JP6899416B2 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP6899416B2 JP6899416B2 JP2019173051A JP2019173051A JP6899416B2 JP 6899416 B2 JP6899416 B2 JP 6899416B2 JP 2019173051 A JP2019173051 A JP 2019173051A JP 2019173051 A JP2019173051 A JP 2019173051A JP 6899416 B2 JP6899416 B2 JP 6899416B2
- Authority
- JP
- Japan
- Prior art keywords
- throttle valve
- air amount
- pressure
- air
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
本発明は、スロットルバルブを介して吸い込まれる吸気量を算出する機能を有する内燃機関の制御装置に関する。
この種の装置として、従来、スロットルバルブの周囲に形成される空気通路を絞り部とみなし、絞り部を通過する流体の流量を表す計算式に基づいてシリンダ内に吸入される空気量を推定するようにした装置が知られている(例えば特許文献1参照)。
しかしながら、上記特許文献1記載の装置で用いられる計算式は、スロットルバルブの周囲が絞り部として機能することを前提とする。このため、スロットルバルブの全開時等、スロットルバルブの上下流に圧力差がなく、スロットルバルブの周囲が絞り部として機能していない場合に、通過流量を精度よく推定することが難しい。
本発明の一態様である内燃機関の制御装置は、内燃機関への吸気通路に配置されたスロットルバルブの上流を流れる空気量を検出する流量検出器と、スロットルバルブの上流の吸気通路の圧力を検出する第1圧力検出器と、スロットルバルブの開度を検出する開度検出器と、スロットルバルブの下流の吸気通路の圧力を検出する第2圧力検出器と、スロットルバルブを通過する空気量を算出する演算部と、を備える。演算部は、開度検出器により検出されたスロットルバルブの開度と、スロットルバルブの開度の目標値と、予め設定された特性と、に基づいて、所定時間後のスロットルバルブの開度を算出する開度算出部を有する。また、内燃機関の運転状態に応じて予め設定された特性に基づいて、所定時間後のスロットルバルブの下流の圧力を算出する下流圧算出部を有する。また、開度検出器により検出されたスロットルバルブの開度と、第1圧力検出器により検出されたスロットルバルブの上流の圧力と、第2圧力検出器により検出されたスロットルバルブの下流の圧力と、に基づいて、現在、スロットルバルブを通過している第1空気量を算出する第1空気量算出部を有する。また、開度算出部により算出された所定時間後のスロットルバルブの開度と、下流圧算出部により算出された所定時間後のスロットルバルブの下流の圧力と、に基づいて、所定時間後にスロットルバルブを通過する第2空気量を算出する第2空気量算出部を有する。また、第2圧力検出器により検出されたスロットルバルブの下流の圧力と、予め設定された特性と、に基づいて、スロットルバルブを通過する第3空気量を算出する第3空気量算出部を有する。また、第1空気量算出部により算出された第1空気量と、第2空気量算出部により算出された第2空気量と、第3空気量算出部により算出された第3空気量と、に基づいて、流量検出器により検出された空気量を補正する空気量補正部を有する。空気量補正部は、第1圧力検出器により検出されたスロットルバルブの上流の圧力に対する下流圧算出部により算出された所定時間後のスロットルバルブの下流の圧力の圧力比が所定値以下のとき、第1空気量と第2空気量とに基づいて流量検出器により検出された空気量を補正する一方、圧力比が所定値を超えると、第3空気量に基づいて流量検出器により検出された空気量を補正する。
本発明によれば、スロットルバルブの全開時にもスロットルバルブを通過する空気量を精度よく推定することができる。
以下、図1〜図11を参照して本発明の実施形態について説明する。本発明の実施形態に係る内燃機関の制御装置は、ガソリンエンジンやディーゼルエンジンなどの内燃機関(エンジン)に適用される。
図1は、本発明の実施形態に係る内燃機関の制御装置が適用されるエンジン1およびその周辺の構成を概略的に示す図である。エンジン1は、不図示の車両に搭載され、複数の気筒(例えば4気筒)を有する火花点火式の4サイクルエンジンである。図1に示すように、エンジン1には、エンジン1に吸い込まれる吸入空気(吸気)が通過する吸気通路2aと、エンジン1で燃焼した排気ガスが通過する排気通路2bとが接続される。
吸気通路2aには、エアクリーナ(不図示)を介して吸入された吸気量を調整するスロットルバルブ3と、スロットルバルブ3を通過した吸気を複数の気筒に分配する吸気マニホルド4と、が設けられる。スロットルバルブ3は、例えばバタフライ弁により構成され、スロットルバルブ3の開度は、電気信号により作動するスロットル用アクチュエータ3aの駆動によって変更される。スロットルバルブ3にはスロットルバルブ3の開度を検出するスロットル開度センサ3bが設けられる。スロットル開度センサ3bは、例えばポテンショメータにより構成される。スロットル用アクチュエータ3aの動作はコントローラ30(図3)により制御される。
スロットルバルブ3の上流側には、その上流側における吸気量を検出する吸気量センサ5と、吸気圧(大気圧)を検出する大気圧センサ6とが設けられる。吸気マニホルド4には、吸気マニホルド4内の吸気圧を検出する吸気圧センサ7が設けられる。吸気量センサ5は、例えば熱線式エアフローメータにより構成される。大気圧センサ6および吸気圧センサ7は、例えば半導体圧力センサにより構成される。なお、図示は省略するが、スロットルバルブ3の上流側には、吸気温(大気温)を検出する吸気温センサも設けられる。
排気通路2bには、エンジン1の複数の気筒から排出された排気ガスを集合する排気マニホルド8と、排気マニホルド8の下流で排気ガスを浄化する触媒装置9と、が設けられる。なお、図示は省略するが、排気通路2bには、排気通路2bを通過する排気ガスの温度を検出する排気温センサ、排気ガスの圧力を検出する排気圧センサ、触媒装置9の上流で空燃比を検出するLAFセンサなどが設けられる。
図2は、エンジン1の内部の要部構成を概略的に示す図である。図2に示すように、エンジン1は、複数のシリンダ(気筒)10が形成されるシリンダブロック11と、シリンダブロック11の上部を覆うシリンダヘッド12とを有する。シリンダヘッド12には、吸気通路2aに連通する吸気ポート13と、排気通路2bに連通する排気ポート14とが設けられる。吸気ポート13には吸気ポート13を開閉する吸気バルブ15が設けられ、排気ポート14には排気ポート14を開閉する排気バルブ16が設けられる。吸気バルブ15と排気バルブ16とは動弁機構17により開閉駆動される。
各シリンダ10には、シリンダ10内を摺動可能にピストン18が配置され、ピストン18に面して燃焼室19が形成される。エンジン1には、燃焼室19に臨むようにインジェクタ20が設けられ、インジェクタ20から燃焼室19に燃料が噴射される。なお、インジェクタ20を、燃料を燃焼室19に噴射する直噴式として構成するのではなく、吸気ポート13に燃料を噴射するポート噴射式として構成してもよい。さらにエンジン1には点火プラグ21が設けられ、燃焼室19内の燃料と空気の混合気は、点火プラグ21により点火される。燃焼室19内で混合気が燃焼(爆発)すると、シリンダ10の内壁に沿ってピストン18が往復動し、コンロッド22を介してクランクシャフト23が回転する。インジェクタ20の動作(噴射時期、噴射時間)および点火プラグ21の動作(点火時期)はコントローラ30(図3)により制御される。
動弁機構17は、吸気カムシャフト24と排気カムシャフト25とを有する。吸気カムシャフト24は、各気筒(シリンダ10)にそれぞれ対応した吸気カム24aを一体に有し、排気カムシャフト25は、各気筒にそれぞれ対応した排気カム25aを一体に有する。吸気カムシャフト24と排気カムシャフト25とは、不図示のタイミングベルトを介してクランクシャフト23に連結され、クランクシャフト23が2回転する度にそれぞれ1回転する。吸気バルブ15は、吸気カムシャフト24の回転により、不図示の吸気ロッカーアームを介して、吸気カム24aのプロファイルに応じた所定のタイミングで開閉する。排気バルブ16は、排気カムシャフト25の回転により、不図示の排気ロッカーアームを介して、排気カム25aのプロファイルに応じた所定のタイミングで開閉する。
動弁機構17はさらに、クランクシャフト23に対する吸気カム24aおよび排気カム25aの相対的な位相(カム位相)をそれぞれ変更するカム位相可変機構26,27を有する。カム位相可変機構26,27は、それぞれ吸気カムシャフト24と排気カムシャフト25の一端部に設けられる。カム位相可変機構26,27の構成は互いに同一であり、代表して吸気用のカム位相可変機構26の構成を説明する。詳細な図示は省略するが、カム位相可変機構26は、吸気カムシャフト24を回転可能に収容するとともに、進角室と遅角室とを画成する回転可能な円筒形状のハウジングを有し、ハウジングの外周面に、クランクシャフト23を経由するタイミングベルトが巻回される。
進角室と遅角室とには、例えば制御弁の駆動に応じた油圧ポンプからの油圧が供給され、制御弁の駆動を制御することで、吸気カム24aのカム位相を無段階に進角側または遅角側に変更することができ、これにより、吸気バルブ15の開閉タイミングを変更できる。すなわち、進角室に油圧が供給されると、吸気カムシャフト24がハウジングに対し一方向に相対回転し、吸気バルブ15の開閉タイミングが進角側に変化する。一方、遅角室に油圧が供給されると、吸気カムシャフト24がハウジングに対し反対方向に相対回転し、吸気バルブ15の開閉タイミングが遅角側に変化する。
カム位相可変機構26,27は、既燃ガスである排気の一部を燃焼室19内に還流する際の内部排気還流量、つまり内部EGRガス量を調整するように動作する。すなわち、カム位相可変機構26,27により吸気バルブ15および排気バルブ16の開閉タイミングを変更することで、吸気バルブ15と排気バルブ16の開弁期間が重なるバルブオーバーラップ量を変更し、これにより内部EGRガス量が調整される。カム位相可変機構26,27の動作はコントローラ30(図3)により制御される。
なお、図示は省略するが、エンジン1にはクランクシャフト23の回転角およびエンジン回転数を検出するクランク角センサ、吸気カム24aおよび排気カム25aのカム位相をそれぞれ検出するカム角センサ、エンジン1の冷却水の温度(エンジン水温)を検出する水温センサなども設けられる。
図3は、本実施形態に係る内燃機関の制御装置(以下、装置)100の要部構成を概略的に示すブロック図である。図3に示すように、装置100は、コントローラ30と、コントローラ30にそれぞれ通信可能に接続されたセンサ群40と、アクチュエータ群50と、を主に有する。センサ群40には、上記した各種のセンサ3b,5〜7等、エンジン1の運転状態を検出する各種センサが含まれる。アクチュエータ群50には、上記したスロットル用アクチュエータ3a、インジェクタ20、点火プラグ21、カム位相可変機構26,27等が含まれる。なお、図示は省略するが、コントローラ30にはさらに、車両に搭載された各種センサや他のコントローラ(変速機ECU等)等が接続され、アクセル開度や車速等、車両の運転状態を示す各種パラメータの検出値や指令値等が入力される。
コントローラ30は、CPU,ROM,RAM、その他の周辺回路などを有するコンピュータを含んで構成される電子制御ユニット(ECU)により構成される。コントローラ30は、機能的構成として、スロットルバルブ3を通過する空気量を算出する通過空気量算出部31と、シリンダ10に吸入される空気量を算出する吸入空気量算出部32と、インジェクタ20による燃料噴射を制御する燃料噴射制御部33と、を有する。通過空気量算出部31、吸入空気量算出部32および燃料噴射制御部33による演算は、クランク角センサからの信号に基づいて、エンジン1の燃焼サイクルに同期して実行される。
通過空気量算出部31は、吸気量センサ5により検出されたスロットルバルブ3の上流の空気量QA(例えば、単位時間当たりの質量流量)に基づいて、スロットルバルブ3を通過する通過空気量QB(例えば、単位時間当たりの質量流量)を算出する。
吸入空気量算出部32は、通過空気量算出部31により算出された通過空気量QBに基づいて、エンジン1のシリンダ10内に吸入される吸入空気量QCを算出する。具体的には、吸気マニホルド4の容積をVI、シリンダ10の容積をVC、充填効率をη、重み付け係数をw、前回の燃焼サイクルで算出された吸入空気量をQCzとして、次式(i),(ii)により吸入空気量QCを算出する。
w=ηVC/VI ・・・(i)
Qc=wQB+(1−w)QCz ・・・(ii)
w=ηVC/VI ・・・(i)
Qc=wQB+(1−w)QCz ・・・(ii)
なお、シリンダ10の充填効率ηは、エンジン回転数、カム位相、吸気圧(大気圧)、吸気温(大気温)、エンジン水温等の各種パラメータの影響を受ける。このため、シリンダ10内に吸入される吸入空気量QCは、各種パラメータ(例えば、エンジン回転数、カム位相、大気圧)の領域毎に予め設定された複数の特性に基づいて算出され、各種パラメータ(例えば、吸気温、エンジン水温)に応じて補正される。
燃料噴射制御部33は、吸入空気量算出部32により算出された吸入空気量QCに基づいて、シリンダ10内の空燃比が適切な値となるようにインジェクタ20によるシリンダ10内への燃料の供給を制御する。
ところで、エンジン1の定常運転状態では、吸気通路2a(図1)内の各部を吸気が一定の流速で通過し、吸気量センサ5を通過する吸気がそのままスロットルバルブ3を通過する。このため、スロットルバルブ3の通過空気量QBを吸気量センサ5により直接的に検出することができる。一方、エンジン1の過渡運転状態では、吸気通路2a内の各部で流速が経時的に変化するため、スロットルバルブ3の通過空気量QBを吸気量センサ5により直接的に検出することができない。
このような過渡状態におけるスロットルバルブ3の通過空気量QBは、一般に、スロットルバルブ3の上流の吸気圧(大気圧)PAに対する下流の吸気圧(吸気マニホルド4内の吸気圧。以下、下流圧)PBの圧力比PB/PAに応じて変化する流量関数F、スロットルバルブ3の開度THに応じて変化する流量係数Cdおよび開口面積A、スロットルバルブ3の上流の吸気温(大気温)TA、気体定数R、比熱比κを用いて、次式(iii)により算出される。
しかしながら、式(iii)は、スロットルバルブ3の上下流に圧力差があり、周囲が絞り部として機能することを前提とする。このため、例えばスロットル全開時等、スロットルバルブ3の上下流に圧力差がなく、周囲が絞り部として機能していない場合には、通過空気量QBを正確に算出することができない。
図4は、スロットルバルブ3の上下流の圧力比PB/PAと流量関数Fとの関係を示す図であり、図5は、圧力比PB/PAと、式(iii)により算出された通過空気量QBの算出誤差との関係を示す図である。図4に示すように、スロットルバルブ3の上下流の圧力差がなくなり、圧力比PB/PAが1に近づくと、流量関数Fの値は急激に減少する。このとき、図5に示すように、圧力比PB/PAが所定値(例えば、約0.92)を超えて1に近付くと、式(iii)による通過空気量QBの算出誤差が許容範囲(例えば、±10%)を超えて急激に増大する。
図6は、通過空気量QBの実測値および式(iii)による算出値の一例を示す図であり、スロットルバルブ3を全閉から全開にしたときの開度TH、流量関数F、通過空気量QBの実測値および算出値の経時的な変化を示す。
図6に示すように、時刻t1からt2にかけてスロットルバルブ3を全閉から全開にすると、時刻t2からt3にかけてスロットルバルブ3の上下流の圧力差が徐々に解消して圧力比PB/PAが1に近づく。その後、時刻t3において圧力比PB/PAが所定値(例えば、約0.92)に達すると、流量関数Fの値および通過空気量QBの算出値が急激に減少し、実測値から乖離する。さらに時刻t4においてスロットルバルブ3の上下流の圧力差が完全に解消すると、その後、通過空気量QBの実測値は、エンジン1の運転状態に応じた一定の値に収束する。
そこで、本実施形態では、スロットルバルブ3の上下流の圧力差に応じて過渡状態におけるスロットルバルブ3の通過空気量QBの算出方法を切り換え、スロットルバルブ3の全開時にも通過空気量QBを精度よく推定できるよう、以下のように通過空気量算出部31を構成する。
図7は、通過空気量算出部31の機能的構成を概略的に示すブロック図である。通過空気量算出部31は、特に過渡状態におけるスロットルバルブ3の通過空気量QBを算出するための機能的構成として、スロットルバルブ3の開度を算出する開度算出部310と、推定下流圧を算出する下流圧算出部311と、スロットルバルブ3を通過する空気量を算出する第1〜第3空気量算出部312〜314と、吸気量センサ5により検出された空気量QAを補正する空気量補正部315と、を有する。
開度算出部310は、スロットル開度センサ3b(図1)により検出されたスロットルバルブ3の実開度TH1と、コントローラ30(図3)からスロットル用アクチュエータ3aに指令される目標開度TH0と、スロットル用アクチュエータ3aの応答遅れ特性と、に基づいて、所定時間Δt後のスロットルバルブ3の推定開度TH2を算出する。所定時間Δtは、例えば、エンジン1の燃焼サイクル(吸入行程)よりも十分短い微小な時間である。すなわち、エンジン回転数にかかわらず過渡状態の吸入空気量の変化を表現できるよう、高回転時の吸入行程よりも十分短い固定値に設定される。
図8は、スロットル用アクチュエータ3aの応答遅れ特性を示す図であり、スロットルバルブ3の目標開度TH0を破線、実開度TH1を実線、所定時間Δt後の推定開度TH2を一点鎖線でそれぞれ示す。図8に示すように、スロットルバルブ3の実開度TH1は、所定のスロットル遅れ時間TdTHだけ遅れて目標開度TH0に追従する。従って、所定時間Δt後の推定開度TH2は、次式(iv)により算出される。
TH2=TH1+(TH0−TH1)Δt/TdTH ・・・(iv)
TH2=TH1+(TH0−TH1)Δt/TdTH ・・・(iv)
下流圧算出部311は、吸入空気量算出部32により算出された吸入空気量QCに基づいて、推定下流圧PB2を算出する。すなわち、大気圧センサ6により検出された大気圧、クランク角センサにより検出されたエンジン回転数、カム角センサにより検出されたカム位相等の各種パラメータに基づいて、予め設定された複数の特性から吸入空気量Qcに対応する下流圧PBを算出して推定下流圧PB2とする。
第1空気量算出部312は、式(iii)を用いてスロットルバルブ3の通過空気量(第1空気量)QB1を算出し、吸気量センサ5を通過する空気量QB1cに換算(補正)する。具体的には、先ず、スロットル開度センサ3bにより検出されたスロットルバルブ3の実開度TH1と、大気圧センサ6により検出された大気圧PAと、吸気圧センサ7により検出された下流圧PB1と、に基づいて、式(iii)により、現在、スロットルバルブ3を通過している第1空気量QB1を算出する。
図9は、図1の部分拡大図であり、吸気量センサ5からスロットルバルブ3までの吸気通路2aを示す。図9に破線で示すように、吸気量センサ5からスロットルバルブ3までの吸気通路2a内の空間を空間2cとする。このとき、空間2cの容積をV、空間2c内の吸気量(物質量)をGとすると、ある瞬間における空間2c内の吸気量(物質量)Gは次式(v)で表される(気体の状態方程式)。
G=PAV/RTA ・・・(v)
G=PAV/RTA ・・・(v)
式(v)より、空間2c内の吸気量(物質量)Gの単位時間当たりの変化量G´、すなわち、単位時間当たりに空間2cを通過する吸気の質量流量QDは、次式(vi)で表される。
QD=G´=PA´V/RTA ・・・(vi)
QD=G´=PA´V/RTA ・・・(vi)
質量保存の法則により、単位時間当たりに空間2cを通過する吸気の質量流量QDは、吸気量センサ5を通過して空間2cに流入する吸気の質量流量QAと、空間2cから流出してスロットルバルブ3を通過する吸気の質量流量QBとの差として、次式(vii)で表される。
QD=QA−QB ・・・(vii)
QD=QA−QB ・・・(vii)
従って、次式(viii)により、スロットルバルブ3の通過空気量の式(iii)により算出された現在、スロットルバルブ3を通過している第1空気量QB1を、現在、吸気量センサ5を通過している空気量QB1cに換算(補正)することができる。すなわち、第1空気量QB1に対し、吸気量センサ5とスロットルバルブ3との間における吸気通路2a内の圧力変化を反映することができる。
QB1c=QB1+PA´V/RTA ・・・(viii)
QB1c=QB1+PA´V/RTA ・・・(viii)
この場合、換算前の第1空気量QB1に対して吸気量センサ5の検出値と同じ平均化処理を行うことで、吸気量センサ5の検出値と同期させることができる。また、換算後の第1空気量QB1に対して、例えば双一次変換により所定のセンサ遅れ時間TdAFM分の補正を行うことで、吸気量センサ5の応答遅れ特性を反映することができる。このような処理により、式(iii)により算出された第1空気量QB1が、吸気量センサ5の検出値相当の換算値QB1cに補正される。
第2空気量算出部313は、式(iii)を用いて、所定時間Δt後にスロットルバルブ3を通過する空気量(第2空気量)QB2を算出する。すなわち、開度算出部310により算出された所定時間Δt後のスロットルバルブ3の推定開度TH2と、大気圧センサ6により検出された大気圧PAと、下流圧算出部311により算出された推定下流圧PB2と、に基づいて、式(iii)により、所定時間Δt後にスロットルバルブ3を通過する第2空気量QB2を算出する。
ここで、推定下流圧PB2は、下流圧算出部311により、吸入空気量算出部32により算出された吸入空気量QCに基づいて算出される。この場合、エンジン1の運転状態が定常状態から過渡状態に変化した直後の最初の燃焼サイクルでは、先ず、前回の燃焼サイクル(定常状態)で算出された吸入空気量QCzに基づいて推定下流圧PBzが算出される。次いで、1燃焼サイクル分の変化量ΔPBを加算して、今回の燃焼サイクル(過渡状態)の推定下流圧PB2が算出される。なお、1燃焼サイクル分の変化量ΔPBは、予め設定された定数としてもよく、予め設定された特性に基づき、各種パラメータに応じて算出される変数としてもよい。
一方、エンジン1の運転状態が過渡状態に変化した後の2回目以降の燃焼サイクルでは、先ず、前回の燃焼サイクル(過渡状態)で算出された第2空気量QB2zに基づいて、前回の燃焼サイクルにおける所定時間Δt後の推定吸入空気量QC2zが算出される。具体的には、移動平均(例えば、指数移動平均)により第2空気量QB2zを平滑化して推定吸入空気量QC2zを算出する。このような平滑化処理を行うことで、スロットルバルブ3からシリンダ10までの間の吸気マニホルド4における吸気の遅れ分を反映することができる。なお、この場合の平滑化係数Cは、例えば次式(ix)のように設定される。
C=(VC/VI)×(QC2z/理想線) ・・・(ix)
C=(VC/VI)×(QC2z/理想線) ・・・(ix)
次いで、推定吸入空気量QC2zに基づいて推定下流圧PB2zを算出し、1燃焼サイクル分の変化量ΔPBを加算して、今回の燃焼サイクルの推定下流圧PB2が算出される。すなわち、今回の燃焼サイクルにおける所定時間Δt後の推定下流圧PB2が算出される。
空気量補正部315は、大気圧PAに対する推定下流圧PB2の圧力比、すなわちスロットルバルブ3の上下流の圧力比PB2/PAが第1所定値R1以下のとき、第1空気量QB1と第2空気量QB2とに基づいて吸気量センサ5により検出された空気量QAを補正する。第1所定値は、式(iii)による通過空気量QBの算出誤差が許容範囲(例えば、±10%)を超えるような所定値(図5の例では、約0.92)に設定される。
図10は、空気量補正部315による空気量QAの補正について説明するための図であり、吸気量センサ5により検出された空気量QA、第1空気量算出部312により算出、補正された第1空気量QB1,QB1c、第2空気量算出部313により算出された第2空気量QB2の一例を示す。
圧力比PB2/PAが第1所定値R1以下でスロットルバルブ3の上下流に圧力差があり、周囲が絞り部として機能している場合は、式(iii)により精度よく通過空気量QBを算出することができる。すなわち、スロットルバルブ3の上下流に圧力差がある場合は、各時刻およびその所定時間Δt後の通過空気量QB1,QB2を精度よく算出することができる。
この場合、式(iii)により算出された所定時間Δt後の通過空気量である第2空気量QB2と、式(iii)により算出された現在の通過空気量である第1空気量QB1の、吸気量センサ5の検出値相当の換算値QB1cとの差(QB2−QB1c)を過渡補正量として、吸気量センサ5の検出値QAが過渡補正される。すなわち、空気量補正部315は、次式(x)を用いて、吸気量センサ5により検出された空気量QAを補正してスロットルバルブ3の通過空気量QBを算出する。
QB=QA+(QB2−QB1c) ・・・(x)
QB=QA+(QB2−QB1c) ・・・(x)
このように、吸気量センサ5の検出値QAを基準として、式(iii)により算出され、吸気量センサ5の検出値相当に補正された第1空気量QB1cと、式(iii)により算出された第2空気量QB2との差を用いて過渡補正を行う。これにより、吸気量センサ5の検出値によるフィードバック制御が不要となるため、通過空気量算出部31の過渡状態における演算負荷を低減することができる。また、式(iii)による算出値QB1,QB2同士の差を過渡補正量とするため、式(iii)を用いる場合の誤差による影響を相殺することができる。
第3空気量算出部314は、吸気圧センサ7により検出された下流圧PB1と、予め設定された特性と、に基づいて、スロットルバルブ3を通過する第3空気量QB3を算出する。具体的には、先ず、大気圧センサ6により検出された大気圧、クランク角センサにより検出されたエンジン回転数、カム角センサにより検出されたカム位相等の各種パラメータに基づいて、予め設定された複数の特性から下流圧PBに対応する吸入空気量Qcを算出する。次いで、移動平均(例えば、指数移動平均)により吸入空気量QCを平滑化することで、スロットルバルブ3からシリンダ10までの間の吸気マニホルド4における吸気の遅れ分を反映し、第3空気量QB3を算出する。また、第1空気量QB1と同様に、第3空気量QB3を吸気量センサ5の検出値相当の換算値QB3cに補正する。
空気量補正部315は、式(x)により吸気量センサ5の検出値QAの過渡補正を行っている場合において、スロットルバルブ3の上下流の圧力比PB2/PAが第1所定値R1を超えると、過渡補正の方法を切り換える。すなわち、第3空気量QB3と、第3空気量QB3の、吸気量センサ5の検出値相当の換算値QB3cとの差(QB3−QB3c)を過渡補正量として、吸気量センサ5の検出値QAの過渡補正を行うように過渡補正の方法を切り換える。すなわち、空気量補正部315は、次式(xi)を用いて、吸気量センサ5により検出された空気量QAを補正してスロットルバルブ3の通過空気量QBを算出する。
QB=QA+(QB3−QB3c) ・・・(xi)
QB=QA+(QB3−QB3c) ・・・(xi)
なお、通過空気量算出部31は、過渡状態におけるスロットルバルブ3の通過空気量QBを算出するとき、移動平均(例えば、指数移動平均)により算出値QBを平滑化する。これにより、空気量補正部315による補正方法が切り換えられたときの算出値QBの急変を緩和することができる。この場合の平滑化係数Cは、エンジン回転数に応じて、高回転側ほど平滑化の程度が大きくなるように設定される。このような平滑化処理を行うことで、図6に示されるような通過空気量QBの実測値(エンジン1の運転状態に応じた一定の値)に見合った、適切な通過空気量QBを算出することができる。
空気量補正部315は、式(xi)により吸気量センサ5の検出値QAの過渡補正を行っている場合において、スロットルバルブ3の上下流の圧力比PB2/PAが第2所定値R2以下になると、過渡補正の方法を切り換える。具体的には、先ず、今回および前回の燃焼サイクルにおいて吸入空気量算出部32により算出された吸入空気量QC,QCzに基づいて、式(i),(ii)により推定通過空気量QB2を算出する。次いで、算出された推定通過空気量QB2と、開度算出部310により算出された推定開度TH2と、に基づいて、式(iii)により流量関数Fを算出し、推定圧力比PB2/PAを算出する。そして、算出された推定圧力比PB2/PAが第2所定値R2以下になると、第3空気量QB3による過渡補正から第1、第2空気量QB1,QB2による過渡補正に切り換える。第2所定値R2は、第1所定値R1と同程度の所定値に設定される。
第3空気量QB3による過渡補正では、流量関数Fを使う式(iii)を用いた第1、第2空気量QB1,QB2による過渡補正と異なり、圧力比PB2/PAが算出されない。このため、例えばスロットルバルブ3が閉じられて実際には圧力差が生じているにもかかわらず、過渡補正の方法を切り換えられない場合が生じ得る。そこで、過渡補正の方法によらず常にエンジン1の運転状態を反映した値として算出される吸入空気量QCに基づいて流量関数Fおよび推定圧力比PB2/PAを算出することで、圧力差の状態を判定し、適切なタイミングで第1、第2空気量QB1,QB2による過渡補正に戻すことができる。
図11は、予めメモリに記憶されたプログラムに従い装置100により実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、別途の判定処理によりエンジン1の運転状態が定常状態から過渡状態に変化したと判定されると開始される。
先ず、ステップS1で前回の燃焼サイクル(定常状態)で算出された吸入空気量QCzを取得し、ステップS2で推定下流圧PB2zを算出し、ステップS3で今回の燃焼サイクル(過渡状態)の推定下流圧PB2を算出する。次いでステップS4で、大気圧PAに対するステップS3で算出された推定下流圧PB2の圧力比PB2/PAを算出する。次いでステップS5で、ステップS4で算出された圧力比PB2/PAが第1所定値R1以下か否かを判定する。ステップS5で肯定されると、ステップS6〜S10の第1、第2空気量QB1,QB2による過渡補正に進み、否定されると、ステップS14〜S16の第3空気量QB3による過渡補正に進む。
ステップS6では、式(iii)により第1空気量QB1を算出する。次いでステップS7で、ステップS6で算出された第1空気量QB1を吸気量センサの検出値相当の換算値QB1cに補正する。次いでステップS8で所定時間Δt後のスロットルバルブ3の推定開度TH2を算出し、ステップS9で第2空気量QB2を算出する。次いでステップS10で、ステップS7で補正された第1空気量QB1cとステップS9で算出された第2空気量QB2との差を加算することで吸気量センサ5による検出値QAの過渡補正を行い、スロットルバルブ3の通過空気量QBを算出する。
次いで、ステップS11で、ステップS10で算出された通過空気量QBに基づいて吸入空気量QCを算出し、ステップS12で燃焼サイクルのカウントアップを行った後、ステップS13でエンジン1の運転状態が過渡状態であるか否かを判定する。ステップS13で肯定されるとステップS2に戻り、否定されると処理を終了する。
ステップS14では、予め設定された特性に基づいて第3空気量QB3を算出する。次いでステップS15で、ステップS14で算出された第3空気量QB3を吸気量センサの検出値相当の換算値QB3cに補正する。次いでステップS16で、ステップS14で算出された第3空気量QB3とステップS15で補正された第3空気量QB3cとの差を加算することで吸気量センサ5による検出値QAの過渡補正を行い、スロットルバルブ3の通過空気量QBを算出する。
次いで、ステップS17で、ステップS16で算出された通過空気量QBに基づいて吸入空気量QCを算出し、ステップS18で、前回の燃焼サイクルで算出された吸入空気量QCzを取得する。次いでステップS19で推定開度TH2を算出する。次いで、ステップS20で推定通過空気量QB2および流量関数Fを算出し、ステップS21で推定圧力比PB2/PAを算出する。次いでステップS22で、ステップS21で算出された推定圧力比PB2/PAが第2所定値R2以下か否かを判定する。
ステップS22で肯定されると、ステップS12に進んで燃焼サイクルのカウントアップを行った後、ステップS13でエンジン1の運転状態を判定し、過渡状態が継続している場合は、ステップS6〜S10の第1、第2空気量QB1,QB2による過渡補正に切り換える。一方、ステップS22で否定されると、ステップS23に進んで燃焼サイクルのカウントアップを行った後、ステップS24でエンジン1の運転状態を判定し、過渡状態が継続している場合は、ステップS14に戻り、第3空気量QB3による過渡補正を継続する。ステップS24で否定され、過渡状態が終了している場合は、処理を終了する。
このように、スロットルバルブ3の上下流の圧力差に応じて過渡状態におけるスロットルバルブ3の通過空気量QBの算出方法を切り換えることで(ステップS5,S22)、スロットルバルブ3の全開時にも通過空気量QBを精度よく推定することができる(ステップS14〜S16)。
本発明の実施形態によれば以下のような作用効果を奏することができる。
(1)装置100は、エンジン1への吸気通路2aに配置されたスロットルバルブ3の上流を流れる空気量QAを検出する吸気量センサ5と、スロットルバルブ3の上流の吸気通路2aの圧力(大気圧)PAを検出する大気圧センサ6と、スロットルバルブ3の実開度TH1を検出するスロットル開度センサ3bと、スロットルバルブ3の下流の吸気通路2aの圧力(下流圧)PB1を検出する吸気圧センサ7と、スロットルバルブ3の目標開度TH0を指令するとともにスロットルバルブ3を通過する空気量QBを算出するコントローラ30と、を備える(図1、図3)。
(1)装置100は、エンジン1への吸気通路2aに配置されたスロットルバルブ3の上流を流れる空気量QAを検出する吸気量センサ5と、スロットルバルブ3の上流の吸気通路2aの圧力(大気圧)PAを検出する大気圧センサ6と、スロットルバルブ3の実開度TH1を検出するスロットル開度センサ3bと、スロットルバルブ3の下流の吸気通路2aの圧力(下流圧)PB1を検出する吸気圧センサ7と、スロットルバルブ3の目標開度TH0を指令するとともにスロットルバルブ3を通過する空気量QBを算出するコントローラ30と、を備える(図1、図3)。
コントローラ30は、スロットル開度センサ3bにより検出されたスロットルバルブ3の実開度TH1と、指令されたスロットルバルブ3の目標開度TH0と、予め設定された特性と、に基づいて、所定時間Δt後のスロットルバルブ3の推定開度TH2を算出する開度算出部310と、開度算出部310により算出された推定開度TH2と、大気圧センサ6により検出された大気圧PAと、に基づいて、所定時間Δt後の推定下流圧PB2を算出する下流圧算出部311と、スロットル開度センサ3bにより検出された実開度TH1と、大気圧センサ6により検出された大気圧PAと、吸気圧センサ7により検出された下流圧PB1と、に基づいて、現在、スロットルバルブ3を通過している第1空気量QB1を算出する第1空気量算出部312と、エンジン1の運転状態に応じて予め設定された特性に基づいて、所定時間Δt後にスロットルバルブ3を通過する第2空気量QB2を算出する第2空気量算出部313と、吸気圧センサ7により検出された下流圧PB1と、予め設定された特性と、に基づいて、スロットルバルブ3を通過する第3空気量QB3を算出する第3空気量算出部314と、第1空気量算出部312により算出された第1空気量QB1と、第2空気量算出部313により算出された第2空気量QB2と、第3空気量算出部314により算出された第3空気量QB3と、に基づいて、吸気量センサ5により検出された空気量QAを補正する空気量補正部315と、を有する(図7)。
空気量補正部315は、大気圧センサ6により検出された大気圧PAに対する下流圧算出部311により算出された推定下流圧PB2の圧力比PB2/PAが第1所定値R1以下のとき、第1空気量QB1と第2空気量QB2とに基づいて吸気量センサ5により検出された空気量QAを補正する。一方、圧力比PB2/PAが第1所定値R1を超えると、第3空気量QB3に基づいて吸気量センサ5により検出された空気量QAを補正する。
すなわち、吸気量センサ5により検出される空気量QAを、スロットルバルブ3の上下流の圧力差に応じて異なる手法で補正して、スロットルバルブ3を通過する空気量QBを算出する。これにより、スロットルバルブ3の全開時等、スロットルバルブ3の上下流に圧力差がない場合にも、スロットルバルブ3を通過する空気量QBを精度よく推定することができる。
(2)空気量補正部315は、圧力比PB2/PAが第1所定値R1以下のとき、吸気量センサ5とスロットルバルブ3との間における吸気通路2a内の圧力変化と、吸気量センサ5の応答遅れと、に基づいて、第1空気量算出部312により算出された第1空気量QB1を補正するとともに、補正後の空気量QB1cと第2空気量算出部313により算出された第2空気量QB2との差を吸気量センサ5により検出された空気量QAに加算して吸気量センサ5により検出された空気量QAを補正する。一方、圧力比PB2/PAが第1所定値R1を超えるとき、吸気量センサ5とスロットルバルブ3との間における吸気通路2a内の圧力変化と、吸気量センサ5の応答遅れと、に基づいて、第3空気量算出部314により算出された第3空気量QB3を補正するとともに、補正後の空気量QB3cと補正前の第3空気量QB3との差を吸気量センサ5により検出された空気量QAに加算して吸気量センサ5により検出された空気量QAを補正する。
すなわち、スロットルバルブ3の上下流の圧力差に基づく同一の手法により算出された第1空気量QB1と第2空気量QB2との差に応じて、吸気量センサ5により検出される空気量QAを補正する。これにより、吸気量センサ5の検出値によるフィードバック制御が不要となり、コントローラ30の演算負荷を低減することができる。また、同一の手法による算出値同士の差を用いて補正するため、補正手法による誤差の影響を相殺することができる。
(3)下流圧算出部311は、第2空気量算出部313により算出された第2空気量QB2zに基づいて推定下流圧PB2zを算出するとともに、算出された推定下流圧PB2zに1燃焼サイクル分の変化量ΔPBを加算して、さらに1燃焼サイクル後の推定下流圧PB2を算出する。このように燃焼サイクルごとの推定下流圧PB2を調整することで、後続する演算ステップにおいて過渡補正量(QB2−QB1c)が過小に算出されることを防止し、通過空気量QBの算出精度を向上することができる。また、予め設定された1燃焼サイクル分の変化量ΔPBを用いることで、燃焼サイクルをカウントアップするときの推定下流圧PB2を簡易に算出することができる。
(4)コントローラ30は、さらに、算出されたスロットルバルブ3を通過する空気量QBに基づいて、エンジン1のシリンダ10内に吸入される空気量QCを算出し、算出されたシリンダ10内に吸入される空気量QCに基づいて、シリンダ10内への燃料の供給を制御する。これにより、スロットルバルブ3の上下流の圧力差にかかわらず通過空気量QB、吸入空気量QCを精度よく算出することで、エンジン1の燃料噴射制御を適切に行うことができる。
(5)空気量補正部315は、圧力比PB2/PAが第1所定値R1を超えた状態であるとき、吸入空気量算出部32により算出された吸入空気量QC,QCzと、開度算出部310により算出された推定開度TH2と、に基づいて、スロットルバルブ3の上下流に生じる推定圧力比PB2/PAを算出し、算出された推定圧力比PB2/PAが第2所定値R2以下になると、第1空気量QB1と第2空気量QB2とに基づいて吸気量センサ5により検出された空気量QAを補正する。
図11のステップS11,S17に示すように過渡補正の方法によらず常にエンジン1の運転状態を反映した値として算出される吸入空気量QC,QCzに基づいて流量関数Fおよび推定圧力比PB2/PAを算出することで、過渡補正の方法によらず圧力差の状態を判定し、適切なタイミングで第1、第2空気量QB1,QB2による過渡補正に戻すことができる(図11のステップS20〜S22)。
上記実施形態は種々の形態に変形することができる。以下、変形例について説明する。上記実施形態では、図1、図2においてエンジン1の本体および補機を具体的に示したが、これらは例示であって、内燃機関の制御装置が適用される内燃機関はこのようなものに限らない。例えば、吸気通路と排気通路とを接続する過給機が設けられてもよい。この場合は、吸気通路に過給後の吸気圧を検出する過給圧センサを設けてスロットルバルブの上流の圧力を検出する。
また、排気通路から吸気通路への排気の還流(外部EGR)を行うEGR通路およびEGRバルブが設けられてもよい。この場合は、吸入空気量QCが外部EGRガス量に応じて補正される。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の一つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
1 エンジン、2a 吸気通路、3 スロットルバルブ、3a スロットル用アクチュエータ、3b スロットル開度センサ、4 吸気マニホルド、5 吸気量センサ、6 大気圧センサ、7 吸気圧センサ、10 シリンダ、20 インジェクタ、30 コントローラ、31 通過空気量算出部、32 吸入空気量算出部、33 燃料噴射制御部、310 開度算出部、311 下流圧算出部、312 第1空気量算出部、313 第2空気量算出部、314 第3空気量算出部、315 空気量補正部
Claims (5)
- 内燃機関への吸気通路に配置されたスロットルバルブの上流を流れる空気量を検出する流量検出器と、
前記スロットルバルブの上流の前記吸気通路の圧力を検出する第1圧力検出器と、
前記スロットルバルブの開度を検出する開度検出器と、
前記スロットルバルブの下流の前記吸気通路の圧力を検出する第2圧力検出器と、
前記スロットルバルブを通過する空気量を算出する演算部と、を備え、
前記演算部は、
前記開度検出器により検出された前記スロットルバルブの開度と、前記スロットルバルブの開度の目標値と、予め設定された特性と、に基づいて、所定時間後の前記スロットルバルブの開度を算出する開度算出部と、
前記内燃機関の運転状態に応じて予め設定された特性に基づいて、前記所定時間後の前記スロットルバルブの下流の圧力を算出する下流圧算出部と、
前記開度検出器により検出された前記スロットルバルブの開度と、前記第1圧力検出器により検出された前記スロットルバルブの上流の圧力と、前記第2圧力検出器により検出された前記スロットルバルブの下流の圧力と、に基づいて、現在、前記スロットルバルブを通過している第1空気量を算出する第1空気量算出部と、
前記開度算出部により算出された前記所定時間後の前記スロットルバルブの開度と、前記第1圧力検出器により検出された前記スロットルバルブの上流の圧力と、前記下流圧算出部により算出された前記所定時間後の前記スロットルバルブの下流の圧力と、に基づいて、前記所定時間後に前記スロットルバルブを通過する第2空気量を算出する第2空気量算出部と、
前記第2圧力検出器により検出された前記スロットルバルブの下流の圧力と、予め設定された特性と、に基づいて、前記スロットルバルブを通過する第3空気量を算出する第3空気量算出部と、
前記第1空気量算出部により算出された第1空気量と、前記第2空気量算出部により算出された第2空気量と、前記第3空気量算出部により算出された第3空気量と、に基づいて、前記流量検出器により検出された空気量を補正する空気量補正部と、を有し、
前記空気量補正部は、
前記第1圧力検出器により検出された前記スロットルバルブの上流の圧力に対する前記下流圧算出部により算出された前記所定時間後の前記スロットルバルブの下流の圧力の圧力比が所定値以下のとき、前記第1空気量と前記第2空気量とに基づいて前記流量検出器により検出された空気量を補正する一方、
前記圧力比が前記所定値を超えると、前記第3空気量に基づいて前記流量検出器により検出された空気量を補正することを特徴とする内燃機関の制御装置。 - 請求項1に記載の内燃機関の制御装置において、
前記空気量補正部は、
前記圧力比が前記所定値以下のとき、前記流量検出器と前記スロットルバルブとの間における前記吸気通路内の圧力変化と、前記流量検出器の応答遅れと、に基づいて、前記第1空気量算出部により算出された第1空気量を補正するとともに、補正後の空気量と前記第2空気量算出部により算出された前記第2空気量との差を前記流量検出器により検出された空気量に加算して前記流量検出器により検出された空気量を補正する一方、
前記圧力比が前記所定値を超えるとき、前記流量検出器と前記スロットルバルブとの間における前記吸気通路内の圧力変化と、前記流量検出器の応答遅れと、に基づいて、前記第3空気量算出部により算出された第3空気量を補正するとともに、補正後の空気量と補正前の前記第3空気量との差を前記流量検出器により検出された空気量に加算して前記流量検出器により検出された空気量を補正することを特徴とする内燃機関の制御装置。 - 請求項1または2に記載の内燃機関の制御装置において、
前記下流圧算出部は、前記第2空気量算出部により算出された第2空気量に基づいて前記所定時間後の前記スロットルバルブの下流の圧力を算出するとともに、算出された圧力に予め定められた一定時間分の変化量を加算して、さらに前記一定時間後の前記スロットルバルブの下流の圧力を算出することを特徴とする内燃機関の制御装置。 - 請求項1〜3のいずれか1項に記載の内燃機関の制御装置において、
前記演算部は、さらに、算出された前記スロットルバルブを通過する空気量に基づいて、前記内燃機関のシリンダ内に吸入される空気量を算出し、算出された前記シリンダ内に吸入される空気量に基づいて、前記シリンダ内への燃料の供給を制御することを特徴とする内燃機関の制御装置。 - 請求項4に記載の内燃機関の制御装置において、
前記所定値は第1所定値であり、
前記空気量補正部は、前記圧力比が前記第1所定値を超えた状態であるとき、算出されたシリンダ内に吸入される空気量と、前記開度算出部により算出された前記所定時間後の前記スロットルバルブの開度と、に基づいて、前記スロットルバルブの上下流に生じる圧力比を算出し、算出された圧力比が第2所定値以下になると、前記第1空気量と前記第2空気量とに基づいて前記流量検出器により検出された空気量を補正することを特徴とする内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019173051A JP6899416B2 (ja) | 2019-09-24 | 2019-09-24 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019173051A JP6899416B2 (ja) | 2019-09-24 | 2019-09-24 | 内燃機関の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021050631A JP2021050631A (ja) | 2021-04-01 |
JP6899416B2 true JP6899416B2 (ja) | 2021-07-07 |
Family
ID=75157525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019173051A Active JP6899416B2 (ja) | 2019-09-24 | 2019-09-24 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6899416B2 (ja) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4025977B2 (ja) * | 2002-02-27 | 2007-12-26 | 三菱自動車工業株式会社 | エンジンの吸気量算出装置 |
JP2006022750A (ja) * | 2004-07-09 | 2006-01-26 | Denso Corp | 内燃機関の空燃比制御装置 |
JP5266133B2 (ja) * | 2009-05-19 | 2013-08-21 | 富士重工業株式会社 | 流量推定装置 |
WO2011074302A1 (ja) * | 2009-12-18 | 2011-06-23 | 本田技研工業株式会社 | 内燃機関の制御装置 |
CN102859164B (zh) * | 2010-04-23 | 2014-01-15 | 本田技研工业株式会社 | 内燃机的进气参数计算装置和进气参数计算方法 |
JP2012154288A (ja) * | 2011-01-28 | 2012-08-16 | Honda Motor Co Ltd | 内燃機関の制御装置 |
JP5611166B2 (ja) * | 2011-10-04 | 2014-10-22 | 本田技研工業株式会社 | 内燃機関の吸気パラメータ算出装置 |
JP6004077B2 (ja) * | 2013-02-12 | 2016-10-05 | 日産自動車株式会社 | 吸入空気量推定装置及び吸入空気量推定方法 |
-
2019
- 2019-09-24 JP JP2019173051A patent/JP6899416B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2021050631A (ja) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7143753B2 (en) | Air amount calculator for internal combustion engine | |
US5635634A (en) | Method for calculating the air charge for an internal combustion engine with variable valve timing | |
US11739701B2 (en) | Method to determine the mass of air trapped in each cylinder of an internal combustion engine | |
US5698776A (en) | Method and apparatus for detecting combustion conditions of an internal combustion engine, and engine control method using the detection method, and engine control apparatus using the detection apparatus | |
JP5944249B2 (ja) | 内燃機関の内部egr量算出装置 | |
US20110172898A1 (en) | Internal combustion engine system control device | |
JP5331613B2 (ja) | 内燃機関の筒内ガス量推定装置 | |
JP4154972B2 (ja) | 内燃機関の内部egr量推定装置 | |
WO2014080523A1 (ja) | 内燃機関の制御装置 | |
JP2008025374A (ja) | 内燃機関の着火時期制御装置 | |
JP3551717B2 (ja) | エンジンのegr制御装置 | |
JP7168397B2 (ja) | 排気再循環制御装置 | |
JP6899416B2 (ja) | 内燃機関の制御装置 | |
US20130219881A1 (en) | Control apparatus for internal combustion engine | |
CN108691671B (zh) | Egr控制装置 | |
WO2009107378A1 (ja) | 内燃機関の制御装置 | |
US6494185B2 (en) | Fuel injection control apparatus and method for variably operated engine valve equipped internal combustion | |
JP4348705B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP6052444B2 (ja) | 内燃機関の制御装置 | |
JP2014005819A (ja) | 内燃機関の内部egr量算出装置 | |
JP6871981B2 (ja) | 内燃機関の制御装置 | |
EP3075991B1 (en) | Control device for internal combustion engine | |
JP2004316545A (ja) | 圧縮着火式内燃機関の気筒別制御装置 | |
JP6941652B2 (ja) | 過給圧設定装置 | |
JP7260347B2 (ja) | 内燃機関の燃焼制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6899416 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |