JP6885282B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP6885282B2
JP6885282B2 JP2017185521A JP2017185521A JP6885282B2 JP 6885282 B2 JP6885282 B2 JP 6885282B2 JP 2017185521 A JP2017185521 A JP 2017185521A JP 2017185521 A JP2017185521 A JP 2017185521A JP 6885282 B2 JP6885282 B2 JP 6885282B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
coal
heat
powder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185521A
Other languages
Japanese (ja)
Other versions
JP2019059985A (en
Inventor
尚貴 山本
尚貴 山本
明紀 村尾
明紀 村尾
晃太 盛家
晃太 盛家
深田 喜代志
喜代志 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017185521A priority Critical patent/JP6885282B2/en
Publication of JP2019059985A publication Critical patent/JP2019059985A/en
Application granted granted Critical
Publication of JP6885282B2 publication Critical patent/JP6885282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、搬送性が改善された微粉炭を高炉の羽口から吹込む高炉操業方法および当該高炉操業方法に用いる微粉炭に関する。 The present invention relates to a blast furnace operating method in which pulverized coal having improved transportability is blown from the tuyere of a blast furnace and pulverized coal used in the blast furnace operating method.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Rateの略で、銑鉄1t製造当りの、羽口からの吹込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークスと羽口から吹込む微粉炭とを還元材として使用しており、低還元材比および炭酸ガス排出抑制を達成するには、操業トラブルがなるべく無い条件で多量の微粉炭を吹込んで、コークス比を低減する方策が有効である。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and controlling CO 2 emissions is also an important issue in the steel industry. In response to this, in recent blast furnace operations, the ratio of low reducing agent (low RAR: Reduction Agent Rate) is the total of the reducing agent blown from the tuyere and the coke charged from the top of the pig iron per 1 ton of pig iron. Quantity) Operations are being strongly promoted. The blast furnace mainly uses coke and pulverized coal blown from the tuyere as reducing agents, and in order to achieve a low reducing agent ratio and suppression of carbon dioxide emissions, a large amount of pulverized coal is used under conditions where there are as few operational troubles as possible. It is effective to inject carbon dioxide to reduce the coke ratio.

微粉炭は、配管を使って気流搬送され、最終的に羽口を通じて高炉内に吹込まれるが、配管内への微粉炭の付着により配管が閉塞する場合がある。配管内に微粉炭が付着する要因の1つに、微粉炭の粒度分布がある。 The pulverized coal is air-flowed using a pipe and finally blown into the blast furnace through the tuyere, but the pipe may be blocked due to the adhesion of the pulverized coal into the pipe. One of the factors that cause pulverized coal to adhere to the pipe is the particle size distribution of pulverized coal.

特許文献1には、微粉炭の粒度分布の経時変化を測定し、微粉炭のうち−44μmの粒度の質量割合と、−74μmの粒度の質量割合とを基準にして微粉炭の粒度分布を測定し、微粉炭の粒度分布が「45mass%≦−44μm≦50mass%、60mass%≦−74μm」になるように粉砕された微粉炭を吹込む微粉炭吹込み方法が開示されている。 In Patent Document 1, the change over time in the particle size distribution of pulverized coal is measured, and the particle size distribution of pulverized coal is measured based on the mass ratio of the particle size of -44 μm and the mass ratio of the particle size of -74 μm in the pulverized coal. However, a method for blowing pulverized coal is disclosed, in which the pulverized coal is blown so that the particle size distribution of the pulverized coal is "45 mass% ≤ -44 μm ≤ 50 mass%, 60 mass% ≤ -74 μm".

また、特許文献2には、粒度以外の指標として微粉炭の粒子間付着力に着目し、Rumpfの式に基づいて算出された粒子間付着力の値が3.26×10−7N以下の微粉炭を高炉へ吹込む微粉炭の吹込み方法が開示されている。 Further, in Patent Document 2, attention is paid to the interparticle adhesive force of pulverized coal as an index other than the particle size, and the value of the interparticle adhesive force calculated based on the Rumpf equation is 3.26 × 10-7 N or less. A method of blowing pulverized coal into a blast furnace is disclosed.

特開2013−43998号公報Japanese Unexamined Patent Publication No. 2013-43998 特開2016−113664号公報Japanese Unexamined Patent Publication No. 2016-1136664

特許文献1に開示された技術では石炭銘柄に関わらず、「45mass%≦−44μm≦50mass%、60mass%≦−74μm」となるように、粒度分布を調整して配管の閉塞防止を試みている。しかしながら、石炭銘柄によっては、粒度分布の調整を行なったとしても配管の閉塞本数が増加する、という課題があった。 In the technique disclosed in Patent Document 1, regardless of the coal brand, an attempt is made to prevent blockage of the pipe by adjusting the particle size distribution so that "45 mass% ≤ -44 μm ≤ 50 mass%, 60 mass% ≤ -74 μm". .. However, depending on the coal brand, there is a problem that the number of closed pipes increases even if the particle size distribution is adjusted.

また、特許文献2に開示された技術は、Rumpfの式に基づく粒子間付着力の値で石炭銘柄を選択しているが、配管閉塞時に微粉炭は粉体層として配管に付着するので、微粉炭の粒度が変化した場合や微粉炭粉体層の空隙率が変化した場合には、微粉炭粉体層の引張破断強度が変化して配管が閉塞する、という課題があった。 Further, in the technique disclosed in Patent Document 2, the coal brand is selected based on the value of the interparticle adhesion force based on the Rumpf formula, but the pulverized coal adheres to the pipe as a powder layer when the pipe is closed, so that the pulverized coal adheres to the pipe. When the particle size of the coal changes or the porosity of the pulverized coal powder layer changes, there is a problem that the tensile breaking strength of the pulverized coal powder layer changes and the pipe is blocked.

本発明は、このような従来技術の問題点を鑑みてなされたものであり、その目的は、微粉炭による配管の閉塞を抑制できる微粉炭を高炉羽口から吹込むことでコークス比の増加を抑制できる高炉操業方法を提供することにある。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to increase the coke ratio by blowing pulverized coal, which can suppress the blockage of pipes by pulverized coal, from the blast furnace tuyere. The purpose is to provide a method of operating a blast furnace that can be suppressed.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)高炉羽口から微粉炭を吹込む高炉操業方法であって、前記微粉炭は、上部セルと下部セルから構成されるセルに装入され、圧縮応力4.0MPaで60秒間圧縮して作製された微粉炭粉体層を、前記下部セルを固定したまま前記上部セルと前記微粉炭粉体層とを上方向に速度0.1mm/secで引張り、分断するのに要する引張破断強度が50kPa以下である、高炉操業方法。
(2)高炉羽口から微粉炭を吹込む高炉操業方法であって、前記微粉炭は、上部セルと下部セルから構成されるセルに装入され、圧縮応力4.0MPaで60秒間圧縮して作製された微粉炭粉体層の空隙率が0.35以上である、高炉操業方法。
(3)前記微粉炭は、加熱処理された微粉炭である、(1)または(2)に記載の高炉操業方法。
(4)前記微粉炭は、300℃以上で加熱処理された微粉炭である、(3)に記載の高炉操業方法。
(5)上部セルと下部セルから構成されるセルに装入され、圧縮応力4.0MPaで60秒間圧縮して作製された微粉炭粉体層を、前記下部セルを固定したまま前記上部セルと前記微粉炭粉体層とを上方向に速度0.1mm/secで引張り、分断するのに要する引張破断強度が50kPa以下となる、微粉炭。
(5)上部セルと下部セルから構成されるセルに装入され、圧縮応力4.0MPaで60秒間圧縮して作製された微粉炭粉体層の空隙率が0.35以上となる、微粉炭。
The features of the present invention that solve such a problem are as follows.
(1) A blast furnace operating method in which blast furnace tuyere is blown into the blast furnace. The blast furnace is charged into a cell composed of an upper cell and a lower cell, and is compressed with a compressive stress of 4.0 MPa for 60 seconds. The produced pulverized coal powder layer is pulled upward at a speed of 0.1 mm / sec between the upper cell and the pulverized coal powder layer while the lower cell is fixed, and the tensile breaking strength required to divide the blast furnace powder layer is A blast furnace operating method of 50 kPa or less.
(2) A blast furnace operating method in which blast furnace tuyere is blown into the blast furnace. The blast furnace is charged into a cell composed of an upper cell and a lower cell, and is compressed with a compressive stress of 4.0 MPa for 60 seconds. A method for operating a blast furnace, wherein the produced pulverized coal powder layer has a porosity of 0.35 or more.
(3) The blast furnace operating method according to (1) or (2), wherein the pulverized coal is heat-treated pulverized coal.
(4) The blast furnace operating method according to (3), wherein the pulverized coal is pulverized coal that has been heat-treated at 300 ° C. or higher.
(5) A pulverized coal powder layer prepared by being charged into a cell composed of an upper cell and a lower cell and compressed at a compressive stress of 4.0 MPa for 60 seconds with the upper cell while the lower cell is fixed. A pulverized coal having a tensile breaking strength of 50 kPa or less required for pulling the pulverized coal powder layer upward at a speed of 0.1 mm / sec and dividing the powder layer.
(5) The pulverized coal powder layer, which is charged into a cell composed of an upper cell and a lower cell and compressed for 60 seconds with a compressive stress of 4.0 MPa, has a porosity of 0.35 or more. ..

本発明の高炉操業方法の実施により、微粉炭による配管の閉塞を抑制しながら高炉操業を実施できる。この結果、高炉内の通気性の悪化および温度の低下が抑制され、コークス比の増加を抑制できる。 By implementing the blast furnace operation method of the present invention, it is possible to carry out blast furnace operation while suppressing blockage of pipes due to pulverized coal. As a result, deterioration of air permeability in the blast furnace and decrease in temperature can be suppressed, and an increase in coke ratio can be suppressed.

本実施形態に係る高炉操業方法が実施できる高炉およびその周辺部を示す模式図である。It is a schematic diagram which shows the blast furnace which can carry out the blast furnace operation method which concerns on this embodiment, and the peripheral part thereof. 引張破断強度の測定方法を説明する模式図である。It is a schematic diagram explaining the measuring method of the tensile breaking strength. 微粉炭Bおよび微粉炭Bと性状の異なる微粉炭Xの加熱処理温度と微粉炭粉体層の引張破断強度との関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of the pulverized coal B and the pulverized coal X having different properties from the pulverized coal B, and the tensile breaking strength of the pulverized coal powder layer. 微粉炭Bおよび微粉炭Bと性状の異なる微粉炭Xの加熱処理温度と微粉炭粉体層の空隙率との関係を示すグラフである。It is a graph which shows the relationship between the heat treatment temperature of the pulverized coal B and the pulverized coal X having different properties from the pulverized coal B, and the porosity of the pulverized coal powder layer. 微粉炭の揮発分と円形度との関係を示すグラフである。It is a graph which shows the relationship between the volatile content of pulverized coal, and the circularity. 微粉炭の円形度と微粉炭粉炭層の空隙率との関係を示すグラフである。It is a graph which shows the relationship between the circularity of a pulverized coal, and the porosity of a pulverized coal pulverized coal layer.

以下、本発明の実施形態に係る高炉操業方法を、図面を用いて説明する。図1は、本実施形態に係る高炉操業方法が実施できる高炉およびその周辺部を示す模式図である。図1を用いて、高炉羽口から微粉炭を吹込む方法について説明する。ヤードにストックされた石炭10は、石炭ホッパ12に貯留される。石炭ホッパ12に貯留された石炭10は、フィーダ14によって微粉炭製造装置16に切り出される。微粉炭製造装置16では、石炭10が粉砕され、乾燥されて所定の粒度の微粉炭18に調製される。 Hereinafter, the blast furnace operation method according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a blast furnace and its peripheral portion where the blast furnace operation method according to the present embodiment can be implemented. A method of blowing pulverized coal from the blast furnace tuyere will be described with reference to FIG. The coal 10 stocked in the yard is stored in the coal hopper 12. The coal 10 stored in the coal hopper 12 is cut out by the feeder 14 into the pulverized coal production apparatus 16. In the pulverized coal production apparatus 16, the coal 10 is crushed and dried to prepare pulverized coal 18 having a predetermined particle size.

このように調製された微粉炭18は、主管20を介してバグフィルタ22へ気流搬送される。次いで、このバグフィルタ22に捕集された微粉炭18は、コールビン24に貯留され、その後、吹込みタンク26に収容される。吹込みタンク26に収容された微粉炭18は、分配器28に気流搬送され、分配器28から複数の枝管30およびブローパイプ32を通り高炉34の下部にある多数の羽口38に分配される。なお、微粉炭18は、熱風炉40からブローパイプ32に供給される熱風中にランス36から噴射され、当該熱風と共に羽口38から高炉34内に吹込まれて燃焼する。このように、高炉34の羽口38から微粉炭18が吹込まれて高炉34の操業が実施される。 The pulverized coal 18 thus prepared is airflow-conveyed to the bag filter 22 via the main pipe 20. Next, the pulverized coal 18 collected in the bug filter 22 is stored in the cole bin 24, and then stored in the blowing tank 26. The pulverized coal 18 housed in the blowing tank 26 is air-flowed to the distributor 28 and distributed from the distributor 28 to a large number of tuyere 38s at the bottom of the blast furnace 34 through a plurality of branch pipes 30 and a blow pipe 32. To. The pulverized coal 18 is injected from the lance 36 into the hot air supplied from the hot air furnace 40 to the blow pipe 32, and is blown into the blast furnace 34 from the tuyere 38 together with the hot air to burn. In this way, the pulverized coal 18 is blown from the tuyere 38 of the blast furnace 34 to operate the blast furnace 34.

微粉炭18は、いくつかの配管系やバルブ、吹込み装置等を通って高炉34の羽口38から吹込まれる。しかしながら、高炉34に多量の微粉炭18を吹込むと、微粉炭18が配管内壁に付着し、付着した微粉炭18の粉体層が成長して配管が閉塞する場合がある。 The pulverized coal 18 is blown from the tuyere 38 of the blast furnace 34 through some piping systems, valves, blowing devices and the like. However, when a large amount of pulverized coal 18 is blown into the blast furnace 34, the pulverized coal 18 may adhere to the inner wall of the pipe, and the powder layer of the adhered pulverized coal 18 may grow and block the pipe.

これに対し、本実施形態に係る高炉操業方法では、羽口38から吹込む微粉炭18として微粉炭粉体層の引張破断強度が50kPa以下である微粉炭を用いる。これにより、仮に、微粉炭が配管内壁に付着したとしても、引張破断強度が低いので微粉炭粉体層の成長が抑制され、高炉操業中に微粉炭によって閉塞する配管の数を少なくできる。 On the other hand, in the blast furnace operation method according to the present embodiment, pulverized coal having a tensile breaking strength of 50 kPa or less is used as the pulverized coal 18 blown from the tuyere 38. As a result, even if the pulverized coal adheres to the inner wall of the pipe, the tensile breaking strength is low, so that the growth of the pulverized coal powder layer is suppressed, and the number of pipes blocked by the pulverized coal during the operation of the blast furnace can be reduced.

図2は、引張破断強度の測定方法を説明する模式図である。本実施形態において、引張破断強度とは、上部セル52と下部セル54から構成されるセル50に微粉炭を装入し、圧縮応力4.0MPaで60秒間圧縮して作製された微粉炭粉体層56を、下部セル54を固定したまま上部セル52と微粉炭粉体層56とを上方向に速度0.1mm/secで引張り、分断するときに要する強度(MPa)である。 FIG. 2 is a schematic view illustrating a method for measuring tensile breaking strength. In the present embodiment, the tensile breaking strength is a pulverized coal powder produced by charging pulverized coal into a cell 50 composed of an upper cell 52 and a lower cell 54 and compressing the pulverized coal powder at a compressive stress of 4.0 MPa for 60 seconds. The strength (MPa) required for splitting the layer 56 by pulling the upper cell 52 and the pulverized coal powder layer 56 upward at a speed of 0.1 mm / sec while fixing the lower cell 54.

図2に示すように、セル50は、上部セル52と下部セル54とを有する。上部セル52と下部セル54とを組み合わせて形成される円筒形状の収容部に微粉炭18を上部まで装入する。図2に示した例において、上部セル52と下部セル54とを組み合わせて形成される収容部の断面は円形であって、その内径は、例えば、20mmである。 As shown in FIG. 2, the cell 50 has an upper cell 52 and a lower cell 54. The pulverized coal 18 is charged to the upper part in the cylindrical accommodating portion formed by combining the upper cell 52 and the lower cell 54. In the example shown in FIG. 2, the cross section of the accommodating portion formed by combining the upper cell 52 and the lower cell 54 is circular, and the inner diameter thereof is, for example, 20 mm.

微粉炭粉体層56は、収容部に装入した微粉炭18を上方から上蓋58を介して0.1mm/secの速度で圧縮し、圧縮応力が4.0MPaになったところで、その圧縮応力を維持したまま60秒間保持して作製される。このようにして作製された微粉炭粉体層56に対して、下部セル54は固定したまま上部セル52と微粉炭粉体層56とを上方向に速度0.1mm/secで引張り、微粉炭粉体層56を上下方向に分断する。この分断に要した最も大きな力を微粉炭粉体層56の断面積で除して引張破断強度を算出する。 The pulverized coal powder layer 56 compresses the pulverized coal 18 charged in the accommodating portion from above through the upper lid 58 at a rate of 0.1 mm / sec, and when the compressive stress reaches 4.0 MPa, the compressive stress thereof. It is produced by holding for 60 seconds while maintaining the above. With respect to the pulverized coal powder layer 56 produced in this manner, the upper cell 52 and the pulverized coal powder layer 56 are pulled upward at a speed of 0.1 mm / sec while the lower cell 54 is fixed, and the pulverized coal is used. The powder layer 56 is divided in the vertical direction. The maximum tensile strength required for this division is divided by the cross-sectional area of the pulverized coal powder layer 56 to calculate the tensile breaking strength.

また、本実施形態に係る高炉操業方法では、微粉炭粉体層の引張破断強度が50kPa以下である微粉炭に代えて、微粉炭粉体層の空隙率が0.35以上である微粉炭を用いてもよい。このような微粉炭を用いても、微粉炭粉体層の成長を抑制でき、操業中に微粉炭によって閉塞される配管の数を少なくできる。ここで、空隙率とは、引張破断強度の測定と同じ手法で作製された微粉炭粉体層の空隙率であって、下記式(1)によって算出される値である。 Further, in the blast furnace operation method according to the present embodiment, instead of the pulverized coal having a tensile breaking strength of 50 kPa or less, the pulverized coal powder layer has a porosity of 0.35 or more. You may use it. Even if such pulverized coal is used, the growth of the pulverized coal powder layer can be suppressed, and the number of pipes blocked by the pulverized coal during operation can be reduced. Here, the porosity is the porosity of the pulverized coal powder layer produced by the same method as the measurement of the tensile breaking strength, and is a value calculated by the following formula (1).

ε=(ρ−ρ)/ρ・・・(1) ε = (ρ 2 −ρ 1 ) / ρ 2 ... (1)

但し、上記式(1)において、εは空隙率(−)であり、ρは、微粉炭粉体層の体積(断面積×高さ)と質量から算出される嵩密度(kg/m)であり、ρは、微粉炭粒子の粒子密度(kg/m)である。なお、嵩密度における微粉炭粉体層の高さは、圧縮応力4.0MPaで60秒間圧縮した後の高さである。また、粒子密度は、気相置換法を用いて測定した。 However, in the above formula (1), ε is the void ratio (-), and ρ 1 is the bulk density (kg / m 3 ) calculated from the volume (cross-sectional area x height) and mass of the pulverized coal powder layer. ), And ρ 2 is the particle density (kg / m 3 ) of the pulverized coal particles. The height of the pulverized coal powder layer in terms of bulk density is the height after compression for 60 seconds with a compressive stress of 4.0 MPa. The particle density was measured using the vapor phase substitution method.

本実施形態に係る高炉操業方法で用いる微粉炭は、加熱処理された微粉炭であることが好ましい。微粉炭を加熱処理することで、微粉炭から揮発分が放出されるとともに微粉炭粒子の粒子形状が変化し、これにより、微粉炭粉体層の引張破断強度は低下し、微粉炭粉体層の空隙率は向上する。このため、配管内壁で微粉炭粉体層が成長し、配管を閉塞する微粉炭であったとしても、当該微粉炭を加熱処理することで、微粉炭粉体層の成長が抑制され、配管の閉塞が抑制される微粉炭に改質できる。 The pulverized coal used in the blast furnace operating method according to the present embodiment is preferably heat-treated pulverized coal. By heat-treating the pulverized coal, volatile components are released from the pulverized coal and the particle shape of the pulverized coal particles changes, which reduces the tensile breaking strength of the pulverized coal powder layer and the pulverized coal powder layer. Porosity is improved. Therefore, even if the pulverized coal powder layer grows on the inner wall of the pipe and blocks the pipe, the growth of the pulverized coal powder layer is suppressed by heat-treating the pulverized coal, and the growth of the pulverized coal powder layer is suppressed. It can be reformed into pulverized coal with suppressed clogging.

次に、微粉炭の加熱処理効果について説明する。評価用の微粉炭として微粉炭A、微粉炭B、微粉炭Bを窒素雰囲気中でそれぞれ280℃、300℃、600℃、900℃で1時間加熱処理した加熱処理炭C〜Fを準備した。各微粉炭の性状を表1に示す。なお、表1のd.b.は、ドライベースであることを示している。例えば、固定炭素の場合は、(固定炭素(ウェットベース%)/(100−水分))×100=固定炭素(ドライベース)で固定炭素(ウェットベース%)を固定炭素(ドライベース%)に換算できる。 Next, the heat treatment effect of pulverized coal will be described. As the pulverized coal for evaluation, heat-treated coals C to F in which pulverized coal A, pulverized coal B, and pulverized coal B were heat-treated at 280 ° C., 300 ° C., 600 ° C., and 900 ° C. for 1 hour in a nitrogen atmosphere were prepared. The properties of each pulverized coal are shown in Table 1. In addition, d.b. of Table 1 shows that it is a dry base. For example, in the case of fixed carbon, (fixed carbon (wet base%) / (100-moisture)) x 100 = fixed carbon (dry base), and the fixed carbon (wet base%) is converted to fixed carbon (dry base%). it can.

Figure 0006885282
Figure 0006885282

加熱処理炭C〜Fは、加熱処理によって一部の揮発分が放出されるので、加熱処理していない微粉炭Bよりも揮発分が少なくなった。また、加熱処理する温度が高いほど、微粉炭に含まれる揮発分は少なくなった。 Since some of the volatile components of the heat-treated coals C to F are released by the heat treatment, the volatile components are smaller than those of the pulverized coal B that has not been heat-treated. Further, the higher the temperature of the heat treatment, the smaller the volatile matter contained in the pulverized coal.

微粉炭A、Bおよび加熱微粉炭C〜Fのいずれも、篩を用いて調和平均粒径が8μmになるように粒度を調整した。調和平均粒径は、レーザー回折散乱法による湿式の粒度分布測定装置を用いて微粉炭の粒度分布を測定し、各粒径における体積割合(体積%)と下記式(2)を用いて算出した。 The particle size of each of the pulverized coals A and B and the heated pulverized coals C to F was adjusted using a sieve so that the harmonic mean particle size was 8 μm. The harmonic mean particle size was calculated by measuring the particle size distribution of pulverized coal using a wet particle size distribution measuring device by the laser diffraction scattering method, and using the volume ratio (volume%) at each particle size and the following formula (2). ..

=Σn/Σ(n/d)・・・(2)
但し、上記式(2)において、Dは調和平均粒径(m)であり、dは微粉炭の粒径(m)であり、nは体積割合(体積%)である。
D p = Σn / Σ (n / d) ... (2)
However, in the above formula (2), D p is the harmonic mean particle size (m), d is the particle size (m) of the pulverized coal, and n is the volume ratio (volume%).

図2に示したセル50の収容部に表1に示した微粉炭を装入し、0.1mm/secの速度で圧縮し、圧縮応力が4.0MPaになったところで、その圧縮応力を維持したまま60秒間保持することで各微粉炭の微粉炭粉体層を作製した。この微粉炭粉炭層を用いて引張破断強度および空隙率を測定した。各微粉炭の引張破断強度および空隙率を表2に示す。 The pulverized coal shown in Table 1 was charged into the accommodating portion of the cell 50 shown in FIG. 2, compressed at a rate of 0.1 mm / sec, and when the compressive stress reached 4.0 MPa, the compressive stress was maintained. A pulverized coal powder layer of each pulverized coal was prepared by holding the mixture for 60 seconds. The tensile strength at break and the porosity were measured using this pulverized coal pulverized coal layer. Table 2 shows the tensile strength at break and the porosity of each pulverized coal.

Figure 0006885282
Figure 0006885282

表2に示すように、加熱処理することによって、微粉炭粉体層の引張破断強度は低下し、微粉炭粉体層の空隙率は高くなった。微粉炭を加熱処理することによって、微粉炭から揮発分が放出されるとともに微粉炭の粒子形状が変化し、これにより、微粉炭粉体層の引張破断強度が低下し、微粉炭粉体層の空隙率が高くなったと考えられる。 As shown in Table 2, the heat treatment reduced the tensile breaking strength of the pulverized coal powder layer and increased the porosity of the pulverized coal powder layer. By heat-treating the pulverized coal, volatile components are released from the pulverized coal and the particle shape of the pulverized coal is changed, which reduces the tensile breaking strength of the pulverized coal powder layer and the pulverized coal powder layer. It is probable that the porosity increased.

微粉炭の加熱処理温度に着目すると、加熱処理温度を300℃以上にすることで微粉炭粉体層の引張破断強度は著しく低下し、微粉炭粉体層の空隙率は著しく高くなる。図3は、微粉炭Bおよび微粉炭Bと性状の異なる微粉炭Xの加熱処理温度と微粉炭粉体層の引張破断強度との関係を示すグラフである。図3に示すように、微粉炭Bおよび微粉炭Xともに300℃で加熱処理した微粉炭粉体層の引張破断強度は、280℃で加熱処理した微粉炭粉体層の引張破断強度より著しく低下した。この結果から、微粉炭の加熱処理温度は、300℃以上であることが好ましく、300℃以上で加熱処理することで微粉炭粉体層の引張破断強度を著しく低下させることができる。 Focusing on the heat treatment temperature of the pulverized coal, the tensile breaking strength of the pulverized coal powder layer is remarkably lowered and the porosity of the pulverized coal powder layer is remarkably increased by setting the heat treatment temperature to 300 ° C. or higher. FIG. 3 is a graph showing the relationship between the heat treatment temperature of the pulverized coal B and the pulverized coal X having different properties from the pulverized coal B and the tensile breaking strength of the pulverized coal powder layer. As shown in FIG. 3, the tensile breaking strength of the pulverized coal powder layer heat-treated at 300 ° C. for both pulverized coal B and X is significantly lower than the tensile breaking strength of the pulverized coal powder layer heat-treated at 280 ° C. did. From this result, the heat treatment temperature of the pulverized coal is preferably 300 ° C. or higher, and the tensile breaking strength of the pulverized coal powder layer can be significantly reduced by the heat treatment at 300 ° C. or higher.

図4は、微粉炭Bおよび微粉炭Bと性状の異なる微粉炭Xの加熱処理温度と微粉炭粉体層の空隙率との関係を示すグラフである。図4に示すように、微粉炭Bおよび微粉炭Xともに300℃で加熱処理した微粉炭粉体層の空隙率は、280℃で加熱処理した微粉炭粉炭層の空隙率より著しく高くなった。この結果から、微粉炭の加熱処理温度は、300℃以上であることが好ましく、300℃以上で加熱処理することで微粉炭粉体層の空隙率を著しく高めることができる。 FIG. 4 is a graph showing the relationship between the heat treatment temperature of the pulverized coal B and the pulverized coal X having different properties from the pulverized coal B and the porosity of the pulverized coal powder layer. As shown in FIG. 4, the porosity of the pulverized coal powder layer heat-treated at 300 ° C. for both pulverized coal B and X was significantly higher than the porosity of the pulverized coal pulverized coal layer heat-treated at 280 ° C. From this result, the heat treatment temperature of the pulverized coal is preferably 300 ° C. or higher, and the porosity of the pulverized coal powder layer can be remarkably increased by the heat treatment at 300 ° C. or higher.

上述したように、微粉炭を加熱処理することで微粉炭から揮発分を放出されるとともに粒子形状が変化し、これにより、微粉炭粉体層の引張破断強度が低下し、空隙率が高くなる。微粉炭からの揮発分の放出開始温度が300℃近辺であることから、300℃以上の温度で加熱処理することでより多くの揮発分を微粉炭から放出させることができ、この結果、微粉炭粉体層の引張破断強度が著しく低下し、また、微粉炭粉体層の空隙率が著しく高くなった。一方、1000℃を超える温度で加熱処理すると微粉炭から揮発分が放出されなくなるので、微粉炭の加熱処理温度は1000℃以下であることが好ましい。 As described above, the heat treatment of the pulverized coal releases volatile components from the pulverized coal and changes the particle shape, which lowers the tensile breaking strength of the pulverized coal powder layer and increases the porosity. .. Since the release start temperature of the volatile matter from the pulverized coal is around 300 ° C., more volatile matter can be released from the pulverized coal by heat treatment at a temperature of 300 ° C. or higher, and as a result, the pulverized coal The tensile breaking strength of the powder layer was remarkably reduced, and the porosity of the pulverized coal powder layer was remarkably increased. On the other hand, if the heat treatment is performed at a temperature exceeding 1000 ° C., volatile components are not released from the pulverized coal. Therefore, the heat treatment temperature of the pulverized coal is preferably 1000 ° C. or lower.

微粉炭を加熱処理することによる粒子形状の変化を確認することを目的として、顕微鏡を用いて各微粉炭の粒子形状を観察し、当該観察結果から各微粉炭の円形度を算出した。各微粉炭で10,000個の粒子を観察し、下記(3)式を用いて円形度を算出した。なお、円形度は1に近いほど真球に近い形状であることを示す。 For the purpose of confirming the change in the particle shape due to the heat treatment of the pulverized coal, the particle shape of each pulverized coal was observed using a microscope, and the circularity of each pulverized coal was calculated from the observation result. 10,000 particles were observed in each pulverized coal, and the circularity was calculated using the following formula (3). The closer the circularity is to 1, the closer the shape is to a true sphere.

K=4πS/L・・・(3)
但し、(3)式において、Kは円形度(−)であり、Sは粒子の投影面積(m)であり、Lは粒子の周囲長(m)である。
K = 4πS / L 2 ... (3)
However, in the equation (3), K is the circularity (−), S is the projected area (m 2 ) of the particle, and L is the perimeter (m) of the particle.

図5は、微粉炭の揮発分と円形度との関係を示すグラフである。図5に示すように、加熱処理していない微粉炭Aは、揮発分が15質量%と低くても円形度は低い。一方、微粉炭Bは、揮発分が48.3質量%と高いものの加熱処理を行うと揮発分は減少し、微粉炭Bの円形度は高くなった。また、加熱処理する温度が高温であるほど、微粉炭の揮発分は減少し、微粉炭円形度は高くなった。これらの結果から、微粉炭を加熱処理することによって、微粉炭中の揮発分が膨張・放出されるとともに粒子全体も膨張し、これにより、微粉炭の円形度が高まったと考えられる。 FIG. 5 is a graph showing the relationship between the volatile content of pulverized coal and the circularity. As shown in FIG. 5, the pulverized coal A which has not been heat-treated has a low circularity even if the volatile content is as low as 15% by mass. On the other hand, although the pulverized coal B had a high volatile content of 48.3% by mass, the volatile content decreased and the circularity of the pulverized coal B increased when heat treatment was performed. Further, the higher the temperature of the heat treatment, the lower the volatile content of the pulverized coal and the higher the circularity of the pulverized coal. From these results, it is considered that by heat-treating the pulverized coal, the volatile components in the pulverized coal are expanded and released and the entire particles are also expanded, which increases the circularity of the pulverized coal.

図6は、微粉炭の円形度と微粉炭粉炭層の空隙率との関係を示すグラフである。図6に示すように、微粉炭Bを加熱処理して円形度が高くなるほど、当該微粉炭粉体層の空隙率も高くなる傾向が見られた。これは、加熱処理によって微粉炭粒子が球形状になるので、微粉炭同士の絡み合いが減少し、この結果、微粉炭粉体層の空隙率が高くなったと考えられる。 FIG. 6 is a graph showing the relationship between the circularity of the pulverized coal and the porosity of the pulverized coal pulverized coal layer. As shown in FIG. 6, the higher the circularity of the pulverized coal B by heat treatment, the higher the porosity of the pulverized coal powder layer tended to be. It is considered that this is because the pulverized coal particles become spherical by the heat treatment, so that the entanglement between the pulverized coals is reduced, and as a result, the porosity of the pulverized coal powder layer is increased.

次に、表1に示した微粉炭を高炉に吹込んで操業を実施し、配管閉塞抑制効果を確認した結果を説明する。表1に示した微粉炭A、Bおよび加熱微粉炭C〜Fを用いて、羽口38本、微粉炭搬送配管76本を備える内容積5000mの高炉において目標11500t/dayの銑鉄生産量、150kg/t−銑鉄の微粉炭比で高炉内へ微粉炭を吹込む高炉の操業を5日間実施した。各羽口の微粉炭搬送配管が閉塞した場合であっても閉塞を解消させず、未閉塞の配管に通常より多くの微粉炭を搬送し、微粉炭比が一定となるように操業した。また、吹込む微粉炭の粒度は、調和平均径が8μmで一定となるように随時粉砕条件を調整した。表3に各微粉炭吹込み時の1日平均の搬送配管閉塞本数と平均コークス比を示す。 Next, the results of confirming the effect of suppressing pipe blockage by injecting the pulverized coal shown in Table 1 into the blast furnace and carrying out the operation will be described. Pulverized coal A shown in Table 1, with B and heating pulverized coal C to F, tuyere 38 present, pig iron production amount of the target 11500t / day in a blast furnace having an inner volume of 5000 m 3 comprising a pulverized coal transport pipes 76 present, The operation of the blast furnace for blowing pulverized coal into the blast furnace at a ratio of pulverized coal of 150 kg / t-pig iron was carried out for 5 days. Even if the pulverized coal transport pipes at each tuyere were blocked, the blockage was not resolved, and more pulverized coal than usual was transported to the unoccluded pipes, and the operation was performed so that the pulverized coal ratio was constant. Further, the particle size of the pulverized coal to be blown was adjusted as needed so that the harmonic mean diameter was constant at 8 μm. Table 3 shows the average number of obstructed transport pipes and the average coke ratio per day when each pulverized coal is blown.

Figure 0006885282
Figure 0006885282

表3に示すように、微粉炭A、B、加熱処理炭Cでは、配管の閉塞本数が6本/日以上になった。一方、加熱処理炭D〜Fでは、配管の閉塞本数が1本/日未満となり、高炉操業中に微粉炭で閉塞する配管の数が著しく減少した。 As shown in Table 3, in the pulverized coals A and B and the heat-treated coal C, the number of closed pipes was 6 or more per day. On the other hand, in the heat-treated coals D to F, the number of pipes blocked was less than 1 / day, and the number of pipes blocked with pulverized coal during blast furnace operation was significantly reduced.

表2に示すように、配管の閉塞本数が6本/日以上となった微粉炭A、B、加熱処理炭Cは、微粉炭粉炭層の引張破断強度が50kPaより大きい微粉炭である。一方、配管の閉塞本数が1本/日未満となった加熱処理炭D〜Fは、微粉炭粉炭層の引張破断強度が50kPa以下の微粉炭である。これらの結果から、引張破断強度が50kPa以下となる微粉炭を用いることで、配管内における微粉炭粉体層の成長を抑制でき、これにより、高炉操業中に微粉炭で閉塞する配管の数を少なくできることがわかる。 As shown in Table 2, the pulverized coals A and B and the heat-treated coal C in which the number of closed pipes is 6 or more are pulverized coals in which the tensile breaking strength of the pulverized coal pulverized coal layer is larger than 50 kPa. On the other hand, the heat-treated coals D to F in which the number of closed pipes is less than 1 / day are pulverized coals having a tensile breaking strength of 50 kPa or less in the pulverized coal pulverized coal layer. From these results, it is possible to suppress the growth of the pulverized coal powder layer in the piping by using pulverized coal having a tensile breaking strength of 50 kPa or less, thereby reducing the number of piping that is blocked by the pulverized coal during blast furnace operation. You can see that it can be reduced.

次に、各微粉炭を吹込んで実施した高炉の操業における平均コークス比に着目すると、微粉炭A、B、加熱処理炭Cの吹込み時は平均コークス比が高く、加熱処理炭D〜Fの吹込み時は、平均コークス比が低いことがわかる。微粉炭A、B、加熱処理炭Cを高炉に吹込んだ場合においては、配管の閉塞によって高炉の炉周方向で微粉炭吹込み量の偏差が発生して高炉内の炉周方向の温度の偏差の発生および炉内の通気性が悪化し、これにより、平均コークス比が高くなったと考えられる。一方、加熱処理炭D〜Fの吹込み時においては、配管の閉塞が抑制され、これにより、高炉操業における平均コークス比の増加を抑制できることが確認された。 Next, focusing on the average coke ratio in the operation of the blast furnace carried out by blowing each pulverized coal, the average coke ratio was high when the pulverized coals A and B and the heat-treated coal C were blown, and the heat-treated coals D to F had a high average coke ratio. It can be seen that the average coke ratio is low at the time of blowing. When pulverized coal A, B, and heat-treated coal C are blown into the blast furnace, a deviation in the amount of pulverized coal blown in the circumferential direction of the blast furnace occurs due to the blockage of the piping, and the temperature in the peripheral direction of the blast furnace It is probable that the occurrence of deviation and the deterioration of the air permeability in the furnace resulted in an increase in the average coke ratio. On the other hand, it was confirmed that when the heat-treated coals D to F were blown in, the blockage of the pipe was suppressed, and thereby the increase in the average coke ratio in the blast furnace operation could be suppressed.

また、表2に示すように、配管の閉塞本数が6本/日以上となった微粉炭A、B、加熱処理炭Cは、微粉炭粉炭層の空隙率が0.35未満となる微粉炭である。一方、配管の閉塞本数が1本/日未満となった加熱処理炭D〜Fは、微粉炭粉炭層の空隙率が0.35以上となる微粉炭である。これらの結果から、微粉炭粉炭層の空隙率が0.35以上となる微粉炭を用いることで、配管内における微粉炭粉体層の成長が抑制でき、これにより、高炉操業中に微粉炭で閉塞する配管の数を少なくでき、高炉操業における平均コークス比の増加を抑制できることがわかる。 Further, as shown in Table 2, the pulverized coals A and B and the heat-treated coal C in which the number of closed pipes is 6 or more per day are pulverized coals in which the porosity of the pulverized coal pulverized coal layer is less than 0.35. Is. On the other hand, the heat-treated coals D to F in which the number of closed pipes is less than 1 / day are pulverized coals having a porosity of 0.35 or more in the pulverized coal pulverized coal layer. From these results, by using pulverized coal having a porosity of 0.35 or more in the pulverized coal pulverized coal layer, the growth of the pulverized coal powder layer in the piping can be suppressed, and as a result, the pulverized coal can be used during blast furnace operation. It can be seen that the number of pipes to be blocked can be reduced and the increase in the average coke ratio in blast furnace operation can be suppressed.

このように、本実施形態に係る高炉操業方法では、微粉炭粉炭層の引張破断強度が50kPa以下の微粉炭、または、微粉炭粉炭層の空隙率が0.35kPa以上の微粉炭を用いる。これにより、配管内における微粉炭粉体層の成長を抑制でき、高炉操業中に微粉炭によって閉塞する配管の数を少なくできる。そして、閉塞する配管の数を少なくすることで、高炉内の炉周方向の温度の偏差の発生および炉内の通気性の悪化を抑制でき、配管の閉塞によるコークス比の増加を抑制できる。 As described above, in the blast furnace operation method according to the present embodiment, pulverized coal having a tensile breaking strength of 50 kPa or less in the pulverized coal pulverized coal layer or pulverized coal having a porosity of 0.35 kPa or more in the pulverized coal pulverized coal layer is used. As a result, the growth of the pulverized coal powder layer in the pipes can be suppressed, and the number of pipes blocked by the pulverized coal during blast furnace operation can be reduced. By reducing the number of pipes to be closed, it is possible to suppress the occurrence of temperature deviation in the furnace circumferential direction in the blast furnace and the deterioration of the air permeability in the furnace, and it is possible to suppress the increase in the coke ratio due to the blockage of the pipes.

なお、本実施形態では加熱処理した微粉炭を用いる例を示したが、これに限らない。例えば、加熱処理していない微粉炭に加熱処理した微粉炭を配合し、微粉炭全体の微粉炭粉体層の引張破断強度が50kPa以下、または、空隙率が0.35以上となる微粉炭を用いてもよい。 In this embodiment, an example of using heat-treated pulverized coal is shown, but the present invention is not limited to this. For example, heat-treated pulverized coal is mixed with unheat-treated pulverized coal, and the tensile breaking strength of the pulverized coal powder layer of the entire pulverized coal is 50 kPa or less, or the porosity is 0.35 or more. You may use it.

例えば、加熱処理していない微粉炭Aに、加熱処理した加熱処理炭C〜Fを配合してもよい。表4は、微粉炭Aが80質量%、微粉炭B、または、加熱処理炭C〜Fの何れか1つが20質量%となるように配合した微粉炭の引張破断強度と空隙率を表4に示す。なお、表4において、「微粉炭A+微粉炭B」とは、80質量%の微粉炭Aと、20質量%の微粉炭Bを配合した微粉炭を示しており、以下の行においても同じ意味である。 For example, the heat-treated heat-treated coals C to F may be blended with the heat-treated pulverized coal A. Table 4 shows the tensile strength at break and the porosity of the pulverized coal blended so that the pulverized coal A is 80% by mass, the pulverized coal B, or any one of the heat-treated coals C to F is 20% by mass. Shown in. In Table 4, "pulverized coal A + pulverized coal B" indicates pulverized coal containing 80% by mass of pulverized coal A and 20% by mass of pulverized coal B, and has the same meaning in the following rows. Is.

Figure 0006885282
Figure 0006885282

表4に示すように、加熱処理炭C〜Fを配合することによって、微粉炭全体の微粉炭粉炭層の引張破断強度は低下し、微粉炭粉体層の空隙率は高くなる。また、微粉炭粉体層の引張破断強度が50kPaより大きい微粉炭Aであっても、微粉炭粉体層の引張破断強度が50kPa以下の加熱処理炭E、Fを配合することで、微粉炭全体の微粉炭粉体層の引張破断強度を50kPa以下にできることが確認された。同様に、微粉炭粉体層の空隙率が0.35未満の微粉炭Aに、微粉炭粉体層の空隙率が0.35以上の微粉炭を配合することで、微粉炭全体の微粉炭粉体層の空隙率を0.35以上にできることが確認された。 As shown in Table 4, by blending the heat-treated coals C to F, the tensile breaking strength of the pulverized coal pulverized coal layer of the entire pulverized coal is lowered, and the porosity of the pulverized coal powder layer is increased. Further, even if the pulverized coal A has a tensile breaking strength of the pulverized coal powder layer larger than 50 kPa, the pulverized coal can be mixed with the heat-treated coals E and F having a tensile breaking strength of 50 kPa or less. It was confirmed that the tensile breaking strength of the entire pulverized coal powder layer could be 50 kPa or less. Similarly, by blending pulverized coal A having a porosity of less than 0.35 in the pulverized coal powder layer with pulverized coal having a porosity of 0.35 or more in the pulverized coal powder layer, the entire pulverized coal is pulverized. It was confirmed that the porosity of the powder layer could be 0.35 or more.

次に、表4に示した微粉炭を用いて配管閉塞抑制効果を確認した結果を説明する。表4に示した微粉炭を用いて、羽口38本、微粉炭搬送配管76本を持つ内容積5000mの高炉において目標11500t/dayの銑鉄生産量、150kg/t−銑鉄の微粉炭比で高炉内へ微粉炭を吹込む高炉の操業を5日間実施した。各羽口の微粉炭搬送配管が閉塞した場合であっても閉塞を解消させず、未閉塞の配管に通常より多くの微粉炭を搬送し、微粉炭比一定となるように操業した。また、吹込む微粉炭の粒度は調和平均径が8μmで一定となるように随時粉砕条件の調整をした。表5に各微粉炭吹込み時の1日平均の搬送配管閉塞本数と平均コークス比を示す。 Next, the results of confirming the pipe blockage suppressing effect using the pulverized coal shown in Table 4 will be described. Using pulverized coal as shown in Table 4, tuyeres 38 present, pig iron production amount of the target 11500t / day in a blast furnace having an inner volume of 5000 m 3 with pulverized coal transport pipes 76 present in the pulverized coal ratio of 150 kg / t-pig iron The operation of the blast furnace, which blows pulverized coal into the blast furnace, was carried out for 5 days. Even if the pulverized coal transport pipes at each tuyere were blocked, the blockage was not resolved, and more pulverized coal than usual was transported to the unoccluded pipes, and the operation was performed so that the pulverized coal ratio was constant. Further, the pulverization conditions were adjusted as needed so that the particle size of the pulverized coal to be blown was constant at a harmonic mean diameter of 8 μm. Table 5 shows the average number of obstructed transport pipes and the average coke ratio per day when each pulverized coal is blown.

Figure 0006885282
Figure 0006885282

表5に示すように、微粉炭A+微粉炭B、微粉炭A+加熱処理炭C、微粉炭A+加熱処理炭Dでは、配管の閉塞本数が7本/日以上になった。一方、微粉炭A+加熱処理炭E、微粉炭A+加熱処理炭Fでは、配管の閉塞本数が1本/日未満となり、高炉操業中に微粉炭で閉塞する配管の数が著しく減少した。 As shown in Table 5, in the pulverized coal A + pulverized coal B, the pulverized coal A + the heat-treated coal C, and the pulverized coal A + the heat-treated coal D, the number of closed pipes was 7 or more per day. On the other hand, in the pulverized coal A + heat-treated coal E and the pulverized coal A + heat-treated coal F, the number of pipes blocked was less than 1 / day, and the number of pipes blocked by pulverized coal during blast furnace operation was significantly reduced.

表4に示すように、配管の閉塞本数が7本/日以上となった微粉炭A+微粉炭B、微粉炭A+加熱処理炭C、微粉炭A+加熱処理炭Dは、微粉炭全体の微粉炭粉体層の引張破断強度が50kPaより大きい微粉炭である。また、配管の閉塞本数が1本/日未満となった微粉炭A+加熱処理炭Eおよび微粉炭A+加熱処理炭Fは、微粉炭全体の微粉炭粉体層の引張破断強度が50kPa以下の微粉炭である。これらの結果から、微粉炭全体の微粉炭粉体層の引張破断強度が50kPa以下となるように、引張破断強度が50kPaより大きい微粉炭に引張破断強度が50kPa以下となる微粉炭を配合した微粉炭を用いることで、配管内における微粉炭粉体層の成長を抑制でき、これにより、高炉操業中に微粉炭で閉塞する配管の数を少なくできることがわかる。 As shown in Table 4, the pulverized coal A + pulverized coal B, the pulverized coal A + the heat-treated coal C, and the pulverized coal A + the heat-treated coal D in which the number of pipes blocked is 7 / day or more are the pulverized coal of the whole pulverized coal. It is a pulverized coal having a tensile breaking strength of a powder layer of more than 50 kPa. Further, the pulverized coal A + heat-treated coal E and the pulverized coal A + heat-treated coal F in which the number of closed pipes is less than 1 / day are pulverized powders having a tensile breaking strength of 50 kPa or less in the pulverized coal powder layer of the entire pulverized coal. It is charcoal. Based on these results, pulverized coals having a tensile breaking strength of more than 50 kPa and pulverized coal having a tensile breaking strength of 50 kPa or less are mixed so that the tensile breaking strength of the pulverized coal powder layer of the entire pulverized coal is 50 kPa or less. It can be seen that the use of charcoal can suppress the growth of the pulverized coal powder layer in the pipes, thereby reducing the number of pipes blocked by the pulverized coal during blast furnace operation.

各微粉炭を吹込んで実施した高炉の操業における平均コークス比に着目すると、微粉炭A+微粉炭B、微粉炭A+加熱処理炭C、微粉炭A+加熱処理炭Dの吹込み時は平均コークス比が高く、微粉炭A+加熱処理炭E、微粉炭A+加熱処理炭Fの吹込み時は平均コークス比が低いことがわかる。微粉炭A+微粉炭B、微粉炭A+加熱処理炭C、微粉炭A+加熱処理炭Dの吹込み時においては、配管の閉塞によって高炉の炉周方向で微粉炭吹込み量の偏差が発生して高炉内の炉周方向の温度の偏差の発生および炉内の通気性が悪化し、これにより、平均コークス比が高くなったと考えられる。一方、微粉炭A+加熱処理炭Eおよび微粉炭A+加熱処理炭Fの吹込み時においては配管の閉塞が抑制され、配管の閉塞による平均コークス比の増加を抑制できることが確認された。 Focusing on the average coke ratio in the operation of the blast furnace carried out by injecting each pulverized coal, the average coke ratio at the time of injecting pulverized coal A + pulverized coal B, pulverized coal A + heat-treated coal C, and pulverized coal A + heat-treated coal D is It can be seen that the average coke ratio is low when the pulverized coal A + heat-treated coal E and the pulverized coal A + heat-treated coal F are blown. When pulverized coal A + pulverized coal B, pulverized coal A + heat-treated coal C, and pulverized coal A + heat-treated coal D are injected, a deviation in the amount of pulverized coal injected in the circumferential direction of the blast furnace occurs due to the blockage of the pipe. It is probable that the occurrence of temperature deviation in the circumferential direction of the blast furnace and the deterioration of the air permeability in the furnace resulted in an increase in the average coke ratio. On the other hand, it was confirmed that when the pulverized coal A + heat-treated coal E and the pulverized coal A + heat-treated coal F were blown in, the blockage of the pipe was suppressed, and the increase in the average coke ratio due to the blockage of the pipe could be suppressed.

また、表4に示すように、配管の閉塞本数が7本/日以上となった微粉炭A+微粉炭B、微粉炭A+加熱処理炭C、微粉炭A+加熱処理炭Dは、微粉炭全体の微粉炭粉体層の空隙率が0.35未満となる微粉炭である。微粉炭A+加熱処理炭E、微粉炭A+加熱処理炭Fは、微粉炭粉炭層の空隙率が0.35以上となる微粉炭である。したがって、微粉炭全体の微粉炭粉体層の空隙率が0.35以上となるように、空隙率が0.35未満となる微粉炭に空隙率が0.35以上となる微粉炭を配合した微粉炭を用いることで、配管内における微粉炭粉体層の成長が抑制され、これにより、高炉操業中に微粉炭で閉塞する配管の数を少なくでき、配管の閉塞による平均コークス比の増加を抑制できることが確認された。 Further, as shown in Table 4, the pulverized coal A + pulverized coal B, the pulverized coal A + the heat-treated coal C, and the pulverized coal A + the heat-treated coal D in which the number of pipes blocked is 7 / day or more are the whole pulverized coal. The pulverized coal is a pulverized coal having a porosity of less than 0.35 in the powder layer. The pulverized coal A + heat-treated coal E and the pulverized coal A + heat-treated coal F are pulverized coal having a porosity of 0.35 or more in the pulverized coal pulverized coal layer. Therefore, the pulverized coal having a porosity of less than 0.35 is mixed with the pulverized coal having a porosity of 0.35 or more so that the porosity of the pulverized coal powder layer of the entire pulverized coal is 0.35 or more. By using pulverized coal, the growth of the pulverized coal powder layer in the pipes is suppressed, which can reduce the number of pipes blocked by pulverized coal during blast furnace operation and increase the average coke ratio due to the blockage of the pipes. It was confirmed that it could be suppressed.

10 石炭
12 石炭ホッパ
14 フィーダ
16 微粉炭製造装置
18 微粉炭
20 主管
22 バグフィルタ
24 コールビン
26 吹込みタンク
28 分配器
30 枝管
32 ブローパイプ
34 高炉
36 ランス
38 羽口
40 熱風炉
50 セル
52 上部セル
54 下部セル
56 微粉炭粉体層
58 上蓋
10 coal 12 coal hopper 14 feeder 16 pulverized coal production equipment 18 pulverized coal 20 main pipe 22 bug filter 24 coal bin 26 blow tank 28 distributor 30 branch pipe 32 blow pipe 34 blast furnace 36 lance 38 tuyere 40 hot air furnace 50 cell 52 upper cell 54 Lower cell 56 Fine coal powder layer 58 Top lid

Claims (4)

高炉羽口から粒度分布が60mass%≦−74μmである微粉炭を吹込む高炉操業方法であって、
粉砕された石炭を原料とし、空隙率が下記の範囲を満足する微粉炭を選択し、選択された微粉炭を高炉に吹込む、高炉の操業方法。

上部セルと下部セルから構成されるセルに装入され、圧縮応力4.0MPaで60秒間圧縮して作製された微粉炭粉体層の空隙率が0.35以上である。
It is a blast furnace operation method in which pulverized coal having a particle size distribution of 60 mass% ≤ -74 μm is blown from the blast furnace tuyere.
A method for operating a blast furnace, in which crushed coal is used as a raw material, pulverized coal having a porosity satisfying the following range is selected, and the selected pulverized coal is blown into the blast furnace.
Record
The porosity of the pulverized coal powder layer, which is charged into a cell composed of an upper cell and a lower cell and is produced by compressing with a compressive stress of 4.0 MPa for 60 seconds, is 0.35 or more.
前記微粉炭は、加熱処理された微粉炭である、請求項に記載の高炉操業方法。 The method for operating a blast furnace according to claim 1 , wherein the pulverized coal is heat-treated pulverized coal. 前記微粉炭は、300℃以上で加熱処理された微粉炭である、請求項2に記載の高炉操業方法。 The blast furnace operating method according to claim 2 , wherein the pulverized coal is pulverized coal that has been heat-treated at 300 ° C. or higher. 前記微粉炭は、加熱処理された微粉炭と加熱処理していない微粉炭との混合物である、請求項1に記載の高炉操業方法。The blast furnace operating method according to claim 1, wherein the blast furnace is a mixture of heat-treated pulverized coal and non-heat-treated pulverized coal.
JP2017185521A 2017-09-27 2017-09-27 Blast furnace operation method Active JP6885282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185521A JP6885282B2 (en) 2017-09-27 2017-09-27 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185521A JP6885282B2 (en) 2017-09-27 2017-09-27 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2019059985A JP2019059985A (en) 2019-04-18
JP6885282B2 true JP6885282B2 (en) 2021-06-09

Family

ID=66176305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185521A Active JP6885282B2 (en) 2017-09-27 2017-09-27 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6885282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538553B (en) * 2020-11-23 2022-03-22 福建三宝钢铁有限公司 Coal blending method for blast furnace injection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762140B2 (en) * 1986-08-15 1995-07-05 株式会社ネオス Mixed coal oil
JPH04224610A (en) * 1990-12-25 1992-08-13 Sumitomo Metal Ind Ltd Method for injecting pulverized coal from tuyere in blast furnace
JPH04354810A (en) * 1991-05-30 1992-12-09 Nisshin Steel Co Ltd Method for blowing fine coal into blast furnace and device therefor
JPH11269471A (en) * 1998-03-23 1999-10-05 Nippon Steel Corp Coal rapid thermal decomposition oven and method for preventing char deposition
JP2001330211A (en) * 2000-05-19 2001-11-30 Hitachi Ltd Pulverized coal burner, pulverized coal boiler using it, its system, and coal-fired thermal power generation system
JP2005264189A (en) * 2004-03-16 2005-09-29 Jfe Steel Kk Method for blowing solid fuel into blast furnace
JP5420159B2 (en) * 2007-09-26 2014-02-19 三菱重工環境・化学エンジニアリング株式会社 Carbide storage and conveyance device and method
JP5644365B2 (en) * 2009-10-29 2014-12-24 Jfeスチール株式会社 Blast furnace operation method
JP5741319B2 (en) * 2011-08-22 2015-07-01 Jfeスチール株式会社 Pulverized coal injection method
JP6256701B2 (en) * 2014-12-15 2018-01-10 Jfeスチール株式会社 Method of injecting pulverized coal into the blast furnace

Also Published As

Publication number Publication date
JP2019059985A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5375742B2 (en) Granulation method of sintering raw material
JP6885282B2 (en) Blast furnace operation method
CN107208166A (en) The method of charging feedstock into blast furnace
JP6460531B2 (en) Method for producing reduced iron
RU2449024C2 (en) Method for obtaining direct-reduced iron
JP6256701B2 (en) Method of injecting pulverized coal into the blast furnace
JP6102484B2 (en) Method for producing sintered ore
JP2016191122A (en) Method for producing sintered ore
JPH1060508A (en) Production of pulverized fine coal for blowing from tuyere in blast furnace
JP2020521050A (en) Sinter plant operation method
JP5251408B2 (en) Blast furnace operation method
JP2014214339A (en) Method for producing sintered ore
JP6020840B2 (en) Sintering raw material manufacturing method
KR101677549B1 (en) Method for manufacturing molten iron
JP6772712B2 (en) Powder coke crushing equipment and powder coke crushing method
JP5338310B2 (en) Raw material charging method to blast furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JPH10317040A (en) Mgo(magnesium oxide) briquette for adjusting slag concentration
JP7303442B2 (en) Pretreatment method for raw materials for sintering
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250