JP6885154B2 - Microbial immobilization carrier for wastewater treatment and wastewater treatment method - Google Patents

Microbial immobilization carrier for wastewater treatment and wastewater treatment method Download PDF

Info

Publication number
JP6885154B2
JP6885154B2 JP2017068545A JP2017068545A JP6885154B2 JP 6885154 B2 JP6885154 B2 JP 6885154B2 JP 2017068545 A JP2017068545 A JP 2017068545A JP 2017068545 A JP2017068545 A JP 2017068545A JP 6885154 B2 JP6885154 B2 JP 6885154B2
Authority
JP
Japan
Prior art keywords
carrier
microbial
wastewater
microorganisms
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068545A
Other languages
Japanese (ja)
Other versions
JP2018167228A (en
Inventor
近藤 聡
聡 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017068545A priority Critical patent/JP6885154B2/en
Publication of JP2018167228A publication Critical patent/JP2018167228A/en
Application granted granted Critical
Publication of JP6885154B2 publication Critical patent/JP6885154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、嫌気性処理で用いられる排水処理用微生物固定化担体に関する。 The present invention relates to a microbial immobilization carrier for wastewater treatment used in anaerobic treatment.

微生物を用いて生活排水や工場廃水等を生物化学的に処理する方法が知られており、空気や酸素を大量に曝気して行う好気性処理と、空気等を曝気せず嫌気性雰囲気下で行う嫌気性処理に大別される。嫌気性処理は、好気性処理よりも余剰汚泥の発生量が少ない、酸素の供給が不要なため動力が少ない等のメリットがあり、今後更に普及していくと予想される。 There are known methods for biochemically treating domestic wastewater and factory wastewater using microorganisms. Aerobic treatment, which is performed by aerating a large amount of air and oxygen, and anaerobic treatment without aeration of air, etc. It is roughly divided into anaerobic treatment to be performed. Anaerobic treatment has advantages such as less excess sludge generation than aerobic treatment and less power because it does not require oxygen supply, and is expected to become more widespread in the future.

嫌気性処理の方法としては、嫌気性微生物の保持等の方法により、グラニュールを用いた上向流嫌気性汚泥床法(UASB)や膨張汚泥床法(EGSB)、膜や担体に嫌気性微生物を固定化した生物膜を用いた嫌気性固定床法や嫌気性流動床法等がある。 As a method of anaerobic treatment, an upward flow anaerobic sludge bed method (UASB) or an expanded sludge bed method (EGSB) using a granule, or an anaerobic microorganism on a membrane or a carrier is used by a method such as retention of anaerobic microorganisms. There are an anaerobic fixed bed method and an anaerobic fluid bed method using a biofilm in which the organism is immobilized.

また、無機物や有機物の表面に排水を効率よく浄化する微生物を固定化させて排水を浄化する微生物固定化方法は、排水中の微生物濃度を高くすることが可能であり、排水の浄化効率が向上し、浄化槽の小型化が可能であるという利点がある。 In addition, the microbial immobilization method that purifies wastewater by immobilizing microorganisms that efficiently purify wastewater on the surface of inorganic or organic matter can increase the concentration of microorganisms in wastewater and improve the efficiency of wastewater purification. However, there is an advantage that the septic tank can be miniaturized.

微生物固定化担体を排水中に浮遊、流動させて浄化する流動床法は、浄化効率を高くできるだけでなく、長期間安定して運転することができるため、近年注目を集めている。具体的には、流動床の微生物固定化担体としては、ポリウレタンの発泡体(例えば、特許文献1参照。)やポリオレフィンの発泡体(例えば、特許文献2、3参照。)や成形体(例えば、特許文献4参照。)、PVAやPEGを架橋したゲルを用いる方法(例えば、特許文献5、6参照。)が開示されている。 The fluidized bed method, in which a microbial-immobilized carrier is suspended and fluidized in wastewater to purify it, has been attracting attention in recent years because it not only has high purification efficiency but also can operate stably for a long period of time. Specifically, as the microbial immobilization carrier of the fluidized bed, a polyurethane foam (for example, see Patent Document 1), a polyolefin foam (for example, see Patent Documents 2 and 3), and a molded product (for example, see Patent Document 1) and a molded product (for example, see Patent Document 1). Patent Document 4), and a method using a gel cross-linked with PVA or PEG (see, for example, Patent Documents 5 and 6) are disclosed.

しかしながら、通常流動床で使用される微生物固定化担体を嫌気性処理で使用すると、嫌気性菌の代謝作用により発生するメタンガス、炭酸ガスや窒素ガスが担体内に存在し、担体が浮上して流動障害が起こり、処理性能は著しく低下するという問題があり、嫌気性処理に適した微生物固定化担体が望まれている。 However, when the microbial-immobilized carrier normally used in a fluidized bed is used in an anaerobic treatment, methane gas, carbon dioxide gas and nitrogen gas generated by the metabolic action of anaerobic bacteria are present in the carrier, and the carrier floats and flows. There is a problem that a failure occurs and the treatment performance is remarkably lowered, and a microbial-immobilized carrier suitable for anaerobic treatment is desired.

特開2010−195981号公報Japanese Unexamined Patent Publication No. 2010-195981 特開平10−257885号公報Japanese Unexamined Patent Publication No. 10-257858 特開2006−263489号公報Japanese Unexamined Patent Publication No. 2006-263489 特開平10−314780号公報Japanese Unexamined Patent Publication No. 10-314780 特開2001−089574号公報Japanese Unexamined Patent Publication No. 2001-0895774 特開2004−275113号公報Japanese Unexamined Patent Publication No. 2004-275113

本発明の微生物固定化担体は、嫌気性処理で使用され、微生物の代謝作用で発生するガスによる担体浮上が抑制でき、微生物の付着性、流動性を兼ね備えた排水処理能力の高い担体を提供することにある。 The microbial-immobilized carrier of the present invention is used in an anaerobic treatment, can suppress carrier floating due to gas generated by the metabolic action of microorganisms, and provides a carrier having high wastewater treatment capacity having both microbial adhesion and fluidity. There is.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明に到達した。すなわち、合成樹脂と無機物質を含み、密度が1.0〜1.10g/cm、外径(D)10〜25mm、厚さ(t)1〜2mm、長さ(L)が外径(D)の0.2〜0.8倍の筒状であり、該筒外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有することを特徴とする、嫌気性処理で用いる排水処理用微生物固定化担体を提供する。 The present inventors have arrived at the present invention as a result of repeated diligent studies to solve the above problems. That is, it contains a synthetic resin and an inorganic substance, and has a density of 1.0 to 1.10 g / cm 3 , an outer diameter (D) of 10 to 25 mm, a thickness (t) of 1 to 2 mm, and a length (L) of an outer diameter (L). It has a tubular shape 0.2 to 0.8 times that of D), and extends in the length direction of a plurality of tubes having a width (W) of 0.5 to 2 mm and a height (H) of 0.5 to 2 mm on the outside of the cylinder. Provided is a microbial immobilization carrier for wastewater treatment used in an anaerobic treatment, which is characterized by having ribs.

本発明の微生物固定化担体は、嫌気性処理で使用され、微生物の代謝作用で発生するガスによる担体浮上が抑制でき、微生物の付着性、流動性を兼ね備えた排水処理能力の高い担体が提供できる。具体的には、担体形状の外径(D)と長さ(L)の比を0.2〜0.8とすることで、担体内部の微生物層の形成を制限し、担体内部が微生物層によって閉塞することを抑制する。これにより微生物層に存在する代謝ガスを排水中に逃がすことができ、担体浮上が抑制できるため、嫌気性処理槽内での流動性が確保できる。また、担体外部表面に長さ方向に伸びるリブを有するため、微生物付着量が増加し、排水処理能力が高い担体が提供できる。 The microbial-immobilized carrier of the present invention is used in an anaerobic treatment, can suppress carrier floating due to gas generated by the metabolic action of microorganisms, and can provide a carrier having high wastewater treatment ability having both microbial adhesion and fluidity. .. Specifically, by setting the ratio of the outer diameter (D) to the length (L) of the carrier shape to 0.2 to 0.8, the formation of the microbial layer inside the carrier is restricted, and the inside of the carrier is the microbial layer. Suppresses blockage by. As a result, the metabolic gas existing in the microbial layer can be released into the wastewater, and the carrier floating can be suppressed, so that the fluidity in the anaerobic treatment tank can be ensured. Further, since the outer surface of the carrier has ribs extending in the length direction, the amount of microbial adhesion increases, and a carrier having high wastewater treatment capacity can be provided.

本発明の微生物固定化担体は、合成樹脂と無機物質を含み、密度が1.0〜1.10g/cm、外径(D)10〜25mm、厚さ(t)0.5〜2mm、長さ(L)が外径(D)の0.2〜0.8倍の筒状であり、該筒外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有することを特徴とする、排水処理用微生物固定化担体である。 The microbial-immobilized carrier of the present invention contains a synthetic resin and an inorganic substance, has a density of 1.0 to 1.10 g / cm 3 , an outer diameter (D) of 10 to 25 mm, and a thickness (t) of 0.5 to 2 mm. The length (L) is 0.2 to 0.8 times the outer diameter (D), and a plurality of cylinders have a width (W) of 0.5 to 2 mm and a height (H) of 0. A microorganism-immobilized carrier for wastewater treatment, which has ribs extending in a length direction of 5 to 2 mm.

担体の材料としては、密度、サイズ、強度、柔軟性、表面状態、成形加工性などから合成樹脂および無機物質を組み合わせることが好ましい。合成樹脂としては、ポリエチレン、ポリプロピレン等の柔軟性があり、軽量のポリオレフィン系熱可塑性樹脂が好ましく、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体等のエチレン−α−オレフィン共重合体が例示できる。これらは2種以上を使用しても良い。 As the material of the carrier, it is preferable to combine a synthetic resin and an inorganic substance in terms of density, size, strength, flexibility, surface condition, moldability and the like. As the synthetic resin, a flexible and lightweight polyolefin-based thermoplastic resin such as polyethylene and polypropylene is preferable, and low-density polyethylene (LDPE), high-density polyethylene (HDPE), ethylene-vinyl acetate copolymer (EVA), and the like. Examples thereof include ethylene-α-olefin copolymers such as ethylene-propylene copolymer, ethylene-butene copolymer, and ethylene-hexene copolymer. Two or more of these may be used.

合成樹脂のメルトフローレート(MFR)としては、特に限定はないが、微生物固定化担体として用いる場合には担体の成形方法により好ましいMFRは異なり、射出成形等で成形する場合は、MFRは1〜100g/10minが好ましく、押出成形等で成形する場合は、MFRは0.01〜20g/10minである。この範囲であれば、それぞれの成形方法において成形性が良好になる。MFRは、JIS K 7210−1999で測定され、例えばポリエチレンの場合、190℃、荷重2.16kgで測定される。 The melt flow rate (MFR) of the synthetic resin is not particularly limited, but when used as a microbial-immobilized carrier, the preferable MFR differs depending on the carrier molding method, and when molding by injection molding or the like, the MFR is 1 to 1. 100 g / 10 min is preferable, and when molding by extrusion molding or the like, the MFR is 0.01 to 20 g / 10 min. Within this range, the moldability is improved in each molding method. MFR is measured by JIS K 7210-1999, for example, in the case of polyethylene, it is measured at 190 ° C. and a load of 2.16 kg.

無機物質としては、密度1.3〜6.0g/cmのものが用いられ、特に限定されるものではない。例えば、炭酸カルシウム、タルク、硫酸バリウム、酸化鉄、水酸化アルミニウム、ゼオライト等を挙げることができ、それらを単独または複数種類組み合わせて使用することができる。合成樹脂の密度は、1.0g/cm以下であるので、これら無機物質は合成樹脂の密度調整と担体表面の粗面化、親水性付与の目的も兼ねて組み合わされる。 As the inorganic substance, a substance having a density of 1.3 to 6.0 g / cm 3 is used, and is not particularly limited. For example, calcium carbonate, talc, barium sulfate, iron oxide, aluminum hydroxide, zeolite and the like can be mentioned, and they can be used alone or in combination of two or more. Since the density of the synthetic resin is 1.0 g / cm 3 or less, these inorganic substances are combined for the purposes of adjusting the density of the synthetic resin, roughening the surface of the carrier, and imparting hydrophilicity.

上記の合成樹脂、無機物質の材質的な組み合わせによる担体性能の差はほとんどないので、密度および表面状態が目的の範囲に入るように混合比を調整する。但し、無機物質の割合が多くなると破損しやすくなるので、前記の比重範囲に入る混合割合が強度の点からも適している。 Since there is almost no difference in carrier performance depending on the material combination of the above synthetic resin and inorganic substance, the mixing ratio is adjusted so that the density and surface condition fall within the desired range. However, if the proportion of the inorganic substance is large, it is easily damaged, so that the mixing proportion within the above-mentioned specific gravity range is suitable from the viewpoint of strength.

本発明の効果を損なわない範囲で、充填剤、添加剤、加工助剤、親水化剤、着色剤等を添加しても構わないが、排水浄化用の微生物固定化担体として用いる場合には、可能な限り環境や生物への影響が少ないものを最小限度の添加量にすることが望ましい。 Fillers, additives, processing aids, hydrophilic agents, colorants, etc. may be added as long as the effects of the present invention are not impaired, but when used as a microbial immobilization carrier for wastewater purification, It is desirable to use the minimum amount of food that has as little impact on the environment and organisms as possible.

このような添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ラクトン系酸化防止剤、耐光安定剤、帯電防止剤等を挙げることができる。加工助剤としては、例えば、ワックス類、金属石鹸、ステアリン酸のような脂肪酸、フッ素系化合物等の滑剤等を挙げることができる。親水化剤としては、両性界面活性剤、イオン系界面活性剤、非イオン系界面活性剤等を挙げることができる。 Examples of such additives include phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, lactone-based antioxidants, light-resistant stabilizers, antistatic agents, and the like. Examples of the processing aid include waxes, metal soaps, fatty acids such as stearic acid, lubricants such as fluorine compounds, and the like. Examples of the hydrophilizing agent include amphoteric surfactants, ionic surfactants, nonionic surfactants and the like.

本発明の微生物固定化担体は、密度が1.0〜1.10g/cmである。流動床用として微生物固定化担体を用いる場合には、水面に浮上していると排水との接触が少なくなって浄化効率が低下するので、密度は水よりも大きい方が好ましい。一方、密度を1.10よりも大きくすると処理槽へ担体を投入した際の初期の担体沈降性は良好であるが、微生物付着により微生物層が形成してくると処理槽底部に沈んだままとなり、流動性が悪くなる。 The microbial immobilization carrier of the present invention has a density of 1.0 to 1.10 g / cm 3 . When a microbial-immobilized carrier is used for a fluidized bed, it is preferable that the density is higher than that of water because the contact with wastewater is reduced and the purification efficiency is lowered when the carrier floats on the water surface. On the other hand, when the density is made larger than 1.10, the initial carrier sedimentation property when the carrier is put into the treatment tank is good, but when the microbial layer is formed due to the adhesion of microorganisms, it remains sunk at the bottom of the treatment tank. , Liquidity deteriorates.

従って、少ない動力で撹拌して担体を流動、循環させるために、微生物固定化担体の密度は1.0〜1.10g/cmであることが好ましい。 Therefore, the density of the microbial-immobilized carrier is preferably 1.0 to 1.10 g / cm 3 in order to allow the carrier to flow and circulate with stirring with less power.

本発明の微生物固定化担体は、担体の外径(D)は10〜25mmである。担体のサイズは、小さいほど表面積が大きくなるため微生物付着の観点からは好ましいが、流出防止スクリーンを小さくするため目詰まり等のトラブルが発生しやすくなる。また、大き過ぎると流動性が悪化するので、担体の外径(D)は10〜25mmが好ましい。 The microbial-immobilized carrier of the present invention has a carrier outer diameter (D) of 10 to 25 mm. The smaller the size of the carrier, the larger the surface area, which is preferable from the viewpoint of microbial adhesion. However, since the outflow prevention screen is made smaller, problems such as clogging are likely to occur. Further, if it is too large, the fluidity deteriorates, so that the outer diameter (D) of the carrier is preferably 10 to 25 mm.

本発明の微生物固定化担体は、担体の厚み(t)は0.5〜2mmである。担体の厚みが0.5mmよりも薄いと担体の強度が低下するだけでなく成形性が低下する。一方、担体の厚みが2mmを上回ると、材料のコスト上昇を招くだけでなく、担体の内径が小さくなり、微生物層の形成により担体内部が閉塞しやすくなるため、担体の厚み(t)は0.5〜2mmが好ましい。 The microbial-immobilized carrier of the present invention has a carrier thickness (t) of 0.5 to 2 mm. If the thickness of the carrier is thinner than 0.5 mm, not only the strength of the carrier is lowered, but also the moldability is lowered. On the other hand, if the thickness of the carrier exceeds 2 mm, not only the cost of the material increases, but also the inner diameter of the carrier becomes small, and the inside of the carrier is easily closed due to the formation of the microbial layer. Therefore, the thickness (t) of the carrier is 0. .5-2 mm is preferable.

本発明の微生物固定化担体は、担体の長さ(L)は、外径(D)の0.2〜0.8倍である。担体の長さをこの範囲に調整することにより、担体内部の微生物層の形成を制限し、担体内部が微生物層によって閉塞することを抑制する。これにより微生物層に存在する窒素ガスを排水中に逃がすことができ、担体浮上が抑制でき、嫌気性処理槽内での流動性が確保できるため好ましい。 In the microorganism-immobilized carrier of the present invention, the length (L) of the carrier is 0.2 to 0.8 times the outer diameter (D). By adjusting the length of the carrier to this range, the formation of the microbial layer inside the carrier is restricted, and the inside of the carrier is prevented from being blocked by the microbial layer. This is preferable because the nitrogen gas existing in the microbial layer can be released into the waste water, the carrier floating can be suppressed, and the fluidity in the anaerobic treatment tank can be ensured.

本発明の微生物固定化担体は、担体の形状は筒状である。担体の一方の端面が閉塞した、コップ型のような形状は、排水浄化に伴って発生する窒素ガスが担体内部に溜まり、担体が浮上しやすいため好ましくなく、両端が開放された筒状が好ましい。特に、中空円筒形のものが製造も容易であり好ましい。 In the microorganism-immobilized carrier of the present invention, the shape of the carrier is tubular. A cup-shaped shape in which one end face of the carrier is closed is not preferable because nitrogen gas generated by wastewater purification accumulates inside the carrier and the carrier easily floats, and a tubular shape with both ends open is preferable. .. In particular, a hollow cylindrical one is preferable because it is easy to manufacture.

本発明の微生物固定化担体は、担体の外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有する。このようなリブを設けることで、担体の表面積が拡大できるため、微生物担持量が大きくなるだけでなく、処理槽内での担体同士が衝突した際に、担体に付着した微生物層が剥離するのを抑制できる。 The microbial-immobilized carrier of the present invention has a plurality of ribs extending in the length direction having a width (W) of 0.5 to 2 mm and a height (H) of 0.5 to 2 mm on the outside of the carrier. By providing such ribs, the surface area of the carrier can be expanded, so that not only the amount of microorganisms supported increases, but also when the carriers collide with each other in the treatment tank, the microbial layer adhering to the carriers is peeled off. Can be suppressed.

本発明の微生物固定化担体の成形方法としては、射出成形、押出成形、プレス成形等したものをそのまま使用してもよく、更に担体を所定の大きさに切断、粉砕、融着、接着等の二次加工して使用しても構わない。特に、生産性が高く、連続成形する押出成形が好ましく、特に、中空円筒形の押出成形が好ましい。 As the molding method of the microorganism-immobilized carrier of the present invention, one obtained by injection molding, extrusion molding, press molding or the like may be used as it is, or the carrier may be cut to a predetermined size, crushed, fused, bonded or the like. It may be used after secondary processing. In particular, extrusion molding with high productivity and continuous molding is preferable, and hollow cylindrical extrusion molding is particularly preferable.

押出成形に使用する押出機としては、特に制限はないが、通常の単軸押出機、二軸押出機等を用いればよい。 The extruder used for extrusion molding is not particularly limited, but a normal single-screw extruder, twin-screw extruder or the like may be used.

また、担体を成形する時に材料の混練を兼ねることも制限はないが、例えば、同方向二軸押出機、単軸押出機等を用いて成形すればよい。更に、この場合、前述した混練方法と同様に、材料の供給方法はいかなる方法でも制限はないが、材料の供給と分散性等を向上させるために、マスターバッチにて供給するのが好ましい。 Further, when molding the carrier, there is no limitation that the material is kneaded, but for example, the carrier may be molded using a twin-screw extruder in the same direction, a single-screw extruder or the like. Further, in this case, similarly to the kneading method described above, the method of supplying the material is not limited to any method, but in order to improve the supply and dispersibility of the material, it is preferable to supply the material in a masterbatch.

担体の外側に複数のリブを導入するためには、例えば、押出成形用金型の外面に一定間隔で溝を切削した金型を用いて押出成形する方法を用いればよい。 In order to introduce a plurality of ribs on the outside of the carrier, for example, a method of extrusion molding using a mold in which grooves are cut at regular intervals on the outer surface of the extrusion molding die may be used.

中空円筒形とするためには、例えば、ホースやパイプ、ストロー等のように押出機の先端に中空円筒用の金型を取り付け、樹脂の融点以上の温度で押し出ることで形成できる。押し出された成形品を冷却用水槽等で冷却し、適当な切断機(例えば、ペレット切断用のペレタイザー)にて所定の大きさに切断して担体とする。また、金型から押し出された直後に、例えば、冷却水を噴霧した雰囲気で連続回転式カッターのような切断機で連続的に切断、冷却することで製造してもよい。 In order to form a hollow cylinder, for example, a mold for a hollow cylinder is attached to the tip of an extruder such as a hose, a pipe, a straw, etc., and the mold is extruded at a temperature equal to or higher than the melting point of the resin. The extruded molded product is cooled in a cooling water tank or the like, and cut into a predetermined size with an appropriate cutting machine (for example, a pelletizer for cutting pellets) to obtain a carrier. Further, it may be produced by continuously cutting and cooling with a cutting machine such as a continuous rotary cutter in an atmosphere sprayed with cooling water immediately after being extruded from the mold.

押出成形の温度としては、微生物固定化担体が成形できればよいが、成形温度が低すぎると成形時の押出負荷がかかりやすくなり、生産性の低下や形状不安定になるため、120〜250℃の範囲が好ましく、更に、150〜180℃の範囲が特に好ましい。 The temperature of extrusion molding should be 120 to 250 ° C., as long as the microbial-immobilized carrier can be molded, but if the molding temperature is too low, an extrusion load during molding is likely to be applied, resulting in a decrease in productivity and shape instability. The range is preferable, and the range of 150 to 180 ° C. is particularly preferable.

本発明の微生物固定化担体は、嫌気性雰囲気下で適宜微生物を固定化させて用いればよい。例えば、排水の浄化に用いる場合には、担体の表面に排水を浄化するのに用いる微生物を固定化させて用いる。更に、浄化する排水の性状と温度、浄化槽の構造等に応じて、適当量の微生物固定化担体を排水中に投入し、接触させて用いればよい。 The microorganism-immobilized carrier of the present invention may be used by appropriately immobilizing microorganisms in an anaerobic atmosphere. For example, when it is used for purifying wastewater, microorganisms used for purifying wastewater are immobilized on the surface of a carrier. Further, depending on the properties and temperature of the wastewater to be purified, the structure of the septic tank, and the like, an appropriate amount of the microbial immobilization carrier may be put into the wastewater and used in contact with the wastewater.

本発明の微生物固定化担体の使用方法としては、固定床法と流動床法の如何なる方法でも使用できるが、微生物固定化担体内部の閉塞が少ないことから、流動床法で用いるのが好ましい。流動床法にて本発明の微生物固定化担体を排水中で流動させる方法としては、例えば、モーターの先端に付いた撹拌翼で撹拌する方法、ポンプで排水の一部を吸引、排出して撹拌する方法、適当な気体を曝気することで排水を撹拌する方法、排水槽に邪魔板を設けてその間に排水を流すことで自然に撹拌する方法等を挙げることができ、撹拌方法としては上下水平如何なる方向でも特に制限はない。撹拌が弱すぎると、微生物固定化担体が排水中を流動せずに排水と微生物との接触が少なくなるので浄化効率が低下し、撹拌が強すぎると、微生物固定化担体の表面に固定化した微生物が剥げ落ちるため、適度な強さ(速さ)での撹拌が望ましい。また、浄化した排水の排出口には、本発明の微生物固定化担体の流出防止のため、担体の外径や長さよりも小さい網目を有する仕切りを有することが望ましい。 As a method of using the microbial-immobilized carrier of the present invention, any method of a fixed bed method and a fluidized bed method can be used, but it is preferable to use the fluidized bed method because the inside of the microbial-immobilized carrier is less clogged. Examples of the method of flowing the microbial immobilization carrier of the present invention in the wastewater by the fluidized bed method include a method of stirring with a stirring blade attached to the tip of the motor, and a method of sucking and discharging a part of the wastewater with a pump to stir. A method of stirring the wastewater by aerating an appropriate gas, a method of providing a baffle plate in the drainage tank and allowing the drainage to flow between them to naturally agitate the wastewater. There are no particular restrictions in any direction. If the stirring is too weak, the microbial-immobilized carrier does not flow in the wastewater and the contact between the wastewater and the microorganisms is reduced, so that the purification efficiency is lowered. If the stirring is too strong, the microbial-immobilized carrier is immobilized on the surface of the microbial-immobilized carrier. Since microorganisms are peeled off, stirring with an appropriate strength (speed) is desirable. Further, it is desirable that the outlet of the purified wastewater has a partition having a mesh smaller than the outer diameter and length of the carrier in order to prevent the outflow of the microorganism-immobilized carrier of the present invention.

本発明の微生物固定化担体に微生物を固定化させる方法としては、担体を直接排水に投入して自然に微生物を固定化させてもよいが、事前に高濃度に微生物を増殖させた水槽に本発明の微生物固定化担体を投入し微生物を固定化させてから取り出し、排水の浄化槽に投入しても構わない。このように事前に微生物を固定化させてから排水中に微生物固定化担体を投入する方法は、正常に浄化するまでの時間を短縮できるため好ましく、嫌気性微生物は増殖が特に遅いので嫌気性処理の場合は特に好ましい。また、一部の微生物固定化担体に予め微生物を固定化させてから、浄化槽に投入してもよい。 As a method for immobilizing microorganisms on the microorganism-immobilized carrier of the present invention, the carrier may be directly put into wastewater to immobilize the microorganisms naturally, but the present invention is carried out in a water tank in which the microorganisms are grown to a high concentration in advance. The microorganism-immobilized carrier of the present invention may be added to immobilize the microorganisms, and then taken out and put into a septic tank for wastewater. The method of immobilizing the microorganisms in advance and then adding the microorganism-immobilized carrier to the wastewater is preferable because the time until normal purification can be shortened, and the anaerobic microorganisms grow particularly slowly, so that the anaerobic treatment is performed. Is particularly preferable. Further, the microorganisms may be immobilized on some of the microorganism-immobilized carriers in advance and then put into the septic tank.

本発明の微生物固定化担体は、化学的に安定な合成樹脂と無機物質から構成されるので、長期保存安定性がよく、保管方法に特に制限はないが、保管の簡便性と輸送の観点から、乾燥状態で保管するのが好ましい。 Since the microbial-immobilized carrier of the present invention is composed of a chemically stable synthetic resin and an inorganic substance, it has good long-term storage stability and there are no particular restrictions on the storage method, but from the viewpoint of convenience of storage and transportation. , It is preferable to store it in a dry state.

本発明の微生物固定化担体の形状を示す図である。It is a figure which shows the shape of the microorganism-immobilized carrier of this invention.

以下に実施例に基づき本発明を更に詳しく説明するが、これらは本発明の理解を助けるための例であって、本発明はこれらの実施例により何等制限を受けるものではない。
(汚泥の付着性評価および担体の流動性評価)
容量約1.5Lの容器に嫌気性汚泥を入れた模擬排水1L(硝酸態窒素300mg/L)に担体100mLを投入し、窒素雰囲気条件下、水温20℃、pH7で一定に保ち、約1ケ月間ゆっくりと撹拌し続け、微生物層の付着状況および担体の流動性を評価した。
The present invention will be described in more detail below based on examples, but these are examples for assisting the understanding of the present invention, and the present invention is not limited by these examples.
(Evaluation of sludge adhesion and carrier fluidity)
100 mL of the carrier was put into 1 L of simulated wastewater (300 mg / L of nitrate nitrogen) containing anaerobic sludge in a container with a capacity of about 1.5 L, and kept constant at a water temperature of 20 ° C. and pH 7 under nitrogen atmosphere conditions for about 1 month. The stirring was continued slowly for a while, and the adhesion state of the microbial layer and the fluidity of the carrier were evaluated.

<微生物付着性>
◎:中空円筒形内部が閉塞するほど微生物層が付着
○:担体表面にほぼ均一となるほど微生物層が付着
△:微生物層が付着していない部分が半分以上認められる。
<Microbial adhesion>
⊚: The microbial layer adheres to the extent that the inside of the hollow cylinder is closed. ◯: The microbial layer adheres to the surface of the carrier so that it becomes almost uniform. Δ: More than half of the portion to which the microbial layer does not adhere is observed.

<担体流動性>
○:担体は浮上せず、撹拌槽内を流動
×:担体が浮上し、撹拌層上部に滞留
(実施例1)
低密度ポリエチレン(ペトロセン170、密度0.92g/cm、MFR=1.0g/10min、東ソー株式会社製)75重量部、炭酸カルシウムMB(PEX10560AL、密度1.9g/cm、東京インキ株式会社製)25重量部、フェノール系酸化防止剤(アデカスタブAO−60、株式会社ADEKA製)0.1重量部を混合し、ラボプラストミル単軸押出機(株式会社東洋精機製作所製)と図1に示すような円筒形の外側にリブがついたダイスを用いて170℃で中空押出成形後、冷却水槽で冷却して中空円筒形の外側に突起がついた成形体を得た。次いで、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=8mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
<Carrier fluidity>
◯: The carrier does not float and flows in the stirring tank. ×: The carrier floats and stays on the upper part of the stirring layer (Example 1).
Low density polyethylene (Petrosen 170, density 0.92 g / cm 3 , MFR = 1.0 g / 10 min, manufactured by Toso Co., Ltd.) 75 parts by weight, calcium carbonate MB (PEX10560AL, density 1.9 g / cm 3 , Tokyo Ink Co., Ltd.) (Made) 25 parts by weight and 0.1 part by weight of phenolic antioxidant (Adecastab AO-60, manufactured by ADEKA Co., Ltd.) are mixed and combined with a lab plast mill single screw extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd.) in Fig. A die having ribs on the outside of the cylindrical shape as shown was used to perform hollow extrusion at 170 ° C., and then cooled in a cooling water tank to obtain a molded body having protrusions on the outside of the hollow cylindrical shape. Next, it is cut to a predetermined length with a utility knife, and has an outer diameter D = 10 mm, a length L = 8 mm, a thickness t = 0.8 mm, a rib width W = 0.5 mm, and a height H = 0.5 mm. A carrier having a hollow cylindrical shape with protrusions on the outside was obtained.

模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例2)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=6mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
When the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 2)
The ribbed hollow cylinder formed body obtained in Example 1 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 10 mm, a length L = 6 mm, a thickness t = 0.8 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 0.5 mm and a height of H = 0.5 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例3)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=4mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 3)
The ribbed hollow cylinder formed body obtained in Example 1 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 10 mm, a length L = 4 mm, a thickness t = 0.8 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 0.5 mm and a height of H = 0.5 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例4)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=2mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 4)
The ribbed hollow cylinder formed body obtained in Example 1 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 10 mm, a length L = 2 mm, a thickness t = 0.8 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 0.5 mm and a height of H = 0.5 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例5)
実施例1で中空押出成形する際のダイスの径を大きくした以外は同様な操作を行い、外径D=15mm、長さL=12mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 5)
The same operation was performed except that the diameter of the die for hollow extrusion was increased in Example 1, and the outer diameter D = 15 mm, the length L = 12 mm, the thickness t = 1 mm, and the rib width W = 0.8 mm. , A carrier having a hollow cylindrical shape having a height of H = 0.8 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に汚泥が付着した。また、担体は撹拌層内を流動していた。
(実施例6)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=9mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, sludge adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 6)
The ribbed hollow cylinder formed body obtained in Example 5 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 15 mm, a length L = 9 mm, a thickness t = 1 mm, and a rib width W = 0. A carrier having a hollow cylindrical shape having a height of 0.8 mm and a height of 0.8 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例7)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=6mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 7)
The ribbed hollow cylinder formed body obtained in Example 5 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 15 mm, a length L = 6 mm, a thickness t = 1 mm, and a rib width W = 0. A carrier having a hollow cylindrical shape having a height of 0.8 mm and a height of 0.8 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例8)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=3mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mm、の中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 8)
The ribbed hollow cylinder formed body obtained in Example 5 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 15 mm, a length L = 3 mm, a thickness t = 1 mm, and a rib width W = 0. A carrier having a hollow cylindrical shape having a height of 0.8 mm and a height of 0.8 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例9)
実施例1で中空押出成形する際のダイスの径を大きくした以外は同様な操作を行い、外径D=25mm、長さL=20mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mm、の中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 9)
The same operation was performed except that the diameter of the die for hollow extrusion molding in Example 1 was increased, and the outer diameter D = 25 mm, the length L = 20 mm, the thickness t = 1.5 mm, and the rib width W = 1 mm. , A carrier having a height H = 1 mm and a hollow cylindrical shape with protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例10)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=15mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 10)
The ribbed hollow cylinder-formed body obtained in Example 9 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 25 mm, a length L = 15 mm, a thickness t = 1.5 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 1 mm and a height of H = 1 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例11)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=10mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 11)
The ribbed hollow cylinder-formed body obtained in Example 9 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 25 mm, a length L = 10 mm, a thickness t = 1.5 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 1 mm and a height of H = 1 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例12)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=5mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
(Example 12)
The ribbed hollow cylinder formed body obtained in Example 9 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 25 mm, a length L = 5 mm, a thickness t = 1.5 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 1 mm and a height of H = 1 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
以上の結果を表1にまとめた。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microbial layer adhered uniformly to the surface of the carrier. In addition, the carrier was flowing in the stirring layer.
The above results are summarized in Table 1.

Figure 0006885154
(比較例1)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=10mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
Figure 0006885154
(Comparative Example 1)
The ribbed hollow cylinder formed body obtained in Example 1 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 10 mm, a length L = 10 mm, a thickness t = 0.8 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 0.5 mm and a height of H = 0.5 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例2)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=15mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
As in Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered to the extent that the inside of the hollow cylinder was closed. In addition, the carrier remained on the upper part of the stirring layer.
(Comparative Example 2)
The ribbed hollow cylinder formed body obtained in Example 1 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 10 mm, a length L = 15 mm, a thickness t = 0.8 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 0.5 mm and a height of H = 0.5 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例3)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=15mm、厚さt=1mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
As in Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered to the extent that the inside of the hollow cylinder was closed. In addition, the carrier remained on the upper part of the stirring layer.
(Comparative Example 3)
The ribbed hollow cylinder formed body obtained in Example 5 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 15 mm, a length L = 15 mm, a thickness t = 1 mm, and a rib width W = 0. A carrier having a hollow cylindrical shape having a height of H = 0.5 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例4)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=2mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
As in Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered to the extent that the inside of the hollow cylinder was closed. In addition, the carrier remained on the upper part of the stirring layer.
(Comparative Example 4)
The ribbed hollow cylinder formed body obtained in Example 5 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 15 mm, a length L = 2 mm, a thickness t = 1 mm, and a rib width W = 0. A carrier having a hollow cylindrical shape having a height of 0.8 mm and a height of 0.8 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、微生物層が付着していない部分が半分以上認められた。また、担体は撹拌層内を流動していた。
(比較例5)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=25mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, more than half of the portions to which the microbial layer did not adhere were observed. In addition, the carrier was flowing in the stirring layer.
(Comparative Example 5)
The ribbed hollow cylinder formed body obtained in Example 9 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 25 mm, a length L = 25 mm, a thickness t = 1.5 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 1 mm and a height of H = 1 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例6)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=2mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
As in Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered to the extent that the inside of the hollow cylinder was closed. In addition, the carrier remained on the upper part of the stirring layer.
(Comparative Example 6)
The ribbed hollow cylinder formed body obtained in Example 9 is cut to a predetermined length with a cutter knife, and has an outer diameter D = 25 mm, a length L = 2 mm, a thickness t = 1.5 mm, and a rib width W. A carrier having a hollow cylindrical shape having a height of 1 mm and a height of H = 1 mm and having protrusions on the outside was obtained.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、微生物層が付着していない部分が半分以上認められた。また、担体は撹拌層内を流動していた。
(比較例7)
実施例1で円筒形の外側にリブがついたダイスに代えて、リブが無いダイスを用いた以外は、実施例1と同様に中空押出成形を行い、中空円筒形の外側に突起が無い成形体を得た。カッターナイフで所定の長さで切断し、外径D=10mm、長さL=6mm、厚さt=0.8mmのリブの無い中空円筒形担体を得た。
Similar to Example 1, the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated. As a result, more than half of the portions to which the microbial layer did not adhere were observed. In addition, the carrier was flowing in the stirring layer.
(Comparative Example 7)
Hollow extrusion is performed in the same manner as in Example 1 except that a die without ribs is used instead of the die having ribs on the outside of the cylindrical shape in Example 1, and molding without protrusions on the outside of the hollow cylinder. I got a body. A hollow cylindrical carrier having an outer diameter of D = 10 mm, a length of L = 6 mm, and a thickness of t = 0.8 mm without ribs was obtained by cutting with a cutter knife to a predetermined length.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体外部には微生物層がほとんど付着していなかった。また、担体は撹拌層内を流動していた。
(比較例8)
実施例5で円筒形の外側にリブがついたダイスに代えて、リブが無いダイスを用いた以外は、実施例5と同様に中空押出成形を行い、中空円筒形の外側に突起が無い成形体を得た。カッターナイフで所定の長さで切断し、外径D=15mm、長さL=9mm、厚さt=1mmのリブの無い中空円筒形担体を得た。
As in Example 1, when the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated, almost no microbial layer was attached to the outside of the carrier. In addition, the carrier was flowing in the stirring layer.
(Comparative Example 8)
Hollow extrusion was performed in the same manner as in Example 5 except that a die without ribs was used instead of the die having ribs on the outside of the cylindrical shape in Example 5, and molding without protrusions on the outside of the hollow cylinder. I got a body. A hollow cylindrical carrier having an outer diameter of D = 15 mm, a length of L = 9 mm, and a thickness of t = 1 mm without ribs was obtained by cutting with a cutter knife to a predetermined length.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体外部には微生物層がほとんど付着していなかった。また、担体は撹拌層内を流動していた。
(比較例9)
実施例9で円筒形の外側にリブがついたダイスに代えて、リブが無いダイスを用いた以外は、実施例9と同様に中空押出成形を行い、中空円筒形の外側に突起が無い成形体を得た。カッターナイフで所定の長さで切断し、外径D=25mm、長さL=15mm、厚さt=1.5mmのリブの無い中空円筒形担体を得た。
As in Example 1, when the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated, almost no microbial layer was attached to the outside of the carrier. In addition, the carrier was flowing in the stirring layer.
(Comparative Example 9)
Hollow extrusion was performed in the same manner as in Example 9 except that a die without ribs was used instead of the die having ribs on the outside of the cylindrical shape in Example 9, and molding without protrusions on the outside of the hollow cylinder. I got a body. A hollow cylindrical carrier having an outer diameter of D = 25 mm, a length of L = 15 mm, and a thickness of t = 1.5 mm without ribs was obtained by cutting with a cutter knife to a predetermined length.

実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体外部には微生物層がほとんど付着していなかった。また、担体は撹拌層内を流動していた。 As in Example 1, when the carrier was put into the simulated wastewater and the adhesion of microorganisms was evaluated, almost no microbial layer was attached to the outside of the carrier. In addition, the carrier was flowing in the stirring layer.

以上の結果を表2にまとめた。 The above results are summarized in Table 2.

Figure 0006885154
Figure 0006885154

Claims (2)

合成樹脂と無機物質とからなり、実比重が1.0〜1.10g/cm、外径(D)10〜25mm、厚さ(t)0.5〜2mm、長さ(L)が外径(D)の0.2〜0.8倍の筒状であり、該筒外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有することを特徴とする排水処理用微生物固定化担体。 It is composed of synthetic resin and inorganic substance, and has an actual specific gravity of 1.0 to 1.10 g / cm 3 , an outer diameter (D) of 10 to 25 mm, a thickness (t) of 0.5 to 2 mm, and a length (L) of the outside. It has a tubular shape 0.2 to 0.8 times the diameter (D), and has a plurality of tubes on the outside of the cylinder in the length direction of width (W) 0.5 to 2 mm and height (H) 0.5 to 2 mm. A microbial immobilization carrier for wastewater treatment, which has ribs extending to the surface. 嫌気性雰囲気下で、請求項1に記載の排水処理用微生物固定化担体と排水を接触させることを特徴とする排水処理方法。 A wastewater treatment method comprising contacting wastewater with the microbial immobilization carrier for wastewater treatment according to claim 1 in an anaerobic atmosphere.
JP2017068545A 2017-03-30 2017-03-30 Microbial immobilization carrier for wastewater treatment and wastewater treatment method Active JP6885154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068545A JP6885154B2 (en) 2017-03-30 2017-03-30 Microbial immobilization carrier for wastewater treatment and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068545A JP6885154B2 (en) 2017-03-30 2017-03-30 Microbial immobilization carrier for wastewater treatment and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2018167228A JP2018167228A (en) 2018-11-01
JP6885154B2 true JP6885154B2 (en) 2021-06-09

Family

ID=64017614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068545A Active JP6885154B2 (en) 2017-03-30 2017-03-30 Microbial immobilization carrier for wastewater treatment and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6885154B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3761671B2 (en) * 1997-05-16 2006-03-29 昭和エンジニアリング株式会社 Carrier for attaching microorganisms
JP2003117577A (en) * 2001-10-16 2003-04-22 Mitsubishi Rayon Co Ltd Microorganism immobilized carrier and method for manufacturing the same, and waste water treating method using the carrier
JP6364769B2 (en) * 2013-12-26 2018-08-01 東ソー株式会社 Resin composition, microorganism-immobilized carrier and purification method

Also Published As

Publication number Publication date
JP2018167228A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR101727452B1 (en) Anaerobic treatment method
JP6364769B2 (en) Resin composition, microorganism-immobilized carrier and purification method
US5962309A (en) Extruded foamed polyolefin resin carrier for microorganisms in a fluidized bed
JP6869307B2 (en) Microbial carrier
WO2012070459A1 (en) Method and apparatus for anaerobic treatment
CN103224283A (en) Honeycomb modified biological stuffing applied to water treatment and preparation method thereof
JP6885154B2 (en) Microbial immobilization carrier for wastewater treatment and wastewater treatment method
KR20150137061A (en) Anaerobic treatment method
CN103951043A (en) Suspended filling material used for sewage processing
JP2012110820A (en) Method and apparatus for anaerobic treatment
JP2003117577A (en) Microorganism immobilized carrier and method for manufacturing the same, and waste water treating method using the carrier
KR100951109B1 (en) A microorganism carrier and its manufacturing method
JP2004174491A (en) Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same
JP5691439B2 (en) Anaerobic treatment method and apparatus
JP3587733B2 (en) Microbial carrier and wastewater treatment equipment
US20200071214A1 (en) Electron donor biofilm carrier and preparation method thereof
CN113998779A (en) Urban sewage is with rearmounted degree of depth denitrogenation removal bed filler
JP3718570B2 (en) Method for producing extruded foam
JP2015071157A (en) Animal and vegetable oils-containing wastewater treatment system
CN205346983U (en) Biological carrier in fixed microorganism aeration tank of vortex
JP2003340480A (en) Microbial cell immobilization support, method for producing the same and method for treating waste water using the same
JP2004065021A (en) Microorganism-immobilizing support and method for treating wastewater using the same
CN216737747U (en) Urban sewage is with rearmounted degree of depth denitrogenation removal bed filler
JP4229426B2 (en) Microorganism immobilization carrier and waste water treatment method using the same
KR100661873B1 (en) Cellular bio-media material for waste food or water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151