JP6892359B2 - 無線伝送装置及び無線伝送方法 - Google Patents

無線伝送装置及び無線伝送方法 Download PDF

Info

Publication number
JP6892359B2
JP6892359B2 JP2017172789A JP2017172789A JP6892359B2 JP 6892359 B2 JP6892359 B2 JP 6892359B2 JP 2017172789 A JP2017172789 A JP 2017172789A JP 2017172789 A JP2017172789 A JP 2017172789A JP 6892359 B2 JP6892359 B2 JP 6892359B2
Authority
JP
Japan
Prior art keywords
signal
power amplification
intermediate frequency
unit
frequency signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017172789A
Other languages
English (en)
Other versions
JP2019050465A (ja
Inventor
藤倉 幹夫
幹夫 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2017172789A priority Critical patent/JP6892359B2/ja
Publication of JP2019050465A publication Critical patent/JP2019050465A/ja
Application granted granted Critical
Publication of JP6892359B2 publication Critical patent/JP6892359B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

本発明は、無線伝送装置及び無線伝送方法に係り、例えば、輸送機器に等に搭載され複数のアンテナを切り替え伝送を行う移動型の無線伝送装置及び無線伝送方法に関する。
無線伝送システムにおいて、複数のアンテナを切り替えたり、アンテナの方向調整作業を行い、伝送特性を向上させる技術があり、様々な技術が提案されている(例えば、特許文献1〜3参照)。特許文献1に開示の技術では、ヘリコプタ等の移動体からその姿勢や位置情報を取得した基地局側の装置が、移動体へ送信する際の送信アンテナの送信パターンを3次元表示させて、基地局側のオペレータの作業性を向上させている。特許文献2に開示の技術では、送信点の位置を追尾型回転受信アンテナ部で検出し、検出した角度情報を基に他の回転受信アンテナ部を水平および垂直回転させ、送信点の送信波を2つのアンテナで受信して、安定した素材伝送を実現する。特許文献3に開示の技術では、送信元の移動局の送信アンテナの位置に追従させて、マルチ受信を行う複数の受信アンテナの向きを効率良く動作制御させ、設備費用の低減や操作者の作業工数の低減を実現している。
図4に、輸送機器に等に搭載され複数のアンテナを切り替え伝送を行う移動型の無線伝送システム501の例を示す。
映像や音声信号の圧縮信号であるTS信号591を取得した送信制御部510では、変調部511がOFDM等のデジタル変調処理を行い、ミキサ512が130MHz帯の第1中間周波数信号に変換し、IFケーブル592を介して送信高周波部520に出力する。以下、中間周波数信号を「IF信号」と称する。
つづいて、送信高周波部520において、ミキサ521が第1IF信号を1.5GHz帯の第2IF信号に変換し、さらにミキサ522が第2IF信号を7GHz帯や10GHz帯のマイクロ波であるRF信号に周波数変換する。その後、アンプ部523がRF信号を電力増幅し、RFケーブル593を介してアンテナ切替部530へ出力する。
アンテナ切替部530は、切替え制御ケーブル595を介して、切替え制御部540からの切替えタイミングに従い出力を切り替える。アンテナ切替部530にPINダイオード等を用いることで、数百ns〜数μs以下の高速期間でRF信号を切り替える。切替え制御部540は、変調部511から所定周期のタイミングパルス信号を切替えタイミングケーブル594を介して受信する。
アンテナ切替部530で切り替えられたRF信号は、RFケーブル596a、596bを介していずれか選択された電力増幅部550A、550Bへ入力される。各電力増幅部550A、550Bは内部のアンプ部551A、551Bにて電力増幅し出力する。その後、RFケーブル597a、597bを介して、指向性アンテナ560a、560bの何れか選択された送信アンテナより発放される。
ここで、送信高周波部520からのRF信号に対して、アンテナ切替え部530やRFケーブル593、596a、596b、597a、597bにて生じる減衰があったとしても、再度当該電力増幅部550A、550Bが増幅し直すことで、アンテナ端での所定電力の出力確保を行う。
特開2015−065563号公報 特開2015−104054号公報 特開2017−041781号公報
ところで、図4で例示したような無線伝送システム501では、指向性アンテナ560a、560bから電力増幅部550A、550Bまでの距離が離れるとRFケーブル597a、597bが長くなり減衰量が増加する。この場合、予めその分を加算したより大電力アンプが必要となり消費電力が増加する。したがって、電力増幅部550A、550Bは、可能な限り指向性アンテナ560a、560bの近傍に設置されることが望ましい。
電力増幅部550A、550Bに使用されるアンプ素子は、入力信号に対して瞬時に固定のゲインで増幅出力可能なリニアアンプであり、前段のアンテナ切替え530での切替えにより、その入力が一度断し、再び入力されても瞬時に増幅出力できる。
従来技術では、例えば、7GHz/10GHz帯マイクロ波に対してリニアアンプを用いて電力増幅する場合、OFDM方式においては、上記の指向性アンテナ560a、560bのアンテナ端で、およそ1W〜1.5W程度の出力が限界であった。一方で、FPUのOFDMデジタル伝送システムに関する規格(ARIB STD-B33)では、最大出力5Wまで許容されており、更なる高出力化が望まれていた。しかし、図4で示したような構成のまま、出力電力を上げようとすると、より高い電力に対応したアンプ素子を採用する必要があり、消費電力の増加につながるという課題があった。このため、近年では歪補償技術と高効率アンプを組み合わせた電力増幅器が検討されている。当該歪補償技術は、後段の増幅器で発生する歪成分を前段で打消す(逆の歪成分でキャンセルする)処理を施すことで、変調波のエンベローブ特性を改善する。しかし、図4で示した従来の無線伝送システム501では、電力増幅部550A、550Bの前段でアンテナ切替えが行われることから、電力増幅部550A、550Bへの入力信号が瞬時に断し、瞬時に入力される動作となる。現実的には、信号が入力されてから瞬時(およそ数μs以内)に歪補償におけるフィードバックループを安定させ、かつ、適切なスペクトラム波形(後述する図3の一点破線で示すスペクトラム波形113)を出力する事は不可能であることから、フィードバック形の歪補償方式を用いることは出来ないという課題があった。
本発明は、このような状況に鑑みなされたもので、上記課題を解決することを目的とする。
本発明は、輸送機器に搭載される複数の送信アンテナの切替制御を行う機能を備えた無線伝送装置であって、前記送信アンテナのそれぞれに設けられた複数の電力増幅部と、入力信号をアップコンバートして中間周波数信号を生成する中間信号生成部と、前記中間周波数信号を前記電力増幅部へ分配する分配器と、それぞれの前記送信アンテナと前記電力増幅部の間に設けられ、前記電力増幅部の出力を、前記送信アンテナ又は前記送信アンテナと対に設けられている終端器に切り替えるアンテナ切替部と、前記アンテナ切替部を制御する切替制御部と、を有し、前記電力増幅部は、前記中間周波数信号をアップコンバードしてRF信号へ変換し電力増幅処理をして前記アンテナ切替部に出力すると共に、電力増幅処理後の前記RF信号を再び元の中間周波数信号へダウンコンバートし、当該ダウンコンバートした信号をフィードバック信号として前記電力増幅処理の歪補償処理を行う歪補償部を有する。
また、前記中間信号生成部は、前記入力信号を変調処理して変調信号を生成する変調部と、前記変調信号をアップコンバートして第1中間周波数信号を生成する第1中間周波数信号生成部と、前記第1中間周波数信号をアップコンバートして第2中間周波数信号を生成する第2中間周波数信号生成部と、を有し、前記電力増幅部は、前記第2中間周波数信号を前記中間周波数信号として前記増幅処理及び前記歪補償処理を行い、前記切替制御部は、複数の前記アンテナ切替部を全て同時に切り替え、発放選択されていない送信アンテナに対応した前記アンテナ切替部は、出力を前記終端器に接続し停波してもよい。
本発明は、複数の送信アンテナと前記送信アンテナのそれぞれに設けられた複数の電力増幅部とを備え、前記送信アンテナの切替制御を行う無線伝送方法であって、入力信号をアップコンバートして中間周波数信号を生成する中間信号生成工程と、前記中間周波数信号を前記電力増幅部へ分配する分配工程と、前記中間周波数信号をアップコンバードしてRF信号へ変換し電力増幅処理をして出力する増幅出力工程と、電力増幅処理後の前記RF信号の一部を再び元の中間周波数信号へダウンコンバートし、当該ダウンコンバートした信号をフィードバック信号として前記電力増幅処理の歪補償処理を行う歪補償工程と、それぞれの前記電力増幅部の出力を、前記送信アンテナ又は前記送信アンテナと対に設けられている終端器に切り替えるアンテナ切替工程と、を有する。
本発明によると、歪補償、高効率アンプを具備した電力増幅器を用いることが可能となり、送信電力の高出力化、低消費電力化が図れ、且つ安定したアンテナ切替え動作が可能な技術を実現できる。
実施形態に係る、ヘリコプタ無線伝送システムの運用例を示す図である。 実施形態に係る、ヘリコプタ無線伝送システム1の概略構成を示す機能ブロック図である。 実施形態に係る、歪補償の有無の違いによるスペクトラム波形の例を示した図である。 背景技術に係る、ヘリコプタ無線伝送システムの概略構成を示す機能ブロック図である。
次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。以下に実施形態のヘリコプタ無線伝送システムは、輸送機器に搭載されるFPU(Field Pickup Unit)に適用される。輸送機器としては、ヘリコプタ等の航空機や、船舶、車両等がある。以下では、ヘリコプタにFPUを搭載したヘリコプタ無線伝送システム1について説明する。
図1は、ヘリコプタ無線伝送システム1の運用例を示している。ヘリコプタ110に搭載される無線伝送システム1において用いられるFPU(Field Pickup Unit)等では、QAM(Quadrature Amplitude Modulation)方式やOFDM(Orthogonal Frequency Divisional Multiplexing)方式などによるデジタル伝送方式が用いられている。このとき、伝送対象となるデータは、映像や音声信号をMPEG(Moving Picture Expert Group)方式等で圧縮処理され、一束のストリームとしたTS(Transport Stream)信号などである。
ヘリコプタ110には、ヘリコプタ無線伝送システム1の構成の一部として、前後、又は左右に備え付けられた複数の送信アンテナ(ここでは第1及び第2指向性アンテナ61、62)の何れかより、地上の受信基地局に据え付けられた受信アンテナ111に向けて発放され、伝送が行われる。
発放の際、ヘリコプタ110が旋回した場合にも安定した伝送を得るため、ヘリコプタ110の旋回情報(選択発放している送信アンテナがヘリコプタ110の傾きや向きやにより、受信基地局に対して反対になったか否かの情報)から受信点に近い方の送信アンテナを選択し、アンテナ切替え動作を行う。ヘリコプタ110の向きや位置情報を取得する装置として、図示しないジャイロ装置やGNSS装置が搭載される。
図2は、アンテナ切替え手段を有した現行のヘリコプタ無線伝送システム1の構成を示している。ヘリコプタ無線伝送システム1は、送信制御部10と、送信高周波部20と、分配器70と、第1及び第2電力増幅部50A、50Bと、第1及び第2アンテナ装置60A、60Bとを備える。
詳細は後述するが、まず、本実施形態のヘリコプタ無線伝送システム1の特徴を簡単に説明する。まず、特徴の一つは、アンテナ切換部81、82を第1及び第2電力増幅部50A、50Bの後段に配置する。かつ、第1及び第2電力増幅部50Aへの入力信号を常時入力するようにすることで、アンテナ切替え動作に拘わらず、第1及び第2電力増幅部50Aでの安定したフィードバック形の歪補償処理を可能としている。
別の特徴の一つは、FPU(ヘリコプタ無線伝送システム1)の出力に新たに第2IF信号の出力アンプ24を設けて後段の第1及び第2電力増幅部50A、50Bへ直接入力可能とすることで、第2IF信号(1.5GHzの信号)のまま歪補償処理を可能としている。すなわち、図4で示した背景技術の無線伝送システム501では、送信高周波部520で変換されたRF信号が後段の電力増幅器550A、550Bに入力する構成となっている。しかし、本実施形態のヘリコプタ無線伝送システム1では、第1及び第2電力増幅部50A、50Bに入力する信号は、RF信号では無く第2周波数信号となっている。以下、具体的な機能・動作を説明する。
カメラで撮影した映像やマイクで集音した音声信号は、エンコーダなどにより圧縮されTS信号91として送信制御部10に入力される。
送信制御部10では、変調部11がOFDM等のデジタル変調処理を施す。その後、ミキサ12が、130MHz帯の中間周波数信号である第1IF信号に変換する。この第1IF信号は、IFケーブル92を介して送信高周波部20に入力される。
送信高周波部20では、ミキサ21は、第1IF信号を1.5GHz帯の中間周波数信号である第2IF信号に周波数変換し、出力アンプ24及び別のミキサ22に分配され出力される。
出力アンプ24は、一方の第2IF信号を所定の電力に増幅しIFケーブル93を介して分配器70へ出力する。分配器70は、第2IF信号を所定数に分配して後段の増幅装置に分配して出力する。ここでは、分配器70は、第2IF信号を二つに分配し、RFケーブル96a、96bを介して第1及び第2電力増幅部50A、50Bに出力する。
この時、出力アンプ24からの出力は、例えば0.1W程度の低電力で良く、最終的なアンテナ端での所定の出力電力に対する不足分は、後段の第1及び第2電力増幅部50A、50Bにて全て賄う。
一方、ミキサ22は、他方の第2IFをRF信号(7GHz帯や10GHz帯のマイクロ波)に周波数変換する。その後、RF信号はアンプ部23にて所定の電力へ増幅される。本システムではこのマイクロ波出力は使用しない。よって、この時、省電力化の為、ミキサ22やアンプ部23は動作を停止するなどしてもよい。あるいは部品自体を未実装とする事で軽量化を図る事も可能である。また、マイクロ波出力を行う場合には、後段の第1及び第2電力増幅部50A、50Bや第1及び第2アンテナ装置60A、60Bとは接続されない別のアンテナ装置(アンテナ切替え動作を行わない装置)に出力し利用することができる。
第1及び第2電力増幅部50A、50Bは、同一構成となっており、それぞれ、第1及び第2アンテナ装置60A、60Bに接続される。
第1電力増幅部50Aは、上流側から歪補償部52、ミキサ53、アンプ51、及びカップラ54を有する。また、カップラ54から歪補償部52へのフィードバック経路上には、ミキサ55が設けられている。
2つのアンテナ出力信号は、位相やレベルなどが同一信号である必要があり、アップコンバータやダウンコンバートの際のローカル周波数を同期させる必要がある。そこで、次の構成によって、第1電力増幅部50Aと第2電力増幅部50Bとの間で、ローカルクロックをやり取りする。
具体的には、第1電力増幅部50Aは、ローカル発信器56、ローカル切替器57、及びPLL部58を備える。ローカル発信器56は、例えば、100MHzの水晶発振器である。PLL部58は、例えば、100MHzを源振として、(RF中心周波数−1.5GHz)クロックをPLL生成し、ミキサ53、55へ出力する。また、ローカル切替器57は、マスター/スレーブ設定により、源振を第1電力増幅部50Aのローカル発信器56か第2電力増幅部50Bのローカル発信器56に切り替える。マスター時には、自身(ここでは、第1電力増幅部50A)のローカル発信器56が選択され、スレーブ時には他方(ここでは、第2電力増幅部50B)のローカル発信器56が選択される。
歪補償部52は、入力された第2IF信号及びフィードバックされた第2IF信号を参照して、歪補償処理を行う。具体的には、歪補償処理は、後段のアンプ51の出力をカップラ54で抽出しフィードバックして、そのアンプ51で発生する歪成分を前段で打消す(逆の歪成分でキャンセルする)処理を施す。この処理で、変調波のエンベローブ特性を改善する。
図3は、歪補償の有無によるスペクトラム波形の比較を示した図である。歪補償を行わなかった場合のスペクトラム波形112(実線)と比較して、歪補償を行った場合のスペクトラム波形113(一点破線)では、電力が自局チャネル帯域からはみでること無く、良好な波形となっている。
なお、歪補償方式には、補償される増幅器(ここではアンプ51)で発生した歪そのものを打消す方式(フィードバック、フィードフォワード)と、補償される増幅器とは異なる素子で発生する歪を用いる方式(プレディストーション)がある。フィードフォワード方式は一般的に高効率化、小型化が困難である点で本システムには不向きであり、また、プレディストーション方式はデジタル方式が主流であるが、変調部と電力増幅部が離れている本システムにおいては実現困難である。よって、フィードバック方式が有望となる。従来では、FPU(本実施形態のヘリコプタ無線伝送システム1)の様な広帯域(18MHz)の変調波と複数チャネルを用いるシステムではフィードバックループの安定動作が課題であった。しかし、本実施形態では、上述のような構成でフィードバック処理を行うことで、安定したフィードバック動作を実現できる。
ミキサ53は、歪補償部52からの第2IF信号をRF信号に周波数変換する。変換後のRF信号は、アンプ51で所定の電力へ増幅され、カップラ54に入力される。
このとき、アンプ51は、後段のカップラ54、アンテナ切換部81、RFケーブル90a、97aでの減衰量を予め加味した電力まで増幅して出力する。また、アンプ51として、ドハティ構成やEER(Envelop Elimination and Restoration)構成などの高効率アンプを用いることで低消費電力化を図ることが可能である。
カップラ54へ入力されたRF信号は、モニタRF信号と本線RF信号に分配される。モニタRF信号は、ミキサ55にて再び第2IF信号(1.5GHz帯の信号)にダウンコンバードされ、フィードバック系の第2IF信号として歪補償52に入力される。一方の本線RF信号は、RFケーブル90aを介して第1アンテナ装置60Aのアンテナ切換部81へ入力される。
第2電力増幅部50Bについても第1電力増幅部50Aと同様の構成・処理によって、歪補償処理及び増幅処理されたRF信号が、RFケーブル90bを介して第2アンテナ装置60Bのアンテナ切換部82へ入力される。
アンテナ切換部81、82は、切替え制御ケーブル95a、95bを介した切替え制御部40からの切替えタイミングに従い、所定のタイミングで出力を切り替える。すなわち、背景技術の方式とは異なり、当該アンテナ切替部81、82が、第1及び第2電力増幅部50A、50Bの後断に配置されている。さらに、第1及び第2電力増幅部50A、50Bへの入力信号を常時入力するように構成されている。このことで、アンテナ切替え動作に拘わらず、第1及び第2電力増幅部50A、50Bでは、図3に示したようなスペクトラム波形113(破線)を出力することができ、安定した歪補償処理が実現できる。
なお、アンテナ切換部81、アンテナ切換部82の各出力の片系に終端器63、64が接続され、選択されていないアンテナ系は、終端器側を選択する事で停波状態となる。つまり、選択されているアンテナ系は発放され、他方の選択されていない系は終端器側が選択され停波していることとなる。
アンテナ切替部81、82には数百ns〜数μs以下の高速期間でRF信号を切替え可能なPINダイオード等が用いられる。切替え制御部40は、変調部11からの切替えタイミングケーブル94を介して、所定周期のタイミングパルス信号を受信する。
具体的にはQAM方式では波形等化用プリアンブル期間、OFDM方式ではガードインターバル期間などの本線データ期間以外のタイミングであり、当該期間で切り替えることでアンテナ切替えによる伝送エラーを低減できる。こうして当該タイミングにて、前述のヘリコプタ110の旋回情報から求まる受信点に近い方へのアンテナ切替えが可能となる。
アンテナ切換部81、82にて切り替えられたRF信号は、RFケーブル97a、97bを介して、選択されている送信アンテナ(すなわち第1又は第2指向性アンテナ61、62)より所定の電力にて発放される。
以上のような構成のヘリコプタ無線伝送システム1によると歪補償、高効率アンプを具備した電力増幅器を用いることが可能となり、送信電力の高出力化、低消費電力化が図れ、且つ安定したアンテナ切替え動作を実現できる。
以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。例えば、中間周波数信号の生成工程において第1及び第2IF信号に変換し、その後RF信号に変換したが、例えば、第3、第4IF信号が生成される工程となってもよいし、第1IF信号からRF信号へ変換されてもよい。
1 ヘリコプタ無線伝送システム
10 送信制御部
11 変調部
12、21、22、53、55 ミキサ
20 送信高周波部
23、24、51 アンプ
40 切替制御部
50A 第1電力増幅部
50B 第2電力増幅部
52 歪補償部
54 カップラ
56 ローカル発信器
57 ローカル切替器
58 PLL部
60A 第1アンテナ装置
60B 第2アンテナ装置
61 第1指向性アンテナ
62 第2指向性アンテナ
63、64 終端器
70 分配器
81、82 アンテナ切換部
91 TS信号
90a、90b、97a、97b RFケーブル
92、93、96a、96b IFケーブル
94 切替えタイミングケーブル
95a、95b 切替え制御ケーブル
110 ヘリコプタ
111 受信アンテナ

Claims (3)

  1. 輸送機器に搭載される複数の送信アンテナの切替制御を行う機能を備えた無線伝送装置であって、
    前記送信アンテナのそれぞれに設けられた複数の電力増幅部と、
    入力信号をアップコンバートして中間周波数信号を生成する中間信号生成部と、
    前記中間周波数信号を前記電力増幅部へ分配する分配器と、
    それぞれの前記送信アンテナと前記電力増幅部の間に設けられ、前記電力増幅部の出力を、前記送信アンテナ又は前記送信アンテナと対に設けられている終端器に切り替えるアンテナ切替部と、
    前記アンテナ切替部を制御する切替制御部と、
    を有し、
    前記電力増幅部は、前記中間周波数信号をアップコンバードしてRF信号へ変換し電力増幅処理をして前記アンテナ切替部に出力すると共に、電力増幅処理後の前記RF信号を再び元の中間周波数信号へダウンコンバートし、当該ダウンコンバートした信号をフィードバック信号として前記電力増幅処理の歪補償処理を行う歪補償部を有する
    ことを特徴とする無線伝送装置。
  2. 前記中間信号生成部は、
    前記入力信号を変調処理して変調信号を生成する変調部と、
    前記変調信号をアップコンバートして第1中間周波数信号を生成する第1中間周波数信号生成部と、
    前記第1中間周波数信号をアップコンバートして第2中間周波数信号を生成する第2中間周波数信号生成部と、
    を有し、
    前記電力増幅部は、前記第2中間周波数信号を前記中間周波数信号として前記増幅処理及び前記歪補償処理を行い、
    前記切替制御部は、複数の前記アンテナ切替部を全て同時に切り替え、発放選択されていない送信アンテナに対応した前記アンテナ切替部は、出力を前記終端器に接続し停波することを特徴とする請求項1に記載の無線伝送装置。
  3. 複数の送信アンテナと前記送信アンテナのそれぞれに設けられた複数の電力増幅部とを備え、前記送信アンテナの切替制御を行う無線伝送方法であって、
    入力信号をアップコンバートして中間周波数信号を生成する中間信号生成工程と、
    前記中間周波数信号を前記電力増幅部へ分配する分配工程と、
    前記中間周波数信号をアップコンバードしてRF信号へ変換し電力増幅処理をして出力する増幅出力工程と、
    電力増幅処理後の前記RF信号の一部を再び元の中間周波数信号へダウンコンバートし、当該ダウンコンバートした信号をフィードバック信号として前記電力増幅処理の歪補償処理を行う歪補償工程と、
    それぞれの前記電力増幅部の出力を、前記送信アンテナ又は前記送信アンテナと対に設けられている終端器に切り替えるアンテナ切替工程と、
    を有することを特徴とする無線伝送方法。
JP2017172789A 2017-09-08 2017-09-08 無線伝送装置及び無線伝送方法 Active JP6892359B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017172789A JP6892359B2 (ja) 2017-09-08 2017-09-08 無線伝送装置及び無線伝送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172789A JP6892359B2 (ja) 2017-09-08 2017-09-08 無線伝送装置及び無線伝送方法

Publications (2)

Publication Number Publication Date
JP2019050465A JP2019050465A (ja) 2019-03-28
JP6892359B2 true JP6892359B2 (ja) 2021-06-23

Family

ID=65905966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172789A Active JP6892359B2 (ja) 2017-09-08 2017-09-08 無線伝送装置及び無線伝送方法

Country Status (1)

Country Link
JP (1) JP6892359B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015608B2 (ja) * 1992-11-24 2000-03-06 三洋電機株式会社 ディジタル携帯電話
JPH11298384A (ja) * 1998-04-15 1999-10-29 Matsushita Electric Ind Co Ltd アンテナダイバーシチ無線システム
JP4755651B2 (ja) * 2005-10-17 2011-08-24 株式会社日立国際電気 非線形歪検出方法及び歪補償増幅装置
JP5036247B2 (ja) * 2006-08-07 2012-09-26 日本電気株式会社 無線通信装置及びその送信アンテナ切換制御方法
JP5366191B2 (ja) * 2008-12-25 2013-12-11 日本電気株式会社 無線機およびアンテナ切換方法
JP5721018B2 (ja) * 2011-12-09 2015-05-20 株式会社村田製作所 半導体装置及び高周波モジュール
JP2013236145A (ja) * 2012-05-07 2013-11-21 Hitachi Metals Ltd 送信ダイバーシティ高周波回路及びダ送信方法
JP6003386B2 (ja) * 2012-08-16 2016-10-05 日本電気株式会社 無線通信装置及び無線フレーム生成方法並びに通信システム

Also Published As

Publication number Publication date
JP2019050465A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
EP2117132B1 (en) Method and system for communicating via a spatial multilink repeater
US8588279B2 (en) Method and system for inter-PCB communication utilizing a spatial multi-link repeater
US8423028B2 (en) Active antenna array with multiple amplifiers for a mobile communications network and method of providing DC voltage to at least one processing element
US20160285485A1 (en) Method and apparatus for multiband predistortion using time-shared adaptation loop
EP2461493A2 (en) Base station antenna device embedded with transmission and receiving module
CN104704747B (zh) 扩展带宽的数字多尔蒂发射机
US20220021349A1 (en) A digital predistortion device and method
US8855232B2 (en) Transmission apparatus and transmission method
EP2761739B1 (en) Systems and methods for adaptive power amplifier linearization
JP2020136772A (ja) 電力増幅回路及びアンテナ装置
US20210399697A1 (en) Power amplification apparatus, beamforming system, transmitter, and base station
WO2016084650A1 (ja) アクティブアンテナシステム
US8731616B2 (en) Active antenna array and method for relaying first and second protocol radio signals in a mobile communications network
WO2018199233A1 (ja) 送信機、通信システム、送信機の制御方法及びプログラム
JP4624517B2 (ja) アクティブアンテナを適用した基地局
JP6892359B2 (ja) 無線伝送装置及び無線伝送方法
US20130028178A1 (en) Wireless long term evolution radio architecture system and method
EP3035543B1 (en) Techniques for linearizing phase separately from amplitude in a communications system
JP6219007B1 (ja) フィードフォワード増幅器及びアンテナ装置
EP4236084A1 (en) Radio frequency chip and signal feedback method performed by means of radio frequency chip
US11329688B2 (en) Single-chip digital pre-distortion (DPD) device implemented using radio frequency transceiver integrated circuit with integrated DPD function
EP1993210A1 (en) Transmitter and method for simultaneously transmitting plural signals
JP2009171487A (ja) ミリ波帯無線送信装置
JP2001244751A (ja) 電力増幅器
KR20110004018A (ko) 신호 처리 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210527

R150 Certificate of patent or registration of utility model

Ref document number: 6892359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250