hanging wall and waist wall-like mounting members in a space surrounded by left and right columns and upper and lower beams, and generates resistance in the direction along the plate surface due to viscous shear force resistance of viscous material This is to dampen vibration.

制震壁は地震や風のときに建物に生ずる上下階間の変位のずれを粘性体の抵抗力によって抑制するものであるが、この時に制震壁は回転しようとし、これが梁に生ずるせん断力Rによって阻止され、Rは梁から柱に伝達される。このRが大きいと梁の設計が困難になる。   The damping wall suppresses the displacement between the upper and lower floors that occurs in the building during an earthquake or wind due to the viscous force of the viscous material. Blocked by R, R is transmitted from the beam to the column. If this R is large, it becomes difficult to design the beam.

そこで、通常の場合は各階の制震壁を互い違いに配置してRを互いに打ち消すように設計するが、中央部のRは打ち消されても端部のRは依然として残る。制震壁の負担する力が大きいほど制震的効果は大きいが当然Rは大きくなり、制震壁は内側鋼板が3枚にもなると、梁の設計は極めて困難となる。   Therefore, in the normal case, the damping walls on each floor are arranged in a staggered manner so that Rs cancel each other. However, even if the central Rs are canceled, the end Rs still remain. The greater the force that the damping wall bears, the greater the damping effect, but naturally the R becomes large, and if the damping wall has three inner steel plates, the design of the beam becomes extremely difficult.

超高層ビルや展望タワーなどは、振動体の自由振動のときの周期である固有周期が長く、剛性が低い構造物であるため、地震動だけでなく、風による振動も重要な問題となっている。鉄筋コンクリート建物の地震などの揺れを低減する方法には様々な技術がある。中低層の建物には、積層ゴムにより地震のエネルギーを絶縁する方法や架構内に粘性ダンパーや鋼材ダンパーを設け、建物の変形に応じて振動エネルギーを吸収して揺れを低減する手法がしばしば用いられる。高層建物は高強度鉄筋と高強度コンクリートにより柱と梁を堅強な物にしたり、耐震壁を設けるなどの方法により耐震性能を確保するのが一般的であるが、そのために柱や梁が太くなり、耐震壁を設けることで開口部の設置に制限があることがある。近年は、高強度コンクリートの開発により、鉄筋コンクリート造の住宅向け高層建物が増加しつつあり、平面計画や間取りへの影響が少ない、風揺れから大地震までを効果的に抑える制震装置が求められている。   High-rise buildings and observation towers are structures that have a long natural period, which is the period of free vibration of a vibrating body, and have low rigidity. Therefore, not only earthquake motion but also wind vibration is an important issue. . There are various techniques for reducing the shaking of a reinforced concrete building such as an earthquake. For middle- and low-rise buildings, a method of insulating earthquake energy with laminated rubber and a method of reducing vibration by absorbing viscous energy according to deformation of the building by installing viscous dampers and steel dampers in the frame . In high-rise buildings, it is common to secure earthquake resistance by making columns and beams strong with high-strength reinforcing bars and high-strength concrete, or by installing earthquake-resistant walls, but that makes columns and beams thicker. The installation of the opening may be limited by providing a seismic wall. In recent years, the development of high-strength concrete has increased the number of high-rise buildings for reinforced concrete housing, and there is a need for a vibration control device that effectively suppresses wind-swing to large earthquakes with little impact on floor plans and floor plans. ing.

一般に、減衰機構は、相対変位する2点(物体)間に装着され、一方の振動源側から他方の制震物体側へ伝達される振動エネルギーを熱エネルギーに変換消失することにより減衰効果を達成するよう構成されている。   In general, the damping mechanism is mounted between two points (objects) that are relatively displaced, and achieves a damping effect by converting the vibration energy transmitted from one vibration source side to the other damping object side and converting it into thermal energy. It is configured to

しかるに、一般通常の減衰機構は、装置内に形成される粘性体チャンバ内に、振動に伴って発生される相対変位部分を収容することにより、その粘性摩擦抵抗を介して減衰効果を達成するように構成されており、しかもこの場合、前記相対変移部分の変位量は実際の変位量(相対変位する2点間の変位量)より増幅手段を介して増幅されるよう構成されている。従って、減衰効果も増大することができる。   However, a general normal damping mechanism achieves a damping effect through its viscous frictional resistance by accommodating a relative displacement portion generated by vibration in a viscous body chamber formed in the apparatus. Further, in this case, the displacement amount of the relative transition portion is configured to be amplified via the amplifying means from the actual displacement amount (the displacement amount between the two relatively displaced points). Accordingly, the damping effect can be increased.

粘性体を用いた制震装置では、特許文献1に減衰棒を使用した減衰装置が記載されている。   For a damping device using a viscous body, Patent Document 1 discloses a damping device using a damping rod.

図1は、粘性制震壁2である。鋼の板からなる抵抗板、すなわち下部梁に固定された外壁鋼板8間に粘性体4を充填介在せしめてなる振動減衰装置を構造物の化粧部材間に組み込んだものであり、上部梁より垂下された内壁鋼板6を粘性体4に挿入させており、その装置は左右の柱と上下の梁に囲まれた空間において垂下壁、すなわち内壁鋼板6によって支持され、粘性体4の粘性せん断力抵抗によって板面に沿った方向に抵抗力を発生させて振動を減衰させるようにしたものである(特許文献2)。   FIG. 1 shows a viscous damping wall 2. A resistance plate made of a steel plate, that is, a vibration damping device in which a viscous body 4 is filled between outer wall steel plates 8 fixed to the lower beam is incorporated between decorative members of the structure, and is suspended from the upper beam. The inner wall steel plate 6 is inserted into the viscous body 4, and the device is supported by the hanging wall, that is, the inner wall steel plate 6 in the space surrounded by the left and right columns and the upper and lower beams, and the viscous shear force resistance of the viscous body 4 Thus, a resistance force is generated in the direction along the plate surface to attenuate the vibration (Patent Document 2).

図2に、クレビスで接続される減衰装置である従来の減衰こまの一例を示す。   FIG. 2 shows an example of a conventional attenuation top which is an attenuation device connected by a clevis.

減衰こまは、相対変位する2点(物体)A,B間を連結するよう互いに接続される第1及び第2のクレビス20,22からなり、これらの両クレビス20,22は、それぞれの一端部を2点24,26の中の1つにそれぞれ固定するとともに、その第1のクレビス20は、その接続側を案内ねじ部28に形成し、そしてこのねじ部28上には、ボールベアリング30を介して螺合される案内ナット32で駆動する回転内筒34を回転摺動可能に挿着し、また第2のクレビス22は、その固定外筒38に形成し、そしてこのチャンバ36内には減衰用粘性体及び/又は粘弾性体40を充填するよう構成されている。ここで、回転内筒34は、一端部を案内ナット32に外挿される他端部閉塞筒体からなり、案内ナット32の一側部及び回転内筒34の前記閉塞端部の固定外筒38に対する上下両対接面にそれぞれボールベアリング42,44を配設することにより、2点24,26間の相対変位から発生される圧縮及び引っ張りの両荷重に対応して、案内ねじ部28上を回転し、かつ図示上下方向へ摺動するよう軸支されている。   The damping top is composed of first and second clevises 20 and 22 that are connected to each other so as to connect two points (objects) A and B that are relatively displaced. Are fixed to one of the two points 24 and 26, respectively, and the first clevis 20 is formed with a guide screw portion 28 on its connecting side, and a ball bearing 30 is mounted on the screw portion 28. A rotating inner cylinder 34 that is driven by a guide nut 32 that is screwed through is inserted in a slidable manner, and a second clevis 22 is formed in the fixed outer cylinder 38, and in the chamber 36 The damping viscous body and / or the viscoelastic body 40 is filled. Here, the rotating inner cylinder 34 is composed of a closed cylinder whose other end is extrapolated to the guide nut 32, and a fixed outer cylinder 38 at one side of the guide nut 32 and the closed end of the rotating inner cylinder 34. The ball bearings 42 and 44 are disposed on both the upper and lower contact surfaces with respect to the guide screw portion 28 on the guide screw portion 28 corresponding to both compression and tension loads generated from the relative displacement between the two points 24 and 26, respectively. It is pivotally supported so as to rotate and slide in the vertical direction in the figure.

しかしながら、これら粘性制震壁や減衰こまの技術には次のような問題点があった。図3に示すように、粘性制震壁を例に挙げて説明する。粘性体56の剪断抵抗力によるエネルギー吸収を目的とする装置では、内壁鋼板52が移動するとその近傍にある粘性体56も移動する。外壁鋼板54は固定されているのでその近傍にある粘性体56は移動しない。粘性体56の移動速度が大きくなるにつれて抵抗が増加するが、移動速度がある一定値に達すると粘性体56を封入する容器構造、すなわち内壁鋼板52及び外壁鋼板54と粘性体56の間ですべり現象が発生し、抵抗が減少し始める。その結果、振動の減衰能力が低下する。この現象は減衰こまの場合でも同様であるが、特に減衰こまのように増幅機構により非常に高速で粘性体56を剪断変形させると、容器構造と粘性体56間のすべりがエネルギー吸収能力を著しく低下させる可能性がある。このような現象のために、粘性制震壁や減衰こまのような粘性制震装置では振動を減衰させる能力に限界が生じる可能性がある。   However, these viscous damping walls and damping top techniques have the following problems. As shown in FIG. 3, a viscous damping wall will be described as an example. In an apparatus intended to absorb energy by the shear resistance force of the viscous body 56, when the inner wall steel plate 52 moves, the viscous body 56 in the vicinity thereof also moves. Since the outer wall steel plate 54 is fixed, the viscous body 56 in the vicinity thereof does not move. The resistance increases as the moving speed of the viscous body 56 increases. However, when the moving speed reaches a certain value, the container structure that encloses the viscous body 56, that is, slips between the inner wall steel plate 52 and the outer wall steel plate 54 and the viscous body 56. A phenomenon occurs and the resistance begins to decrease. As a result, the vibration damping capability decreases. This phenomenon is the same even in the case of a damping top, but when the viscous body 56 is sheared and deformed at a very high speed by an amplification mechanism as in the case of the damping top, the slip between the container structure and the viscous body 56 significantly increases the energy absorption capacity. There is a possibility of lowering. Because of this phenomenon, there is a possibility that the ability to attenuate vibrations may be limited in viscous damping devices such as viscous damping walls and damping tops.

特許第3408706号公報Japanese Patent No. 3408706 特開2000−27485号公報JP 2000-27485 A

そこで、本発明では粘性体と容器構造とのすべり現象を抑制し、振動エネルギー吸収能力を向上させて、効果的に振動を減衰させる制震装置を開発することを目的としている。   Accordingly, an object of the present invention is to develop a vibration control device that suppresses the slip phenomenon between the viscous body and the container structure, improves the vibration energy absorption capability, and effectively attenuates the vibration.

本発明では、粘性制震装置の容器構造と粘性体の間のすべり現象による振動エネルギー吸収能力の低下の問題を解決するために、粘性制震壁では外壁鋼板及び内壁鋼板、減衰こまでは外筒及び内筒からなる容器構造に突起または目荒らし処理を施すことが提案されている。これにより容器構造と粘性体間のすべり現象を抑制し、エネルギー吸収能力の低下を防ぐ。また、粘性制震壁の場合、従来の剪断抵抗以外の突起による抵抗で、減衰能力を向上させる。   In the present invention, in order to solve the problem of reduction in vibration energy absorption capacity due to the slip phenomenon between the container structure of the viscous damping device and the viscous body, the outer wall steel plate and inner wall steel plate are used for the viscous damping wall, In addition, it has been proposed that the container structure including the inner cylinder is subjected to a protrusion or a roughening treatment. This suppresses the slip phenomenon between the container structure and the viscous body and prevents the energy absorption capacity from being lowered. In the case of a viscous damping wall, the damping capacity is improved by resistance by a protrusion other than the conventional shear resistance.

請求項1の発明は、構造体の一方に固定される固定部の内部に粘性体を介して収容されて構造体の他方と移動可能に接続される可動部を備える制震装置において、固定部の内面及び可動部の外面の少なくとも一方の領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする。   According to a first aspect of the present invention, there is provided a vibration control device including a movable portion that is accommodated in a fixed portion fixed to one of the structures via a viscous body and is movably connected to the other of the structure. A resistance element is included in at least one region of the inner surface and the outer surface of the movable portion to prevent slippage between the viscous material and each surface.

請求項2の発明は、上層階の水平構造部材に固定されてその垂下部が垂直下方向に延在して構造体の他方と移動可能に接続される内壁鋼板と、下層階の水平構造部材に固定され上方に開口し前記内壁鋼板が非接触状態に挿入される外壁鋼板と、前記外壁鋼板に注入される粘性体とから構成される制震装置において、前記内壁鋼板の表面と前記外壁鋼板の内面の少なくとも一方の領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする。   The invention according to claim 2 is an inner wall steel plate fixed to an upper floor horizontal structural member, the hanging portion extending vertically downward and movably connected to the other of the structure, and a lower floor horizontal structural member In the vibration control device, which is composed of an outer wall steel plate that is fixed to the upper wall and is opened upward and the inner wall steel plate is inserted in a non-contact state, and a viscous body that is injected into the outer wall steel plate, A resistance element is included in at least one region of the inner surface of the surface to prevent slippage between the viscous body and each surface.

請求項3の発明は、相対変位する2点間を連結するよう互いに接続される第1及び第2の連結部材と、前記第1の連結部材の接続側に形成された案内ネジ部と、該案内ネジ部上に第1の複数のボールベアリングを介して螺合される案内ナットと、該案内ナットを介して回転駆動されると共に、前記第1の連結部材に対し回転摺動可能に挿着される回転内筒と、前記回転内筒の一端部に形成され前記案内ナットを外装する閉塞端部と、前記案内ナットと該案内ナットを外装する前記閉塞端部との接面であって、前記第1及び第2の連結部材の長手軸に沿って互いに離間する2つの接面に設けられ、2点間の相対変位から発生する圧縮及び引張りの両荷重に対応して、前記案内ナットが前記案内ネジ部上を回転摺動可能に該案内ナットを軸支する第2及び第3の複数のボールベアリングと、前記第2の連結部材の接続側に設けられ、前記回転内筒を収容するチャンバを形成する固定外筒と、前記固定外筒のチャンバ内に充填され粘性流体として作用する粘弾性体あるいは粘性体とからなる減衰装置であって、前記回転内筒は閉塞端中空筒体から形成することで、前記粘弾性体あるいは粘性体は前記閉塞端中空筒体の外側面と前記固定外筒の内側面との間隙に充填されることで、前記粘弾性体あるいは粘性体は前記閉塞端中空筒体の外側面に接するよう構成される減衰装置において、前記閉塞中空筒体の外側面と前記固定外筒の内側面との少なくともいずれかの領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする。   According to a third aspect of the present invention, there are provided first and second connecting members connected to each other so as to connect two relatively displaced points, a guide screw portion formed on a connection side of the first connecting member, A guide nut that is screwed onto the guide screw portion via a first plurality of ball bearings, and is rotationally driven via the guide nut and is slidably inserted into the first connecting member. A rotating inner cylinder, a closed end formed on one end of the rotating inner cylinder and covering the guide nut, and a contact surface between the guide nut and the closed end covering the guide nut, The guide nut is provided on two contact surfaces that are separated from each other along the longitudinal axis of the first and second connecting members, and corresponds to both compression and tension loads generated from relative displacement between two points. The guide nut is pivotally supported so as to be able to rotate and slide on the guide screw portion. A fixed outer cylinder provided on the connection side of the second and third ball bearings and the second connecting member, and forming a chamber for accommodating the rotating inner cylinder; and the chamber of the fixed outer cylinder is filled. A damping device comprising a viscoelastic body or a viscous body acting as a viscous fluid, wherein the rotating inner cylinder is formed of a closed end hollow cylinder, and the viscoelastic body or the viscous body is the closed end hollow cylinder. In the damping device configured such that the viscoelastic body or the viscous body is in contact with the outer surface of the closed end hollow cylinder by being filled in a gap between the outer surface of the fixed outer cylinder and the inner surface of the fixed outer cylinder. A resistance element is included in at least one region of the outer surface of the hollow cylinder and the inner surface of the fixed outer cylinder to prevent slippage between the viscous material and each surface.

請求項4の発明は、相対変位する2点間を連結するよう互いに接続される第1及び第2の連結部材と、前記第1の連結部材の接続側に形成された案内ネジ部と、該案内ネジ部上に第1の複数のボールベアリングを介して螺合される案内ナットと、該案内ナットを介して回転駆動されると共に、前記第1の連結部材に対し回転摺動可能に挿着される回転内筒と、前記回転内筒の一端部に形成され前記案内ナットを外装する閉塞端部と、前記案内ナットと該案内ナットを外装する前記閉塞端部との接面であって、前記第1及び第2の連結部材の長手軸に沿って互いに離間する2つの接面に設けられ、2点間の相対変位から発生する圧縮及び引張りの両荷重に対応して、前記案内ナットが前記案内ネジ部上を回転摺動可能に該案内ナットを軸支する第2及び第3の複数のボールベアリングと、前記第2の連結部材の接続側に設けられ、前記回転内筒を収容するチャンバを形成する固定外筒と、前記固定外筒のチャンバ内に充填され粘性流体として作用する粘弾性体あるいは粘性体とからなる減衰装置であって、前記回転内筒は開放端中空筒体から形成することで、前記粘弾性体あるいは粘性体は前記開放端中空筒体の外側面と前記固定外筒の内側面との間隙に充填されると共に前記開放端中空筒体の内側中空部にも充填されることで、前記粘弾性体あるいは粘性体は前記開放端中空筒体の外側面及び内側面の両方に接するよう構成される減衰装置において、前記中空筒体の外側面並びに内側面と前記固定外筒の内側面との少なくともいずれかの領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする。ここで、粘弾性体は例えば合成ゴムであってもよい。   According to a fourth aspect of the present invention, there are provided first and second connecting members connected to each other so as to connect two relatively displaced points, a guide screw portion formed on a connection side of the first connecting member, A guide nut that is screwed onto the guide screw portion via a first plurality of ball bearings, and is rotationally driven via the guide nut and is slidably inserted into the first connecting member. A rotating inner cylinder, a closed end formed on one end of the rotating inner cylinder and covering the guide nut, and a contact surface between the guide nut and the closed end covering the guide nut, The guide nut is provided on two contact surfaces that are separated from each other along the longitudinal axis of the first and second connecting members, and corresponds to both compression and tension loads generated from relative displacement between two points. The guide nut is pivotally supported so as to be able to rotate and slide on the guide screw portion. A fixed outer cylinder provided on the connection side of the second and third ball bearings and the second connecting member, and forming a chamber for accommodating the rotating inner cylinder; and the chamber of the fixed outer cylinder is filled. A damping device comprising a viscoelastic body or a viscous body acting as a viscous fluid, wherein the rotating inner cylinder is formed from an open end hollow cylinder, and the viscoelastic body or the viscous body is the open end hollow cylinder. The viscoelastic body or the viscous body is filled in the gap between the outer side surface of the fixed outer cylinder and the inner side surface of the fixed outer cylinder, and is also filled in the inner hollow portion of the open end hollow cylinder. In the damping device configured to be in contact with both the outer side surface and the inner side surface of the body, a resistance element is included in at least one of the outer side surface of the hollow cylindrical body and the inner side surface and the inner side surface of the fixed outer cylinder. Sliding between viscous body and each surface Characterized in that it prevented. Here, the viscoelastic body may be, for example, a synthetic rubber.

請求項5の発明は、抵抗要素は点在する突起部からなることを特徴とする。ここで、抵抗要素は円錐形状の突起部又はボルト状のものであってもよく、固定部の内面及び可動部の外面の少なくとも一方に設けられる。   The invention according to claim 5 is characterized in that the resistance element is composed of interspersed protrusions. Here, the resistance element may be a conical protrusion or a bolt, and is provided on at least one of the inner surface of the fixed portion and the outer surface of the movable portion.

請求項6の発明は、抵抗要素は可動部の移動方向と平行でない方向に線状に延在する突起部からなることを特徴とする。ここで、抵抗要素は三角柱状の突起部であってもよく、固定部の内面及び可動部の外面の少なくとも一方に該三角柱状の突起部の側面が可動部の面に接着するように設けられる。   The invention according to claim 6 is characterized in that the resistance element comprises a protrusion extending linearly in a direction not parallel to the moving direction of the movable portion. Here, the resistance element may be a triangular prism-shaped protrusion, and is provided on at least one of the inner surface of the fixed portion and the outer surface of the movable portion so that the side surface of the triangular prism-shaped protrusion is bonded to the surface of the movable portion. .

請求項7の発明は、抵抗要素は面状に延在する突起部からなることを特徴とする。ここで、抵抗要素は固定部の内面と可動部の外面の少なくとも一方に目荒らし処理を施されて構成されてもよく、または縞鋼板が設けられてもよい。   The invention according to claim 7 is characterized in that the resistance element comprises a protrusion extending in a planar shape. Here, the resistance element may be configured by performing a roughening process on at least one of the inner surface of the fixed portion and the outer surface of the movable portion, or a striped steel plate may be provided.

請求項8の発明は、抵抗要素は点在する凹部からなることを特徴とする。ここで、抵抗要素は固定部の内面と可動部の外面の少なくとも一方に円錐形の凹部が設けられてもよい。   The invention according to claim 8 is characterized in that the resistance element is formed of scattered concave portions. Here, the resistance element may be provided with a conical recess on at least one of the inner surface of the fixed portion and the outer surface of the movable portion.

請求項9の発明は、抵抗要素は可動部の移動方向と平行でない方向に線状に延在する凹部からなることを特徴とする。ここで、抵抗要素は固定部の内面と可動部の外面の少なくとも一方にくさび形の溝が設けられてもよい。   The invention according to claim 9 is characterized in that the resistance element is composed of a concave portion extending linearly in a direction not parallel to the moving direction of the movable portion. Here, the resistance element may be provided with a wedge-shaped groove on at least one of the inner surface of the fixed portion and the outer surface of the movable portion.

請求項10の発明は、抵抗要素は面状に延在する凹部からなることを特徴とする。ここで、抵抗要素は固定部の内面と可動部の外面の少なくとも一方にショットブラスト処理が施されて構成されてもよい。   The invention according to claim 10 is characterized in that the resistance element is formed of a concave portion extending in a planar shape. Here, the resistance element may be configured by performing shot blasting on at least one of the inner surface of the fixed portion and the outer surface of the movable portion.

粘性制震装置の容器構造に突起を設けたり、目荒らし処理あるいはショットブラスト処理を施したり、容器構造表面を縞鋼板にすることによって、粘性体と容器構造との接触する面積が大きくなり、抵抗が大きくなって、振動時に粘性体の移動速度が高速になってもすべり現象が発生するのを抑制することができ、振動エネルギー吸収能力が向上するという効果が得られる。また突起部が粘性体の移動方向と垂直に突出していることにより、粘性体が動く際に引っかかりとなるため、両者間のすべり現象を抑制することができ、振動エネルギー吸収能力の低下を防ぐことができる。さらに、その向かい合った突起部を互い違いに設けることによって粘性体のすべり現象を一層抑制することができる。また粘性制震壁の場合、従来の剪断抵抗以外に突起による抵抗で、減衰能力を向上させることができる。その結果、振動エネルギーを効果的に吸収することができる制震装置を提供することができ、地震の際、建築物に加わるエネルギーを著しく減少させ、建築物の損傷や破壊を最小限に押さえることができると考えられる。   By providing protrusions on the container structure of the viscous vibration control device, applying a roughening treatment or shot blasting treatment, or making the surface of the container structure a striped steel plate, the contact area between the viscous material and the container structure increases, and resistance is increased. Thus, even if the moving speed of the viscous body is increased during vibration, the occurrence of the slip phenomenon can be suppressed, and the vibration energy absorbing ability can be improved. In addition, since the protrusion protrudes perpendicularly to the moving direction of the viscous material, it will be caught when the viscous material moves, so the slip phenomenon between them can be suppressed and the vibration energy absorption capacity can be prevented from being lowered. Can do. Furthermore, the slip phenomenon of the viscous body can be further suppressed by providing the protruding portions facing each other alternately. In addition, in the case of a viscous damping wall, the damping capability can be improved by resistance by a protrusion in addition to the conventional shear resistance. As a result, it is possible to provide a vibration control device that can effectively absorb vibration energy, significantly reducing the energy applied to the building during an earthquake and minimizing damage and destruction of the building. It is thought that you can.

本発明に係る粘性制震装置について図4から図7を用いて説明する。図4は、本発明に係る粘性制震壁の表面に突起処理を施した粘性制震壁の構成図であり、図5は本発明に係る粘性制震壁の表面に突起処理を施した粘性制震壁の断面図である。図6は、本発明に係る減衰こまの表面に突起処理を施した減衰こまの構成図であり、図7は本発明に係る減衰こまの表面に突起処理を施した減衰こまの断面図である。   The viscous vibration control device according to the present invention will be described with reference to FIGS. FIG. 4 is a configuration diagram of a viscous damping wall obtained by subjecting the surface of the viscous damping wall according to the present invention to projection processing, and FIG. 5 illustrates a viscosity obtained by subjecting the surface of the viscous damping wall according to the present invention to projection processing. It is sectional drawing of a damping wall. FIG. 6 is a configuration diagram of an attenuation top obtained by subjecting the surface of the attenuation top according to the present invention to projection processing, and FIG. 7 is a cross-sectional view of the attenuation top obtained by performing projection processing on the surface of the attenuation top according to the present invention. .

図4では、本発明に係る粘性制震壁68の外壁鋼板70の内側と内壁鋼板72の両側に突起74が設けられている。内壁鋼板72は、上端部が上層階の水平構造部材に固定されており、その垂下部が垂直下方向に延在して外壁鋼板70と移動可能に接続されている。外壁鋼板70は下層階の水平構造部材に固定され上方に開口しており、内壁鋼板72が非接触状態に挿入される外壁鋼板70と、外壁鋼板70に注入される粘性体とから構成される。図の簡略化のため、ここでは粘性体は図示していない。これによって、粘性体と外壁鋼板70及び内壁鋼板72の表面の接触面積が大きくなり、抵抗が大きくなって、振動時、粘性体の移動速度が高速になってもすべり現象が発生するのを抑制することができる。また、従来の剪断抵抗以外の突起による抵抗によって、減衰能力を向上させることができる。   In FIG. 4, protrusions 74 are provided on the inside of the outer wall steel plate 70 of the viscous damping wall 68 according to the present invention and on both sides of the inner wall steel plate 72. The inner wall steel plate 72 has an upper end fixed to the horizontal structural member on the upper floor, and its hanging portion extends vertically downward and is movably connected to the outer wall steel plate 70. The outer wall steel plate 70 is fixed to the horizontal structural member on the lower floor and opens upward, and is composed of an outer wall steel plate 70 into which the inner wall steel plate 72 is inserted in a non-contact state and a viscous material injected into the outer wall steel plate 70. . In order to simplify the drawing, the viscous body is not shown here. As a result, the contact area between the viscous body and the outer wall steel plate 70 and the inner wall steel plate 72 is increased, the resistance is increased, and the occurrence of a slip phenomenon is suppressed even when the moving speed of the viscous body is increased during vibration. can do. In addition, the damping capability can be improved by the resistance by the protrusions other than the conventional shear resistance.

図5は、突起処理を施した粘性制震壁80の断面図であり、向かい合う外壁鋼板82と内壁鋼板84の突起86の位置をずらしてある。これによって、粘性体と容器表面との抵抗を一層高めることができる。   FIG. 5 is a cross-sectional view of the viscous damping wall 80 subjected to the protrusion treatment, in which the positions of the protrusions 86 of the outer wall steel plate 82 and the inner wall steel plate 84 facing each other are shifted. Thereby, the resistance between the viscous body and the container surface can be further increased.

図6は、本発明に係るシリンダ型減衰こま100の内筒と外筒124の表面に突起102が設けられている。シリンダ型減衰こま100は、速度増幅部136と、伝達部138と、減衰部140とから構成される。速度増幅部136内にその端部からねじ溝の刻設された案内ねじ部114が挿入され、リニア軸受けベアリングのボールベアリング116を介して案内ナット118と螺合され、この案内ナット118は速度増幅部136の外筒132とスラスト軸受けを介して回転可能に接合される。この案内ナット118は伝達部138内で回転内筒120と接合されて、減衰部140内を回動する。減衰部140の外筒124と回転内筒120の間には粘性体126が封入されて外筒124端部のシール128で封止され、粘性体126が漏れない構造となっている。これに突起102を設けることによって、振動時、内筒が回転して粘性体126が移動し始めた場合の抵抗を大きくすることができ、それによって、振動エネルギー吸収能力を向上させることが可能となる。   6, projections 102 are provided on the surfaces of the inner cylinder and the outer cylinder 124 of the cylinder type damping top 100 according to the present invention. The cylinder type attenuation top 100 includes a speed amplification unit 136, a transmission unit 138, and an attenuation unit 140. A guide screw portion 114 having a thread groove formed therein is inserted into the speed amplifying portion 136 from its end, and is screwed with a guide nut 118 via a ball bearing 116 of a linear bearing. The guide nut 118 is speed-amplified. It is joined to the outer cylinder 132 of the part 136 through a thrust bearing so as to be rotatable. The guide nut 118 is joined to the rotating inner cylinder 120 in the transmission unit 138 and rotates in the damping unit 140. A viscous body 126 is sealed between the outer cylinder 124 and the rotating inner cylinder 120 of the damping section 140 and sealed with a seal 128 at the end of the outer cylinder 124, so that the viscous body 126 does not leak. By providing the protrusion 102 on this, it is possible to increase the resistance when the inner cylinder rotates and the viscous body 126 starts to move during vibration, thereby improving the vibration energy absorption capability. Become.

図7は、図6に示したシリンダ型減衰こま150の内筒154と外筒152の断面図である。外筒152の内表面と内筒154の外表面に突起158が設けられている。内筒154が回転した場合、外筒152と内筒154の間に存在する粘性体156は内筒154表面近くでは内筒154の回転に合わせて移動しようとするが、外筒152表面近くの粘性体156は外筒152と同様に静止状態を保とうとする。これによって粘性体156の抵抗が発生して振動エネルギーを吸収する。内筒154表面近くの粘性体156の速度が大きくなるにつれて抵抗が大きくなるが、ある一定の速度になると粘性体156がすべりはじめて抵抗が減少し、減衰能力も低下する。外筒152と内筒154の表面に突起158を設けることにより、粘性体156がすべり始めたときに突起158に引っかかって粘性体156がすべり現象を起こすのを抑制することができる。   7 is a cross-sectional view of the inner cylinder 154 and the outer cylinder 152 of the cylinder type damping top 150 shown in FIG. Protrusions 158 are provided on the inner surface of the outer cylinder 152 and the outer surface of the inner cylinder 154. When the inner cylinder 154 rotates, the viscous body 156 existing between the outer cylinder 152 and the inner cylinder 154 tends to move in accordance with the rotation of the inner cylinder 154 near the inner cylinder 154 surface. The viscous body 156 tries to remain stationary like the outer cylinder 152. As a result, resistance of the viscous body 156 is generated to absorb vibration energy. The resistance increases as the speed of the viscous body 156 near the surface of the inner cylinder 154 increases, but when the speed reaches a certain speed, the viscous body 156 begins to slide and the resistance decreases, and the damping capacity also decreases. By providing the protrusions 158 on the surfaces of the outer cylinder 152 and the inner cylinder 154, it is possible to prevent the viscous body 156 from slipping due to being caught by the protrusion 158 when the viscous body 156 starts to slide.

突起構造はくさび形に線状に延在し突設された線状突起部を多数外壁鋼板及び内壁鋼板、又は外筒及び内筒の表面に取り付けてもよいし、その線状突起部に切り込みを付けた形状でもよい。これにより粘性体と容器構造との接触面積を大きくし、すべり現象を抑制することが可能となる。   The protrusion structure may be attached to the surface of the outer wall steel plate and the inner wall steel plate, or the outer cylinder and the inner cylinder, or cut into the linear protrusions. A shape with a mark may be used. Thereby, the contact area between the viscous body and the container structure can be increased, and the slip phenomenon can be suppressed.

図8にさらに本発明に係る別のシリンダ型減衰こま160に適用した例について示す。このシリンダ型減衰こま160の特徴は、粘性体との接触面積を増大させるために内筒管内にも粘性体が挿入されている点である。   FIG. 8 shows an example applied to another cylinder type damping top 160 according to the present invention. The feature of this cylinder type damping top 160 is that the viscous body is also inserted into the inner tube in order to increase the contact area with the viscous body.

本発明に係る別のシリンダ型減衰こま160は、相対変位する2点(物体)A,B間を連結するよう互いに接続される第1及び第2のクレビス20,22からなり、これらの両クレビス20,22は、それぞれの一端部を2点24,26の中の1つにそれぞれ固定するとともに、その第1のクレビス20は、その接続側を案内ねじ部28に形成し、そしてこのねじ部28上には、ボールベアリング32を介して螺合される案内ナット162で駆動する回転内筒166を回転摺動可能に挿着する。この案内ナット162は、上部外筒管との上下両対接面で回動可能にベアリング42及び168が配設される。また第2のクレビス22は、その固定外筒38に形成され、そしてこの固定外筒38内には減衰用粘性体及び/又は粘弾性体40を充填するよう構成されている。ここで、回転内筒166は、一端部を案内ナット162に装着されて、2点24,26間の相対変位から発生される圧縮及び引っ張りの両荷重に対応して、案内ねじ部28上を回転し、かつ図示上下方向へ摺動するよう軸支されている。   Another cylinder-type damping top 160 according to the present invention comprises first and second clevises 20 and 22 connected to each other so as to connect two points (objects) A and B that are relatively displaced. 20 and 22 each fix one end to one of the two points 24 and 26, respectively, and the first clevis 20 forms its connecting side on a guide screw 28 and this screw A rotating inner cylinder 166 that is driven by a guide nut 162 that is screwed through a ball bearing 32 is inserted on 28 so as to be slidable. The guide nut 162 is provided with bearings 42 and 168 so as to be rotatable at both upper and lower contact surfaces with the upper outer tube. The second clevis 22 is formed in the fixed outer cylinder 38, and the fixed outer cylinder 38 is configured to be filled with a damping viscous body and / or a viscoelastic body 40. Here, one end of the rotating inner cylinder 166 is attached to the guide nut 162, and on the guide screw portion 28 corresponding to both compression and tension loads generated from the relative displacement between the two points 24 and 26. It is pivotally supported so as to rotate and slide in the vertical direction in the figure.

この回転内筒166の外側面に抵抗要素163を設け、内側面に抵抗要素166を設け、外筒管38の内側面にも抵抗要素161を設けることでも減衰用粘性体及び/又は粘弾性体40がすべり始めたときに突起161,163,165に引っかかって減衰用粘性体及び/又は粘弾性体40がすべり現象を起こすのを抑制することができる。   The resistance element 163 is provided on the outer side surface of the rotating inner cylinder 166, the resistance element 166 is provided on the inner side surface, and the resistance element 161 is also provided on the inner side surface of the outer cylinder tube 38. It is possible to prevent the damping viscous body and / or the viscoelastic body 40 from being slipped by being caught by the protrusions 161, 163, and 165 when the 40 starts to slide.

また、小さい円錐形の突起物174を多数外壁鋼板及び内壁鋼板、又は外筒及び内筒の表面に所定の間隔をあけて取り付けたものでもよい。図9には外壁鋼板170及び内壁鋼板172に円錐形の突起物174を設けた場合の模式図を示す。図の簡略化のため、外壁鋼板170は片方だけ外側面から示し、内壁鋼板172は片面だけに突起物174を設けた状態を示す。これにより粘性体と容器構造との接触面積を大きくし、すべり現象を抑制することが可能となる。   Moreover, what attached the small conical protrusion 174 to the surface of many outer wall steel plates and inner wall steel plates, or the outer cylinder and the inner cylinder at predetermined intervals may be used. FIG. 9 shows a schematic view when the outer wall steel plate 170 and the inner wall steel plate 172 are provided with conical protrusions 174. For simplification of the drawing, only one side of the outer wall steel plate 170 is shown from the outer side, and the inner wall steel plate 172 shows a state in which the protrusions 174 are provided only on one side. Thereby, the contact area between the viscous body and the container structure can be increased, and the slip phenomenon can be suppressed.

多数のボルトが外壁鋼板及び内壁鋼板、又は外筒及び内筒の表面から所定の間隔をあけて飛び出している形状であってもよい。図10には外壁鋼板180及び内壁鋼板182にボルトを設けた場合の模式図を示す。図の簡略化のため、外壁鋼板180は片方だけを示し、外側面からボルト186を挿入した状態が示されており、内壁鋼板182は片面だけにボルト184が飛び出している様子を示している。これにより粘性体と容器構造との接触面積を大きくし、すべり現象を抑制することが可能となる。   A shape in which a large number of bolts protrude from the surfaces of the outer wall steel plate and the inner wall steel plate, or the outer cylinder and the inner cylinder at a predetermined interval may be employed. FIG. 10 shows a schematic diagram when the outer wall steel plate 180 and the inner wall steel plate 182 are provided with bolts. For simplification of the drawing, only one side of the outer wall steel plate 180 is shown, and a state in which the bolt 186 is inserted from the outer side surface is shown, and the inner wall steel plate 182 shows a state in which the bolt 184 protrudes only on one side. Thereby, the contact area between the viscous body and the container structure can be increased, and the slip phenomenon can be suppressed.

さらに、上記の形状の突起物194,204は、外壁鋼板及び内壁鋼板、又は外筒及び内筒の表面に、互いに向かい合うように設けられている。ここでは外壁鋼板190,200と内壁鋼板192,202を用いて模式的に示す。図11(a)に示すように、向かい合った突起物194それぞれが相対するように設けられていてもよいし、図11(b)に示すように、向かい合った突起物204が互い違いになるように配置されていてもよい。粘性体の抵抗をより大きくして振動エネルギー吸収能力を向上させるためには、図11(b)のように向かい合う突起物204を互い違いに配置することがより好ましい。   Furthermore, the protrusions 194 and 204 having the above shapes are provided on the outer wall steel plate and the inner wall steel plate, or on the surfaces of the outer cylinder and the inner cylinder so as to face each other. Here, the outer wall steel plates 190 and 200 and the inner wall steel plates 192 and 202 are schematically shown. As shown in FIG. 11 (a), the protrusions 194 facing each other may be provided so as to face each other, and as shown in FIG. 11 (b), the protrusions 204 facing each other are staggered. It may be arranged. In order to increase the resistance of the viscous body and improve the vibration energy absorption capability, it is more preferable to alternately arrange the protrusions 204 facing each other as shown in FIG.

図12には、抵抗要素が線状に延在する突起部からなる例として、外壁鋼板220及び内壁鋼板222の表面にくさび形に線状に延在し突設された線状突起部224が設けられた例を示す。その線状突起部224は、その側面が外壁鋼板220及び内壁鋼板222の面と接着するように設けられ、内壁鋼板222の移動方向(矢印の方向)と平行でない方向に線状に延在する。図11(b)と同様、向かい合った突起部が互い違いに配置されることがより好ましい。   In FIG. 12, as an example in which the resistance element is formed of a protruding portion extending linearly, a linear protruding portion 224 extending linearly in a wedge shape on the surface of the outer wall steel plate 220 and the inner wall steel plate 222 is provided. An example is shown. The linear protrusions 224 are provided so that their side surfaces are bonded to the surfaces of the outer wall steel plate 220 and the inner wall steel plate 222, and extend linearly in a direction that is not parallel to the moving direction of the inner wall steel plate 222 (the direction of the arrow). . Like FIG.11 (b), it is more preferable that the protrusion part which faced is arrange | positioned alternately.

図13には、抵抗要素が面状に延在する突起部からなる例として、外壁鋼板230及び内壁鋼板232の表面に目荒らし処理を施した例を示す。目荒らし処理を施された表面234は粗くなり、粘性体と表面234との接触面積が大きくなって粘性体が移動する際に抵抗が増すため、粘性体のすべり現象を抑制することが可能となる。   FIG. 13 shows an example in which the roughening treatment is performed on the surfaces of the outer wall steel plate 230 and the inner wall steel plate 232 as an example in which the resistance elements are formed of protrusions extending in a planar shape. The surface 234 that has been subjected to the roughening treatment becomes rough, and the contact area between the viscous body and the surface 234 increases, and resistance increases when the viscous body moves, so that the slip phenomenon of the viscous body can be suppressed. Become.

図14には、抵抗要素が面状に延在する突起部からなる別の例として、外壁鋼板240及び内壁鋼板242の表面を縞鋼板244とした例を示す。表面を縞鋼板244にすることにより、でこぼこであるが耐摩耗性が良好で、どの方向に対してもすべり止め効果の大きい表面を実現することもできる。表面の凹凸により粘性体と表面との接触面積が大きくなって粘性体が移動する際に抵抗が増すため、粘性体のすべり現象を抑制することが可能となる。   FIG. 14 shows an example in which the surface of the outer wall steel plate 240 and the inner wall steel plate 242 is a striped steel plate 244 as another example in which the resistance element is formed of a protrusion extending in a planar shape. By using a striped steel plate 244 for the surface, it is possible to realize a surface that is bumpy but has good wear resistance and a large anti-skid effect in any direction. Since the contact area between the viscous body and the surface increases due to the unevenness of the surface and the viscous body moves, the resistance increases, so that the slip phenomenon of the viscous body can be suppressed.

図15には、抵抗要素が点在する凹部からなる例として、外壁鋼板250及び内壁鋼板252の表面に円錐形の凹部254を所定の間隔を開けて設けた例を示す。振動前、粘性体はその凹部にも充填されており、振動時に粘性体がすべり現象を発生させるのを抑制する効果がある。   FIG. 15 shows an example in which conical recesses 254 are provided at predetermined intervals on the surfaces of the outer wall steel plate 250 and the inner wall steel plate 252 as an example of recesses interspersed with resistance elements. Before the vibration, the viscous body is also filled in the concave portion, which has an effect of suppressing the slip of the viscous body during the vibration.

図16には、抵抗要素が線状に延在する凹部からなる例として、外壁鋼板260及び内壁鋼板262の表面に複数のくさび形の溝部264を互いに平行に設けた例を示す。振動前、粘性体はその凹部にも充填されており、振動時に粘性体がすべり現象を発生させるのを抑制する効果がある。   FIG. 16 shows an example in which a plurality of wedge-shaped groove portions 264 are provided in parallel to each other on the surfaces of the outer wall steel plate 260 and the inner wall steel plate 262 as an example in which the resistance element is formed of a recess extending linearly. Before the vibration, the viscous body is also filled in the concave portion, which has an effect of suppressing the slip of the viscous body during the vibration.

図17には、抵抗要素が面状に延在する凹部からなる例として、外壁鋼板270及び内壁鋼板272の表面にショットブラスト処理を施した例を示す。回転ブレードからショット(砥粒)を高速噴射し、ハンマリングやマシニング作用によって表面処理を施すショットブラスト法は、ショットの噴射量と機械の送りスピードを調整することで所望の表面粗さを得ることが可能である。この処理によって表面274に多数の凹部が形成されて、粘性体と表面274との接触面積が増大し、抵抗が大きくなって、振動時に粘性体がすべり現象を発生させるのを抑制する効果がある。   FIG. 17 shows an example in which the surface of the outer wall steel plate 270 and the inner wall steel plate 272 is shot blasted as an example in which the resistance element is formed of a concave portion extending in a planar shape. The shot blasting method, in which shots (abrasive grains) are sprayed from a rotating blade at high speed and surface treatment is performed by hammering or machining, the desired surface roughness can be obtained by adjusting the shot injection amount and the machine feed speed. Is possible. By this treatment, a large number of recesses are formed on the surface 274, the contact area between the viscous body and the surface 274 is increased, the resistance is increased, and the viscous body has the effect of suppressing the occurrence of a slip phenomenon during vibration. .

ここで、外壁鋼板及び内壁鋼板と同様に外筒、すなわち固定部及び内筒、すなわち可動部の表面が、図9及び図10、図12乃至図16のように形成されてもよい。   Here, similarly to the outer wall steel plate and the inner wall steel plate, the outer cylinder, that is, the fixed portion and the inner cylinder, that is, the surface of the movable portion may be formed as shown in FIGS. 9 and 10 and FIGS.

本発明による突起処理を施した粘性制震装置により、効率よく地震のエネルギーを吸収することが可能となるため、粘性体を利用した制震装置に利用されて、耐震設計建築物に幅広く適用されることができる。   The viscous vibration control device with projection processing according to the present invention makes it possible to efficiently absorb the energy of earthquakes. Therefore, it is used in vibration control devices using viscous materials and is widely applied to earthquake-resistant design buildings. Can.

従来例の粘性制震壁の構造を示す模式図である。It is a schematic diagram which shows the structure of the viscous damping wall of a prior art example. 従来例のシリンダ型減衰こまの模式図である。It is a schematic diagram of a conventional cylinder type damping top. 従来例の粘性制震装置の容器構造と粘性体の間のすべり現象を示す説明図である。It is explanatory drawing which shows the slip phenomenon between the container structure of the viscous damping device of a prior art example, and a viscous body. 本発明に係る突起を施された粘性制震壁の構成図である。It is a block diagram of the viscous damping wall where the protrusion concerning this invention was given. 本発明に係る突起処理を施された粘性制震壁の断面図である。It is sectional drawing of the viscous damping wall to which the protrusion process which concerns on this invention was given. 本発明に係る突起処理を施されたシリンダ型減衰こまの模式図である。It is a schematic diagram of the cylinder type damping top subjected to the projection processing according to the present invention. 本発明に係る突起処理を施されたシリンダ型減衰こまの断面図である。It is sectional drawing of the cylinder type attenuation | damping top subjected to the projection process which concerns on this invention. 本発明に係る突起処理を施されたシリンダ型減衰こまの第2の実施例の断面図である。It is sectional drawing of the 2nd Example of the cylinder type attenuation | damping top which performed the projection process which concerns on this invention. 本発明に係る抵抗要素が点在する突起物からなる例として、円錐形状の突起物を外壁鋼板及び内壁鋼板、又は外筒及び内筒の表面に所定の間隔を開けて設けた制震装置表面の模式図である。As an example consisting of projections interspersed with resistance elements according to the present invention, a conical projection is provided on the surface of the outer wall steel plate and the inner wall steel plate, or on the surface of the outer tube and the inner tube at a predetermined interval, and the surface of the vibration control device FIG. 本発明に係る抵抗要素が点在する突起物からなる例として、ボルトを外壁鋼板及び内壁鋼板、又は外筒及び内筒の表面に所定の間隔を開けて設けた制震装置表面の模式図である。As an example consisting of protrusions interspersed with resistance elements according to the present invention, a schematic diagram of the surface of a vibration control device in which bolts are provided at predetermined intervals on the surfaces of an outer wall steel plate and an inner wall steel plate, or an outer tube and an inner tube. is there. 本発明に係る突起処理を施された表面に、向かい合う突起物が、(a)相対するよう配置された場合の断面図、(b)互い違いに配置された場合の断面図、である。FIG. 4A is a cross-sectional view when protrusions facing each other are arranged on the surface subjected to the protrusion treatment according to the present invention, and FIG. 5B is a cross-sectional view when they are alternately arranged. 本発明に係る抵抗要素が線状に延在する突起部からなる例として、三角柱状の突起物を外壁鋼板及び内壁鋼板の表面に所定の間隔を開けて設けた制震装置表面の模式図である。As an example in which the resistance element according to the present invention is composed of protrusions extending linearly, a schematic diagram of the surface of a vibration control device in which triangular columnar protrusions are provided at predetermined intervals on the surfaces of an outer wall steel plate and an inner wall steel plate. is there. 本発明に係る抵抗要素が面状に延在する突起物からなる例として、外壁鋼板及び内壁鋼板の表面に目荒らし処理を施した制震装置表面の模式図である。It is the schematic diagram of the surface of the damping device which performed the roughening process to the surface of the outer wall steel plate and the inner wall steel plate as an example which the resistance element which concerns on this invention consists of a protrusion extended in planar shape. 本発明に係る抵抗要素が面状に延在する突起物からなる例として、外壁鋼板及び内壁鋼板の表面を縞鋼板とした制震装置表面の模式図である。It is a schematic diagram of the surface of the damping device which made the surface of an outer wall steel plate and an inner wall steel plate the striped steel plate as an example which consists of the protrusion which the resistance element which concerns on this invention extends in planar shape. 本発明に係る抵抗要素が点在する凹部からなる例として、外壁鋼板及び内壁鋼板の表面に円錐形の凹部を所定の間隔を開けて設けた制震装置表面の模式図である。It is a schematic diagram of the surface of the damping device which provided the conical recessed part in the surface of the outer wall steel plate and the inner wall steel plate with the predetermined space | interval as an example which consists of the recessed part in which the resistance element which concerns on this invention is scattered. 本発明に係る抵抗要素が線状に延在する凹部からなる例として、複数のくさび形の溝を外壁鋼板及び内壁鋼板の表面に平行に設けた制震装置表面の模式図である。FIG. 4 is a schematic diagram of the surface of a vibration control device in which a plurality of wedge-shaped grooves are provided in parallel to the surfaces of an outer wall steel plate and an inner wall steel plate as an example in which a resistance element according to the present invention is formed of a concave portion extending linearly. 本発明に係る抵抗要素が面状に延在する凹部からなる例として、外壁鋼板及び内壁鋼板の表面にショットブラスト処理を施した制震装置表面の模式図である。It is the schematic diagram of the surface of the damping device which performed the shot blast process on the surface of the outer wall steel plate and the inner wall steel plate as an example which the resistance element which concerns on this invention consists of a recessed part extended in planar shape.

符号の説明Explanation of symbols

2 粘性制震壁
4 粘性体
6 内壁鋼板
8 外壁鋼板
20 第1クレビス
22 第2クレビス
24,26 固定点
28 案内ねじ部
30 ボールベアリング
32 案内ナット
34 回転内筒
36 チャンバ
38 固定外筒
40 減衰用粘性体及び/又は粘弾性体
42,44 ボールベアリング
52 内壁鋼板
54 外壁鋼板
56 粘性体
68 粘性制震壁
70 外壁鋼板
72 内壁鋼板
74 突起
80 粘性制震壁
82 外壁鋼板
84 内壁鋼板
86 突起
100 シリンダ型減衰こま
102 突起
114 案内ねじ部
116 ボールベアリング
118 案内ナット
120 回転内筒
124 外筒
126 粘性体
128 シール
136 速度増幅部
138 伝達部
140 減衰部
150 シリンダ型減衰こま
152 外筒
154 内筒
156 粘性体
158 突起
160 シリンダ型減衰こま
161,163,165 突起
162 案内ナット
166 回転内筒
168 ベアリング
170 外壁鋼板
172 内壁鋼板
174 円錐形突起物
180 外壁鋼板
182 内壁鋼板
184,186 ボルト
190,200 外壁鋼板
192,202 内壁鋼板
194,204 突起物
220 外壁鋼板
222 内壁鋼板
224 線状突起部
230 外壁鋼板
232 内壁鋼板
234 目荒らし処理を施された表面
240 外壁鋼板
242 内壁鋼板
244 縞鋼板
250 外壁鋼板
252 内壁鋼板
254 円錐形凹部
260 外壁鋼板
262 内壁鋼板
264 くさび形溝部
270 外壁鋼板
272 内壁鋼板
274 ショットブラスト処理が施された表面
2 Viscous damping wall 4 Viscous body 6 Inner wall steel plate 8 Outer wall steel plate 20 First clevis 22 Second clevis 24, 26 Fixing point 28 Guide screw 30 Ball bearing 32 Guide nut 34 Rotating inner cylinder 36 Chamber 38 Fixed outer cylinder 40 For damping Viscous body and / or viscoelastic body 42, 44 Ball bearing 52 Inner wall steel plate 54 Outer wall steel plate 56 Viscous body 68 Viscous damping wall 70 Outer wall steel plate 72 Inner wall steel plate 74 Projection 80 Viscous damping wall 82 Outer wall steel plate 84 Inner wall steel plate 86 Projection 100 Cylinder Type damping top 102 Protrusion 114 Guide screw part 116 Ball bearing 118 Guide nut 120 Rotating inner cylinder 124 Outer cylinder 126 Viscous body 128 Seal 136 Speed amplifying part 138 Transmission part 140 Attenuating part 150 Cylinder type damping top 152 Outer cylinder 154 Inner cylinder 156 Viscosity Body 158 Protrusion 160 Cylinder type damping top 161, 16 , 165 Protrusion 162 Guide nut 166 Rotating inner cylinder 168 Bearing 170 Outer wall steel plate 172 Inner wall steel plate 174 Conical protrusion 180 Outer wall steel plate 182 Inner wall steel plates 184, 186 Bolt 190, 200 Outer wall steel plates 192, 202 Inner wall steel plates 194, 204 Protrusion 220 Outer wall Steel plate 222 Inner wall steel plate 224 Linear protrusion 230 Outer wall steel plate 232 Inner wall steel plate 234 Surface subjected to roughening treatment 240 Outer wall steel plate 242 Inner wall steel plate 244 Striped steel plate 250 Outer wall steel plate 252 Inner wall steel plate 254 Conical recess 260 Outer wall steel plate 262 Inner wall steel plate 264 Wedge-shaped groove 270 Outer wall steel plate 272 Inner wall steel plate 274 Shot-blasted surface

Claims (10)

構造体の一方に固定される固定部の内部に粘性体を介して収容されて構造体の他方と移動可能に接続される可動部を備える制震装置において、前記固定部の内面及び前記可動部の外面の少なくとも一方の領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする制震装置。   In a vibration control device including a movable part that is housed in a fixed part fixed to one of the structures via a viscous body and is movably connected to the other of the structure, the inner surface of the fixed part and the movable part A vibration control device comprising a resistance element in at least one region of the outer surface of the slab to prevent slippage between the viscous body and each surface. 上層階の水平構造部材に固定されてその垂下部が垂直下方向に延在して構造体の他方と移動可能に接続される内壁鋼板と、下層階の水平構造部材に固定され上方に開口し前記内壁鋼板が非接触状態に挿入される外壁鋼板と、前記外壁鋼板に注入される粘性体とから構成される制震装置において、前記内壁鋼板の表面と前記外壁鋼板の内面の少なくとも一方の領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする制震装置。   An inner wall steel plate that is fixed to the horizontal structural member of the upper floor and whose hanging part extends vertically downward and is movably connected to the other of the structure, and is fixed to the horizontal structural member of the lower floor and opens upward. In a vibration control device comprising an outer wall steel plate into which the inner wall steel plate is inserted in a non-contact state and a viscous body injected into the outer wall steel plate, at least one region of the surface of the inner wall steel plate and the inner surface of the outer wall steel plate A damping device characterized by including a resistance element to prevent slippage between the viscous body and each surface. 相対変位する2点間を連結するよう互いに接続される第1及び第2の連結部材と、前記第1の連結部材の接続側に形成された案内ネジ部と、該案内ネジ部上に第1の複数のボールベアリングを介して螺合される案内ナットと、該案内ナットを介して回転駆動されると共に、前記第1の連結部材に対し回転摺動可能に挿着される回転内筒と、前記回転内筒の一端部に形成され前記案内ナットを外装する閉塞端部と、前記案内ナットと該案内ナットを外装する前記閉塞端部との接面であって、前記第1及び第2の連結部材の長手軸に沿って互いに離間する2つの接面に設けられ、2点間の相対変位から発生する圧縮及び引張りの両荷重に対応して、前記案内ナットが前記案内ネジ部上を回転摺動可能に該案内ナットを軸支する第2及び第3の複数のボールベアリングと、前記第2の連結部材の接続側に設けられ、前記回転内筒を収容するチャンバを形成する固定外筒と、前記固定外筒のチャンバ内に充填され粘性流体として作用する粘弾性体あるいは粘性体とからなる減衰装置であって、前記回転内筒は閉塞端中空筒体から形成することで、前記粘弾性体あるいは粘性体は前記閉塞端中空筒体の外側面と前記固定外筒の内側面との間隙に充填されることで、前記粘弾性体あるいは粘性体は前記閉塞端中空筒体の外側面に接するよう構成される減衰装置において、前記閉塞中空筒体の外側面と前記固定外筒の内側面との少なくともいずれかの領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする制震装置。   First and second connecting members connected to each other so as to connect two relatively displaced points, a guide screw portion formed on a connection side of the first connecting member, and a first on the guide screw portion A guide nut that is screwed through the plurality of ball bearings, a rotary inner cylinder that is rotationally driven through the guide nut and is rotatably inserted into the first connecting member, A closed end formed on one end of the rotating inner cylinder and covering the guide nut; and a contact surface between the guide nut and the closed end covering the guide nut; and the first and second Provided on two contact surfaces separated from each other along the longitudinal axis of the connecting member, the guide nut rotates on the guide screw portion in response to both compression and tension loads generated by relative displacement between two points. Second and third pluralities that pivotally support the guide nut A ball bearing and a fixed outer cylinder that is provided on the connection side of the second connecting member and forms a chamber that houses the rotating inner cylinder, and a viscoelasticity that fills the chamber of the fixed outer cylinder and acts as a viscous fluid The rotating inner cylinder is formed of a closed end hollow cylinder, and the viscoelastic body or the viscous body is connected to an outer surface of the closed end hollow cylinder and the fixed outer body. In the damping device configured so that the viscoelastic body or the viscous body is in contact with the outer surface of the closed end hollow cylinder by filling the gap with the inner surface of the cylinder, the outer surface of the closed hollow cylinder A vibration control device characterized in that a resistance element is included in at least one region of the inner surface of the fixed outer cylinder to prevent slipping between the viscous material and each surface. 相対変位する2点間を連結するよう互いに接続される第1及び第2の連結部材と、前記第1の連結部材の接続側に形成された案内ネジ部と、該案内ネジ部上に第1の複数のボールベアリングを介して螺合される案内ナットと、該案内ナットを介して回転駆動されると共に、前記第1の連結部材に対し回転摺動可能に挿着される回転内筒と、前記回転内筒の一端部に形成され前記案内ナットを外装する閉塞端部と、前記案内ナットと該案内ナットを外装する前記閉塞端部との接面であって、前記第1及び第2の連結部材の長手軸に沿って互いに離間する2つの接面に設けられ、2点間の相対変位から発生する圧縮及び引張りの両荷重に対応して、前記案内ナットが前記案内ネジ部上を回転摺動可能に該案内ナットを軸支する第2及び第3の複数のボールベアリングと、前記第2の連結部材の接続側に設けられ、前記回転内筒を収容するチャンバを形成する固定外筒と、前記固定外筒のチャンバ内に充填され粘性流体として作用する粘弾性体あるいは粘性体とからなる減衰装置であって、前記回転内筒は開放端中空筒体から形成することで、前記粘弾性体あるいは粘性体は前記開放端中空筒体の外側面と前記固定外筒の内側面との間隙に充填されると共に前記開放端中空筒体の内側中空部にも充填されることで、前記粘弾性体あるいは粘性体は前記開放端中空筒体の外側面及び内側面の両方に接するよう構成される減衰装置において、前記中空筒体の外側面並びに内側面と前記固定外筒の内側面との少なくともいずれかの領域に抵抗要素を含んで粘性体と各面との滑りを防ぐことを特徴とする制震装置。   First and second connecting members connected to each other so as to connect two relatively displaced points, a guide screw portion formed on a connection side of the first connecting member, and a first on the guide screw portion A guide nut that is screwed through the plurality of ball bearings, a rotary inner cylinder that is rotationally driven through the guide nut and is rotatably inserted into the first connecting member, A closed end formed on one end of the rotating inner cylinder and covering the guide nut; and a contact surface between the guide nut and the closed end covering the guide nut; and the first and second Provided on two contact surfaces separated from each other along the longitudinal axis of the connecting member, the guide nut rotates on the guide screw portion in response to both compression and tension loads generated by relative displacement between two points. Second and third pluralities that pivotally support the guide nut A ball bearing and a fixed outer cylinder that is provided on the connection side of the second connecting member and forms a chamber that houses the rotating inner cylinder, and a viscoelasticity that fills the chamber of the fixed outer cylinder and acts as a viscous fluid A damping device comprising a body or a viscous body, wherein the rotating inner cylinder is formed of an open end hollow cylinder, and the viscoelastic body or the viscous body is connected to an outer surface of the open end hollow cylinder and the fixed outer The viscoelastic body or the viscous body is filled in the gap between the inner surface of the cylinder and the inner hollow portion of the open-end hollow cylinder so that the viscoelastic body or the viscous body is the outer surface and the inner surface of the open-end hollow cylinder. In the damping device configured to be in contact with both of the viscous body and each surface, a resistance element is included in at least one region of the outer surface and the inner surface of the hollow cylinder and the inner surface of the fixed outer cylinder. Features to prevent slipping Vibration control device that. 抵抗要素は点在する突起部からなることを特徴とする請求項1乃至4いずれか一つに記載の制震装置。   5. The vibration control device according to claim 1, wherein the resistance element is formed of interspersed protrusions. 6. 抵抗要素は可動部の移動方向と平行でない方向に線状に延在する突起部からなることを特徴とする請求項1乃至4いずれか一つに記載の制震装置。   5. The vibration control device according to claim 1, wherein the resistance element includes a protrusion extending linearly in a direction not parallel to the moving direction of the movable portion. 抵抗要素は面状に延在する突起部からなることを特徴とする請求項1乃至4いずれか一つに記載の制震装置。   5. The vibration control device according to claim 1, wherein the resistance element includes a projecting portion extending in a planar shape. 抵抗要素は点在する凹部からなることを特徴とする請求項1乃至4いずれか一つに記載の制震装置。   5. The vibration control device according to claim 1, wherein the resistance element is formed of scattered concave portions. 抵抗要素は可動部の移動方向と平行でない方向に線状に延在する凹部からなることを特徴とする請求項1乃至4いずれか一つに記載の制震装置。   5. The vibration control device according to claim 1, wherein the resistance element includes a concave portion extending linearly in a direction not parallel to the moving direction of the movable portion. 抵抗要素は面状に延在する凹部からなることを特徴とする請求項1乃至4いずれか一つに記載の制震装置。   5. The vibration control device according to claim 1, wherein the resistance element includes a concave portion extending in a planar shape.
JP2004149823A 2004-05-19 2004-05-19 Seismic response control device Pending JP2005331035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149823A JP2005331035A (en) 2004-05-19 2004-05-19 Seismic response control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149823A JP2005331035A (en) 2004-05-19 2004-05-19 Seismic response control device

Publications (1)

Publication Number Publication Date
JP2005331035A true JP2005331035A (en) 2005-12-02

Family

ID=35485838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149823A Pending JP2005331035A (en) 2004-05-19 2004-05-19 Seismic response control device

Country Status (1)

Country Link
JP (1) JP2005331035A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261099A (en) * 2007-04-10 2008-10-30 Shimizu Corp Girder connection device
JP2011106515A (en) * 2009-11-13 2011-06-02 Aseismic Devices Co Ltd Base isolation/vibration control mechanism
JP2014029110A (en) * 2012-07-06 2014-02-13 Nippon Steel & Sumikin Engineering Co Ltd Seismic control device, installation method for the same, and waveform plate
CN109630592A (en) * 2019-01-31 2019-04-16 南京信息工程大学 A kind of control device inhibiting vibration
JP2021017901A (en) * 2019-07-17 2021-02-15 住友ゴム工業株式会社 Vibration control damper
CN114215409A (en) * 2021-09-10 2022-03-22 重庆大学 Viscous damping wall shock mitigation system with butterfly plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261099A (en) * 2007-04-10 2008-10-30 Shimizu Corp Girder connection device
JP2011106515A (en) * 2009-11-13 2011-06-02 Aseismic Devices Co Ltd Base isolation/vibration control mechanism
JP2014029110A (en) * 2012-07-06 2014-02-13 Nippon Steel & Sumikin Engineering Co Ltd Seismic control device, installation method for the same, and waveform plate
CN109630592A (en) * 2019-01-31 2019-04-16 南京信息工程大学 A kind of control device inhibiting vibration
JP2021017901A (en) * 2019-07-17 2021-02-15 住友ゴム工業株式会社 Vibration control damper
JP7322564B2 (en) 2019-07-17 2023-08-08 住友ゴム工業株式会社 Vibration control damper
CN114215409A (en) * 2021-09-10 2022-03-22 重庆大学 Viscous damping wall shock mitigation system with butterfly plate

Similar Documents

Publication Publication Date Title
US7174680B2 (en) Bearing brace apparatus
KR100927737B1 (en) Seismic strengthening composite system and seismic strengthening structure of building structure
NZ206752A (en) Seismic shock absorber-viscoelastic discs and extrudable viscous material compressible within at least one cylinder
JP5567094B2 (en) Long-period building
Li et al. A buffered impact damper for multi‐degree‐of‐freedom structural control
JP2005331035A (en) Seismic response control device
JP2007138678A (en) Attenuation device
JP4212610B2 (en) Seismic isolation structure
HU190300B (en) Device for realizing progressive amortization serving for decreasing the seizmic stress of constructions
JPH1136657A (en) Base isolation device
JP3843174B2 (en) Seismic isolation structure
KR102069168B1 (en) Dual damping earthquake-proof structure using high damping rubber and steel
JP2001336572A (en) Damper and building using the same
Lan et al. An experimental study on seismic responses of multifunctional vibration‐absorption reinforced concrete megaframe structures
JP5918282B2 (en) Long-period building
KR101011162B1 (en) The structure aseismic reinforcement structure and the method of construction for which aseismic reinforcement equipment and this were used
JPH11200659A (en) Base isolation structure
JP2008121401A (en) Soil improvement-type vibration damping device
JP2008121400A (en) Foundation-pile vibration-damping device
JP5727690B2 (en) Long-period building
CN112761270A (en) Vertical inertial container shock insulation support
JP2017043988A (en) Vibration control building
KR200467787Y1 (en) The friction damper for the earthquake-proof
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
Mazza et al. Base-Isolation techniques for the seismic protection of RC Framed Structures subjected to near-fault ground motions