JP6894378B2 - 平面キュービットを非平面共振器に連結するための技術ならびに関連する系および方法 - Google Patents
平面キュービットを非平面共振器に連結するための技術ならびに関連する系および方法 Download PDFInfo
- Publication number
- JP6894378B2 JP6894378B2 JP2017545318A JP2017545318A JP6894378B2 JP 6894378 B2 JP6894378 B2 JP 6894378B2 JP 2017545318 A JP2017545318 A JP 2017545318A JP 2017545318 A JP2017545318 A JP 2017545318A JP 6894378 B2 JP6894378 B2 JP 6894378B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- resonator
- qubit
- patch
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 38
- 239000002096 quantum dot Substances 0.000 claims description 75
- 238000003860 storage Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 description 59
- 239000000463 material Substances 0.000 description 37
- 230000005684 electric field Effects 0.000 description 14
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 230000001427 coherent effect Effects 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000000347 anisotropic wet etching Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 2
- 238000005183 dynamical system Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000005233 quantum mechanics related processes and functions Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
- G06N10/40—Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
- H01P7/065—Cavity resonators integrated in a substrate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguide Aerials (AREA)
Description
本願は、2015年2月27日に発明の名称「Coupling Planar Qubits to Non-Planar Resonators」で出願され、その全体において参照により本明細書に援用される米国仮特許出願第62/126,183号の35 U.S.C. §119(e)の利益を主張する。
本発明は、米国陸軍研究局により授与された認可番号W911NF-14-1-0011の下、米国政府の支援によりなされた。米国政府は本発明に一定の権利を有し得る。
本願は一般的に、量子情報処理に関する。より具体的には、本願は、平面量子系と、非平面共振器または共鳴構造を結合することに関する。
量子情報処理には、従来の情報処理では利用されない様式で情報を暗号化および処理するためのエネルギー量子化、重ね合わせおよびエンタングルメントなどの量子力学的現象が使用される。例えば、特定の計算(computational)問題は、従来の古典計算(computation)よりも量子計算を使用することでより効率的に解決され得る。しかしながら、現実味のある計算オプションになるために、「キュービット」として知られる量子ビットの多くを正確に制御すること、およびこれらのキュービット間の相互作用を制御することが必要になり得る。特に、キュービットは理想的に、長いコヒーレンス時間を有し得、個々に操作され得、1つ以上の他のキュービットと相互作用して多キュービットゲートを実行し得、効率的に初期化および測定され得、かつ大規模に実現可能(scalable)であるので、量子コンピューターは多くのキュービットを含み得る。
いくつかの局面は、複数の超伝導表面を有し、かつ三次元領域内の少なくとも1つの電磁振動モードを支持するように構成される共振器、ここで該複数の超伝導表面は、第1の面を画定する第1の超伝導表面を含む、および第1の面内で平面でありかつ三次元領域と境をなす少なくとも1つの平面構成要素を含む物理的キュービットを含む、量子力学系に関する。
上述のように、超伝導キュービットは、量子計算デバイスの構築におけるキュービットの有利な選択である。特に、超伝導キュービットは、リソグラフィーなど、作製を大規模に実現可能にする標準的な二次元的作製技術を使用して作製され得る。一方で、超伝導キュービットは、量子情報を記憶(store)するための他のデバイスよりも短いコヒーレント時間を有するという欠点を有する。このように、超伝導キュービットは、しばしば連結されて、共振空洞または他の振動子内の定常波などの電磁放射線と相互作用し、三次元回路を形成する。共振器は典型的に、超伝導キュービットよりもかなり大きなコヒーレント時間を提供するので、2つのデバイスの「論理」キュービットへの組合せはより長いコヒーレント時間を提供し得る。
本発明の態様として以下のものが挙げられる。
[1]複数の超伝導表面を有しかつ三次元領域内の少なくとも1つの電磁発振モードを支持するように構成される共振器、ここで複数の超伝導表面は、第1の面を画定する第1の超伝導表面を含む、および
第1の面において平面でありかつ三次元領域に境界を作る少なくとも1つの平面構成要素を含む物理的キュービット
を含む量子力学系。
[2]少なくとも1つの平面構成要素が少なくとも1つのジョセフソン素子を含む、[1]記載の系。
[3]少なくとも1つの平面構成要素が超伝導パッチアンテナを含む、[1]記載の系。
[4]超伝導パッチアンテナが円の形状を有するパッチを含む、[3]記載の系。
[5]超伝導パッチアンテナが長方形の形状を有するパッチを含む、[3]記載の系。
[6]超伝導パッチアンテナの超伝導パッチが、少なくとも1つのジョセフソン素子を介して第1の超伝導表面に接続される、[3]記載の系。
[7]共振器が三次元空洞共振器である、[1]記載の系。
[8]共振器がウィスパリングギャラリーモード共振器である、[1]記載の系。
[9]ウィスパリングギャラリーモード共振器が、第1の超伝導表面および第1の超伝導表面に平行な第2の超伝導表面を含み、第1の超伝導表面が第2の超伝導表面から第1の距離だけ離される、[8]記載の系。
[10]ウィスパリングギャラリーモード共振器が少なくとも2つの電磁発振モードを支持する、[9]記載の系。
[11]少なくとも2つの電磁発振モードが差動モードである、[10]記載の系。
[12]少なくとも2つの電磁発振モードの第1の電磁発振モードがパラレルモードである、[10]記載の系。
[13]少なくとも2つの電磁発振モードの第2の電磁発振モードが垂直モードである、[12]記載の系。
[14]第1の超伝導表面が第1のリング様構造であり、第2の超伝導表面が第2のリング様構造である、[9]記載の系。
[15]第1の位置の第1の面における第1のリング様構造の第1の幅が、第1の位置とは異なる第2の位置での第1の面における第1のリング様構造の第2の幅よりも小さくなるように、第1のリング様構造が環状非対称である、[14]記載の系。
[16]量子力学系が複数の共振器を含む、[1]記載の系。
[17]複数の共振器の第1の共振器が読み出し空洞である、[16]記載の系。
[18]複数の共振器の第2の共振器が記憶空洞である、[17]記載の系。
Claims (18)
- 複数の超伝導表面を有しかつ三次元領域内の少なくとも1つの電磁振動モードを支持するように構成される共振器、ここで複数の超伝導表面は、第1の面を画定する第1の超伝導表面を含む、および
第1の面内で平面でありかつ三次元領域と境をなす少なくとも1つの平面構成要素を含む物理的キュービット
を含む量子力学系。 - 少なくとも1つの平面構成要素が少なくとも1つのジョセフソン素子を含む、請求項1記載の系。
- 少なくとも1つの平面構成要素が超伝導パッチアンテナを含む、請求項1記載の系。
- 超伝導パッチアンテナが円の形状を有するパッチを含む、請求項3記載の系。
- 超伝導パッチアンテナが長方形の形状を有するパッチを含む、請求項3記載の系。
- 超伝導パッチアンテナの超伝導パッチが、少なくとも1つのジョセフソン素子を介して第1の超伝導表面に接続される、請求項3記載の系。
- 共振器が三次元空洞共振器である、請求項1記載の系。
- 共振器がウィスパリングギャラリーモード共振器である、請求項1記載の系。
- ウィスパリングギャラリーモード共振器が、第1の超伝導表面および第1の超伝導表面に平行な第2の超伝導表面を含み、第1の超伝導表面が第2の超伝導表面から第1の距離だけ離される、請求項8記載の系。
- ウィスパリングギャラリーモード共振器が少なくとも2つの電磁振動モードを支持する、請求項9記載の系。
- 少なくとも2つの電磁振動モードが差動モードである、請求項10記載の系。
- 少なくとも2つの電磁振動モードの第1の電磁振動モードがパラレルモードである、請求項10記載の系。
- 少なくとも2つの電磁振動モードの第2の電磁振動モードが垂直モードである、請求項12記載の系。
- 第1の超伝導表面が第1のリング様構造であり、第2の超伝導表面が第2のリング様構造である、請求項9記載の系。
- 第1の位置の第1の面における第1のリング様構造の第1の幅が、第1の位置とは異なる第2の位置での第1の面における第1のリング様構造の第2の幅よりも小さくなるように、第1のリング様構造が環状非対称である、請求項14記載の系。
- 量子力学系が複数の共振器を含む、請求項1記載の系。
- 複数の共振器の第1の共振器が読み出し空洞である、請求項16記載の系。
- 複数の共振器の第2の共振器が記憶空洞である、請求項17記載の系。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562126183P | 2015-02-27 | 2015-02-27 | |
US62/126,183 | 2015-02-27 | ||
PCT/US2016/019801 WO2016138395A1 (en) | 2015-02-27 | 2016-02-26 | Techniques for coupling plannar qubits to non-planar resonators and related systems and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018512729A JP2018512729A (ja) | 2018-05-17 |
JP6894378B2 true JP6894378B2 (ja) | 2021-06-30 |
Family
ID=56789088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017545318A Active JP6894378B2 (ja) | 2015-02-27 | 2016-02-26 | 平面キュービットを非平面共振器に連結するための技術ならびに関連する系および方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10468740B2 (ja) |
EP (1) | EP3262573B1 (ja) |
JP (1) | JP6894378B2 (ja) |
KR (1) | KR102684587B1 (ja) |
CN (1) | CN107408224B (ja) |
CA (1) | CA2977662A1 (ja) |
SG (1) | SG11201706976XA (ja) |
WO (1) | WO2016138395A1 (ja) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102192270B1 (ko) | 2013-01-18 | 2020-12-18 | 예일 유니버시티 | 적어도 하나의 인클로저를 구비한 초전도 디바이스를 제조하는 방법 |
CA2898598C (en) | 2013-01-18 | 2023-01-03 | Yale University | Superconducting device with at least one enclosure |
US10068181B1 (en) * | 2015-04-27 | 2018-09-04 | Rigetti & Co, Inc. | Microwave integrated quantum circuits with cap wafer and methods for making the same |
US10748960B2 (en) * | 2016-07-01 | 2020-08-18 | Intel Corporation | Interconnects below qubit plane by substrate doping |
WO2018004636A1 (en) * | 2016-07-01 | 2018-01-04 | Intel Corporation | Interconnects below qubit plane by substrate bonding |
CN110024146B (zh) * | 2016-09-14 | 2023-11-03 | 谷歌有限责任公司 | 使用局部真空腔减少量子装置中的耗散和频率噪声 |
WO2018169585A1 (en) * | 2017-03-13 | 2018-09-20 | Google Llc | Integrating circuit elements in a stacked quantum computing device |
WO2018222839A1 (en) | 2017-06-01 | 2018-12-06 | Radiabeam Technologies, Llc | Split structure particle accelerators |
US11121301B1 (en) | 2017-06-19 | 2021-09-14 | Rigetti & Co, Inc. | Microwave integrated quantum circuits with cap wafers and their methods of manufacture |
JP7102526B2 (ja) * | 2017-09-07 | 2022-07-19 | アマースト カレッジ | スピン共鳴分光法のためのループギャップ共振器 |
US10431866B2 (en) * | 2017-09-15 | 2019-10-01 | International Business Machines Corporation | Microfabricated air bridges for planar microwave resonator circuits |
US10885678B2 (en) * | 2017-09-29 | 2021-01-05 | International Business Machines Corporation | Facilitating quantum tomography |
US10305015B1 (en) | 2017-11-30 | 2019-05-28 | International Business Machines Corporation | Low loss architecture for superconducting qubit circuits |
US10263170B1 (en) | 2017-11-30 | 2019-04-16 | International Business Machines Corporation | Bumped resonator structure |
US10615223B2 (en) * | 2018-06-12 | 2020-04-07 | International Business Machines Corporation | Vertical silicon-on-metal superconducting quantum interference device |
US10707812B2 (en) | 2018-07-30 | 2020-07-07 | International Business Machines Corporation | Superconducting device that mixes surface acoustic waves and microwave signals |
US10320331B1 (en) | 2018-07-30 | 2019-06-11 | International Business Machines Corporation | Applications of a superconducting device that mixes surface acoustic waves and microwave signals |
US10944362B2 (en) | 2018-07-30 | 2021-03-09 | International Business Machines Corporation | Coupling surface acoustic wave resonators to a Josephson ring modulator |
US10348245B1 (en) | 2018-07-30 | 2019-07-09 | International Business Machines Corporation | Applications of surface acoustic wave resonators coupled to a josephson ring modulator |
US10811588B2 (en) | 2018-08-06 | 2020-10-20 | International Business Machines Corporation | Vertical dispersive readout of qubits of a lattice surface code architecture |
EP3785186A1 (en) * | 2018-08-30 | 2021-03-03 | Google LLC | Two-qubit gates implemented with a tunable coupler |
US11612049B2 (en) | 2018-09-21 | 2023-03-21 | Radiabeam Technologies, Llc | Modified split structure particle accelerators |
EP3867828A4 (en) * | 2018-10-18 | 2022-08-31 | Ramot at Tel-Aviv University Ltd. | MODULATED COMPOSITE PULSE MISTAKE FOR HIGH FIDELITY ROBUST QUANTUM TUNING |
US10720563B1 (en) * | 2018-11-13 | 2020-07-21 | Google Llc | Quantum processor design to increase control footprint |
US11223355B2 (en) | 2018-12-12 | 2022-01-11 | Yale University | Inductively-shunted transmon qubit for superconducting circuits |
US11727295B2 (en) | 2019-04-02 | 2023-08-15 | International Business Machines Corporation | Tunable superconducting resonator for quantum computing devices |
WO2020219578A1 (en) * | 2019-04-23 | 2020-10-29 | Radiabeam Technologies, Llc | Quantum computing structures and resonators thereof |
US11461688B2 (en) * | 2019-05-22 | 2022-10-04 | IonQ, Inc. | Simultaneously entangling gates for trapped-ion quantum computers |
US11276653B2 (en) * | 2019-10-17 | 2022-03-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Electronic device and manufacturing method thereof |
KR20210128787A (ko) | 2020-04-17 | 2021-10-27 | 삼성전자주식회사 | 양자 컴퓨팅 장치 |
CN113675172B (zh) | 2020-05-13 | 2024-06-14 | 阿里巴巴集团控股有限公司 | 封装结构、封装结构的制作方法以及量子处理器 |
US11600658B2 (en) | 2020-06-30 | 2023-03-07 | International Business Machines Corporation | Quantum coupler facilitating suppression of ZZ interactions between qubits |
CN111969335B (zh) * | 2020-08-16 | 2021-09-28 | 西安电子科技大学 | 一种共形双极化二维单脉冲端射阵列天线 |
US20220129779A1 (en) * | 2020-10-23 | 2022-04-28 | PsiQuantum Corp. | Qubit Detection Using Superconductor Devices |
US12033981B2 (en) | 2020-12-16 | 2024-07-09 | International Business Machines Corporation | Create a protected layer for interconnects and devices in a packaged quantum structure |
EP4295421A1 (en) * | 2021-02-18 | 2023-12-27 | Yale University | Multimode superconducting cavity resonators |
EP4352664A1 (en) | 2021-06-11 | 2024-04-17 | Seeqc Inc. | System and method of flux bias for superconducting quantum circuits |
US20230409944A1 (en) * | 2021-10-14 | 2023-12-21 | Quantum Circuits, Inc. | Interface between Cryogenic Computational Hardware and Room Temperature Computational Hardware |
CN115660094B (zh) * | 2022-10-17 | 2023-06-23 | 北京百度网讯科技有限公司 | 含耦合器超导量子比特结构的特征参数确定方法及装置 |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3723755A (en) | 1970-10-12 | 1973-03-27 | A Morse | Parametric amplifier |
US4403189A (en) | 1980-08-25 | 1983-09-06 | S.H.E. Corporation | Superconducting quantum interference device having thin film Josephson junctions |
US4344052A (en) | 1980-09-29 | 1982-08-10 | International Business Machines Corporation | Distributed array of Josephson devices with coherence |
US4585999A (en) | 1984-04-27 | 1986-04-29 | The United States Of America As Represented By The United States Department Of Energy | Radiofrequency amplifier based on a dc superconducting quantum interference device |
JPS6182449A (ja) | 1984-09-28 | 1986-04-26 | Mitsubishi Electric Corp | プラスチツクモ−ルド型半導体装置 |
US4780724A (en) * | 1986-04-18 | 1988-10-25 | General Electric Company | Antenna with integral tuning element |
US4924234A (en) | 1987-03-26 | 1990-05-08 | Hughes Aircraft Company | Plural level beam-forming network |
GB2219434A (en) | 1988-06-06 | 1989-12-06 | Philips Nv | A method of forming a contact in a semiconductor device |
JPH02194638A (ja) | 1989-01-24 | 1990-08-01 | Fujitsu Ltd | 半導体装置 |
US5105166A (en) | 1989-11-30 | 1992-04-14 | Raytheon Company | Symmetric bi-directional amplifier |
US5075655A (en) | 1989-12-01 | 1991-12-24 | The United States Of America As Represented By The Secretary Of The Navy | Ultra-low-loss strip-type transmission lines, formed of bonded substrate layers |
US5326986A (en) | 1991-03-05 | 1994-07-05 | University Of Houston - University Park | Parallel N-junction superconducting interferometer with enhanced flux-to-voltage transfer function |
US5186379A (en) | 1991-06-17 | 1993-02-16 | Hughes Aircraft Company | Indium alloy cold weld bumps |
US5254950A (en) | 1991-09-13 | 1993-10-19 | The Regents, University Of California | DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers |
US5296457A (en) | 1992-03-23 | 1994-03-22 | The Regents Of The University Of California | Clamshell microwave cavities having a superconductive coating |
ZA947132B (en) | 1993-09-15 | 1995-05-15 | Commw Scient Ind Res Org | Squid detector for tem prospecting |
US5493719A (en) | 1994-07-01 | 1996-02-20 | The United States Of America As Represented By The Secretary Of The Air Force | Integrated superconductive heterodyne receiver |
JPH0969724A (ja) * | 1995-09-01 | 1997-03-11 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 広周波数帯域高温超電導体ミキサーアンテナ |
JP3421184B2 (ja) | 1995-12-19 | 2003-06-30 | 理化学研究所 | 波長可変レーザーにおける波長選択方法および波長可変レーザーにおける波長選択可能なレーザー発振装置 |
RU2106717C1 (ru) | 1996-08-07 | 1998-03-10 | Научно-исследовательский институт измерительных систем | Способ анизотропного травления кристаллов кремния |
US6578018B1 (en) | 1999-07-27 | 2003-06-10 | Yamaha Hatsudoki Kabushiki Kaisha | System and method for control using quantum soft computing |
US7015499B1 (en) * | 1999-12-01 | 2006-03-21 | D-Wave Systems, Inc. | Permanent readout superconducting qubit |
US6486756B2 (en) | 2000-03-27 | 2002-11-26 | Hitachi, Ltd. | Superconductor signal amplifier |
US6627915B1 (en) | 2000-08-11 | 2003-09-30 | D-Wave Systems, Inc. | Shaped Josephson junction qubits |
US6549059B1 (en) | 2001-02-23 | 2003-04-15 | Trw Inc. | Underdamped Josephson transmission line |
WO2002093181A1 (fr) | 2001-05-15 | 2002-11-21 | Synchro Co., Ltd. | Detecteur de forme d'onde et systeme de suivi d'etat l'utilisant |
EP1262911A1 (en) | 2001-05-30 | 2002-12-04 | Hitachi Europe Limited | Quantum computer |
US6803599B2 (en) | 2001-06-01 | 2004-10-12 | D-Wave Systems, Inc. | Quantum processing system for a superconducting phase qubit |
US6621374B2 (en) | 2001-07-19 | 2003-09-16 | Lockheed Martin Corporation | Splitter/combiner using artificial transmission lines, and paralleled amplifier using same |
WO2003031991A1 (fr) | 2001-10-11 | 2003-04-17 | Orlov, Oleg Alekseewich | Nanocapteur tunnel d'oscillations mecaniques et procede de fabrication correspondant |
US6614047B2 (en) | 2001-12-17 | 2003-09-02 | D-Wave Systems, Inc. | Finger squid qubit device |
US6908779B2 (en) | 2002-01-16 | 2005-06-21 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for manufacturing the same |
US7307275B2 (en) | 2002-04-04 | 2007-12-11 | D-Wave Systems Inc. | Encoding and error suppression for superconducting quantum computers |
US6911664B2 (en) | 2002-04-15 | 2005-06-28 | D-Wave Systems, Inc. | Extra-substrate control system |
US6900454B2 (en) | 2002-04-20 | 2005-05-31 | D-Wave Systems, Inc. | Resonant controlled qubit system |
FR2839389B1 (fr) | 2002-05-03 | 2005-08-05 | Commissariat Energie Atomique | Dispositif de bit quantique supraconducteur a jonctions josephson |
US6943368B2 (en) | 2002-11-25 | 2005-09-13 | D-Wave Systems, Inc. | Quantum logic using three energy levels |
US7364923B2 (en) | 2003-03-03 | 2008-04-29 | The Governing Council Of The University Of Toronto | Dressed qubits |
WO2004084132A2 (en) | 2003-03-18 | 2004-09-30 | Magiq Technologies, Inc. | Universal quantum computing |
CA2527911C (en) | 2003-06-13 | 2010-09-14 | Qest Quantenelektronische Systeme Tuebingen Gmbh Sitz Boeblingen | Superconducting quantum antenna |
JP4113076B2 (ja) | 2003-08-28 | 2008-07-02 | 株式会社日立製作所 | 超電導半導体集積回路 |
WO2005050555A2 (en) * | 2003-10-22 | 2005-06-02 | The Johns Hopkins University | Photon quantum processing and the zeno effect |
US20050134377A1 (en) | 2003-12-23 | 2005-06-23 | Dent Paul W. | Doherty amplifier |
US7135701B2 (en) | 2004-03-29 | 2006-11-14 | D-Wave Systems Inc. | Adiabatic quantum computation with superconducting qubits |
US7225674B2 (en) | 2004-04-30 | 2007-06-05 | The Regents Of The University Of California | Self-stabilizing, floating microelectromechanical device |
US8284585B2 (en) | 2004-07-27 | 2012-10-09 | Japan Science And Technology Agency | Josephson quantum computing device and integrated circuit using such devices |
US7253654B2 (en) | 2004-11-08 | 2007-08-07 | D-Wave Systems Inc. | Superconducting qubits having a plurality of capacitive couplings |
US7533068B2 (en) | 2004-12-23 | 2009-05-12 | D-Wave Systems, Inc. | Analog processor comprising quantum devices |
US7375802B2 (en) | 2005-08-04 | 2008-05-20 | Lockheed Martin Corporation | Radar systems and methods using entangled quantum particles |
US8164082B2 (en) | 2005-09-30 | 2012-04-24 | Wisconsin Alumni Research Foundation | Spin-bus for information transfer in quantum computing |
US7836007B2 (en) | 2006-01-30 | 2010-11-16 | Hewlett-Packard Development Company, L.P. | Methods for preparing entangled quantum states |
US7870087B2 (en) | 2006-11-02 | 2011-01-11 | D-Wave Systems Inc. | Processing relational database problems using analog processors |
JP5313912B2 (ja) | 2006-12-05 | 2013-10-09 | ディー−ウェイブ システムズ,インコーポレイテッド | 量子プロセッサ要素の局所的プログラミングのためのシステム、方法、および装置 |
US7724020B2 (en) | 2007-12-13 | 2010-05-25 | Northrop Grumman Systems Corporation | Single flux quantum circuits |
WO2008134875A1 (en) | 2007-05-02 | 2008-11-13 | D-Wave Systems, Inc. | Systems, devices, and methods for controllably coupling qubits |
US7899092B2 (en) | 2007-05-22 | 2011-03-01 | Magiq Technologies, Inc. | Fast quantum gates with ultrafast chirped pulses |
CN101059556A (zh) * | 2007-05-29 | 2007-10-24 | 南京大学 | 一种超导量子比特测量系统 |
US7859744B2 (en) | 2007-07-27 | 2010-12-28 | Magiq Technologies, Inc. | Tunable compact entangled-photon source and QKD system using same |
US7498832B2 (en) | 2007-08-03 | 2009-03-03 | Northrop Grumman Systems Corporation | Arbitrary quantum operations with a common coupled resonator |
US8149494B1 (en) | 2007-09-07 | 2012-04-03 | The United States Of America As Represented By The Secretary Of The Navy | Two-photon absorption switch having which-path exclusion and monolithic mach-zehnder interferometer |
US20090074355A1 (en) | 2007-09-17 | 2009-03-19 | Beausoleil Raymond G | Photonically-coupled nanoparticle quantum systems and methods for fabricating the same |
US7932515B2 (en) | 2008-01-03 | 2011-04-26 | D-Wave Systems Inc. | Quantum processor |
US8260144B2 (en) | 2008-03-12 | 2012-09-04 | Hypres Inc. | Digital radio frequency tranceiver system and method |
US20090258787A1 (en) | 2008-03-30 | 2009-10-15 | Hills, Inc. | Superconducting Wires and Cables and Methods for Producing Superconducting Wires and Cables |
US7932514B2 (en) | 2008-05-23 | 2011-04-26 | International Business Machines Corporation | Microwave readout for flux-biased qubits |
US7969178B2 (en) | 2008-05-29 | 2011-06-28 | Northrop Grumman Systems Corporation | Method and apparatus for controlling qubits with single flux quantum logic |
WO2009152180A2 (en) | 2008-06-10 | 2009-12-17 | D-Wave Systems Inc. | Parameter learning system for solvers |
US7724083B2 (en) | 2008-08-05 | 2010-05-25 | Northrop Grumman Systems Corporation | Method and apparatus for Josephson distributed output amplifier |
JP5091813B2 (ja) | 2008-09-17 | 2012-12-05 | 株式会社東芝 | 量子ゲート方法および装置 |
DK2411163T3 (da) | 2009-03-26 | 2013-06-10 | Norwegian Univ Sci & Tech Ntnu | Waferbundet cmut-array med ledende kontakthuller |
EP2414801B1 (en) | 2009-03-30 | 2021-05-26 | QUALCOMM Incorporated | Chip package with stacked processor and memory chips |
EP2249173A1 (en) | 2009-05-08 | 2010-11-10 | Mbda Uk Limited | Radar apparatus with amplifier duplexer |
IT1398934B1 (it) | 2009-06-18 | 2013-03-28 | Edison Spa | Elemento superconduttivo e relativo procedimento di preparazione |
FR2950877B1 (fr) | 2009-10-07 | 2012-01-13 | Commissariat Energie Atomique | Structure a cavite comportant une interface de collage a base de materiau getter |
US8738105B2 (en) * | 2010-01-15 | 2014-05-27 | D-Wave Systems Inc. | Systems and methods for superconducting integrated circuts |
US8600200B1 (en) | 2010-04-01 | 2013-12-03 | Sandia Corporation | Nano-optomechanical transducer |
US8525619B1 (en) | 2010-05-28 | 2013-09-03 | Sandia Corporation | Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material |
US8111083B1 (en) | 2010-12-01 | 2012-02-07 | Northrop Grumman Systems Corporation | Quantum processor |
US8416109B2 (en) | 2010-12-16 | 2013-04-09 | Hypres, Inc. | Superconducting analog-to-digital converter with current amplified feedback |
US9379303B2 (en) | 2011-06-14 | 2016-06-28 | Glocbalfoundries Inc. | Modular array of fixed-coupling quantum systems for quantum information processing |
US8861619B2 (en) | 2011-08-16 | 2014-10-14 | Wisconsin Alumni Research Foundation | System and method for high-frequency amplifier |
US8837544B2 (en) | 2011-10-28 | 2014-09-16 | Hewlett-Packard Development Company, L.P. | Quantum optical device |
US8841764B2 (en) * | 2012-01-31 | 2014-09-23 | International Business Machines Corporation | Superconducting quantum circuit having a resonant cavity thermalized with metal components |
US9601103B2 (en) | 2012-10-19 | 2017-03-21 | The Regents Of The University Of Michigan | Methods and devices for generating high-amplitude and high-frequency focused ultrasound with light-absorbing materials |
CA2898598C (en) | 2013-01-18 | 2023-01-03 | Yale University | Superconducting device with at least one enclosure |
KR102192270B1 (ko) | 2013-01-18 | 2020-12-18 | 예일 유니버시티 | 적어도 하나의 인클로저를 구비한 초전도 디바이스를 제조하는 방법 |
US9350460B2 (en) * | 2013-04-23 | 2016-05-24 | Raytheon Bbn Technologies Corp. | System and method for quantum information transfer between optical photons and superconductive qubits |
EP3828782A1 (en) | 2014-02-28 | 2021-06-02 | Rigetti & Co., Inc. | Operating a multi-dimensional array of qubit devices |
KR102344884B1 (ko) | 2014-11-25 | 2021-12-29 | 삼성전자주식회사 | 멀티 큐빗 커플링 구조 |
US9836699B1 (en) | 2015-04-27 | 2017-12-05 | Rigetti & Co. | Microwave integrated quantum circuits with interposer |
US9503063B1 (en) | 2015-09-16 | 2016-11-22 | International Business Machines Corporation | Mechanically tunable superconducting qubit |
-
2016
- 2016-02-26 CN CN201680012386.5A patent/CN107408224B/zh active Active
- 2016-02-26 EP EP16756456.6A patent/EP3262573B1/en active Active
- 2016-02-26 JP JP2017545318A patent/JP6894378B2/ja active Active
- 2016-02-26 CA CA2977662A patent/CA2977662A1/en active Pending
- 2016-02-26 SG SG11201706976XA patent/SG11201706976XA/en unknown
- 2016-02-26 WO PCT/US2016/019801 patent/WO2016138395A1/en active Application Filing
- 2016-02-26 KR KR1020177027133A patent/KR102684587B1/ko active IP Right Grant
- 2016-02-26 US US15/553,012 patent/US10468740B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3262573A4 (en) | 2018-11-21 |
EP3262573B1 (en) | 2024-04-03 |
KR102684587B1 (ko) | 2024-07-12 |
CN107408224A (zh) | 2017-11-28 |
KR20170134399A (ko) | 2017-12-06 |
JP2018512729A (ja) | 2018-05-17 |
CN107408224B (zh) | 2022-09-13 |
WO2016138395A1 (en) | 2016-09-01 |
WO2016138395A8 (en) | 2017-09-08 |
SG11201706976XA (en) | 2017-09-28 |
US20180069288A1 (en) | 2018-03-08 |
CA2977662A1 (en) | 2016-09-01 |
US10468740B2 (en) | 2019-11-05 |
EP3262573A1 (en) | 2018-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6894378B2 (ja) | 平面キュービットを非平面共振器に連結するための技術ならびに関連する系および方法 | |
US11494682B2 (en) | Quantum computing assemblies | |
JP6744379B2 (ja) | 少なくとも1つの囲いを有する超伝導デバイス | |
US11177912B2 (en) | Quantum circuit assemblies with on-chip demultiplexers | |
US10847705B2 (en) | Reducing crosstalk from flux bias lines in qubit devices | |
Hughes et al. | Microfabricated ion traps | |
US10319896B2 (en) | Shielded interconnects | |
CA2898608C (en) | Methods for making a superconducting device with at least one enclosure | |
US20190267692A1 (en) | Stripline and microstrip transmission lines for qubits | |
WO2019004991A1 (en) | ASSEMBLIES OF QUANTUM CALCULATORS | |
US8125717B2 (en) | Three-dimensional left-handed metamaterial | |
WO2018182571A1 (en) | Controlled current flux bias lines in qubit devices | |
WO2018160184A1 (en) | Grounded coplanar waveguide transmission line structures for qubits | |
CN111164618A (zh) | 针对量子电路的改进量子位元设计 | |
WO2018057024A1 (en) | Sintered silver heat exchanger for qubits | |
Bautista-Salvador et al. | Multilayer ion trap technology for scalable quantum computing and quantum simulation | |
US20160104073A1 (en) | Radiation Suppression of Superconducting Quantum Bits Using a Conductive Plane | |
US20090321719A1 (en) | Novel material and process for integrated ion chip | |
JP2022113695A (ja) | フリップチップ形状の低フットプリント共振器 | |
US8743017B2 (en) | Metamaterial and method for manufacturing same | |
EP2946414B1 (en) | Methods for making a superconducting device with at least one enclosure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180112 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210506 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6894378 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |