JP6854116B2 - Damping wall - Google Patents

Damping wall Download PDF

Info

Publication number
JP6854116B2
JP6854116B2 JP2016236465A JP2016236465A JP6854116B2 JP 6854116 B2 JP6854116 B2 JP 6854116B2 JP 2016236465 A JP2016236465 A JP 2016236465A JP 2016236465 A JP2016236465 A JP 2016236465A JP 6854116 B2 JP6854116 B2 JP 6854116B2
Authority
JP
Japan
Prior art keywords
wall
piezoelectric element
plate
wall body
element member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236465A
Other languages
Japanese (ja)
Other versions
JP2018091077A (en
Inventor
滋樹 中南
滋樹 中南
英範 木田
英範 木田
田中 久也
久也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2016236465A priority Critical patent/JP6854116B2/en
Publication of JP2018091077A publication Critical patent/JP2018091077A/en
Application granted granted Critical
Publication of JP6854116B2 publication Critical patent/JP6854116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直動変位に対応して反力を発生する制振壁に係る。特に、地震の態様の変化に対応できる制振壁に関する。 The present invention relates to a damping wall that generates a reaction force in response to a linear displacement. In particular, it relates to a damping wall that can respond to changes in the mode of an earthquake.

地震が発生すると、建物、構造物等の対象構造物が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、対象構造物が損傷をうけたり、対象構造物の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から対象構造物へ伝達する振動エネルギーを減少させて振動を免震する免震装置、または対象構造物が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振装置として各種の構造の装置が試されている。
構造とその構造を構成する要素の諸元を適正に設定することにより、所望の免震性能や制振性能を発揮できる。
例えば、粘性ダンパーがその目的で用いられる。
When an earthquake occurs, target structures such as buildings and structures are shaken horizontally and vertically.
If the acceleration level due to an earthquake or the like is large, the target structure may be damaged, the contents of the target structure may be accelerated more than expected, or the target structure may be displaced more than expected.
Therefore, a seismic isolation device that reduces the vibration energy transmitted from the foundation to the target structure to isolate the vibration, or absorbs the vibration energy when the target structure vibrates and reduces the vibration level to suppress the vibration. Devices with various structures are being tested as vibration isolation devices.
By properly setting the structure and the specifications of the elements that make up the structure, the desired seismic isolation performance and vibration damping performance can be exhibited.
For example, viscous dampers are used for that purpose.

粘性ダンパーとして、オイルダンパーや粘性材の剪断抵抗を使用した装置が知られている。後者の事例として、壁型の制振壁がある。制振壁は主に外壁、内壁、粘性材で構成される。外壁は下層に、内壁は上層にそれぞれフランジ接合され、粘性材が外壁に充填される。
建造物に層間変形が生じると、粘性材の剪断抵抗により建造物の振動を抑制する。振動エネルギーは熱エネルギーに変換されるため、粘性材の温度が上昇する。粘性材は温度依存性、振動数依存性を有しており、同じ振幅幅に対して温度が高くなるほど、振動数が低くなるほそ抵抗力が小さくなる特性を持っている。
近年、長周期地震動の発生が懸念されており、これらの粘性ダンパーが長時間振動により揺すられると、温度に伴う抵抗力の低下により、十分な振動抑制効果が得られないという不具合があった。
また、長周期地震動は長い周期成分を多く含む波長のため(低振動数)、大きな抵抗力が得られないという不具合があった。
As a viscous damper, a device using an oil damper or a shear resistance of a viscous material is known. An example of the latter is a wall-type damping wall. The damping wall is mainly composed of an outer wall, an inner wall, and a viscous material. The outer wall is flanged to the lower layer and the inner wall is flanged to the upper layer, and the outer wall is filled with a viscous material.
When the structure is deformed between layers, the vibration of the building is suppressed by the shear resistance of the viscous material. Since the vibration energy is converted into heat energy, the temperature of the viscous material rises. The viscous material has temperature dependence and frequency dependence, and has the characteristic that the higher the temperature for the same amplitude width, the lower the frequency and the lower resistance.
In recent years, there has been concern about the occurrence of long-period ground motion, and if these viscous dampers are shaken by vibration for a long period of time, there is a problem that a sufficient vibration suppression effect cannot be obtained due to a decrease in resistance due to temperature.
In addition, since long-period ground motion has a wavelength containing many long-period components (low frequency), there is a problem that a large resistance cannot be obtained.

特許文献1、特許文献2には、粘性制振壁が開示される。 Patent Document 1 and Patent Document 2 disclose a viscous damping wall.

本発明は以上に述べた問題点に鑑み案出されたもので、地震動や建造物に応じて適切な振動抑制効果が得られる制振壁を提供しようとする。 The present invention has been devised in view of the above-mentioned problems, and an object of the present invention is to provide a vibration damping wall capable of obtaining an appropriate vibration suppression effect according to a seismic motion or a building.

上記目的を達成するため、本発明に係る構造物の上階構造と下階構造との間に設けられる制振壁を、構造物の上階構造と下階構造との間に設けられる制振壁であって、下階構造に固定され貯留空間を形成する壁体である外壁体と、上階構造に固定され前記貯留空間に下部を入れる壁体である内壁体と、前記貯留空間に貯留される粘性体と、を備え前記内壁体の少なくとも一部が前記粘性体に浸かっている、ものとした。 In order to achieve the above object, a vibration damping wall provided between the upper floor structure and the lower floor structure of the structure according to the present invention is provided between the upper floor structure and the lower floor structure of the structure. An outer wall body that is a wall and is fixed to the lower floor structure to form a storage space, an inner wall body that is fixed to the upper floor structure and puts a lower part in the storage space, and storage in the storage space. It is assumed that at least a part of the inner wall body is immersed in the viscous body.

上記本発明の構成により、外壁体は、下階構造に固定され貯留空間を形成する壁体である。内壁体は、上階構造に固定され前記貯留空間に下部をいれる壁体である。粘性体は、前記貯留空間に貯留される。前記内壁体の少なくとも一部が前記粘性体に浸かっている、
その結果、構造物が揺れると上部構造と下部構造が相対移動して粘性体に発生した粘性抵抗が外壁体と内壁体との間に作用し、構造物の揺れを抑制できる。
According to the configuration of the present invention, the outer wall body is a wall body fixed to the lower floor structure to form a storage space. The inner wall body is a wall body fixed to the upper floor structure and the lower part is inserted into the storage space. The viscous body is stored in the storage space. At least a part of the inner wall body is immersed in the viscous body,
As a result, when the structure shakes, the upper structure and the lower structure move relative to each other, and the viscous resistance generated in the viscous body acts between the outer wall body and the inner wall body, and the shaking of the structure can be suppressed.

以下に、本発明の実施形態に係る制振壁を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 The vibration damping wall according to the embodiment of the present invention will be described below. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態に係る制振壁は、前記貯留空間に位置して前記粘性体に浸かり前記粘性体を冷却できる冷却板と、を備える。
上記本発明に係る実施形態の構成により、冷却板は前記貯留空間に位置して前記粘性体に浸かり前記粘性体を冷却できる。
その結果、粘性体の温度上昇を抑制して、粘性体の粘性抵抗の低下を抑制できる。
The vibration damping wall according to the embodiment of the present invention includes a cooling plate located in the storage space and capable of immersing the viscous body and cooling the viscous body.
According to the configuration of the embodiment according to the present invention, the cooling plate can be located in the storage space and immersed in the viscous body to cool the viscous body.
As a result, the temperature rise of the viscous body can be suppressed and the decrease of the viscous resistance of the viscous body can be suppressed.

本発明の実施形態に係る制振壁は、上部構造と前記内壁体との間に設けられる積層ゴム部材と第一電気回路とを有する第一制振機構と、を備え、前記積層ゴム部材は複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と板状の輪郭を形成し該輪郭の中に配列される複数の圧電素子を持つ部材である第一圧電素子部材とが上下方向に積層される部材であり、前記第一圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記第一圧電素子部材の複数の前記圧電素子の一対の端子間に電位差を生じ、前記第一電気回路が前記第一圧電素子部材の複数の前記圧電素子の一対の端子に電気的に接続される。
上記本発明に係る実施形態の構成により、第一制振機構の積層ゴム部材は、上部構造と前記内壁体との間に設けられる積層ゴム部材と第一電気回路とを有する。前記積層ゴム部材は複数の金属板部材と複数の弾性板部材と第一圧電素子部材とが上下方向に積層される部材である。金属板部材は、金属製の板状部材である。弾性板部材は、弾性体製の板状部材である。第一圧電素子部材は、板状の輪郭を形成し該輪郭の中に配列される複数の圧電素子を持つ部材である。前記第一圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記第一圧電素子部材の複数の前記圧電素子の一対の端子間に電位差を生じる。前記第一電気回路が前記第一圧電素子部材の複数の前記圧電素子の一対の端子に電気的に接続される。
その結果、地震等で構造物が揺れて上階構造と下階構造とに相対移動が生じると、前記第一圧電素子部材に水平方向の剪断変形が生じ、複数の前記圧電素子の一対の端子間に電位差が発生し、電流が第一電気回路に流がれ、構造物の揺れを抑制できる。
The vibration damping wall according to the embodiment of the present invention includes a first vibration damping mechanism having a laminated rubber member provided between the upper structure and the inner wall body and a first electric circuit, and the laminated rubber member is provided. A plurality of metal plate members which are a plurality of metal plate-shaped members and a plurality of elastic plate members which are a plurality of elastic plate-shaped members and a plurality of elastic plate members which form a plate-shaped contour and are arranged in the contour. A member in which a first piezoelectric element member, which is a member having a piezoelectric element, is laminated in the vertical direction, and a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the first piezoelectric element member. Then, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member, and the first electric circuit is electrically connected to the pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member. Will be done.
According to the configuration of the embodiment according to the present invention, the laminated rubber member of the first vibration damping mechanism has a laminated rubber member and a first electric circuit provided between the superstructure and the inner wall body. The laminated rubber member is a member in which a plurality of metal plate members, a plurality of elastic plate members, and a first piezoelectric element member are laminated in the vertical direction. The metal plate member is a metal plate-shaped member. The elastic plate member is a plate-shaped member made of an elastic body. The first piezoelectric element member is a member having a plurality of piezoelectric elements arranged in the contour forming a plate-shaped contour. When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the first piezoelectric element member, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member. The first electric circuit is electrically connected to a pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member.
As a result, when the structure shakes due to an earthquake or the like and relative movement occurs between the upper floor structure and the lower floor structure, the first piezoelectric element member undergoes shear deformation in the horizontal direction, and a pair of terminals of the plurality of piezoelectric elements. A potential difference is generated between them, and a current flows through the first electric circuit, so that the shaking of the structure can be suppressed.

本発明の実施形態に係る制振壁は、第一壁体に支持されるアクチエータと該アクチエータに水平方向に押されて第二壁体の前記第一壁体に対向する面に押付けられて摺動可能な摺動部材とを有する第二制振機構と、を備え、前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、前記第二壁体が前記外壁体または前記内壁体のうちの他方である。
上記本発明に係る実施形態の構成により、第二制振機構は、アクチエータと摺動部材とを有する。アクチエータは、第一壁体に支持される。摺動部材は、該アクチエータに水平方向に押されて第二壁体の前記第一壁体に対向する面に押付けられて摺動可能な部材である。ここで、前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、前記第二壁体が前記外壁体または前記内壁体のうちの他方である。
その結果、地震等で構造部が揺れて上階構造と下階構造が相対移動すると、摺動部材が第二壁体に押付けられて摺動するので、揺れを抑制できる。
The vibration damping wall according to the embodiment of the present invention is pressed against the actuator supported by the first wall body and the surface of the second wall body facing the first wall body by being pushed horizontally by the actuator and sliding. A second vibration damping mechanism having a movable sliding member is provided, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the outer wall body or the outer wall body. It is the other of the inner wall bodies.
According to the configuration of the embodiment according to the present invention, the second vibration damping mechanism has an actuator and a sliding member. The actuator is supported by the first wall body. The sliding member is a member that is pushed horizontally by the actuator and pressed against the surface of the second wall body facing the first wall body so as to be slidable. Here, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
As a result, when the structural portion shakes due to an earthquake or the like and the upper floor structure and the lower floor structure move relative to each other, the sliding member is pressed against the second wall body and slides, so that the shaking can be suppressed.

本発明の実施形態に係る制振壁は、前記第二制振機構が第二電気回路を有し、前記アクチエータが前記第一部材に固定される複数の圧電素子を含む板状の輪郭を形成する第二圧電素子部材を持ち、前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加するときに前記第二圧電素子部材の複数の圧電素子は前記摺動部材が前記第二壁体に接近する向きに伸長しまたは離間する向きに縮小する、前記第二電気回路が前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加できる。
上記本発明に係る実施形態の構成により、前記アクチエータは、第二圧電素子部材を持つ。第二圧電素子部材は、前記第一部材に固定される複数の圧電素子を含む板状の輪郭を形成する部材である。前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加するときに前記第二圧電素子部材の複数の圧電素子は前記摺動部材が前記第二壁体に接近する向きに伸長しまたは離間する向きに縮小する。前記第二電気回路が前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加できる。
その結果、地震等で構造部が揺れて上階構造と下階構造が相対移動すると、摺動部材が第二壁体に押付けられて摺動するので、揺れを抑制できる。
The vibration damping wall according to the embodiment of the present invention forms a plate-like contour including a plurality of piezoelectric elements in which the second vibration damping mechanism has a second electric circuit and the actuator is fixed to the first member. When a voltage is applied to a pair of terminals of a plurality of piezoelectric elements of the second piezoelectric element member, the sliding member of the plurality of piezoelectric elements of the second piezoelectric element member is the first. The second electric circuit, which extends or contracts in the direction of approaching or separating from the two-wall body, can apply a voltage to a pair of terminals of the plurality of piezoelectric elements of the second piezoelectric element member.
According to the configuration of the embodiment according to the present invention, the actuator has a second piezoelectric element member. The second piezoelectric element member is a member that forms a plate-like contour including a plurality of piezoelectric elements fixed to the first member. When a voltage is applied to a pair of terminals of the plurality of piezoelectric elements of the second piezoelectric element member, the plurality of piezoelectric elements of the second piezoelectric element member extend in a direction in which the sliding member approaches the second wall body. Shrink in the direction of separation or separation. The second electric circuit can apply a voltage to a pair of terminals of a plurality of piezoelectric elements of the second piezoelectric element member.
As a result, when the structural portion shakes due to an earthquake or the like and the upper floor structure and the lower floor structure move relative to each other, the sliding member is pressed against the second wall body and slides, so that the shaking can be suppressed.

本発明の実施形態に係る制振壁は、前記第一壁体の前記第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する第三圧電素子部材と前記圧電素子部材に固定される板状の部材である第三金属板部材と第三電気回路とを有する第三制振機構と、を備え、前記第三金属板部材の面が前記粘性体に接触し、前記第三圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第三圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。前記第三電気回路が前記第三圧電素子部材の複数の圧電素子の一対の端子に電気的に接続され、前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、前記第二壁体が前記外壁体または前記内壁体のうちの他方である。
上記本発明に係る実施形態の構成により、第三制振機構は、第三圧電素子部材と第三金属板部材と第三電気回路とを有する。第三圧電素子部材は、前記第一壁体の前記第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する部材である。第三金属板部材は、前記圧電素子部材に固定される板状の部材である。前記第三金属板部材の面が前記粘性体に接触する。前記第三圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第三圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。
前記第三電気回路が前記第三圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される。ここで、前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、前記第二壁体が前記外壁体または前記内壁体のうちの他方である。
その結果、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、外壁体と内壁体とが相対変位し、粘性体の動きにより第三金属板部材を介して第三圧電素子部材に剪断変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第三電気回路に流れて、揺れを抑制できる。
The vibration damping wall according to the embodiment of the present invention comprises a plurality of piezoelectric elements supported on the side surface of the first wall body facing the second wall body to form a plate-like contour and arranged in the contour. The third metal plate member includes a third piezoelectric element member having a third piezoelectric element member, a third metal plate member which is a plate-shaped member fixed to the piezoelectric element member, and a third vibration damping mechanism having a third electric circuit. When the surface of the third piezoelectric element member comes into contact with the viscous body and shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the third piezoelectric element member, the third piezoelectric element member A potential difference is generated between a pair of terminals of a plurality of piezoelectric elements. The third electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the third piezoelectric element member, and the first wall body is one of the outer wall body or the inner wall body, and the first wall body is the first. The two-wall body is the other of the outer wall body and the inner wall body.
According to the configuration of the embodiment according to the present invention, the third vibration damping mechanism includes a third piezoelectric element member, a third metal plate member, and a third electric circuit. The third piezoelectric element member is a member having a plurality of piezoelectric elements supported on the side surface of the first wall body facing the second wall body to form a plate-like contour and arranged in the contour. The third metal plate member is a plate-shaped member fixed to the piezoelectric element member. The surface of the third metal plate member comes into contact with the viscous body. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the third piezoelectric element member, between the pair of terminals of the plurality of piezoelectric elements of the third piezoelectric element member. Causes a potential difference.
The third electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the third piezoelectric element member. Here, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
As a result, when the building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the outer wall body and the inner wall body are relatively displaced, and the movement of the viscous body causes the third metal plate member to be displaced. A shear displacement occurs in the third piezoelectric element member, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements, and a current flows through the third electric circuit, so that shaking can be suppressed.

また、第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する第四圧電素子部材と前記圧電素子部材に固定される板状の部材である第四金属板部材と第四電気回路とを有する第三制振機構と、を備え、前記第四金属板部材の面が前記粘性体に接触し、前記第四圧電素子部材の板状の輪郭の上面と下面とが離間または接近する様に伸縮変形が発生するときに前記第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、前記第四電気回路が前記第四圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される。前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、前記第二壁体が前記外壁体または前記内壁体のうちの他方である。
上記本発明に係る実施形態の構成により、第四制振機構は、第四圧電素子部材と第四金属板部材と第四電気回路とを有する。第四圧電素子部材は、第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する部材である。第四金属板部材は、前記圧電素子部材に固定される板状の部材である。前記第四金属板部材の面が前記粘性体に接触する。前記第四圧電素子部材の複数の圧電素子が板状の前記輪郭の中に配列される。前記第四圧電素子部材の板状の輪郭の上面と下面とが離間または接近する様に伸縮変形が発生するときに前記第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる、前記第四電気回路が前記第四圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される。ここで、前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
その結果、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、外壁体と内壁体とが相対変位し、粘性体の動きにより第四金属板部材を介して第三圧電素子部材に伸縮変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第三電気回路に流れて、揺れを抑制できる。
Further, the fourth piezoelectric element member having a plurality of piezoelectric elements arranged on the side surface of the first wall body facing the second wall surface to form a plate-like contour and arranged in the contour, and the piezoelectric element member. A fourth metal plate member which is a plate-shaped member to be fixed and a third vibration damping mechanism having a fourth electric circuit are provided, and the surface of the fourth metal plate member comes into contact with the viscous body, and the first (Iv) When expansion and contraction deformation occurs so that the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member are separated or approached, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member. The fourth electric circuit is electrically connected to a pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member. The first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
According to the configuration of the embodiment according to the present invention, the fourth vibration damping mechanism includes a fourth piezoelectric element member, a fourth metal plate member, and a fourth electric circuit. The fourth piezoelectric element member is a member having a plurality of piezoelectric elements supported on a side surface of the first wall body facing the second wall body to form a plate-like contour and arranged in the contour. The fourth metal plate member is a plate-shaped member fixed to the piezoelectric element member. The surface of the fourth metal plate member comes into contact with the viscous body. A plurality of piezoelectric elements of the fourth piezoelectric element member are arranged in the plate-shaped contour. When expansion and contraction deformation occurs so that the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member are separated or approached, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member. , The fourth electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the fourth piezoelectric element member. Here, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
As a result, when the building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the outer wall body and the inner wall body are relatively displaced, and the movement of the viscous body causes the fourth metal plate member to be displaced. The third piezoelectric element member undergoes expansion and contraction displacement, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements, and a current flows through the third electric circuit to suppress shaking.

また、本発明の実施形態に係る制振壁は、前記圧電素子の一対の端子の間に生じた電位差により流れる電流が前記冷却板を冷却するエネルギーとして用いられる。
上記本発明に係る実施形態の構成により、前記圧電素子の一対の端子の間に生じた電位差により流れる電流が前記冷却板を冷却するエネルギーとして用いられる。
その結果、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、揺れを抑制する粘性体の温度上昇を抑制して粘性体の粘性抵抗の低下を抑制できる。
Further, in the vibration damping wall according to the embodiment of the present invention, the current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element is used as energy for cooling the cooling plate.
According to the configuration of the embodiment according to the present invention, the current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element is used as energy for cooling the cooling plate.
As a result, when a building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the temperature rise of the viscous body that suppresses the shaking is suppressed and the decrease in the viscous resistance of the viscous body is suppressed. it can.

また、本発明の実施形態に係る制振壁は、前記冷却板が前記第三金属板部材または前記第四金属板部材に固定される。
上記本発明に係る実施形態の構成により、前記冷却板が前記第三金属板部材または前記第四金属板部材に固定される。
その結果、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、揺れを抑制する粘性体の温度上昇を抑制して粘性体の粘性抵抗の低下を抑制できる。
Further, in the vibration damping wall according to the embodiment of the present invention, the cooling plate is fixed to the third metal plate member or the fourth metal plate member.
According to the configuration of the embodiment according to the present invention, the cooling plate is fixed to the third metal plate member or the fourth metal plate member.
As a result, when a building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the temperature rise of the viscous body that suppresses the shaking is suppressed and the decrease in the viscous resistance of the viscous body is suppressed. it can.

また、本発明の実施形態に係る制振壁は、前記外壁体と前記内壁体とに挟まれる第五制振機構とを備え、前記第五制振機構が前記外壁体と前記内壁体とに挟まれる板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を持つ第五圧電素子部材と第五電気回路とを有し、前記第五圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、前記第五電気回路が前記第五圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される。
上記本発明に係る実施形態の構成により、前記第五制振機構が第五圧電素子部材と第五電気回路とを有する。第五圧電素子部材は、前記外壁体と前記内壁体とに挟まれる板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する。前記第五圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。前記第五電気回路が前記第五圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される。
その結果、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、外壁体と内壁体とが相対変位し、第五圧電素子部材に剪断変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第三電気回路に流れて、揺れを抑制できる。
Further, the vibration damping wall according to the embodiment of the present invention includes a fifth vibration damping mechanism sandwiched between the outer wall body and the inner wall body, and the fifth vibration damping mechanism is formed between the outer wall body and the inner wall body. It has a fifth piezoelectric element member having a plurality of piezoelectric elements arranged in the sandwiched plate-shaped contour and a fifth electric circuit, and the plate-shaped contour of the fifth piezoelectric element member. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fifth piezoelectric element member, and the fifth electric circuit causes the fifth electric circuit. (V) It is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the piezoelectric element member.
According to the configuration of the embodiment according to the present invention, the fifth vibration damping mechanism has a fifth piezoelectric element member and a fifth electric circuit. The fifth piezoelectric element member has a plurality of piezoelectric elements that form a plate-like contour sandwiched between the outer wall body and the inner wall body and are arranged in the contour. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the fifth piezoelectric element member, between the pair of terminals of the plurality of piezoelectric elements of the fifth piezoelectric element member. Causes a potential difference. The fifth electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the fifth piezoelectric element member.
As a result, when the building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the outer wall body and the inner wall body are relatively displaced, and the fifth piezoelectric element member is subjected to shear displacement. , A potential difference is generated between the pair of terminals of the plurality of piezoelectric elements, and a current flows through the third electric circuit, so that shaking can be suppressed.

以上説明したように、本発明に係る制振壁は、その構成により、以下の効果を有する。
上階構造に固定される内壁体の下部を下階構造に固定され外壁体が形成する貯留空間に入れて、前記内壁体の少なくとも一部が貯留空間に貯留される前記粘性体に浸かっている様にしたので、構造物が揺れると上部構造と下部構造が相対移動して粘性体に発生した粘性抵抗が外壁体と内壁体との間に作用し、構造物の揺れを抑制できる。
また、前記貯留空間に位置して前記粘性体に浸かる冷却板が前記粘性体を冷却する様にしたので、粘性体の温度上昇を抑制して、粘性体の粘性抵抗の低下を抑制できる。
また、板状の輪郭を形成し輪郭の中に配列される複数の圧電素子を有する第一圧電素子部材と複数の金属製部材と複数の弾性板部材とを上下方向に積層される積層ゴム部材を上部構造と内壁体との間に設け、前記第一圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記第一圧電素子部材の複数の前記圧電素子の一対の端子間に電位差を生じ、第一電気回路が複数の前記圧電素子の一対の端子に電気的に接続される様にしたので、地震等で構造物が揺れて上階構造と下階構造とに相対移動が生じると、前記第一圧電素子部材に水平方向の剪断変形が生じ、複数の前記圧電素子の一対の端子間に電位差が発生し、電流が第一電気回路に流がれ、構造物の揺れを抑制できる。
また、前記アクチエータが第一壁体に支持されて前記摺動部材を水平方向に押して第二壁体の前記第一壁体に対向する面に押付けられて摺動する様にしたので、地震等で構造部が揺れて上階構造と下階構造が相対移動すると、摺動部材が第二壁体に押付けられて摺動するので、揺れを抑制できる。
また、一対の端子に印加される前記前記圧電素子が第一壁体に支持され前記摺動部材を水平方向に押して第二壁体の前記第一壁体に対向する面に押付けて摺動する様にしたので、地震等で構造部が揺れて上階構造と下階構造が相対移動すると、摺動部材が第二壁体に押付けられて摺動するので、揺れを抑制できる。
また、第一壁体の側面に支持され板状の輪郭の中に複数の圧電素子が第三金属板部材を固定し、前記第三圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第三圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、第三電気回路が前記第三圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される様にしたので、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、外壁体と内壁体とが相対変位し、粘性体の動きにより第三金属板部材を介して第三圧電素子部材に剪断変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第三電気回路に流れて、揺れを抑制できる。
また、第一壁体の側面に支持され板状の輪郭の中に配列される複数の圧電素子が第四金属板部材を固定し、前記第四圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、第四電気回路が前記第四圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される様にしたので、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、外壁体と内壁体とが相対変位し、粘性体の動きにより第四金属板部材を介して第四圧電素子部材に伸縮変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第四電気回路に流れて、揺れを抑制できる。
また、前記圧電素子の一対の端子の間に生じた電位差により流れる電流が前記冷却板を冷却するエネルギーとして用いられる様にしたので、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、揺れを抑制する粘性体の温度上昇を抑制して粘性体の粘性抵抗の低下を抑制できる。
また、前記冷却板が前記第三金属板部材または前記第四金属板部材に固定される様にしたので、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、揺れを抑制する粘性体の温度上昇を抑制して粘性体の粘性抵抗の低下を抑制できる。
また、板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する第五圧電素子部材を外壁材と内壁材とに挟み、前記第五圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、第五電気回路を複数の圧電素子の一対の端子間に電気的に繋ぐ様にしたので、地震等で建造物が揺れて上階構造と下階構造との間に相対変位が生ずると、外壁体と内壁体とが相対変位し、第五圧電素子部材に剪断変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第五電気回路に流れて、揺れを抑制できる。
従って、簡易な構造により動特性または振動特性を調整できる制振壁を提供できる。
As described above, the vibration damping wall according to the present invention has the following effects depending on its configuration.
The lower part of the inner wall body fixed to the upper floor structure is put into the storage space formed by the outer wall body fixed to the lower floor structure, and at least a part of the inner wall body is immersed in the viscous body stored in the storage space. Therefore, when the structure shakes, the upper structure and the lower structure move relative to each other, and the viscous resistance generated in the viscous body acts between the outer wall body and the inner wall body, and the shaking of the structure can be suppressed.
Further, since the cooling plate located in the storage space and immersed in the viscous body cools the viscous body, the temperature rise of the viscous body can be suppressed and the decrease in the viscous resistance of the viscous body can be suppressed.
Further, a laminated rubber member in which a first piezoelectric element member having a plurality of piezoelectric elements arranged in a plate-like contour and a plurality of piezoelectric elements, a plurality of metal members, and a plurality of elastic plate members are laminated in the vertical direction. Is provided between the upper structure and the inner wall body, and when a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-like contour of the first piezoelectric element member, a plurality of the piezoelectrics of the first piezoelectric element member are generated. A potential difference is generated between the pair of terminals of the element so that the first electric circuit is electrically connected to the pair of terminals of the plurality of piezoelectric elements. When the relative movement with respect to the floor structure occurs, the first piezoelectric element member undergoes shear deformation in the horizontal direction, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements, and a current flows through the first electric circuit. Therefore, the shaking of the structure can be suppressed.
Further, since the actuator is supported by the first wall body and the sliding member is pushed in the horizontal direction so as to be pressed against the surface of the second wall body facing the first wall body and slide, an earthquake or the like occurs. When the structural portion shakes and the upper floor structure and the lower floor structure move relative to each other, the sliding member is pressed against the second wall body and slides, so that the shaking can be suppressed.
Further, the piezoelectric element applied to the pair of terminals is supported by the first wall body, and the sliding member is pushed in the horizontal direction and pressed against the surface of the second wall body facing the first wall body to slide. Therefore, when the structural portion shakes due to an earthquake or the like and the upper floor structure and the lower floor structure move relative to each other, the sliding member is pressed against the second wall body and slides, so that the shaking can be suppressed.
Further, a plurality of piezoelectric elements are supported on the side surface of the first wall body and a plurality of piezoelectric elements fix the third metal plate member in the plate-shaped contour, and between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member. When shear deformation occurs in the horizontal direction along the side surface, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the third piezoelectric element member, and the third electric circuit causes the plurality of third piezoelectric element members. Since it is electrically connected to a pair of terminals of the piezoelectric element, if the building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the outer wall body and the inner wall body will be separated. Relative displacement occurs, and the movement of the viscous body causes shear displacement in the third piezoelectric element member via the third metal plate member, causing a potential difference between the pair of terminals of the plurality of piezoelectric elements, and the current flows to the third electric circuit. It can flow and suppress shaking.
Further, a plurality of piezoelectric elements supported on the side surface of the first wall body and arranged in the plate-shaped contour fix the fourth metal plate member, and the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member. When a shear deformation occurs in the horizontal direction along the side surface between the and the fourth piezoelectric element member, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member, and the fourth electric circuit causes the fourth piezoelectric element member. Since it is electrically connected to a pair of terminals of multiple piezoelectric elements, if the building shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the outer wall body and the inner wall The body is relatively displaced, and the movement of the viscous body causes expansion and contraction displacement of the fourth piezoelectric element member via the fourth metal plate member, causing a potential difference between the pair of terminals of the plurality of piezoelectric elements, and the current is the fourth. It flows into the electric circuit and can suppress the shaking.
Further, since the current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element is used as energy for cooling the cooling plate, the building is shaken by an earthquake or the like, and the upper floor structure and the lower floor structure are formed. When a relative displacement occurs between the two, the temperature rise of the viscous body that suppresses the shaking can be suppressed and the decrease of the viscous resistance of the viscous body can be suppressed.
Further, since the cooling plate is fixed to the third metal plate member or the fourth metal plate member, the building shakes due to an earthquake or the like, and a relative displacement occurs between the upper floor structure and the lower floor structure. When it occurs, it is possible to suppress the temperature rise of the viscous body that suppresses shaking and suppress the decrease in the viscous resistance of the viscous body.
Further, a fifth piezoelectric element member having a plurality of piezoelectric elements arranged in the plate-shaped contour is sandwiched between the outer wall material and the inner wall material, and the plate-shaped contour of the fifth piezoelectric element member is formed. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fifth piezoelectric element member, and the fifth electric circuit is formed by a plurality of piezoelectric elements. Since the pair of terminals of the element are electrically connected, if the structure shakes due to an earthquake or the like and a relative displacement occurs between the upper floor structure and the lower floor structure, the outer wall body and the inner wall body are relatively displaced. Then, shear displacement occurs in the fifth piezoelectric element member, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements, a current flows in the fifth electric circuit, and shaking can be suppressed.
Therefore, it is possible to provide a vibration damping wall whose dynamic characteristics or vibration characteristics can be adjusted by a simple structure.

本発明の第一の実施形態に係る制振壁の概念図である。It is a conceptual diagram of the vibration damping wall which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る第一制振機構の概念図である。It is a conceptual diagram of the 1st vibration damping mechanism which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る第二制振機構の概念図である。It is a conceptual diagram of the 2nd vibration damping mechanism which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る第三制振機構の概念図である。It is a conceptual diagram of the 3rd vibration damping mechanism which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その1の概念図である。It is a conceptual diagram of the piezoelectric element member 1 which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その2の概念図である。It is a conceptual diagram of the piezoelectric element member 2 which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その3の概念図である。It is a conceptual diagram of the piezoelectric element member 3 which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る第四制振機構の概念図である。It is a conceptual diagram of the 4th vibration damping mechanism which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その4の概念図である。It is a conceptual diagram of the piezoelectric element member 4 which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る第五制振機構の概念図である。It is a conceptual diagram of the 5th vibration damping mechanism which concerns on 1st Embodiment of this invention. 本発明の第一の実施形態に係る圧電素子部材その5の概念図である。It is a conceptual diagram of the piezoelectric element member 5 which concerns on 1st Embodiment of this invention. 本発明の実施形態に係る制振壁の等価質点系の概念図である。It is a conceptual diagram of the equivalent mass system of the vibration damping wall which concerns on embodiment of this invention. 本発明の実施形態に係る制振壁の作用図である。It is a working figure of the vibration damping wall which concerns on embodiment of this invention. 地震波の概念図である。It is a conceptual diagram of a seismic wave. 従来の制振壁の概念図である。It is a conceptual diagram of a conventional vibration damping wall.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。
本発明は、構造物の上階構造Rと下階構造Fとの間に設けられる制振壁にかかるものである。
説明の便宜のため、制振壁を建物に取り付ける場合を例に説明する。
上階構造Rは、建物の一つの層の上部の梁構造である。
下階構造Fは、建物の一つの層の下部の梁構造である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
The present invention relates to a damping wall provided between the upper floor structure R and the lower floor structure F of the structure.
For convenience of explanation, the case where the damping wall is attached to the building will be described as an example.
The upper floor structure R is a beam structure above one layer of the building.
The lower floor structure F is a beam structure below one layer of the building.

最初に、本発明の第一実施形態に係る制振壁を、図を基に、説明する
図1は、本発明の第一の実施形態に係る制振壁の概念図である。図2は、本発明の第一の実施形態に係る第一制振機構の概念図である。図3は、本発明の第一の実施形態に係る第二制振機構の概念図である。図4は、本発明の第一の実施形態に係る第三制振機構の概念図である。図5は、本発明の第一の実施形態に係る圧電素子部材その1の概念図である。図6は、本発明の第一の実施形態に係る圧電素子部材その2の概念図である。図7は、本発明の第一の実施形態に係る圧電素子部材その3の概念図である。図8は、本発明の第一の実施形態に係る第四制振機構の概念図である。図9は、本発明の第一の実施形態に係る圧電素子部材その4の概念図である。図10は、本発明の第一の実施形態に係る第五制振機構の概念図である。図11は、本発明の第一の実施形態に係る圧電素子部材その5の概念図である。
First, the vibration damping wall according to the first embodiment of the present invention will be described with reference to the figure. FIG. 1 is a conceptual diagram of the vibration damping wall according to the first embodiment of the present invention. FIG. 2 is a conceptual diagram of the first vibration damping mechanism according to the first embodiment of the present invention. FIG. 3 is a conceptual diagram of the second vibration damping mechanism according to the first embodiment of the present invention. FIG. 4 is a conceptual diagram of the third vibration damping mechanism according to the first embodiment of the present invention. FIG. 5 is a conceptual diagram of the piezoelectric element member 1 according to the first embodiment of the present invention. FIG. 6 is a conceptual diagram of the piezoelectric element member 2 according to the first embodiment of the present invention. FIG. 7 is a conceptual diagram of the piezoelectric element member 3 according to the first embodiment of the present invention. FIG. 8 is a conceptual diagram of the fourth vibration damping mechanism according to the first embodiment of the present invention. FIG. 9 is a conceptual diagram of the piezoelectric element member 4 according to the first embodiment of the present invention. FIG. 10 is a conceptual diagram of the fifth vibration damping mechanism according to the first embodiment of the present invention. FIG. 11 is a conceptual diagram of the piezoelectric element member No. 5 according to the first embodiment of the present invention.

制振壁は、外壁体100と内壁体200と粘性体300とで構成される。
制振壁は、外壁体100と内壁体200と粘性体300と連結ボルト350とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と冷却板400とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と第一制振機構500とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と複数の第一制振機構500とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と第二制振機構600とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と複数の第二制振機構600とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と第三制振機構700とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と複数の第三制振機構700とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と第四制振機構800とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と複数の第四制振機構800とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と第五制振機構900とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と複数の第五制振機構900とで構成されてもよい。
制振壁は、外壁体100と内壁体200と第五制振機構900とで構成されてもよい。
制振壁は、外壁体100と内壁体200と複数の第五制振機構900とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300と連結ボルト350と冷却板400と第一制振機構500と第二制振機構600と第三制振機構700と第四制振機構800と第五制振機構900とで構成されてもよい。
制振壁は、外壁体100と内壁体200といくつかの制振機構とで構成されてもよい。
制振壁は、外壁体100と内壁体200と粘性体300といくつかの制振機構とで構成されてもよい。
図1には、制振壁は、外壁体100と内壁体200と粘性体300と連結ボルト350と冷却板400と第一制振機構500と第二制振機構600と第三制振機構700と第四制振機構800とで構成される様子を示す。
The damping wall is composed of an outer wall body 100, an inner wall body 200, and a viscous body 300.
The damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a connecting bolt 350.
The damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a cooling plate 400.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a first vibration damping mechanism 500.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a plurality of first vibration damping mechanisms 500.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a second vibration damping mechanism 600.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a plurality of second vibration damping mechanisms 600.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a third vibration damping mechanism 700.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a plurality of third vibration damping mechanisms 700.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a fourth vibration damping mechanism 800.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a plurality of fourth vibration damping mechanisms 800.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a fifth vibration damping mechanism 900.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and a plurality of fifth vibration damping mechanisms 900.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, and a fifth vibration damping mechanism 900.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, and a plurality of fifth vibration damping mechanisms 900.
The damping wall includes an outer wall body 100, an inner wall body 200, a viscous body 300, a connecting bolt 350, a cooling plate 400, a first damping mechanism 500, a second damping mechanism 600, a third damping mechanism 700, and a fourth damping wall. It may be composed of a mechanism 800 and a fifth vibration damping mechanism 900.
The damping wall may be composed of an outer wall body 100, an inner wall body 200, and some damping mechanisms.
The vibration damping wall may be composed of an outer wall body 100, an inner wall body 200, a viscous body 300, and some vibration damping mechanisms.
In FIG. 1, the vibration damping wall includes an outer wall body 100, an inner wall body 200, a viscous body 300, a connecting bolt 350, a cooling plate 400, a first vibration damping mechanism 500, a second damping mechanism 600, and a third damping mechanism 700. And the fourth vibration damping mechanism 800 are shown.

外壁体100は、下階構造Fに固定され貯留空間Hを形成する壁体である構造体である。
貯留空間Hは、液体を貯留可能な空間である。
外壁体100は、一対の外壁側面板110と一対の外壁端面板120と外壁フランジ板130とで構成される。
貯留空間Hは、上から見て略長方形の開口をもち、所定の深さをもつ空間である。
一対の外壁側面板110は、上から見て貯留空間Hの一対の長辺を形成する板部材である。
一対の外壁側面板120は、上から見て貯留空間Hの一対の短辺を形成する板部材である。
外壁フランジ板130は、一対の外壁側面板110の底辺と一対の外壁端面板120の底辺に固定され、貯留空間Hの底を形成する板部材である。
外壁フランジ板130は、下部構造Fである梁構造に固定される。
The outer wall body 100 is a structure that is fixed to the lower floor structure F and forms a storage space H.
The storage space H is a space in which a liquid can be stored.
The outer wall body 100 is composed of a pair of outer wall side plates 110, a pair of outer wall end face plates 120, and an outer wall flange plate 130.
The storage space H is a space having a substantially rectangular opening when viewed from above and having a predetermined depth.
The pair of outer wall side plates 110 are plate members forming a pair of long sides of the storage space H when viewed from above.
The pair of outer wall side plates 120 are plate members forming a pair of short sides of the storage space H when viewed from above.
The outer wall flange plate 130 is a plate member fixed to the bottom of the pair of outer wall side plates 110 and the bottom of the pair of outer wall end face plates 120 to form the bottom of the storage space H.
The outer wall flange plate 130 is fixed to the beam structure which is the lower structure F.

内壁体200は、上階構造Rに固定され貯留空間Hに下部を入れる壁体である。
内壁体200は、内壁側面板210と内壁フランジ板220とで構成される。
内壁側面板210は、貯留空間Hの中に垂下する板部材である。
内壁フランジ板220は、内壁側面板210の上辺に固定される底板材である。
内壁フランジ板220は、上部構造Rである梁構造に固定される。
The inner wall body 200 is a wall body that is fixed to the upper floor structure R and has a lower portion in the storage space H.
The inner wall body 200 is composed of an inner wall side plate 210 and an inner wall flange plate 220.
The inner wall side plate 210 is a plate member that hangs down in the storage space H.
The inner wall flange plate 220 is a bottom plate material fixed to the upper side of the inner wall side plate 210.
The inner wall flange plate 220 is fixed to the beam structure which is the superstructure R.

粘性体300は、貯留空間Hに貯留されるものである。
粘性体300は、粘性流体であってもよい。
粘性体300は、高粘度をもつ粘性流体であってもよい。
内壁体200の少なくとも一部が、粘性体300に浸かっている。
例えば、内壁側面板210の一部が、粘性体300に浸かっている。
The viscous body 300 is stored in the storage space H.
The viscous body 300 may be a viscous fluid.
The viscous body 300 may be a viscous fluid having a high viscosity.
At least a part of the inner wall body 200 is immersed in the viscous body 300.
For example, a part of the inner wall side plate 210 is immersed in the viscous body 300.

連結ボルト350は、外壁体100と内壁体200とを貫通するボルトである。
連結ボルト350は、一対の外壁側面板110と内壁側面板210とを貫通して、一対の外壁側面板110に固定されてもよい。
連結ボルト350は、金属製であってもよい。
例えば、連結ボルト350は、鋼製である。
The connecting bolt 350 is a bolt that penetrates the outer wall body 100 and the inner wall body 200.
The connecting bolt 350 may penetrate the pair of outer wall side plates 110 and the inner wall side plates 210 and be fixed to the pair of outer wall side plates 110.
The connecting bolt 350 may be made of metal.
For example, the connecting bolt 350 is made of steel.

冷却板400は、貯留空間Hに位置して粘性体300に浸かり粘性体300を冷却できる。
地震が発生したとき冷却板400を冷却する。
例えば、冷却板400はヒートポンプを用いて冷却される。
例えば、冷却板400はベルティエ素子を用いて冷却される。
冷却された冷却板400は、粘性体300から熱を奪う。
地震が発生しないとき冷却板400を冷却ぜず、地震が発生したとき冷却板400を冷却してもよい。
後述する圧電素子の一対の端子の間に生じた電位差により流れる電流が冷却板400を冷却するエネルギーとして用いられてもよい。
冷却板400は、貯留空間Hの底部に位置しても良い。
冷却板400が吸収した熱を外壁体100に伝達してもよい。
冷却板400が吸収した熱を外壁フランジ板130に伝達してもよい。
冷却板400が後述する第三金属板部材720または第四金属板部材820に固定されてもよい。
冷却板400が吸収した熱は外壁体100または内壁体200に伝達されてもよい。
冷却板400が吸収した熱は外壁側面板110または内壁側面板210に伝達されてもよい。
冷却板400が後述する第三金属板部材720または第四金属板部材820の粘性体300に接する側に固定されてもよい。
例えば、第三金属板部材720または第四金属板部材820が内壁側面板210に固定され、冷却板400が後述する第三金属板部材720または第四金属板部材820の粘性体300に接する側に固定されるとき、冷却板400が吸収した熱を内壁側面板210に伝達される。
例えば、第三金属板部材720または第四金属板部材820が外壁側面板110に固定され、冷却板400が後述する第三金属板部材720または第四金属板部材820の粘性体300に接する側に固定されるとき、冷却板400が吸収した熱を外壁側面板110に伝達される。
図1は、冷却板400は、貯留空間Hの底部に位置する様子を示す。
The cooling plate 400 is located in the storage space H and can be immersed in the viscous body 300 to cool the viscous body 300.
The cooling plate 400 is cooled when an earthquake occurs.
For example, the cooling plate 400 is cooled by using a heat pump.
For example, the cooling plate 400 is cooled using a Berthier element.
The cooled cooling plate 400 draws heat from the viscous body 300.
The cooling plate 400 may not be cooled when an earthquake does not occur, and the cooling plate 400 may be cooled when an earthquake occurs.
The current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element, which will be described later, may be used as energy for cooling the cooling plate 400.
The cooling plate 400 may be located at the bottom of the storage space H.
The heat absorbed by the cooling plate 400 may be transferred to the outer wall body 100.
The heat absorbed by the cooling plate 400 may be transferred to the outer wall flange plate 130.
The cooling plate 400 may be fixed to the third metal plate member 720 or the fourth metal plate member 820, which will be described later.
The heat absorbed by the cooling plate 400 may be transferred to the outer wall body 100 or the inner wall body 200.
The heat absorbed by the cooling plate 400 may be transferred to the outer wall side plate 110 or the inner wall side plate 210.
The cooling plate 400 may be fixed to the side of the third metal plate member 720 or the fourth metal plate member 820 that comes into contact with the viscous body 300, which will be described later.
For example, the third metal plate member 720 or the fourth metal plate member 820 is fixed to the inner wall side plate 210, and the cooling plate 400 is on the side of the third metal plate member 720 or the fourth metal plate member 820 in contact with the viscous body 300, which will be described later. When fixed to, the heat absorbed by the cooling plate 400 is transferred to the inner wall side plate 210.
For example, the side where the third metal plate member 720 or the fourth metal plate member 820 is fixed to the outer wall side plate 110 and the cooling plate 400 contacts the viscous body 300 of the third metal plate member 720 or the fourth metal plate member 820 described later. When fixed to, the heat absorbed by the cooling plate 400 is transferred to the outer wall side plate 110.
FIG. 1 shows how the cooling plate 400 is located at the bottom of the storage space H.

第一制振機構500を、図を基に、説明する。
図2は、第一制振機構500の概念図である。
第一制振機構500は、積層ゴム部材510と第一電気回路520とで構成される。
積層ゴム部材510は、上部構造Rと内壁体200との間に設けられる。
積層ゴム部材510は、上部構造Rと内壁フランジ板220との間に設けられる。
積層ゴム部材510は、複数の金属板部材511と第一圧電素子部材514とで構成される。
積層ゴム部材510は、複数の金属板部材511と複数の弾性板部材512と第一圧電素子部材514とで構成されてもよい。
積層ゴム部材510は、複数の金属板部材511と複数の弾性板部材512と外周被覆材513と第一圧電素子部材514とで構成されてもよい。
積層ゴム部材510は、複数の金属板部材511と複数の弾性板部材512と外周被覆材513と第一圧電素子部材514と一対のフランジ515と剪断キー516で構成されてもよい。
The first vibration damping mechanism 500 will be described with reference to the drawings.
FIG. 2 is a conceptual diagram of the first vibration damping mechanism 500.
The first vibration damping mechanism 500 is composed of a laminated rubber member 510 and a first electric circuit 520.
The laminated rubber member 510 is provided between the superstructure R and the inner wall body 200.
The laminated rubber member 510 is provided between the superstructure R and the inner wall flange plate 220.
The laminated rubber member 510 is composed of a plurality of metal plate members 511 and a first piezoelectric element member 514.
The laminated rubber member 510 may be composed of a plurality of metal plate members 511, a plurality of elastic plate members 512, and a first piezoelectric element member 514.
The laminated rubber member 510 may be composed of a plurality of metal plate members 511, a plurality of elastic plate members 512, an outer peripheral covering material 513, and a first piezoelectric element member 514.
The laminated rubber member 510 may be composed of a plurality of metal plate members 511, a plurality of elastic plate members 512, an outer peripheral covering material 513, a first piezoelectric element member 514, a pair of flanges 515, and a shear key 516.

複数の金属板部材511は、最上位金属板部材511aと複数の金属板部材511と最下位金属部材511bとで構成されてもよい。
金属板部材511は、金属製の板状部材である。
金属板部材511は、上から見て円形の外周をもつ金属製の板状部材であってもよい。
最上位金属板部材511aは、最も上位に位置する金属板部材511である。
最下位金属板部材511bは、最も下位に位置する金属板部材511である。
The plurality of metal plate members 511 may be composed of the uppermost metal plate member 511a, the plurality of metal plate members 511, and the lowermost metal plate member 511b.
The metal plate member 511 is a metal plate-shaped member.
The metal plate member 511 may be a metal plate-shaped member having a circular outer circumference when viewed from above.
The uppermost metal plate member 511a is the uppermost metal plate member 511.
The lowest metal plate member 511b is the lowest metal plate member 511.

弾性板部材512は、弾性体製の板状部材である。
弾性板部材512は、上から見て略円形の外周をもつ弾性体製の板状部材であってもよい。
The elastic plate member 512 is a plate-shaped member made of an elastic body.
The elastic plate member 512 may be a plate-shaped member made of an elastic body having a substantially circular outer circumference when viewed from above.

第一圧電素子部材514は、複数の圧電素子514aを有し板状の輪郭をもつ部材である。
第一圧電素子部材514は、複数の圧電素子514aと上下一対の仕切り板514b、514bとで構成されてもよい。
複数の圧電素子514aは、上下一対の仕切り板514bに挟まれる。
The first piezoelectric element member 514 is a member having a plurality of piezoelectric elements 514a and having a plate-like contour.
The first piezoelectric element member 514 may be composed of a plurality of piezoelectric elements 514a and a pair of upper and lower partition plates 514b and 514b.
The plurality of piezoelectric elements 514a are sandwiched between a pair of upper and lower partition plates 514b.

第一圧電素子部材514は、複数の圧電素子514aで構成される。
複数の圧電素子514aが板状の輪郭の中に整列される。
複数の圧電素子514aが板状の輪郭の中に水平に沿って整列される。
第一圧電素子部材514は、複数の圧電素子514aと一対の仕切り板514bとで構成されてもよい。
複数の圧電素子514aは、一対の仕切り板514bに挟まれ水平方向に配列される。
一対の上仕切り板514bは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上の仕切り板514bの上面は、第一圧電素子部材514の板状の輪郭の上面を形成する。
下の仕切り板514bの下面は、第一圧電素子部材514の板状の輪郭の下面を形成する。
第一圧電素子部材514の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると第一圧電素子部材514の複数の圧電素子514aの一対の端子間に電位差を生じる。
第一圧電素子部材514の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子514aに剪断歪み、伸縮歪み、または曲げ変形による歪みが生じる。
複数の圧電素子514aに歪みが生じると一対の端子間に電位差を生ずる。
The first piezoelectric element member 514 is composed of a plurality of piezoelectric elements 514a.
A plurality of piezoelectric elements 514a are arranged in a plate-like contour.
A plurality of piezoelectric elements 514a are arranged horizontally in a plate-like contour.
The first piezoelectric element member 514 may be composed of a plurality of piezoelectric elements 514a and a pair of partition plates 514b.
The plurality of piezoelectric elements 514a are sandwiched between a pair of partition plates 514b and arranged in the horizontal direction.
The pair of upper partition plates 514b may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 514b forms the upper surface of the plate-like contour of the first piezoelectric element member 514.
The lower surface of the lower partition plate 514b forms the lower surface of the plate-like contour of the first piezoelectric element member 514.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the first piezoelectric element member 514, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements 514a of the first piezoelectric element member 514.
When horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the first piezoelectric element member 514, the plurality of piezoelectric elements 514a are distorted due to shear distortion, expansion and contraction distortion, or bending deformation.
When the plurality of piezoelectric elements 514a are distorted, a potential difference is generated between the pair of terminals.

複数の金属板部材511と複数の弾性板部材512と第一圧電素子部材514が上下方向に交互に積層される。
複数の金属板部材511と複数の弾性板部材512と単数または複数の第一圧電素子部材514とが上下方向に交互に積層され、接着されていてもよい。
A plurality of metal plate members 511, a plurality of elastic plate members 512, and a first piezoelectric element member 514 are alternately laminated in the vertical direction.
A plurality of metal plate members 511, a plurality of elastic plate members 512, and a single or a plurality of first piezoelectric element members 514 may be alternately laminated and adhered in the vertical direction.

外周被覆材513は、複数の金属板部材511と複数の弾性板部材512と単数または複数の第一圧電素子部材514とが積層されたものの外周を被覆する部材である。
外周被覆材513は、弾性体製である。
The outer peripheral covering material 513 is a member that covers the outer circumference of a stack of a plurality of metal plate members 511, a plurality of elastic plate members 512, and a single or a plurality of first piezoelectric element members 514.
The outer peripheral covering material 513 is made of an elastic body.

一対のフランジ515は上フランジ515uと下フランジ515dとで構成されてもい。 The pair of flanges 515 may be composed of an upper flange 515u and a lower flange 515d.

上フランジ515uは、積層ゴム部材510の上部に配されるフランジである。
上フランジ515uは、フランジ部材と剪断キー516とで構成されてもよい。
フランジ部材は、上部構造Rの下部に当接する上に向いたフランジ面を形成する。
フランジ部材は、上部構造Rの下部に固定されるためのボルト孔を形成されてもよい。
剪断キー516は、フランジ部材と最上位金属板部材511a、511bとの間で剪断力を伝達する機械要素である。
The upper flange 515u is a flange arranged on the upper portion of the laminated rubber member 510.
The upper flange 515u may be composed of a flange member and a shear key 516.
The flange member forms an upwardly facing flange surface that abuts the lower part of the superstructure R.
The flange member may be formed with bolt holes for being fixed to the lower portion of the superstructure R.
The shear key 516 is a mechanical element that transmits a shear force between the flange member and the top metal plate member 511a and 511b.

第一電気回路520は、第一圧電素子部材514の複数の圧電素子514aの一対の端子に電気的に接続される。
第一電気回路520は、複数の圧電素子514aの一対の端子間に電気的に接続されるコンデンサを有していてもよい。
第一電気回路520は、複数の圧電素子の一対の端子間に電気的に接続される静電容量を可変にできるコンデンサを有していてもよい。
第一電気回路520は、CPU、メモリ、I/O、センサで構成される電気機器である。
センサは、地震を検知できる。
センサは、地震波を評価できる。
第一電気回路520は、圧電素子514aを制御するソフトウエアがインストールされる。
ソフトウエアは、第一電気回路520に圧電素子を制御する機能を実現させる。
The first electric circuit 520 is electrically connected to a pair of terminals of a plurality of piezoelectric elements 514a of the first piezoelectric element member 514.
The first electric circuit 520 may have a capacitor electrically connected between a pair of terminals of the plurality of piezoelectric elements 514a.
The first electric circuit 520 may have a capacitor capable of varying the capacitance electrically connected between a pair of terminals of a plurality of piezoelectric elements.
The first electric circuit 520 is an electric device including a CPU, a memory, an I / O, and a sensor.
The sensor can detect an earthquake.
The sensor can evaluate seismic waves.
Software for controlling the piezoelectric element 514a is installed in the first electric circuit 520.
The software realizes the function of controlling the piezoelectric element in the first electric circuit 520.

第二制振機構600を、図を基に、説明する。
図3は、第二制振機構600の概念図である。
第二制振機構600は、アクチエータ610と摺動部材620で構成される。
第二制振機構600は、アクチエータ610と摺動部材620と駆動回路とで構成されてもよい。
駆動回路は、第二電気回路630で構成されてもよい。
アクチエータ610は、第一壁体に支持される。
摺動部材620は、アクチエータ610に水平方向に押されて第二壁体の第一壁体に対向する面に押付けられて摺動可能な部材である。
ここで、第一壁体が外壁体または内壁体のうちの一方であり、第二壁体が外壁体または内壁体のうちの他方である。
図3は、アクチエータ610が内壁側面板210に支持され、摺動部材620がアクチエータ610に水平方向に押されて外壁側面板110の内壁側面板210に対向する面に押付けられる様子を示している。
The second vibration damping mechanism 600 will be described with reference to the drawings.
FIG. 3 is a conceptual diagram of the second vibration damping mechanism 600.
The second vibration damping mechanism 600 is composed of an actuator 610 and a sliding member 620.
The second vibration damping mechanism 600 may be composed of an actuator 610, a sliding member 620, and a drive circuit.
The drive circuit may be composed of a second electric circuit 630.
The actuator 610 is supported by the first wall body.
The sliding member 620 is a member that is horizontally pushed by the actuator 610 and pressed against a surface of the second wall body facing the first wall body so as to be slidable.
Here, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
FIG. 3 shows how the actuator 610 is supported by the inner wall side plate 210, and the sliding member 620 is pushed horizontally by the actuator 610 and pressed against the surface of the outer wall side plate 110 facing the inner wall side plate 210. ..

アクチエータ610は、第二圧電素子部材611で構成されてもよい。
第二圧電素子部材611は、第一部材に固定される複数の圧電素子611aを含む板状の輪郭を形成する。
第二圧電素子部材611は、複数の圧電素子611aと仕切り板611bとで構成されてもよい。
第二圧電素子部材611は、複数の圧電素子611aと一対の仕切り板611bとで構成されてもよい。
複数の圧電素子611aは、一対の仕切り板611bに挟まれてもよい。
複数の圧電素子611aは、板状の輪郭の中に配列される。
複数の圧電素子611aは、板状の輪郭の中に板状の上面に沿って配列される。
The actuator 610 may be composed of the second piezoelectric element member 611.
The second piezoelectric element member 611 forms a plate-like contour including a plurality of piezoelectric elements 611a fixed to the first member.
The second piezoelectric element member 611 may be composed of a plurality of piezoelectric elements 611a and a partition plate 611b.
The second piezoelectric element member 611 may be composed of a plurality of piezoelectric elements 611a and a pair of partition plates 611b.
The plurality of piezoelectric elements 611a may be sandwiched between a pair of partition plates 611b.
The plurality of piezoelectric elements 611a are arranged in a plate-like contour.
The plurality of piezoelectric elements 611a are arranged along the plate-shaped upper surface in the plate-shaped contour.

第二圧電素子部材611の複数の圧電素子611aの一対の端子に電圧を印加すると、第二圧電素子部材611の複数の圧電素子611aは摺動部材620が第二壁体に接近する向きに伸長しまたは離間する向きに縮小してもよい。 When a voltage is applied to the pair of terminals of the plurality of piezoelectric elements 611a of the second piezoelectric element member 611, the plurality of piezoelectric elements 611a of the second piezoelectric element member 611 extend in the direction in which the sliding member 620 approaches the second wall body. It may be reduced in the direction of separation or separation.

第二電気回路630が第二圧電素子部材611の複数の圧電素子611aの一対の端子に電圧を印加できる。 The second electric circuit 630 can apply a voltage to a pair of terminals of the plurality of piezoelectric elements 611a of the second piezoelectric element member 611.

第三制振機構700を、図を基に、説明する。
図4は、第三制振機構700の概念図である。
第三制振機構700は、第三圧電素子部材710と第三金属板部材720と第三電気回路730とで構成される。
第三圧電素子部材710は、複数の圧電素子で構成される。
複数の圧電素子は、第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し輪郭の中に配置される。
複数の圧電素子は、第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し輪郭の中に板状の上面に沿って配置される。
第三金属板部材720は、圧電素子部材に固定される板状の部材である。
第三金属板部材720の面が粘性体300に接する。
ここで、第一壁体が外壁体または内壁体のうちの一方であり、第二壁体が外壁体または内壁体のうちの他方である。
図4は、第三圧電素子部材710が、内壁側面板210の外壁側面板110に対向する側面に支持され板状の輪郭を形成し輪郭の中に板状の上面に沿って配置される複数の圧電素子で構成される様子を示す。
第三圧電素子部材710の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに第三圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。
第三圧電素子部材710の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに第三圧電素子部材の複数の圧電素子に剪断歪み、伸縮歪み、または曲げ変形による歪みが生ずる。
複数の圧電素子に剪断歪み、伸縮歪み、または曲げ変形による歪みが生ずると、複数の圧電素子の一対の端子間に電位差を生じる。
第三電気回路730は、第三圧電素子部材710の複数の圧電素子の一対の端子に電気的に接続される。
第三電気回路730は、第三圧電素子部材710の複数の圧電素子の一対の端子に電気的に接続されるコンデンサを有していてもよい。
The third vibration damping mechanism 700 will be described with reference to the drawings.
FIG. 4 is a conceptual diagram of the third vibration damping mechanism 700.
The third vibration damping mechanism 700 is composed of a third piezoelectric element member 710, a third metal plate member 720, and a third electric circuit 730.
The third piezoelectric element member 710 is composed of a plurality of piezoelectric elements.
The plurality of piezoelectric elements are supported on the side surface of the first wall body facing the second wall body to form a plate-like contour and are arranged in the contour.
The plurality of piezoelectric elements are supported on the side surface of the first wall body facing the second wall body to form a plate-shaped contour, and are arranged in the contour along the plate-shaped upper surface.
The third metal plate member 720 is a plate-shaped member fixed to the piezoelectric element member.
The surface of the third metal plate member 720 is in contact with the viscous body 300.
Here, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
In FIG. 4, a plurality of third piezoelectric element members 710 are supported on the side surface of the inner wall side plate 210 facing the outer wall side plate 110 to form a plate-shaped contour, and are arranged in the contour along the plate-shaped upper surface. It shows how it is composed of the piezoelectric elements of.
Potential difference between a pair of terminals of a plurality of piezoelectric elements of the third piezoelectric element member when shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the third piezoelectric element member 710. Produces.
When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the third piezoelectric element member 710, the plurality of piezoelectric elements of the third piezoelectric element member are subjected to shear distortion, expansion and contraction strain, Or distortion occurs due to bending deformation.
When a plurality of piezoelectric elements are subjected to shear strain, expansion and contraction strain, or strain due to bending deformation, a potential difference is generated between a pair of terminals of the plurality of piezoelectric elements.
The third electric circuit 730 is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the third piezoelectric element member 710.
The third electric circuit 730 may have a capacitor that is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the third piezoelectric element member 710.

以下に、本発明の実施形態にかかる制振壁の第一乃至第三制振機構に採用される第一乃至第三圧電素子部材の詳細を、第一制振機構に採用される第三圧電素子部材を代表して、説明する The details of the first to third piezoelectric element members adopted in the first to third damping mechanisms of the vibration damping wall according to the embodiment of the present invention are described below. The description will be made on behalf of the element members.

図5は、本発明の実施形態に係る圧電素子部材その1の概念図である。
第三圧電素子部材710は、複数の圧電素子710aで構成される。
複数の圧電素子710aが板状の輪郭の中に整列される。
複数の圧電素子710aが板状の輪郭の中に水平面に沿って整列される。
第三圧電素子部材710は、複数の圧電素子710aと一対の仕切り板710bとで構成されてもよい。
複数の圧電素子710aは、一対の仕切り板710bに挟まれ水平方向に配列される。
一対の上仕切り板710bは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上の仕切り板710bの上面は、第三圧電素子部材710の板状の輪郭の上面を形成する。
下の仕切り板710bの下面は、第三圧電素子部材710の板状の輪郭の下面を形成する。
第三圧電素子部材710の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子710aに剪断歪みが生じる。
複数の圧電素子710aに剪断歪みが生じると一対の端子間に電位差を生ずる。
図5は、第三圧電素子部材710の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生すると、複数の圧電素子710aに剪断歪みが生じる様子を示す。
図5は、視線を水平にしてみたときに、複数の圧電素子710aに剪断歪みが生じる様子を示す。
視線を垂直にしてみたときに、複数の圧電素子710aに剪断歪みが生じる様にしてもよい。
圧電素子710aは、剪断変形により一対の端子間に電位差を生ずる圧電素子である。
図5は、複数のユニットが、側面に沿って水平に配列される。
ユニットは、複数の圧電素子710aが側面に直交する向きに積層されたものである。
圧電素子710a水平方向に剪断変形すると、一対の端子間に電位差を生ずる。
FIG. 5 is a conceptual diagram of the piezoelectric element member 1 according to the embodiment of the present invention.
The third piezoelectric element member 710 is composed of a plurality of piezoelectric elements 710a.
A plurality of piezoelectric elements 710a are arranged in a plate-like contour.
A plurality of piezoelectric elements 710a are arranged along a horizontal plane in a plate-like contour.
The third piezoelectric element member 710 may be composed of a plurality of piezoelectric elements 710a and a pair of partition plates 710b.
The plurality of piezoelectric elements 710a are sandwiched between a pair of partition plates 710b and arranged in the horizontal direction.
The pair of upper partition plates 710b may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 710b forms the upper surface of the plate-like contour of the third piezoelectric element member 710.
The lower surface of the lower partition plate 710b forms the lower surface of the plate-like contour of the third piezoelectric element member 710.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member 710, shear distortion occurs in the plurality of piezoelectric elements 710a.
When shear strain occurs in the plurality of piezoelectric elements 710a, a potential difference is generated between the pair of terminals.
FIG. 5 shows how a plurality of piezoelectric elements 710a are subjected to shear strain when shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member 710.
FIG. 5 shows how shear strain occurs in the plurality of piezoelectric elements 710a when the line of sight is made horizontal.
Shear distortion may occur in the plurality of piezoelectric elements 710a when the line of sight is made vertical.
The piezoelectric element 710a is a piezoelectric element that causes a potential difference between a pair of terminals due to shear deformation.
In FIG. 5, a plurality of units are arranged horizontally along the side surface.
The unit is a stack of a plurality of piezoelectric elements 710a in a direction orthogonal to the side surface.
Piezoelectric element 710a When shear deformed in the horizontal direction, a potential difference is generated between the pair of terminals.

図6は、本発明の実施形態に係る第三圧電素子部材その2の概念図である。
第三圧電素子部材710は、複数の圧電素子710aとで構成される。
複数の圧電素子710aが板状の輪郭の中に水平面に沿って整列される。
第三圧電素子部材710は、複数の圧電素子710aと一対の仕切り板710bとで構成されてもよい。
複数の圧電素子710aは一対の上仕切り板710bに挟まれ水平方向に配列される。
一対の上仕切り板710bは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上の仕切り板710bの上面は、第三圧電素子部材710の板状の輪郭の上面を形成する。
下の」仕切り板710bの下面は、第三圧電素子部材710の板状の輪郭の下面を形成する。
第三圧電素子部材710の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子710aに伸縮歪みが生じる。
複数の圧電素子710aに伸縮歪みが生じると一対の端子間に電位差を生ずる。
図6は、第三圧電素子部材710の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生すると複数の圧電素子710aに伸縮歪みが生じる様子を示す。
図6は、視線を水平にしてみたときに、複数の圧電素子710aに水平方向に伸縮歪みが生じる様子を示す。
圧電素子710aは、伸縮変形により一対の端子間に電位差を生ずる圧電素子である。
図6は、複数のユニットが、側面に沿って水平に配列される。
ユニットは、複数の圧電素子710aが側面に沿って水平方向に積層されたものである。
圧電素子710aが水平方向に伸縮すると、一対の端子間に電位差を生ずる。
FIG. 6 is a conceptual diagram of the third piezoelectric element member 2 according to the embodiment of the present invention.
The third piezoelectric element member 710 is composed of a plurality of piezoelectric elements 710a.
A plurality of piezoelectric elements 710a are arranged along a horizontal plane in a plate-like contour.
The third piezoelectric element member 710 may be composed of a plurality of piezoelectric elements 710a and a pair of partition plates 710b.
The plurality of piezoelectric elements 710a are sandwiched between a pair of upper partition plates 710b and arranged in the horizontal direction.
The pair of upper partition plates 710b may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 710b forms the upper surface of the plate-like contour of the third piezoelectric element member 710.
The lower surface of the "lower" partition plate 710b forms the lower surface of the plate-like contour of the third piezoelectric element member 710.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member 710, expansion and contraction strain occurs in the plurality of piezoelectric elements 710a.
When the plurality of piezoelectric elements 710a are strained by expansion and contraction, a potential difference is generated between the pair of terminals.
FIG. 6 shows how a plurality of piezoelectric elements 710a are subjected to expansion and contraction strain when shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member 710.
FIG. 6 shows how the plurality of piezoelectric elements 710a are subjected to expansion and contraction distortion in the horizontal direction when the line of sight is made horizontal.
The piezoelectric element 710a is a piezoelectric element that causes a potential difference between a pair of terminals due to expansion and contraction deformation.
In FIG. 6, a plurality of units are arranged horizontally along the side surface.
The unit is a unit in which a plurality of piezoelectric elements 710a are laminated in the horizontal direction along the side surface.
When the piezoelectric element 710a expands and contracts in the horizontal direction, a potential difference is generated between the pair of terminals.

図7は、本発明の実施形態に係る第三圧電素子部材その3の概念図である。
第三圧電素子部材710は、複数の圧電素子710aとで構成される。
複数の圧電素子710aが板状の輪郭の中に整列される。
複数の圧電素子710aが板状の輪郭の中に水平面に沿って整列される。
第三圧電素子部材710は、複数の圧電素子710aと一対の上仕切り板710bとで構成されてもよい。
複数の圧電素子710aは一対の上仕切り板710bに挟まれ水平方向に配列される・
一対の上仕切り板710bは、図示しない構造により水平方向に相対移動自在に支持されてもよい。
上の仕切り板710bの上面は、第三圧電素子部材710の板状の輪郭の上面を形成する。
下の仕切り板710bの下面は、第三圧電素子部材710の板状の輪郭の下面を形成する。
第三圧電素子部材710の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると複数の圧電素子710aに曲げによる歪みが生じる。
複数の圧電素子710aに曲げによる歪みが生じると一対の端子間に電位差を生ずる。
図7は、第三圧電素子部材710の板状の輪郭の上面と下面との間にX軸方向の剪断変形が発生すると複数の圧電素子710aに曲げによる歪みが生じる様子を示す。
図7は、視線を水平にしてみたときに、複数の圧電素子710aに曲げによる歪みが生じる様子を示す。
視線を垂直にしてみたときに、複数の圧電素子710aに曲げによる歪みが生じる様にしてもよい。
圧電素子710aは、曲げによ歪みにより一対の端子間に電位差を生ずる圧電素子である。
図7は、複数のユニットが、側面に沿って水平に配列される。
ユニットは、複数の圧電素子710aが側面に沿って水平方向に積層されたものである。
圧電素子710aが水平方向に曲げられると、一対の端子間に電位差を生ずる。
FIG. 7 is a conceptual diagram of the third piezoelectric element member 3 according to the embodiment of the present invention.
The third piezoelectric element member 710 is composed of a plurality of piezoelectric elements 710a.
A plurality of piezoelectric elements 710a are arranged in a plate-like contour.
A plurality of piezoelectric elements 710a are arranged along a horizontal plane in a plate-like contour.
The third piezoelectric element member 710 may be composed of a plurality of piezoelectric elements 710a and a pair of upper partition plates 710b.
The plurality of piezoelectric elements 710a are sandwiched between a pair of upper partition plates 710b and arranged in the horizontal direction.
The pair of upper partition plates 710b may be supported so as to be relatively movable in the horizontal direction by a structure (not shown).
The upper surface of the upper partition plate 710b forms the upper surface of the plate-like contour of the third piezoelectric element member 710.
The lower surface of the lower partition plate 710b forms the lower surface of the plate-like contour of the third piezoelectric element member 710.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member 710, the plurality of piezoelectric elements 710a are distorted due to bending.
When the plurality of piezoelectric elements 710a are distorted due to bending, a potential difference is generated between the pair of terminals.
FIG. 7 shows how the plurality of piezoelectric elements 710a are distorted due to bending when shear deformation occurs in the X-axis direction between the upper surface and the lower surface of the plate-shaped contour of the third piezoelectric element member 710.
FIG. 7 shows how the plurality of piezoelectric elements 710a are distorted due to bending when the line of sight is made horizontal.
When the line of sight is made vertical, the plurality of piezoelectric elements 710a may be distorted due to bending.
The piezoelectric element 710a is a piezoelectric element that causes a potential difference between a pair of terminals due to distortion due to bending.
In FIG. 7, a plurality of units are arranged horizontally along the side surface.
The unit is a unit in which a plurality of piezoelectric elements 710a are laminated in the horizontal direction along the side surface.
When the piezoelectric element 710a is bent in the horizontal direction, a potential difference is generated between the pair of terminals.

第四制振機構800を、図を基に、説明する。
図8は、第四制振機構800の概念図である。
図9は、第四制振機構800に採用される第四圧電素子部材の概念図である。
第四制振機構800は、第四圧電素子部材810と第四金属板部材820と第四電気回路830とで構成される。
第四圧電素子部材810は、第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し複数の圧電素子を持つ部材である。
複数の圧電素子は、輪郭の中に配置される。
複数の圧電素子は、輪郭の中に板状の上面に沿って配置される。
第四金属板部材820は、圧電素子部材810に固定される板状の部材である。
第四金属板部材820の板状の面が粘性体300に接する。
ここで、第一壁体が外壁体または内壁体のうちの一方であり、第二壁体が外壁体または内壁体のうちの他方である。
図8に、第四圧電素子部材810が、外壁端面板120の内壁側面板210の端部に対向する側面に支持され板状の輪郭を形成し、輪郭の中に板状の上面に沿って配置される複数の圧電素子を持つ様子をしめす。
第四圧電素子部材810の板状の輪郭の上面と下面とが離間または接近する様に伸縮変形が発生するときに第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。
言い換えると、第四圧電素子部材810の板状の輪郭の上面と下面との間に面外方向へ伸縮変形が発生するときに第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。
第四圧電素子部材810の板状の輪郭の上面と下面との間に面外方向へ伸縮変形が発生するときに第四圧電素子部材810の複数の圧電素子810aに圧縮歪み、剪断歪み、または曲げ変形による歪みが生ずる。
圧電素子810aに圧縮歪み、剪断歪み、または曲げ変形による歪みが生ずると、圧電素子810aの一対の端子間に電位差を生じる。
図9は、第四圧電素子部材810の板状の輪郭の上面と下面との間に面外方向へ伸縮変形が発生するときに第四圧電素子部材810の複数の圧電素子810aに圧縮歪み、が生ずる様子を示す。
第四電気回路830が第四圧電素子部材810の複数の圧電素子810aの一対の端子に電気的に接続される。
第四電気回路830が第四圧電素子部材810の複数の圧電素子810aの一対の端子に電気的に接続されるコンデンサを有していてもよい。
The fourth vibration damping mechanism 800 will be described with reference to the drawings.
FIG. 8 is a conceptual diagram of the fourth vibration damping mechanism 800.
FIG. 9 is a conceptual diagram of a fourth piezoelectric element member used in the fourth vibration damping mechanism 800.
The fourth vibration damping mechanism 800 is composed of a fourth piezoelectric element member 810, a fourth metal plate member 820, and a fourth electric circuit 830.
The fourth piezoelectric element member 810 is a member that is supported on the side surface of the first wall body facing the second wall body, forms a plate-like contour, and has a plurality of piezoelectric elements.
The plurality of piezoelectric elements are arranged in the contour.
The plurality of piezoelectric elements are arranged along the plate-like upper surface in the contour.
The fourth metal plate member 820 is a plate-shaped member fixed to the piezoelectric element member 810.
The plate-like surface of the fourth metal plate member 820 is in contact with the viscous body 300.
Here, the first wall body is one of the outer wall body or the inner wall body, and the second wall body is the other of the outer wall body or the inner wall body.
In FIG. 8, the fourth piezoelectric element member 810 is supported on the side surface of the outer wall end face plate 120 facing the end of the inner wall side plate 210 to form a plate-like contour, and is formed in the contour along the plate-like upper surface. It shows the appearance of having a plurality of piezoelectric elements to be arranged.
When expansion and contraction deformation occurs so that the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member 810 are separated or approached, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member.
In other words, the potential difference between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member when expansion and contraction deformation occurs in the out-of-plane direction between the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member 810. Produces.
When expansion and contraction deformation occurs in the out-of-plane direction between the upper surface and the lower surface of the plate-like contour of the fourth piezoelectric element member 810, the plurality of piezoelectric elements 810a of the fourth piezoelectric element member 810 are subjected to compression distortion, shear distortion, or Distortion due to bending deformation occurs.
When the piezoelectric element 810a is subjected to compression strain, shear strain, or strain due to bending deformation, a potential difference is generated between the pair of terminals of the piezoelectric element 810a.
FIG. 9 shows that when expansion and contraction deformation occurs in the out-of-plane direction between the upper surface and the lower surface of the plate-like contour of the fourth piezoelectric element member 810, the plurality of piezoelectric elements 810a of the fourth piezoelectric element member 810 are compressed and strained. Is shown.
The fourth electric circuit 830 is electrically connected to a pair of terminals of the plurality of piezoelectric elements 810a of the fourth piezoelectric element member 810.
The fourth electric circuit 830 may have a capacitor that is electrically connected to a pair of terminals of the plurality of piezoelectric elements 810a of the fourth piezoelectric element member 810.

第五制振機構900を、図を基に、説明する。
図10は、第五制振機構900の概念図を示す。
図11は、第五制振機構900に採用される第五圧電素子部材910の概念図を示す。
第五制振機構900は、第五圧電素子部材910と第五電気回路920とで構成される。
第五圧電素子部材910は、外壁体と内壁体とに挟まれる板状の輪郭を形成し複数の圧電素子910aで構成される。
例えば、第五圧電素子部材910の上面が外壁体に接し、第五圧電素子部材910の下面が内壁体に接する。
第五圧電素子部材910は、複数の圧電素子910aと弾性板材910bとで構成される。
第五圧電素子部材910は、圧電ゴム製であってもよい。
圧電ゴムは、弾性素材のなかに圧電素子が配列されたものである。
複数の圧電素子910aは、輪郭の中に配置される。
複数の圧電素子910aは、輪郭の中に板状の上面に沿って配置される。
弾性板材910bは、外壁体と内壁体とに挟まれる板状の輪郭を形成する板状の部材でらる。
複数の圧電素子910aは弾性板材910bの中に配列されていてもよい。
複数の圧電素子910aと弾性板材910bとが板状の厚み方向に多層に積層されていてもよい。
第五圧電素子部材910の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。
第五圧電素子部材910の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに、第五圧電素子部材の複数の圧電素子に伸縮歪みまたは剪断歪みが生ずる。
第五圧電素子部材910の複数の圧電素子910aに伸縮歪みまたは剪断歪みが生ずると、第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じる。
第五電気回路920が第五圧電素子部材910の複数の圧電素子910aの一対の端子に電気的に接続される。
第五電気回路920が第五圧電素子部材910の複数の圧電素子910aの一対の端子に電気的に接続されるコンデンサを有する。
The fifth vibration damping mechanism 900 will be described with reference to the figure.
FIG. 10 shows a conceptual diagram of the fifth vibration damping mechanism 900.
FIG. 11 shows a conceptual diagram of the fifth piezoelectric element member 910 adopted in the fifth vibration damping mechanism 900.
The fifth vibration damping mechanism 900 is composed of a fifth piezoelectric element member 910 and a fifth electric circuit 920.
The fifth piezoelectric element member 910 forms a plate-like contour sandwiched between the outer wall body and the inner wall body, and is composed of a plurality of piezoelectric elements 910a.
For example, the upper surface of the fifth piezoelectric element member 910 is in contact with the outer wall body, and the lower surface of the fifth piezoelectric element member 910 is in contact with the inner wall body.
The fifth piezoelectric element member 910 is composed of a plurality of piezoelectric elements 910a and an elastic plate material 910b.
The fifth piezoelectric element member 910 may be made of piezoelectric rubber.
Piezoelectric rubber is an elastic material in which piezoelectric elements are arranged.
The plurality of piezoelectric elements 910a are arranged in the contour.
The plurality of piezoelectric elements 910a are arranged along the plate-like upper surface in the contour.
The elastic plate material 910b is a plate-shaped member that forms a plate-like contour sandwiched between the outer wall body and the inner wall body.
The plurality of piezoelectric elements 910a may be arranged in the elastic plate material 910b.
A plurality of piezoelectric elements 910a and elastic plate material 910b may be laminated in multiple layers in the plate-like thickness direction.
Potential difference between a pair of terminals of a plurality of piezoelectric elements of the fifth piezoelectric element member when shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the fifth piezoelectric element member 910. Produces.
When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the fifth piezoelectric element member 910, the plurality of piezoelectric elements of the fifth piezoelectric element member are stretched or sheared. Occurs.
When the plurality of piezoelectric elements 910a of the fifth piezoelectric element member 910 are subjected to expansion distortion or shear distortion, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fifth piezoelectric element member.
The fifth electric circuit 920 is electrically connected to a pair of terminals of the plurality of piezoelectric elements 910a of the fifth piezoelectric element member 910.
The fifth electric circuit 920 has a capacitor that is electrically connected to a pair of terminals of a plurality of piezoelectric elements 910a of the fifth piezoelectric element member 910.

以下に、制振機構の振動特性を、図を基に、説明する。
図12は、本発明の実施形態に係る制振壁の等価質点系の概念図である。
制振壁は、ばね要素と粘性要素とが直列に接続される質点系に置き換えることができる。
図12は、基礎に正弦波の振動が入力されたときに、ばね要素と粘性要素とをつうかしたときの振動の様子を示す。
The vibration characteristics of the vibration damping mechanism will be described below with reference to the figures.
FIG. 12 is a conceptual diagram of an equivalent mass system of the vibration damping wall according to the embodiment of the present invention.
The damping wall can be replaced with a mass system in which the spring element and the viscous element are connected in series.
FIG. 12 shows the state of vibration when the spring element and the viscous element are connected when a sinusoidal vibration is input to the foundation.

以下に、制振壁を建造物に導入する様子を示す。
図13は、本発明の実施形態に係る制振壁の作用図である。
図13は、制振壁と粘性マスダンパーとTMDが建物に導入される様子を示す。
図13には、制振壁が建物の上梁と下梁との間に設けられる様子が示される。
図13には、上梁に固定される間柱と下梁に固定される間柱との間に設けられる様子が示される。
The following shows how the damping wall is introduced into the building.
FIG. 13 is an operation diagram of the vibration damping wall according to the embodiment of the present invention.
FIG. 13 shows how a damping wall, a viscous mass damper, and a TMD are introduced into a building.
FIG. 13 shows how the damping wall is provided between the upper beam and the lower beam of the building.
FIG. 13 shows how the studs are provided between the studs fixed to the upper beam and the studs fixed to the lower beam.

本願発明の制振壁を採用すると、従来の粘性ダンパーの課題であった振動数依存性や温度依存性を任意に変化させることができるとととも、入力される位相を調整できるようになるので、様々な特性を建造物に付与できるようになる。 By adopting the vibration damping wall of the present invention, the frequency dependence and temperature dependence, which have been problems of the conventional viscous damper, can be arbitrarily changed, and the input phase can be adjusted. , You will be able to give various characteristics to the building.

また、以上説明したように、本発明に係る制振壁は、その構成により、以下の効果を有する。
上階構造Rに固定される内壁体200の下部を下階構造Fに固定され外壁体100が形成する貯留空間Hに入れて、内壁体200の少なくとも一部が貯留空間Hに貯留される粘性体300に浸かっている様にしたので、構造物が揺れると上部構造Rと下部構造Fが相対移動して粘性体300に発生した粘性抵抗が外壁体100と内壁体200との間に作用し、構造物の揺れを抑制できる。
また、貯留空間Hに位置して粘性体300に浸かる冷却板400が粘性体を冷却する様にしたので、粘性体300の温度上昇を抑制して、粘性体300の粘性抵抗の低下を抑制できる。
また、板状の輪郭を形成し板状の中に配列される複数の圧電素子514aを有する第一圧電素子部材514と複数の金属製部材511と複数の弾性板部材512とを上下方向に積層される積層ゴム部材510を上部構造Rと内壁体200との間に設け、第一圧電素子部材514の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると第一圧電素子部材514の複数の圧電素子514aの一対の端子間に電位差を生じ、第一電気回路520が複数の圧電素子514aの一対の端子に電気的に接続される様にしたので、地震等で構造物が揺れて上階構造Rと下階構造Fとに相対移動が生じると、第一圧電素子部材514に水平方向の剪断変形が生じ、複数の圧電素子514aの一対の端子間に電位差が発生し、電流が第一電気回路520に流がれ、構造物の揺れを抑制できる。
また、アクチエータ610が内壁体200に支持されて摺動部材を水平方向に押して外壁体100の内壁体200に対向する面に押付けられて摺動する様にしたので、地震等で構造部が揺れて上階構造Rと下階構造Fが相対移動すると、摺動部材620が外壁体100に押付けられて摺動するので、揺れを抑制できる。
また、一対の端子に印加される圧電素子が内壁体200に支持され摺動部材を水平方向に押して外壁体100の内壁体200に対向する面に押付けられて摺動する様にしたので、地震等で構造部が揺れて上階構造Rと下階構造Fが相対移動すると、摺動部材620が外壁体100に押付けられて摺動するので、揺れを抑制できる。
また、内壁体200の側面に支持され板状の輪郭の中に板状の上面に沿って複数の圧電素子710aが第三金属板部材710を固定し、第三圧電素子部材710の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに第三圧電素子部材710の複数の圧電素子710aの一対の端子間に電位差を生じ、第三電気回路730が第三圧電素子部材710の複数の圧電素子710aの一対の端子に電気的に接続される様にしたので、地震等で建造物が揺れて上階構造Rと下階構造Fとの間に相対変位が生ずると、外壁体100と内壁体200とが相対変位し、粘性体300の動きにより第三金属板部材720を介して第三圧電素子部材710に剪断変位が生じて、複数の圧電素子710aの一対の端子間に電位差が生じ、電流が第三電気回路に流れて、揺れを抑制できる。
また、外壁体100の側面に支持され板状の輪郭の中に板状の上面に沿って複数の圧電素子が第四金属板部材を固定し、第四圧電素子部材810の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに第四圧電素子部材810の複数の圧電素子810aの一対の端子間に電位差を生じ、第四電気回路830が第四圧電素子部材810の複数の圧電素子810aの一対の端子に電気的に接続される様にしたので、地震等で建造物が揺れて上階構造Rと下階構造Fとの間に相対変位が生ずると、外壁体100と内壁体200とが相対変位し、粘性体の動きにより第四金属板部材を介して第四圧電素子部材810に伸縮変位が生じて、複数の圧電素子810aの一対の端子間に電位差が生じ、電流が第四電気回路830に流れて、揺れを抑制できる。
また、圧電素子の一対の端子の間に生じた電位差により流れる電流が冷却板400を冷却するエネルギーとして用いられる様にしたので、地震等で建造物が揺れて上階構造Rと下階構造Fとの間に相対変位が生ずると、揺れを抑制する粘性体の温度上昇を抑制して粘性体300の粘性抵抗の低下を抑制できる。
また、冷却板400が第三金属板部材720または第四金属板部材820の粘性体に接する側に固定される様にしたので、地震等で建造物が揺れて上階構造Rと下階構造Fとの間に相対変位が生ずると、揺れを抑制する粘性体300の温度上昇を抑制して粘性体300の粘性抵抗の低下を抑制できる。
また、板状の輪郭を形成し輪郭の中に板状の上面に沿って配置される複数の圧電素子を有する第五圧電素子部材910を外壁材と内壁材とに挟み、第五圧電素子部材910の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに第五圧電素子部材910の複数の圧電素子910aの一対の端子間に電位差を生じ、第五電気回路930を複数の圧電素子の一対の端子間に電気的に繋ぐ様にしたので、地震等で建造物が揺れて上階構造Rと下階構造Fとの間に相対変位が生ずると、外壁体100と内壁体200とが相対変位し、第五圧電素子部材910に剪断変位が生じて、複数の圧電素子の一対の端子間に電位差が生じ、電流が第五電気回路930に流れて、揺れを抑制できる。
Further, as described above, the vibration damping wall according to the present invention has the following effects depending on its configuration.
The lower part of the inner wall body 200 fixed to the upper floor structure R is placed in the storage space H fixed to the lower floor structure F and formed by the outer wall body 100, and at least a part of the inner wall body 200 is stored in the storage space H. Since the structure is immersed in the body 300, when the structure shakes, the upper structure R and the lower structure F move relative to each other, and the viscous resistance generated in the viscous body 300 acts between the outer wall body 100 and the inner wall body 200. , The shaking of the structure can be suppressed.
Further, since the cooling plate 400 located in the storage space H and immersed in the viscous body 300 cools the viscous body, the temperature rise of the viscous body 300 can be suppressed and the decrease in the viscous resistance of the viscous body 300 can be suppressed. ..
Further, the first piezoelectric element member 514 having the plurality of piezoelectric elements 514a formed in the plate-like contour and arranged in the plate-like shape, the plurality of metal members 511, and the plurality of elastic plate members 512 are laminated in the vertical direction. The laminated rubber member 510 is provided between the upper structure R and the inner wall body 200, and when a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-like contour of the first piezoelectric element member 514, the first piezoelectric member A potential difference is generated between the pair of terminals of the plurality of piezoelectric elements 514a of the element member 514 so that the first electric circuit 520 is electrically connected to the pair of terminals of the plurality of piezoelectric elements 514a. When an object shakes and relative movement occurs between the upper floor structure R and the lower floor structure F, the first piezoelectric element member 514 undergoes shear deformation in the horizontal direction, and a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements 514a. Then, the current flows through the first electric circuit 520, and the shaking of the structure can be suppressed.
Further, since the actuator 610 is supported by the inner wall body 200 and pushes the sliding member in the horizontal direction so as to be pressed against the surface of the outer wall body 100 facing the inner wall body 200 and slide, the structural portion shakes due to an earthquake or the like. When the upper floor structure R and the lower floor structure F move relative to each other, the sliding member 620 is pressed against the outer wall body 100 and slides, so that shaking can be suppressed.
Further, since the piezoelectric element applied to the pair of terminals is supported by the inner wall body 200 and pushes the sliding member in the horizontal direction so as to be pressed against the surface of the outer wall body 100 facing the inner wall body 200 and slide, an earthquake occurs. When the structural portion sways due to the above and the like and the upper floor structure R and the lower floor structure F move relative to each other, the sliding member 620 is pressed against the outer wall body 100 and slides, so that the sway can be suppressed.
Further, a plurality of piezoelectric elements 710a are supported by the side surface of the inner wall body 200 and are fixed to the third metal plate member 710 along the plate-shaped upper surface in the plate-shaped contour, and the plate-shaped third piezoelectric element member 710 is formed. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the contour, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements 710a of the third piezoelectric element member 710, and the third electric circuit 730 Is electrically connected to a pair of terminals of the plurality of piezoelectric elements 710a of the third piezoelectric element member 710, so that the building is shaken by an earthquake or the like and between the upper floor structure R and the lower floor structure F. When a relative displacement occurs, the outer wall body 100 and the inner wall body 200 are relatively displaced, and the movement of the viscous body 300 causes shear displacement of the third piezoelectric element member 710 via the third metal plate member 720, resulting in a plurality of piezoelectrics. A potential difference is generated between the pair of terminals of the element 710a, a current flows through the third electric circuit, and fluctuation can be suppressed.
Further, a plurality of piezoelectric elements are supported on the side surface of the outer wall body 100 and are fixed to the fourth metal plate member along the plate-shaped upper surface in the plate-shaped contour, and the plate-shaped contour of the fourth piezoelectric element member 810 is formed. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements 810a of the fourth piezoelectric element member 810, and the fourth electric circuit 830 is the fourth. (Iv) Since the structure is electrically connected to the pair of terminals of the plurality of piezoelectric elements 810a of the piezoelectric element member 810, the building shakes due to an earthquake or the like, and the relative displacement between the upper floor structure R and the lower floor structure F. When the above occurs, the outer wall body 100 and the inner wall body 200 are relatively displaced, and the movement of the viscous body causes expansion and contraction displacement of the fourth piezoelectric element member 810 via the fourth metal plate member, so that a pair of the plurality of piezoelectric elements 810a is paired. A potential difference is generated between the terminals of the above, and a current flows through the fourth electric circuit 830, so that shaking can be suppressed.
Further, since the current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element is used as energy for cooling the cooling plate 400, the building is shaken by an earthquake or the like, and the upper floor structure R and the lower floor structure F are used. When a relative displacement occurs between the two, it is possible to suppress the temperature rise of the viscous body that suppresses the shaking and suppress the decrease in the viscous resistance of the viscous body 300.
Further, since the cooling plate 400 is fixed to the side of the third metal plate member 720 or the fourth metal plate member 820 in contact with the viscous body, the building shakes due to an earthquake or the like, and the upper floor structure R and the lower floor structure When a relative displacement occurs with F, it is possible to suppress the temperature rise of the viscous body 300 that suppresses shaking and suppress the decrease in the viscous resistance of the viscous body 300.
Further, a fifth piezoelectric element member 910 having a plate-shaped contour and having a plurality of piezoelectric elements arranged along the plate-shaped upper surface in the contour is sandwiched between the outer wall material and the inner wall material, and the fifth piezoelectric element member. When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-shaped contour of the 910, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements 910a of the fifth piezoelectric element member 910. Since the fifth electric circuit 930 is electrically connected between the pair of terminals of the plurality of piezoelectric elements, the building shakes due to an earthquake or the like, and a relative displacement occurs between the upper floor structure R and the lower floor structure F. The outer wall body 100 and the inner wall body 200 are relatively displaced, a shear displacement occurs in the fifth piezoelectric element member 910, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements, and a current is transmitted to the fifth electric circuit 930. It can flow and suppress shaking.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない歯非で各種の変更が可能である。
構造物に作用する加速度の最大振幅値が変化するのに応じて、電気回路のインピーダンスを変化させてもよい。
構造物に作用する加速度の最大振幅値が変化するのに応じて、電気回路のコンデンサの静電容量を変化させてもよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the invention.
The impedance of the electric circuit may be changed according to the change in the maximum amplitude value of the acceleration acting on the structure.
The capacitance of the capacitor of the electric circuit may be changed according to the change of the maximum amplitude value of the acceleration acting on the structure.

R 上部構造
F 下部構造
H 貯留空間
100 外壁体
110 外壁側面板
120 外壁端面板
130 外壁フランジ板
200 内壁体
210 内壁側面板
220 内壁フランジ板
300 粘性体
350 連結ボルト
400 冷却板
500 第一制振機構
510 積層ゴム部材
511 金属板部材
511a 最上位金属板部材
511b 最下位金属板部材
512 弾性板部材
513 外周被覆材
514 第一圧電素子部材
514a 圧電素子
514b 仕切り板
515 フランジ
515u 上フランジ
515d 下フランジ
516 剪断キー
520 第一電気回路
600 第二制振機構
610 アクチエータ
611 第二圧電素子部材
611a 圧電素子
611b 仕切り板
620 摺動部材
630 第二電気回路(駆動回路)
700 第三制振機構
710 第三圧電素子部材
710a 圧電素子
710b 仕切り板
720 第三金属板部材
730 第三電気回路
800 第四制振機構
810 第四圧電素子部材
810a 圧電素子
810b 仕切り板
820 第四金属板部材
830 第四電気回路
900 第五制振機構
910 第五圧電素子部材
920 第五電気回路
R Upper structure F Lower structure H Storage space 100 Outer wall body 110 Outer wall side plate 120 Outer wall end face plate 130 Outer wall flange plate 200 Inner wall body 210 Inner wall side plate 220 Inner wall flange plate 300 Viscous body 350 Connecting bolt 400 Cooling plate 500 First vibration damping mechanism 510 Laminated rubber member 511 Metal plate member 511a Highest metal plate member 511b Lowest metal plate member 512 Elastic plate member 513 Outer peripheral covering material 514 First piezoelectric element member 514a Piezoelectric element 514b Partition plate 515 Flange 515u Upper flange 515d Lower flange 515 Key 520 First electric circuit 600 Second vibration damping mechanism 610 Actuator 611 Second piezoelectric element member 611a Piezoelectric element 611b Partition plate 620 Sliding member 630 Second electric circuit (drive circuit)
700 Third vibration damping mechanism 710 Third piezoelectric element member 710a Piezoelectric element 710b Partition plate 720 Third metal plate member 730 Third electric circuit 800 Fourth piezoelectric element member 810 Fourth piezoelectric element member 810a Piezoelectric element 810b Partition plate 820 Fourth Metal plate member 830 Fourth electric circuit 900 Fifth vibration damping mechanism 910 Fifth piezoelectric element member 920 Fifth electric circuit

特開平5−86744号Japanese Patent Application Laid-Open No. 5-86744 特開2001−049894号JP 2001-0499894

Claims (17)

構造物の上階構造と下階構造との間に設けられる制振壁であって、
下階構造に固定され貯留空間を形成する壁体である外壁体と、
上階構造に固定され前記貯留空間に下部を入れる壁体である内壁体と、
前記貯留空間に貯留される粘性体と、
上部構造と前記内壁体との間に設けられる積層ゴム部材と第一電気回路とを有する第一制振機構と、
を備え、
前記内壁体の少なくとも一部が前記粘性体に浸かり、
前記積層ゴム部材は複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と板状の輪郭を形成し該輪郭の中に配列される複数の圧電素子を持つ部材である第一圧電素子部材とが上下方向に積層される部材であり、
前記第一圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記第一圧電素子部材の複数の前記圧電素子の一対の端子間に電位差を生じ、
前記第一電気回路が前記第一圧電素子部材の複数の前記圧電素子の一対の端子に電気的に接続される、
ことを特徴とする制振壁。
It is a damping wall provided between the upper floor structure and the lower floor structure of the structure.
The outer wall, which is a wall that is fixed to the lower floor structure and forms a storage space,
An inner wall body that is fixed to the upper floor structure and puts the lower part in the storage space,
The viscous material stored in the storage space and
A first vibration damping mechanism having a laminated rubber member and a first electric circuit provided between the superstructure and the inner wall body,
With
At least a part of the inner wall body is immersed in the viscous body,
The laminated rubber member forms a plate-like contour with a plurality of metal plate members which are a plurality of metal plate-like members and a plurality of elastic plate members which are a plurality of elastic plate-like members, and the plate-like contour is formed in the contour. It is a member in which the first piezoelectric element member, which is a member having a plurality of arranged piezoelectric elements, is laminated in the vertical direction.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-like contour of the first piezoelectric element member, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member.
The first electric circuit is electrically connected to a pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member.
A damping wall characterized by that.
第一壁体に支持されるアクチエータと該アクチエータに水平方向に押されて第二壁体の前記第一壁体に対向する面に押付けられて摺動可能な摺動部材とを有する第二制振機構と、
を備え、
前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、
前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
ことを特徴とする請求項1に記載の制振壁。
A second system having an actuator supported by the first wall body and a sliding member that is pressed horizontally by the actuator and is pressed against the surface of the second wall body facing the first wall body so as to be slidable. Vibration mechanism and
With
The first wall body is one of the outer wall body and the inner wall body,
The second wall is the other of the outer wall and the inner wall.
The vibration damping wall according to claim 1.
前記第二制振機構が第二電気回路を有し、
前記アクチエータが板状部材に固定される複数の圧電素子を含む板状の輪郭を形成する第二圧電素子部材を持ち、
前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加するときに前記第二圧電素子部材の複数の圧電素子は前記摺動部材が前記第二壁体に接近する向きに伸長しまたは離間する向きに縮小する、
前記第二電気回路が前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加できる、
ことを特徴とする請求項2に記載の制振壁
The second vibration damping mechanism has a second electric circuit, and the second vibration damping mechanism has a second electric circuit.
The actuator has a second piezoelectric element member that forms a plate-shaped contour including a plurality of piezoelectric elements fixed to the plate-shaped member.
When a voltage is applied to a pair of terminals of the plurality of piezoelectric elements of the second piezoelectric element member, the plurality of piezoelectric elements of the second piezoelectric element member extend in a direction in which the sliding member approaches the second wall body. Shrink in the direction of separation or separation,
The second electric circuit can apply a voltage to a pair of terminals of a plurality of piezoelectric elements of the second piezoelectric element member.
2. The vibration damping wall according to claim 2.
前記第一壁体の前記第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を有する第三圧電素子部材と前記第三圧電素子部材に固定される板状の部材である第三金属板部材と第三電気回路とを有する第三制振機構と、
を備え、
前記第三金属板部材の板状の面が前記粘性体に接し、
前記第三圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第三圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、
前記第三電気回路が前記第三圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される、
前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、
前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
ことを特徴とする請求項3に記載の制振壁。
A third piezoelectric element member having a plurality of piezoelectric elements arranged on the side surface of the first wall body facing the second wall body to form a plate-like contour and arranged in the contour, and the third piezoelectric element. A third vibration damping mechanism having a third metal plate member which is a plate-shaped member fixed to the member and a third electric circuit,
With
The plate-like surface of the third metal plate member is in contact with the viscous body,
When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the third piezoelectric element member, between the pair of terminals of the plurality of piezoelectric elements of the third piezoelectric element member. Causes a potential difference,
The third electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the third piezoelectric element member.
The first wall body is one of the outer wall body and the inner wall body,
The second wall is the other of the outer wall and the inner wall.
The vibration damping wall according to claim 3, wherein the damping wall is characterized in that.
第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を持つ第四圧電素子部材と前記第四圧電素子部材に固定される板状の部材である第四金属板部材と第四電気回路とを有する第四制振機構と、
を備え、
前記第四金属板部材の板状の面が前記粘性体に接し、
前記第四圧電素子部材の板状の輪郭の上面と下面とが離間または接近する様に伸縮変形が発生するときに前記第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、
前記第四電気回路が前記第四圧電素子部材の複数の圧電素子の一対の端子に電気的に接続され、
前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、
前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
ことを特徴とする請求項4に記載の制振壁。
The fourth piezoelectric element member having a plurality of piezoelectric elements arranged on the side surface of the first wall body facing the second wall surface to form a plate-like contour and arranged in the contour, and the fourth piezoelectric element member. A fourth vibration damping mechanism having a fourth metal plate member and a fourth electric circuit, which are fixed plate-shaped members,
With
The plate-like surface of the fourth metal plate member is in contact with the viscous body,
When expansion and contraction deformation occurs so that the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member are separated or approached, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member. ,
The fourth electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the fourth piezoelectric element member.
The first wall body is one of the outer wall body and the inner wall body,
The second wall is the other of the outer wall and the inner wall.
The vibration damping wall according to claim 4.
前記貯留空間に位置して前記粘性体に浸かり前記粘性体を冷却できる冷却板と、
を備え、
前記圧電素子の一対の端子の間に生じた電位差により流れる電流が前記冷却板を冷却するエネルギーとして用いられる、
ことを特徴とする請求項5に記載の制振壁。
A cooling plate located in the storage space and capable of immersing the viscous body and cooling the viscous body,
With
The current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element is used as energy for cooling the cooling plate.
The vibration damping wall according to claim 5.
前記冷却板が前記第三金属板部材または前記第四金属板部材に固定される、
ことを特徴とする請求項6に記載の制振壁。
The cooling plate is fixed to the third metal plate member or the fourth metal plate member.
The vibration damping wall according to claim 6.
前記外壁体と前記内壁体とに挟まれる第五制振機構と
を備え、
前記第五制振機構が前記外壁体と前記内壁体とに挟まれる板状の輪郭を形成し該輪郭の中に配置される複数の圧電素子を持つ第五圧電素子部材と第五電気回路とを有し、
前記第五圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、
前記第五電気回路が前記第五圧電素子部材の複数の圧電素子の一対の端子に電気的に接続され、
ことを特徴とする請求項7に記載の制振壁。
A fifth vibration damping mechanism sandwiched between the outer wall body and the inner wall body is provided.
A fifth piezoelectric element member and a fifth electric circuit having a plurality of piezoelectric elements arranged in a plate-like contour formed by the fifth vibration damping mechanism sandwiched between the outer wall body and the inner wall body. Have,
When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the fifth piezoelectric element member, between the pair of terminals of the plurality of piezoelectric elements of the fifth piezoelectric element member. Causes a potential difference,
The fifth electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the fifth piezoelectric element member.
The vibration damping wall according to claim 7.
構造物の上階構造と下階構造との間に設けられる制振壁であって、
下階構造に固定され貯留空間を形成する壁体である外壁体と、
上階構造に固定され前記貯留空間に下部を入れる壁体である内壁体と、
前記貯留空間に貯留される粘性体と、
上部構造と前記内壁体との間に設けられる積層ゴム部材と第一電気回路とを有する第一制振機構と、
を備え、
前記内壁体の少なくとも一部が前記粘性体に浸かり、
前記積層ゴム部材は複数の金属製の板状部材である複数の金属板部材と複数の弾性体製の板状部材である複数の弾性板部材と板状の輪郭を形成し該輪郭の中に配列される複数の圧電素子を持つ部材である第一圧電素子部材とが上下方向に積層される部材であり、
前記第一圧電素子部材の板状の輪郭の上面と下面との間に水平方向の剪断変形が発生すると前記第一圧電素子部材の複数の前記圧電素子の一対の端子間に電位差を生じ、
前記第一電気回路が前記第一圧電素子部材の複数の前記圧電素子の一対の端子に電気的に
接続される、
ことを特徴とする制振壁。
It is a damping wall provided between the upper floor structure and the lower floor structure of the structure.
The outer wall, which is a wall that is fixed to the lower floor structure and forms a storage space,
An inner wall body that is fixed to the upper floor structure and puts the lower part in the storage space,
The viscous material stored in the storage space and
A first vibration damping mechanism having a laminated rubber member and a first electric circuit provided between the superstructure and the inner wall body,
With
At least a part of the inner wall body is immersed in the viscous body,
The laminated rubber member forms a plate-like contour with a plurality of metal plate members which are a plurality of metal plate-like members and a plurality of elastic plate members which are a plurality of elastic plate-like members, and the plate-like contour is formed in the contour. It is a member in which the first piezoelectric element member, which is a member having a plurality of arranged piezoelectric elements, is laminated in the vertical direction.
When a horizontal shear deformation occurs between the upper surface and the lower surface of the plate-like contour of the first piezoelectric element member, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member.
The first electric circuit is electrically connected to a pair of terminals of the plurality of piezoelectric elements of the first piezoelectric element member.
A damping wall characterized by that.
構造物の上階構造と下階構造との間に設けられる制振壁であって、
下階構造に固定され貯留空間を形成する壁体である外壁体と、
上階構造に固定され前記貯留空間に下部を入れる壁体である内壁体と、
前記貯留空間に貯留される粘性体と、
第一壁体に支持されるアクチエータと該アクチエータに水平方向に押されて第二壁体の前記第一壁体に対向する面に押付けられて摺動可能な摺動部材とを有する第二制振機構と、
を備え、
前記内壁体の少なくとも一部が前記粘性体に浸かり、
前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、
前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
ことを特徴とする制振壁。
It is a damping wall provided between the upper floor structure and the lower floor structure of the structure.
The outer wall, which is a wall that is fixed to the lower floor structure and forms a storage space,
An inner wall body that is fixed to the upper floor structure and puts the lower part in the storage space,
The viscous material stored in the storage space and
A second system having an actuator supported by the first wall body and a sliding member that is pressed horizontally by the actuator and is pressed against the surface of the second wall body facing the first wall body so as to be slidable. Vibration mechanism and
With
At least a part of the inner wall body is immersed in the viscous body,
The first wall body is one of the outer wall body and the inner wall body,
The second wall is the other of the outer wall and the inner wall.
A damping wall characterized by that.
前記第二制振機構が第二電気回路を有し、
前記アクチエータが板状部材に固定される複数の圧電素子を含む板状の輪郭を形成する第二圧電素子部材を持ち、
前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加するときに前記第二圧電素子部材の複数の圧電素子は前記摺動部材が前記第二壁体に接近する向きに伸長しまたは離間する向きに縮小する、
前記第二電気回路が前記第二圧電素子部材の複数の圧電素子の一対の端子に電圧を印加できる、
ことを特徴とする請求項10に記載の制振壁
The second vibration damping mechanism has a second electric circuit, and the second vibration damping mechanism has a second electric circuit.
The actuator has a second piezoelectric element member that forms a plate-shaped contour including a plurality of piezoelectric elements fixed to the plate-shaped member.
When a voltage is applied to a pair of terminals of the plurality of piezoelectric elements of the second piezoelectric element member, the plurality of piezoelectric elements of the second piezoelectric element member extend in a direction in which the sliding member approaches the second wall body. Shrink in the direction of separation or separation,
The second electric circuit can apply a voltage to a pair of terminals of a plurality of piezoelectric elements of the second piezoelectric element member.
The vibration damping wall according to claim 10.
構造物の上階構造と下階構造との間に設けられる制振壁であって、
下階構造に固定され貯留空間を形成する壁体である外壁体と、
上階構造に固定され前記貯留空間に下部を入れる壁体である内壁体と、
前記貯留空間に貯留される粘性体と、
第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に板状の上面に沿って配置される複数の圧電素子を有する第三圧電素子部材と前記第三圧電素子部材に固定される板状の部材である第三金属板部材と第三電気回路とを有する第三制振機構と、
を備え、
前記内壁体の少なくとも一部が前記粘性体に浸かり、
前記第三金属板部材の面が前記粘性体に接触し、
前記第三圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第三圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、
前記第三電気回路が前記第三圧電素子部材の複数の圧電素子の一対の端子に電気的に接続され、
前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、
前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
ことを特徴とする制振壁。
It is a damping wall provided between the upper floor structure and the lower floor structure of the structure.
The outer wall, which is a wall that is fixed to the lower floor structure and forms a storage space,
An inner wall body that is fixed to the upper floor structure and puts the lower part in the storage space,
The viscous material stored in the storage space and
A third piezoelectric element member having a plurality of piezoelectric elements supported on a side surface of the first wall body facing the second wall body to form a plate-shaped contour and arranged along the plate-shaped upper surface in the contour. A third vibration damping mechanism having a third metal plate member and a third electric circuit, which are plate-shaped members fixed to the third piezoelectric element member,
With
At least a part of the inner wall body is immersed in the viscous body,
The surface of the third metal plate member comes into contact with the viscous body,
When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the third piezoelectric element member, between the pair of terminals of the plurality of piezoelectric elements of the third piezoelectric element member. Causes a potential difference,
The third electric circuit is electrically connected to a pair of terminals of the plurality of piezoelectric elements of the third piezoelectric element member.
The first wall body is one of the outer wall body and the inner wall body,
The second wall is the other of the outer wall and the inner wall.
A damping wall characterized by that.
構造物の上階構造と下階構造との間に設けられる制振壁であって、
下階構造に固定され貯留空間を形成する壁体である外壁体と、
上階構造に固定され前記貯留空間に下部を入れる壁体である内壁体と、
前記貯留空間に貯留される粘性体と、
第一壁体の第二壁体に対向する側面に支持され板状の輪郭を形成し該輪郭の中に板状の上面に沿って配置される複数の圧電素子を持つ第四圧電素子部材と前記第四圧電素子部材に固定される板状の部材である第四金属板部材と第四電気回路とを有する第四制振機構と、
を備え、
前記内壁体の少なくとも一部が前記粘性体に浸かり、
前記第四金属板部材の面が前記粘性体に接触し、
前記第四圧電素子部材の板状の輪郭の上面と下面とが離間または接近する様に伸縮変形が発生するときに前記第四圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、
前記第四電気回路が前記第四圧電素子部材の複数の圧電素子の一対の端子に電気的に接続され、
前記第一壁体が前記外壁体または前記内壁体のうちの一方であり、
前記第二壁体が前記外壁体または前記内壁体のうちの他方である、
ことを特徴とする制振壁。
It is a damping wall provided between the upper floor structure and the lower floor structure of the structure.
The outer wall, which is a wall that is fixed to the lower floor structure and forms a storage space,
An inner wall body that is fixed to the upper floor structure and puts the lower part in the storage space,
The viscous material stored in the storage space and
A fourth piezoelectric element member having a plurality of piezoelectric elements supported on a side surface of the first wall body facing the second wall body to form a plate-shaped contour and arranged along the plate-shaped upper surface in the contour. A fourth vibration damping mechanism having a fourth metal plate member and a fourth electric circuit, which are plate-shaped members fixed to the fourth piezoelectric element member,
With
At least a part of the inner wall body is immersed in the viscous body,
The surface of the fourth metal plate member comes into contact with the viscous body,
When expansion and contraction deformation occurs so that the upper surface and the lower surface of the plate-shaped contour of the fourth piezoelectric element member are separated or approached, a potential difference is generated between the pair of terminals of the plurality of piezoelectric elements of the fourth piezoelectric element member. ,
The fourth electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the fourth piezoelectric element member.
The first wall body is one of the outer wall body and the inner wall body,
The second wall is the other of the outer wall and the inner wall.
A damping wall characterized by that.
前記貯留空間に位置して前記粘性体に浸かり前記粘性体を冷却できる冷却板と、
を備え、
前記圧電素子の一対の端子の間に生じた電位差により流れる電流が前記冷却板を冷却するエネルギーとして用いられる、
ことを特徴とする請求項12又は請求項13のうちのひとつに記載の制振壁。
A cooling plate located in the storage space and capable of immersing the viscous body and cooling the viscous body,
With
The current flowing due to the potential difference generated between the pair of terminals of the piezoelectric element is used as energy for cooling the cooling plate.
The vibration damping wall according to claim 12 or 13.
前記貯留空間に位置して前記粘性体に浸かり前記粘性体を冷却できる冷却板と、
を備え、
前記冷却板が前記第三金属板部材に固定される、
ことを特徴とする請求項12に記載の制振壁。
A cooling plate located in the storage space and capable of immersing the viscous body and cooling the viscous body,
With
The cooling plate is fixed to the third metal plate member,
The vibration damping wall according to claim 12.
前記貯留空間に位置して前記粘性体に浸かり前記粘性体を冷却できる冷却板と、
を備え、
前記冷却板が前記第四金属板部材に固定される、
ことを特徴とする請求項13に記載の制振壁。
A cooling plate located in the storage space and capable of immersing the viscous body and cooling the viscous body,
With
The cooling plate is fixed to the fourth metal plate member,
The vibration damping wall according to claim 13.
構造物の上階構造と下階構造との間に設けられる制振壁であって、
下階構造に固定され上方に立ち上がる形状を形成する壁体である外壁体と、
上階構造に固定され下方に立ち下げる形状を形成する壁体である内壁体と、
第五制振機構と
を備え、
前記第五制振機構が前記外壁体と前記内壁体とに挟まれ板状の輪郭を形成し該輪郭の中に板状の上面に沿って配置される複数の圧電素子を持つ第五圧電素子部材と第五電気回路とを有し、
前記第五圧電素子部材の板状の輪郭の上面と下面との間に側面に沿って水平方向に剪断変形が発生するときに前記第五圧電素子部材の複数の圧電素子の一対の端子間に電位差を生じ、
前記第五電気回路が前記第五圧電素子部材の複数の圧電素子の一対の端子に電気的に接続される、
ことを特徴とする制振壁。
It is a damping wall provided between the upper floor structure and the lower floor structure of the structure.
The outer wall, which is a wall that is fixed to the lower floor structure and forms a shape that rises upward,
The inner wall, which is a wall that is fixed to the upper floor structure and forms a shape that falls downward,
Equipped with a fifth vibration damping mechanism
A fifth piezoelectric element having a plurality of piezoelectric elements in which the fifth vibration damping mechanism is sandwiched between the outer wall body and the inner wall body to form a plate-shaped contour and is arranged along the plate-shaped upper surface in the contour. It has a member and a fifth electric circuit,
When shear deformation occurs in the horizontal direction along the side surface between the upper surface and the lower surface of the plate-like contour of the fifth piezoelectric element member, between the pair of terminals of the plurality of piezoelectric elements of the fifth piezoelectric element member. Causes a potential difference,
The fifth electric circuit is electrically connected to a pair of terminals of a plurality of piezoelectric elements of the fifth piezoelectric element member.
A damping wall characterized by that.
JP2016236465A 2016-12-06 2016-12-06 Damping wall Active JP6854116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236465A JP6854116B2 (en) 2016-12-06 2016-12-06 Damping wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236465A JP6854116B2 (en) 2016-12-06 2016-12-06 Damping wall

Publications (2)

Publication Number Publication Date
JP2018091077A JP2018091077A (en) 2018-06-14
JP6854116B2 true JP6854116B2 (en) 2021-04-07

Family

ID=62564400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236465A Active JP6854116B2 (en) 2016-12-06 2016-12-06 Damping wall

Country Status (1)

Country Link
JP (1) JP6854116B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116480037A (en) * 2023-05-23 2023-07-25 中国十七冶集团有限公司 Super high-rise building vibration isolation viscous damping wall
CN116608237B (en) * 2023-07-18 2023-10-03 上海隐冠半导体技术有限公司 Damping vibration attenuation structure and micro-motion stage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292430A (en) * 1990-04-09 1991-12-24 Jdc Corp Viscous damper and earthquake-proof system which has viscous damper
JPH0539661A (en) * 1991-08-07 1993-02-19 Y & Y:Kk Floor panel raw material for construction with power generation function
JPH06212833A (en) * 1993-01-20 1994-08-02 Nippon Steel Corp Vibration damper for building
JP2000314448A (en) * 1999-04-30 2000-11-14 Showa Electric Wire & Cable Co Ltd Base isolation device
JP3436197B2 (en) * 1999-08-06 2003-08-11 株式会社ダイナミックデザイン Damping wall
JP2001182361A (en) * 1999-12-24 2001-07-06 Toyo Tire & Rubber Co Ltd Damper for building and vibration control construction for building using the same
JP4252185B2 (en) * 2000-03-03 2009-04-08 三井住友建設株式会社 Damping device and structure
JP2001304331A (en) * 2000-04-21 2001-10-31 Ohbayashi Corp Variable damping element
JP2002295051A (en) * 2001-03-28 2002-10-09 Nippon Steel Corp Viscous wall
JP2004100840A (en) * 2002-09-10 2004-04-02 Takenaka Komuten Co Ltd Vibration source support device
JP2008053527A (en) * 2006-08-25 2008-03-06 Nsk Ltd Dielectric rubber laminate, and its manufacturing method
JP4543206B2 (en) * 2010-03-26 2010-09-15 浩平 速水 Power generator

Also Published As

Publication number Publication date
JP2018091077A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP2013142429A (en) Mechanism for seismic base isolation
US5487534A (en) Laminated rubber vibration control device for structures
Han et al. Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration
JP5123623B2 (en) Seismic isolation devices and vibration control devices
JP6854116B2 (en) Damping wall
JP6964465B2 (en) Sliding bearing device
JP2016105021A (en) Base-isolation mechanism
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
KR101593576B1 (en) Piezoelectric magnetorheological fluid base isolator
JP7090776B2 (en) Linear rolling bearings
JP2001304331A (en) Variable damping element
Kazi et al. Comparative Analysis of a Multistorey Building with and without Damper
JP2018096513A (en) Vibration-isolating mechanism
JP6912882B2 (en) Laminated rubber seismic isolation device or viscous mass damper with spring
JP6384817B2 (en) Base-isolated building for long-period earthquakes
JP2017145839A (en) Base isolation mechanism
JP5801139B2 (en) Shock damper
JP2016056875A (en) Seismic base isolation structure with vibration control function
WO2005111345A1 (en) Base isolation structure
JP2005330799A (en) Base isolation structure
JP2012219879A (en) Vertical base isolation device
RU2576801C1 (en) Vibration isolator for foundations of buildings, operating in seismic hazard areas
JP7333545B2 (en) spring device
Ito et al. Study on the seismic response of cable tray considering sliding motion of cable
JP6914407B2 (en) Seismic isolation mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6854116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250