JP6869307B2 - Microbial carrier - Google Patents

Microbial carrier Download PDF

Info

Publication number
JP6869307B2
JP6869307B2 JP2019184000A JP2019184000A JP6869307B2 JP 6869307 B2 JP6869307 B2 JP 6869307B2 JP 2019184000 A JP2019184000 A JP 2019184000A JP 2019184000 A JP2019184000 A JP 2019184000A JP 6869307 B2 JP6869307 B2 JP 6869307B2
Authority
JP
Japan
Prior art keywords
microbial carrier
carrier
mass
microbial
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019184000A
Other languages
Japanese (ja)
Other versions
JP2020059021A (en
Inventor
鈴木 穣
穣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Jenets KK
Original Assignee
Veolia Jenets KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Jenets KK filed Critical Veolia Jenets KK
Publication of JP2020059021A publication Critical patent/JP2020059021A/en
Application granted granted Critical
Publication of JP6869307B2 publication Critical patent/JP6869307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

本発明は、微生物担体に関する。 The present invention relates to microbial carriers.

従来、廃水処理、特に好気的手段による廃水中の生物化学的酸素要求量(BOD)の低減には、処理効率が高く処理槽容積が少ないことや、微生物が担体に付着しているので活性汚泥法のように流亡しないことから、流動性担体を充填した流動床法等が用いられている。 Conventionally, wastewater treatment, especially reduction of biochemical oxygen demand (BOD) in wastewater by aerobic means, is active because the treatment efficiency is high and the treatment tank volume is small and microorganisms are attached to the carrier. Unlike the sludge method, it does not run off, so a fluid bed method filled with a fluid carrier is used.

流動床法に用いられる流動性担体は、通常、ポリプロピレン、ポリエチレン、ポリビニルアルコール及びポリウレタン等の各種合成樹脂や、セルロース誘導体等を、必要に応じて、発泡剤や充填材と共に含む組成物を発泡することによって得られる。流動性担体の形状としては、通常、粒状、円筒状及び円柱状等が挙げられる。 The fluidized carrier used in the fluidized bed method usually foams a composition containing various synthetic resins such as polypropylene, polyethylene, polyvinyl alcohol and polyurethane, a cellulose derivative and the like together with a foaming agent and a filler, if necessary. Obtained by The shape of the fluidized carrier usually includes granular, cylindrical, cylindrical and the like.

特許文献1には、流動性担体として、ポリプロピレン及び/又はポリエチレンを発泡して得られた排水処理用微生物担体が記載されている。特許文献1では、比表面積を増大させた排水処理用微生物担体を用いることで、微生物の担持量を増やし、処理効率を上げようとしている。 Patent Document 1 describes a microbial carrier for wastewater treatment obtained by foaming polypropylene and / or polyethylene as a fluidized carrier. Patent Document 1 attempts to increase the amount of microorganisms supported and improve the treatment efficiency by using a microbial carrier for wastewater treatment having an increased specific surface area.

特開2001−180号公報JP 2001-180

しかしながら、特許文献1に記載の排水処理用微生物担体は、微生物が入り込めない程度の大きさの開口を有する気泡を内部に多く有し、そのような気泡内に微生物を担持することが困難である。その結果、担体の表面は、比表面積が示すほど有効に微生物を担持できておらず、処理水や汚染物に対する処理効率が悪い。また、上記のような開口の大きさに起因して、水が気泡内部に浸透するまで時間を要する。そのため、特許文献1に記載の担体は、水没又は水中に懸濁し難く、処理時間が長くなる。 However, the microbial carrier for wastewater treatment described in Patent Document 1 has a large number of bubbles having openings having a size large enough to prevent microorganisms from entering, and it is difficult to carry the microorganisms in such bubbles. is there. As a result, the surface of the carrier cannot carry microorganisms as effectively as the specific surface area indicates, and the treatment efficiency for treated water and contaminants is poor. Further, due to the size of the opening as described above, it takes time for water to permeate into the bubbles. Therefore, the carrier described in Patent Document 1 is difficult to be submerged or suspended in water, and the treatment time becomes long.

そこで、本発明は、上記課題に鑑みてなされたものであり、処理水や汚染物に対する処理効率が高く、容易に、液中に沈むことができ、又は、懸濁できる微生物担体を提供することにある。 Therefore, the present invention has been made in view of the above problems, and provides a microbial carrier that has high treatment efficiency for treated water and contaminants, can be easily submerged in a liquid, or can be suspended. It is in.

本発明者らは、ポリオレフィンを含み、特定の気泡率及び独立気泡率を有する微生物担体により、前記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have found that the above-mentioned problems can be solved by a microbial carrier containing polyolefin and having a specific bubble ratio and closed cell ratio, and have completed the present invention.

すなわち、本発明は、以下の内容を含む。
[1] ポリオレフィンと、前記ポリオレフィンと相溶しない熱可塑性樹脂と、を含む微生物担体であって、前記熱可塑性樹脂の含有量が、前記ポリオレフィン及び前記熱可塑性樹脂の合計100質量%に対して、12質量%以上30質量%以下であり、下記式(i)によって表される気泡率が25%以上であり、かつ、下記式(ii)によって表される独立気泡率が20%以下である、微生物担体。
気泡率=(1−ρBA)×100・・・(i)
(式(i)中、ρAは微生物担体を構成する材料の真密度(g/cm3)を示し、ρBは微生物担体の見掛け密度(g/cm3)を示す。)。
独立気泡率=(1−ρA(ρC−ρB)/(ρA−ρB))×100・・・(ii)
(式(ii)中、ρAは微生物担体を構成する材料の真密度(g/cm3)を示し、ρBは微生物担体の見掛け密度(g/cm3)を示し、ρCはアルキメデス法により導き出される注水密度(g/cm3)を示す。)。
That is, the present invention includes the following contents.
[1] A microbial carrier containing a polyolefin and a thermoplastic resin that is incompatible with the polyolefin, wherein the content of the thermoplastic resin is 100% by mass of the total of the polyolefin and the thermoplastic resin. It is 12% by mass or more and 30% by mass or less, the bubble ratio represented by the following formula (i) is 25% or more, and the closed cell ratio represented by the following formula (ii) is 20% or less. Microbial carrier.
Bubble ratio = (1-ρ B / ρ A ) × 100 ... (i)
(In formula (i), ρ A indicates the true density (g / cm 3 ) of the material constituting the microbial carrier, and ρ B indicates the apparent density (g / cm 3 ) of the microbial carrier).
Closed cell ratio = (1-ρ AC − ρ B ) / (ρ A − ρ B )) × 100 ・ ・ ・ (ii)
(In formula (ii), ρ A indicates the true density (g / cm 3 ) of the material constituting the microbial carrier, ρ B indicates the apparent density of the microbial carrier (g / cm 3 ), and ρ C is the Archimedes method. The water injection density (g / cm 3 ) derived from is shown.).

[2] 円柱状又は略円柱状の前記微生物担体の一方の底面から他方の底面に流通させた空気の量から算出する空気透過率が0.5mL/(mm2・sec)以上である、[1]に記載の微生物担体。
[3] 円柱状又は略円柱の形状を有し、前記円柱又は略円柱の高さが3mm以下である、[1]又は[2]に記載の微生物担体。
[4] 前記ポリオレフィンが、ポリエチレン、ポリプロピレン、ポリブテン、又はこれらの混合物を含む、[1]〜[3]のいずれかに記載の微生物担体。
[2] The air permeability calculated from the amount of air circulated from one bottom surface of the cylindrical or substantially columnar microbial carrier to the other bottom surface is 0.5 mL / (mm 2 · sec) or more. 1] The microbial carrier according to.
[3] The microbial carrier according to [1] or [2], which has a columnar or substantially cylindrical shape and the height of the column or substantially cylindrical is 3 mm or less.
[4] The microbial carrier according to any one of [1] to [3], wherein the polyolefin contains polyethylene, polypropylene, polybutene, or a mixture thereof.

[5] 前記熱可塑性樹脂がポリスチレンである、[1]〜[4]のいずれかに記載の微生物担体。
[6] 有機充填材及び/又は無機充填材を更に含む、[1]〜[5]のいずれかに記載の微生物担体。
[5] The microbial carrier according to any one of [1] to [4], wherein the thermoplastic resin is polystyrene.
[6] The microbial carrier according to any one of [1] to [5], further comprising an organic filler and / or an inorganic filler.

本発明によれば、処理水や汚染物に対する処理効率が高く、容易に、液中に沈むことができ、又は、懸濁できる微生物担体を提供することができる。 According to the present invention, it is possible to provide a microbial carrier that has high treatment efficiency for treated water and contaminants and can be easily submerged or suspended in a liquid.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified and carried out within the scope of the gist thereof.

〔微生物担体〕
本実施形態の微生物担体(以下、単に「担体」ともいう。)は、ポリオレフィンと、ポリオレフィンと相溶しない熱可塑性樹脂と、を含む、微生物担体であって、
熱可塑性樹脂の含有量が、ポリオレフィン及び熱可塑性樹脂の合計100質量%に対して、12質量%以上30質量%以下であり、
下記式(i)によって表される気泡率が25%以上であり、かつ、下記式(ii)によって表される独立気泡率が20%以下である。
気泡率=(1−ρBA)×100・・・(i)
(式(i)中、ρAは微生物担体を構成する材料の真密度(g/cm3)を示し、ρBは微生物担体の見掛け密度(g/cm3)を示す。)。
独立気泡率=(1−ρA(ρC−ρB)/(ρA−ρB))×100・・・(ii)
(式(ii)中、ρAは微生物担体を構成する材料の真密度(g/cm3)を示し、ρBは微生物担体の見掛け密度(g/cm3)を示し、ρCはアルキメデス法により導き出される注水密度(g/cm3)を示す。)。
[Microbial carrier]
The microbial carrier of the present embodiment (hereinafter, also simply referred to as “carrier”) is a microbial carrier containing polyolefin and a thermoplastic resin that is incompatible with polyolefin.
The content of the thermoplastic resin is 12% by mass or more and 30% by mass or less with respect to the total 100% by mass of the polyolefin and the thermoplastic resin.
The bubble ratio represented by the following formula (i) is 25% or more, and the closed cell ratio represented by the following formula (ii) is 20% or less.
Bubble ratio = (1-ρ B / ρ A ) × 100 ... (i)
(In formula (i), ρ A indicates the true density (g / cm 3 ) of the material constituting the microbial carrier, and ρ B indicates the apparent density (g / cm 3 ) of the microbial carrier).
Closed cell ratio = (1-ρ AC − ρ B ) / (ρ A − ρ B )) × 100 ・ ・ ・ (ii)
(In formula (ii), ρ A indicates the true density (g / cm 3 ) of the material constituting the microbial carrier, ρ B indicates the apparent density of the microbial carrier (g / cm 3 ), and ρ C is the Archimedes method. The water injection density (g / cm 3 ) derived from is shown.).

(気泡率)
本実施形態の微生物担体は、担体の表面に通じており、外部を減圧すると脱気できる非独立気泡(u)と、担体の表面と通じておらず、外部を減圧しても脱気ができない独立気泡(v)とを有する。気泡率(Rb)は、担体の体積に対する、非独立気泡(u)と独立気泡(v)との両方の気泡の全体積の割合を示す。
ここで、微生物担体の単位体積あたりの質量、すなわち微生物担体の見掛け密度ρB(g/cm3)は、微生物担体を構成する材料の真密度ρA(g/cm3)と、空気の密度ρair(g/cm3)と、気泡率(Rb)を用いて、下記の式で表すことができる。
ρB=Rb・ρair/100+(1−Rb/100)・ρA
この式より、気泡率(Rb)は下記のように誘導され、
気泡率(Rb)=((ρB−ρA)/(ρair−ρA))×100
ρairがρAより十分に小さいことから、下記の式(i)を導き出すことができる。
気泡率(Rb)=(1−ρB/ρA)×100・・・(i)
(Bubble ratio)
The microbial carrier of the present embodiment communicates with the surface of the carrier and cannot be degassed even if the outside is depressurized, and the non-closed cells (u) that are not communicated with the surface of the carrier and can be degassed when the outside is depressurized. It has a closed cell (v). The bubble ratio (R b ) indicates the ratio of the total volume of both non-closed cells (u) and closed cells (v) to the volume of the carrier.
Here, the mass per unit volume of the microbial carrier, that is, the apparent density ρ B (g / cm 3 ) of the microbial carrier is the true density ρ A (g / cm 3 ) of the material constituting the microbial carrier and the density of air. Using ρ air (g / cm 3 ) and the bubble ratio (R b ), it can be expressed by the following formula.
ρ B = R b・ ρ air / 100 + (1-R b / 100) ・ ρ A
From this equation, the bubble ratio (R b ) is derived as follows.
Bubble ratio (R b ) = ((ρ B −ρ A ) / (ρ air −ρ A )) × 100
Since ρ air is sufficiently smaller than ρ A , the following equation (i) can be derived.
Bubble ratio (R b ) = (1-ρ B / ρ A ) × 100 ... (i)

本実施形態の微生物担体は、処理効率の点から、上記の気泡率が25%以上であり、30%以上であることが好ましく、40%以上であることがより好ましい。上限については、通常50%以下である。なお、具体的な気泡率の算出方法は、実施例に記載のとおりである。 From the viewpoint of treatment efficiency, the microbial carrier of the present embodiment has the above-mentioned bubble ratio of 25% or more, preferably 30% or more, and more preferably 40% or more. The upper limit is usually 50% or less. The specific method for calculating the bubble ratio is as described in the examples.

本実施形態の微生物担体は、気泡率が上記の範囲内であり、微生物が入り込める程度の大きさの開口を有する非独立気泡を内部に多く有するため、内部の非独立気泡の壁面まで微生物を担持することができる。そのため、従来の担体に比して、微生物の担持量を多くでき、処理水や汚染物(以下、「処理水等」と表記する。)に対する処理効率を上げることができる。 Since the microbial carrier of the present embodiment has a bubble ratio within the above range and has a large number of non-closed cells having openings large enough to allow the microorganisms to enter, the microbial carrier supports the microorganisms up to the wall surface of the internal non-closed cells. can do. Therefore, the amount of microorganisms supported can be increased as compared with the conventional carrier, and the treatment efficiency for treated water and contaminants (hereinafter, referred to as "treated water and the like") can be improved.

なお、製造時に水で冷却される微生物担体の場合、微生物担体は水を含んでいるので、発泡担体を完全に乾燥した後に気泡率及び後述の独立気泡率を算出する。 In the case of a microbial carrier that is cooled with water during production, since the microbial carrier contains water, the bubble ratio and the closed cell ratio described later are calculated after the foamed carrier is completely dried.

(独立気泡率)
本実施形態において、独立気泡率(Ri)とは、微生物担体における、独立気泡及び非独立気泡のような全空隙の体積を分母とし、微生物担体の表面に通じていない独立気泡のような空隙の体積の割合を意味する。
ここで、微生物担体の表面に通じていない独立気泡のような空隙は、微生物担体を減圧雰囲気下で水没させて表面に通じた非独立気泡に注水をし、残った空隙の体積を調べる、いわゆるアルキメデス法を用いて、注水密度(g/cm3)として測定することができる。すなわち、微生物担体を容器の中で減圧し、ほぼ空気を排出した状態で微生物担体を水没させることで、微生物担体の表面に通じた非独立気泡に注水する。その後、微生物担体を容器より取り出し、注水した微生物担体の質量と、この微生物担体を水に浸漬したときの排除体積とから、注水密度(g/cm3)が計算される。
そして、この注水密度ρC(g/cm3)は、材料の密度(真密度)ρA(g/cm3)と、注水された水の密度ρ水(g/cm3)と、独立気泡部の空気密度ρair(g/cm3)と、気泡率(Rb)と、独立気泡率(Ri)を用いて、体積分率による加重平均(下記式)で表すことができる。
ρC=(1−Rb/100)・ρA+Rb/100・((1−Ri/100)・ρ水+Ri/100・ρair
この式に、上記の(i)式を代入し、更に、ρ水が1であり、ρairが十分に小さいことから、独立気泡率(Ri)は、下記の式(ii)で表すことができる。
独立気泡率(Ri)=(1−ρA(ρC−ρB)/(ρA−ρB))×100・・・(ii)
(Closed cell ratio)
In the present embodiment, the closed cell ratio (R i ) is the volume of total voids such as closed cells and non-closed cells in the microbial carrier as the denominator, and the closed cell-like voids that do not communicate with the surface of the microbial carrier. Means the proportion of the volume of.
Here, for voids such as closed cells that do not communicate with the surface of the microbial carrier, the microbial carrier is submerged in a reduced pressure atmosphere, water is injected into the non-closed cells that communicate with the surface, and the volume of the remaining voids is examined, so-called. It can be measured as a water injection density (g / cm 3) using the Archimedes method. That is, the microbial carrier is depressurized in the container, and the microbial carrier is submerged in a state where almost air is discharged, so that water is injected into the non-closed cells that have passed through the surface of the microbial carrier. Then, the microbial carrier is taken out from the container, and the water injection density (g / cm 3 ) is calculated from the mass of the microbial carrier injected with water and the excluded volume when the microbial carrier is immersed in water.
The water injection density ρ C (g / cm 3 ) is the material density (true density) ρ A (g / cm 3 ), the density of the injected water ρ water (g / cm 3 ), and closed cells. Using the air density ρ air (g / cm 3 ) of the part, the bubble ratio (R b ), and the closed cell ratio (R i ), it can be expressed by a weighted average (the following formula) by the body integration rate.
ρ C = (1-R b / 100) ・ ρ A + R b / 100 ・ ((1-R i / 100) ・ ρ water + R i / 100 ・ ρ air )
Substituting the above equation (i) into this equation, and since ρ water is 1 and ρ air is sufficiently small, the closed cell ratio (R i ) is expressed by the following equation (ii). Can be done.
Closed cell ratio (R i ) = (1-ρ AC − ρ B ) / (ρ A − ρ B )) × 100 ・ ・ ・ (ii)

本実施形態の微生物担体は、処理効率の点から、上記の独立気泡率が20%以下であり、15%以下であることが好ましく、10%以下であることがより好ましい。下限については、通常1%以上である。なお、具体的な独立気泡率の算出方法は、実施例に記載のとおりである。 From the viewpoint of treatment efficiency, the microbial carrier of the present embodiment has the above-mentioned closed cell ratio of 20% or less, preferably 15% or less, and more preferably 10% or less. The lower limit is usually 1% or more. The specific method for calculating the closed cell ratio is as described in the examples.

本実施形態の微生物担体は、独立気泡率が上記の範囲内であることで、処理水等に浸透しやすく、容易に、液中に沈むことができる。そのため、担体投入時から早期に安定した懸濁状態を得ることができる。 When the closed cell ratio of the microbial carrier of the present embodiment is within the above range, it easily permeates into treated water or the like and can be easily submerged in the liquid. Therefore, a stable suspension state can be obtained at an early stage from the time when the carrier is added.

また、処理水等に容易に浸透することから、処理水等が微生物と早期に接触し、担体投入時から早期に処理水等を処理することが可能である。そのため、本実施形態の微生物担体によれば、従来の担体に比して、処理効率を高めることができる。 Further, since the treated water or the like easily permeates into the treated water or the like, the treated water or the like comes into contact with the microorganisms at an early stage, and the treated water or the like can be treated at an early stage from the time when the carrier is added. Therefore, according to the microbial carrier of the present embodiment, the treatment efficiency can be improved as compared with the conventional carrier.

(空気透過率)
本実施形態において、空気透過率とは、担体を円柱状又は略円柱状とした場合において、その担体の断面間に一定の差圧をかけたときに通過する断面積・時間あたりの空気透過量を意味する。
(Air transmission rate)
In the present embodiment, the air transmittance means the cross-sectional area and the amount of air permeation per hour that passes when a constant differential pressure is applied between the cross sections of the carrier when the carrier is cylindrical or substantially columnar. Means.

本実施形態の微生物担体は、処理水等への馴染みの速さ、及び処理効率の点から、円柱状又は略円柱状の微生物担体の一方の底面から他方の底面に流通させた空気の量から算出する空気透過率が0.5(mL/(mm2・sec))以上であることが好ましく、より効率よく処理水等を処理できる点から、0.76(mL/(mm2・sec))以上であることがより好ましく、0.93(mL/(mm2・sec))以上であることが更に好ましく、1.2(mL/(mm2・sec))以上であることが更により好ましい。本実施形態の微生物担体において、空気の透過率が高いほど処理能力が上がるので、上限については、微生物担体における気泡率を考慮すると、通常5.0(mL/(mm2・sec))程度である。なお、具体的な空気透過率の算出方法は、実施例に記載のとおりである。 The microbial carrier of the present embodiment is based on the amount of air circulated from one bottom surface to the other bottom surface of the columnar or substantially columnar microbial carrier in terms of the speed of adaptation to treated water and the like and the treatment efficiency. The calculated air permeability is preferably 0.5 (mL / (mm 2 · sec)) or more, and 0.76 (mL / (mm 2 · sec)) from the viewpoint that treated water and the like can be treated more efficiently. ) Or more, more preferably 0.93 (mL / (mm 2 · sec)) or more, and even more preferably 1.2 (mL / (mm 2 · sec)) or more. preferable. In the microbial carrier of the present embodiment, the higher the air permeability, the higher the processing capacity. Therefore, the upper limit is usually about 5.0 (mL / (mm 2 · sec)) in consideration of the bubble ratio in the microbial carrier. is there. The specific method for calculating the air transmittance is as described in the examples.

本実施形態の微生物担体の空気透過率が上記の範囲内にあると、担体への処理水等の浸透が速く、目的とする懸濁状態又は沈降状態に早期に到達させることができるため、好ましい。 When the air permeability of the microbial carrier of the present embodiment is within the above range, the treated water or the like permeates the carrier quickly, and the desired suspension state or sedimentation state can be reached at an early stage, which is preferable. ..

(形状)
本実施形態の微生物担体の形状は、特に限定されず、球状、略球状、立方体、略立方体、直方体、略直方体、円柱、略円柱、円筒又は略円筒、あるいは不定形などいずれの形状であってもよい。また、微生物担体の大きさも特に限定されない。本実施形態の微生物担体は、処理水や汚染物に対する処理効率がより高く、より容易に、液中に沈むことができ、又は、懸濁でき、機械強度に優れる点と、生産性が優れる点から、円柱又は略円柱の形状を有することが好ましい。また、円柱又は略円柱の形状を有することは、処理槽に微生物担体を充填した場合、例えば、円筒状又は略円筒状を有する担体に比べて、担体固体部分の体積は大きいことから、担体に対する微生物の担持量が多くなり、処理効率が向上することからも好ましい。円柱又は略円柱の形状を有し、その高さが6mm以下であることが好ましく、3mm以下であることがより好ましく、円柱又は略円柱の形状を有し、その高さが2.5mm以下であることが更に好ましい。円柱又は略円柱の高さの下限は、通常、処理槽から処理水等が流出する際に担体を処理水等と分離するための方法として、スクリーン分離法、浮上分離法、及び沈降分離法等があり、いずれの分離方式にあっても、小さい担体程分離することが困難である。また、機械強度の点も考慮すると、円柱又は略円柱の高さの下限は、1.5mm以上であることが好ましい。円柱又は略円柱の高さが上記下限未満になると、担体製造時及び使用時に割れや欠けが生じるおそれがある。また、円柱又は略円柱の断面積は、実際の処理槽に使用するに際しては、微生物担持量の点から、25〜450mm2であることが好ましく、50〜350mm2であることがより好ましく、80〜300mm2であることが更に好ましい。
(shape)
The shape of the microbial carrier of the present embodiment is not particularly limited, and may be any shape such as a spherical shape, a substantially spherical shape, a cube, a substantially cubic body, a rectangular parallelepiped, a substantially rectangular parallelepiped, a cylinder, a cylinder, a cylinder or a cylinder, or an amorphous shape. May be good. Further, the size of the microbial carrier is not particularly limited. The microbial carrier of the present embodiment has higher treatment efficiency for treated water and contaminants, can be easily submerged or suspended in a liquid, has excellent mechanical strength, and has excellent productivity. Therefore, it is preferable to have a cylindrical shape or a substantially cylindrical shape. Further, having a cylindrical or substantially cylindrical shape means that when the treatment tank is filled with a microbial carrier, for example, the volume of the carrier solid portion is larger than that of a carrier having a cylindrical shape or a substantially cylindrical shape. It is also preferable because the amount of microbial support is increased and the treatment efficiency is improved. It has the shape of a cylinder or substantially a cylinder and its height is preferably 6 mm or less, more preferably 3 mm or less, and it has the shape of a cylinder or substantially a cylinder and its height is 2.5 mm or less. It is more preferable to have. The lower limit of the height of a cylinder or substantially a cylinder is usually a screen separation method, a floating separation method, a sedimentation separation method, or the like as a method for separating the carrier from the treated water or the like when the treated water or the like flows out from the treatment tank. In any of the separation methods, it is difficult to separate the smaller carrier. Further, considering the mechanical strength, the lower limit of the height of the cylinder or substantially a cylinder is preferably 1.5 mm or more. If the height of the cylinder or substantially cylinder is less than the above lower limit, cracks or chips may occur during carrier production and use. Further, the cross-sectional area of the cylinder or substantially cylinder is preferably 25 to 450 mm 2 and more preferably 50 to 350 mm 2 from the viewpoint of the amount of microorganisms carried when used in an actual treatment tank. It is more preferably ~ 300 mm 2.

また、微生物担体の形状が円柱又は略円柱である場合、断面だけでなく、それらの形状の側面(二つの断面間をつなぐ曲面)についても、後述のメルトフラクチャーによって、凹凸を有するように製造することが好ましい。微生物担体の表面に凹凸を有すると、表面に多数の細孔を生じさせることができ、気泡率を増大させ、独立気泡率を低減させることができる。また、微生物担体の表面に多数の凹凸を有するため、円柱又は略円柱でありながら、優れた空気透過率を有する。そのため、処理水や汚染物に対して、良好な処理効率を有することができる。 When the shape of the microbial carrier is a cylinder or a substantially cylindrical shape, not only the cross section but also the side surface (curved surface connecting the two cross sections) of those shapes is manufactured so as to have irregularities by the melt fracture described later. Is preferable. When the surface of the microbial carrier has irregularities, a large number of pores can be generated on the surface, the bubble ratio can be increased, and the closed cell ratio can be reduced. Further, since the surface of the microbial carrier has a large number of irregularities, it has an excellent air transmittance even though it is a cylinder or a substantially cylinder. Therefore, it is possible to have good treatment efficiency for treated water and contaminants.

(ポリオレフィン)
本実施形態の微生物担体は、ポリオレフィンを含む。ポリオレフィンとしては、特に限定されず、公知のものを使用できる。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブテン及びこれらの混合物等が挙げられる。これらのポリオレフィンは、1種単独又は2種以上を適宜混合して使用することも可能である。ポリオレフィンとしては、独立気泡率の調整が容易であり、真密度が通常1.0g/cm3以下であり密度調整がしやすいことから、ポリエチレン、ポリプロピレン、又はポリエチレンとポリプロピレンとの混合物が好ましい。
また、ポリエチレン及びポリプロピレンとしては、後述のメルトフラクチャーによって、微生物担体(ストランド)の表面を荒らして表面積を増大させ、また多数の細孔を生じさせ、独立気泡率を低減させることができることから、ASTM D1238に準拠し230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が、0.1〜10(g/10分)であることが好ましく、0.3〜5.0(g/10分)であることがより好ましく、0.4〜3.0(g/10分)であることが更に好ましい。
(Polyolefin)
The microbial carrier of this embodiment contains polyolefin. The polyolefin is not particularly limited, and known polyolefins can be used. Examples of the polyolefin include polyethylene, polypropylene, polybutene and mixtures thereof. These polyolefins can be used alone or in admixture of two or more. As the polyolefin, polyethylene, polypropylene, or a mixture of polyethylene and polypropylene is preferable because the closed cell ratio can be easily adjusted and the true density is usually 1.0 g / cm 3 or less and the density can be easily adjusted.
Further, as polyethylene and polypropylene, the melt fracture described later can roughen the surface of the microbial carrier (strand) to increase the surface area, generate a large number of pores, and reduce the closed cell ratio. Therefore, ASTM can be used. The melt flow rate (MFR) measured at 230 ° C. and 2.16 kg load according to D1238 is preferably 0.1 to 10 (g / 10 min), preferably 0.3 to 5.0 (g / 10 min). 10 minutes) is more preferable, and 0.4 to 3.0 (g / 10 minutes) is further preferable.

(熱可塑性樹脂)
本実施形態の微生物担体は、処理水等への担体の浸透を促進する微細な亀裂を生じさせるために、ポリオレフィンと相溶しない熱可塑性樹脂を含む。熱可塑性樹脂を用いて微細な亀裂を生じさせることで、より多くの微生物を担持することが可能となり、処理水等が多くの微生物と接触できるため、担体投入時から早期に処理水等を処理することが可能となる。そのため、本実施形態の微生物担体によれば、従来の担体に比して、処理効率を高めることができる。また、一般的に、流動床式廃水処理装置においては、処理槽の出口にスクリーン又は網目状の分離手段を設け、処理槽から流出する処理水等から担体を分離し、処理槽からの微生物担体の流出を防いでいる。微生物担体はスクリーン等の分離手段の開口部に詰まり、処理槽の壁面に衝突することもあり、物理的な衝撃に耐えることを要する。この点を考慮すると、熱可塑性樹脂としては、ポリスチレン、ポリエステル及びポリアミド等が好ましく、汎用性が高く、かつ、溶融温度が低く成型しやすいため亀裂をより好適に生じさせることが可能となることから、ポリスチレンを使用することがより好ましい。これらの熱可塑性樹脂は、1種単独又は2種以上を適宜混合して使用することも可能である。
(Thermoplastic resin)
The microbial carrier of the present embodiment contains a thermoplastic resin that is incompatible with polyolefin in order to generate fine cracks that promote the penetration of the carrier into treated water or the like. By generating fine cracks using a thermoplastic resin, it becomes possible to support more microorganisms, and the treated water etc. can come into contact with many microorganisms, so that the treated water etc. is treated early from the time when the carrier is added. It becomes possible to do. Therefore, according to the microbial carrier of the present embodiment, the treatment efficiency can be improved as compared with the conventional carrier. Further, in general, in a fluidized bed type wastewater treatment apparatus, a screen or a mesh-like separation means is provided at the outlet of the treatment tank to separate the carrier from the treated water or the like flowing out from the treatment tank, and the microbial carrier from the treatment tank. Is prevented from leaking. The microbial carrier may clog the opening of the separating means such as a screen and collide with the wall surface of the treatment tank, and must withstand a physical impact. Considering this point, polystyrene, polyester, polyamide and the like are preferable as the thermoplastic resin, and since they are highly versatile, have a low melting temperature and are easy to mold, cracks can be more preferably generated. , Polystyrene is more preferred. These thermoplastic resins can be used alone or in admixture of two or more.

熱可塑性樹脂の含有量は、熱可塑性樹脂とポリオレフィンとで形成する界面において、気体及び処理水の透過を助ける微細な亀裂を好適に得ることができる点から、ポリオレフィン及び熱可塑性樹脂の合計100質量%に対して、12質量%以上含まれる。一方、微生物担体の強度を高く維持し、製造時及び使用時において割れ及び欠けが生じるのを抑制する観点から、熱可塑性樹脂の含有量は、ポリオレフィン及び熱可塑性樹脂の合計100質量%に対して、30質量%以下で含まれる。30質量%を超えると担体が物理的に脆くなり、使用中の割れや欠けを生じるおそれがある。熱可塑性樹脂の含有量は、ポリオレフィン及び熱可塑性樹脂の合計100質量%に対して、樹脂間の界面と亀裂の形成、および担体の強度のバランスの点から、14〜20質量%で含まれることが好ましく、16〜18質量%で含まれることがより好ましい。 The content of the thermoplastic resin is 100 mass in total of the polyolefin and the thermoplastic resin from the viewpoint that fine cracks that help the permeation of gas and treated water can be suitably obtained at the interface formed by the thermoplastic resin and the polyolefin. It is contained in an amount of 12% by mass or more based on%. On the other hand, from the viewpoint of maintaining high strength of the microbial carrier and suppressing cracking and chipping during production and use, the content of the thermoplastic resin is 100% by mass of the total of the polyolefin and the thermoplastic resin. , 30% by mass or less. If it exceeds 30% by mass, the carrier becomes physically brittle and may crack or chip during use. The content of the thermoplastic resin is 14 to 20% by mass from the viewpoint of the balance between the interface between the resins and the formation of cracks and the strength of the carrier with respect to 100% by mass of the total of the polyolefin and the thermoplastic resin. Is preferable, and it is more preferable that it is contained in an amount of 16 to 18% by mass.

(充填材)
本実施形態の微生物担体は、微生物担体を、容易に、液中に沈ませることができ、又は、懸濁させることができ、処理水等に対する微生物担体の密度(以下、「処理水等に対する微生物担体の密度」とも称す)を制御できることから、充填材を更に含むことが好ましく、真比重が1より大きい粉状の充填材を含むことがより好ましい。本実施形態において、微生物担体に処理水が浸透し、処理水等に対する微生物担体の密度が処理水の密度と近くなると、処理水中に懸濁しやすく、処理水等に対する微生物担体の密度が処理水の密度より大きくなると沈降しやすくなる。微生物担体に配合される充填材の種類及び比率によって、処理水等に対する微生物担体の密度を制御することができる。充填材としては、有機充填材及び無機充填材が挙げられ、公知の充填材を用いることができる。充填材としては、例えば、タルク、炭酸カルシウム、シリカ、活性炭、木粉、焼却灰、及びペーパースラッジ焼却灰等が挙げられる。これらの充填材は、1種単独又は2種以上を適宜混合して使用することも可能である。
(Filler)
In the microbial carrier of the present embodiment, the microbial carrier can be easily submerged in a liquid or suspended, and the density of the microbial carrier with respect to treated water or the like (hereinafter, "microorganisms with respect to treated water or the like"). Since the "carrier density") can be controlled, it is preferable to further contain a filler, and it is more preferable to include a powdery filler having a true specific gravity of more than 1. In the present embodiment, when the treated water permeates the microbial carrier and the density of the microbial carrier with respect to the treated water becomes close to the density of the treated water, it is likely to be suspended in the treated water, and the density of the microbial carrier with respect to the treated water or the like is the treated water. If the density is higher than the density, it tends to settle. The density of the microbial carrier with respect to the treated water or the like can be controlled by the type and ratio of the filler compounded in the microbial carrier. Examples of the filler include an organic filler and an inorganic filler, and known fillers can be used. Examples of the filler include talc, calcium carbonate, silica, activated carbon, wood flour, incineration ash, and paper sludge incineration ash. These fillers may be used alone or in admixture of two or more.

本実施形態では、微生物担体の比重を調節したり発泡の核剤として用いたりするために、タルク、炭酸カルシウム、シリカ等の粉状の充填材を用いることが好ましい。また、これらの充填材は、微生物担体に含まれることにより、微生物との親和性向上、微生物に対する微量栄養素の供給源、コスト低減等の効果も奏するので、好ましい。 In the present embodiment, it is preferable to use a powdery filler such as talc, calcium carbonate, or silica in order to adjust the specific gravity of the microbial carrier or use it as a nucleating agent for foaming. Further, these fillers are preferable because they are contained in the microbial carrier and have effects such as improvement of affinity with microorganisms, supply source of micronutrients for microorganisms, and cost reduction.

充填材は、処理水等に対する微生物担体の密度を容易に制御できる点から、本実施形態の微生物担体100質量%中に、5〜50質量%含まれることが好ましく、担体の強度と発泡制御が更に可能となる点から、10〜40質量%含まれることがより好ましく、12〜35質量%含まれることが更に好ましい。 The filler is preferably contained in an amount of 5 to 50% by mass in 100% by mass of the microbial carrier of the present embodiment because the density of the microbial carrier with respect to treated water or the like can be easily controlled, and the strength of the carrier and the foaming control can be controlled. From the viewpoint of further enabling, it is more preferably contained in an amount of 10 to 40% by mass, and further preferably contained in an amount of 12 to 35% by mass.

(界面活性剤)
本実施形態の微生物担体は、微生物担体に対して処理水等との親和性及び水濡れ性をより良好に付与できることから、用途に応じて、界面活性剤を更に含むことができる。微生物担体表面への処理水等の濡れ性は、微生物との親和性、及び担体の水面浮上現象に関与し、その濡れ性を高めることにより、微生物担体の表面に通じた非独立気泡への処理水等の侵入を促進することができる。界面活性剤は、微生物担体の用途に応じて、適宜選択することができ、公知のものを用いることができる。例えば、非イオン系の界面活性剤として、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、X,X'-ビス(2-ヒドロキシエチル)アルキルアミン〔アルキルジエタノールアミン〕、y-2-ヒドロキシエチル-y-2-ヒドロキシアルキルアミン〔ヒドロキシアルキルモノエタノールアミン〕、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミン脂肪酸エステル、アルキルジエタノールアマイド;アニオン系界面活性剤として、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルホスフェート;カチオン系界面活性剤として、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩;両性界面活性剤として、アルキルベタイン、アルキルイミダソリウムベタイン等が挙げられる。これらの中でも、環境負荷および作業性の点から、非イオン系の界面活性剤を用いることが好ましく、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテルを用いることがより好ましい。
(Surfactant)
Since the microbial carrier of the present embodiment can better impart affinity to treated water and the like and water wettability to the microbial carrier, it can further contain a surfactant depending on the application. The wettability of treated water or the like on the surface of a microbial carrier is involved in the affinity with microorganisms and the floating phenomenon of the carrier on the water surface, and by enhancing the wettability, the non-closed cells that pass through the surface of the microbial carrier are treated. It is possible to promote the invasion of water and the like. The surfactant can be appropriately selected depending on the use of the microbial carrier, and known ones can be used. For example, as nonionic surfactants, glycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, X, X'-bis (2-hydroxyethyl) alkylamine [alkyldiethanolamine], y-2. -Hydroxyethyl-y-2-hydroxyalkylamine [hydroxyalkylmonoethanolamine], polyoxyethylenealkylamine, polyoxyethylenealkylamine fatty acid ester, alkyldiethanol amide; alkylsulfonate, alkylbenzene as anionic surfactants Sulfates, alkyl phosphates; cationic surfactants include tetraalkylammonium salts, trialkylbenzylammonium salts; and amphoteric surfactants include alkylbetaines, alkylimidazolium betaines and the like. Among these, from the viewpoint of environmental load and workability, it is preferable to use a nonionic surfactant, and it is more preferable to use a glycerin fatty acid ester and a polyoxyethylene alkyl ether.

界面活性剤は、微生物との親和性が良好に得られることから、本実施形態の微生物担体100質量%中に、0.1〜5質量%含まれることが好ましい。 The surfactant is preferably contained in an amount of 0.1 to 5% by mass in 100% by mass of the microbial carrier of the present embodiment because it has a good affinity with microorganisms.

(その他の成分)
本実施形態の微生物担体は、本実施形態の特性が損なわれない範囲において、上述されていないオリゴマー、エラストマー類等の種々の高分子化合物;上述されていない難燃性の化合物;添加剤のようなその他の成分を含んでもよい。その他の成分は一般に使用されているものであれば、特に限定されない。例えば、難燃性の化合物としては、例えば、メラミンやベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等が挙げられる。添加剤としては、例えば、ステアリン酸モノステアレート、ステアリン酸ジエタノールアミン、ラウリン酸ジエタノールアミド等の帯電防止剤、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、重合禁止剤、熱硬化促進剤等が挙げられる。その他の成分は、1種単独又は2種以上を適宜混合して使用することも可能である。
本実施形態の微生物担体におけるその他の成分の含有量は特に限定されないが、通常、本実施形態の微生物担体100質量%中に、それぞれ0.01〜10質量%である。
(Other ingredients)
The microbial carrier of the present embodiment is, as long as the characteristics of the present embodiment are not impaired, various polymer compounds such as oligomers and elastomers not described above; flame-retardant compounds not described above; and additives. Other ingredients may be included. The other components are not particularly limited as long as they are generally used. For example, examples of the flame-retardant compound include nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, phosphate compounds of phosphorus compounds, aromatic condensed phosphoric acid esters, halogen-containing condensed phosphoric acid esters, and the like. Be done. Additives include, for example, antistatic agents such as monostearate stearate, diethanolamine stearate, diethanolamide laurate, UV absorbers, antioxidants, optical brighteners, photosensitizers, dyes, pigments, augmentations. Examples thereof include thickeners, lubricants, antifoaming agents, surface conditioners, brighteners, polymerization inhibitors, heat curing accelerators and the like. Other components may be used alone or in admixture of two or more.
The content of other components in the microbial carrier of the present embodiment is not particularly limited, but is usually 0.01 to 10% by mass in 100% by mass of the microbial carrier of the present embodiment.

〔微生物担体の製造方法〕
本実施形態の微生物担体の製造方法としては、例えば、前記した各成分、及び必要に応じて発泡剤を、例えば、押出機に配合して、押し出し、ダイス形状により棒状、管状、糸状、板状等に押出成形された発泡ストランドを所定の大きさに切断して担体を得る方法が挙げられる。また、発泡ストランドを水槽に沈め、所定の速度で発泡ストランドを引き取りながら、冷却固化し、その後、所定の長さに切断して微生物担体を得てもよい。本実施形態において、ポリオレフィンのMFR、熱可塑性樹脂の配合量、発泡ストランドの引き取り速度、発泡剤の量、及び押出機のダイス圧力並びに温度を管理することによって、気泡率、独立気泡率及び気泡の大きさをコントロールすることができる。発泡率は、発泡剤量を増加させることで高くなる。また、気泡は、ダイ圧力を高くし、ダイ穴からの線速度を大きくすることでスウェル比が増大し、大きくすることができる。
[Method for producing microbial carrier]
As a method for producing the microbial carrier of the present embodiment, for example, each of the above-mentioned components and, if necessary, a foaming agent are blended into, for example, an extruder, extruded, and rod-shaped, tubular, thread-shaped, or plate-shaped depending on the die shape. Examples thereof include a method of obtaining a carrier by cutting an extruded foamed strand into a predetermined size. Alternatively, the foamed strand may be submerged in a water tank, cooled and solidified while taking up the foamed strand at a predetermined speed, and then cut to a predetermined length to obtain a microbial carrier. In the present embodiment, by controlling the MFR of the polyolefin, the blending amount of the thermoplastic resin, the take-up speed of the foamed strand, the amount of the foaming agent, and the die pressure and temperature of the extruder, the bubble ratio, the closed cell ratio and the bubble ratio can be controlled. You can control the size. The foaming rate is increased by increasing the amount of the foaming agent. In addition, the swell ratio of bubbles can be increased by increasing the die pressure and increasing the linear velocity from the die hole.

また、発泡ストランドの冷却固化の段階で延伸することで、気泡率及び空気透過率を増大させることができる。たとえば、溶融した樹脂が押出機ダイスから出た後、水中で固化する前に、巻き取り速度を上げると、内部の気泡を延伸方向に長く変形させることができる。その結果、カッターによって裁断した微生物担体の破断面から、より内部まで続く気泡を生成させることができる。これによって、気泡率及び空気透過率は増大し、水処理時の処理水等の浸入を容易にすることができ、容易に、液中に沈ませることができ、又は、懸濁させることでき、処理水や汚染物に対する処理効率を向上させることができる。 Further, the air bubble ratio and the air permeability can be increased by stretching the foamed strand at the stage of cooling and solidifying. For example, if the winding speed is increased after the molten resin is discharged from the extruder die and before it is solidified in water, the bubbles inside can be deformed longer in the stretching direction. As a result, bubbles that continue to the inside can be generated from the fracture surface of the microbial carrier cut by the cutter. As a result, the bubble ratio and the air permeability are increased, the infiltration of treated water and the like during water treatment can be facilitated, and the liquid can be easily submerged or suspended. It is possible to improve the treatment efficiency for treated water and contaminants.

また、発泡ストランドを固化して得られたストランドを屈曲させることによって、ストランドの側面から内部に向かって微細な亀裂を生じさせ、独立気泡率を下げることができる。例えば、ストランドがカッターまで引き取られる間に、ストランドがS字状に屈曲して引き取られるように、複数の自由に回転するガイドローラーを組み合わせて挟みこむ方法がある。これにより内部の独立気泡が破れ、生じたクレーズによってカッターによる破断面でなくストランドの側面との間で空気が透過できるようになる。本実施形態の微生物担体では、ポリオレフィンに対して、ポリオレフィンと相溶しない熱可塑性樹脂を所定量配合しているため、クレーズを、より効率よく発生させることができる。したがって、独立気泡率は低下し、水処理時の処理水等の浸入を容易にすることができ、容易に、液中に沈ませることができ、又は、懸濁させることでき、処理水や汚染物に対する処理効率を向上させることができる。 Further, by bending the strand obtained by solidifying the foamed strand, fine cracks are generated from the side surface of the strand toward the inside, and the closed cell ratio can be lowered. For example, there is a method in which a plurality of freely rotating guide rollers are combined and sandwiched so that the strands are bent in an S shape and pulled up while the strands are pulled up to the cutter. As a result, the closed cells inside are ruptured, and the generated craze allows air to pass through to the side surface of the strand instead of the fracture surface by the cutter. In the microbial carrier of the present embodiment, since a predetermined amount of a thermoplastic resin that is incompatible with the polyolefin is blended with the polyolefin, craze can be generated more efficiently. Therefore, the closed cell ratio is lowered, the infiltration of treated water or the like during water treatment can be facilitated, and the treated water or the like can be easily submerged in the liquid or suspended, and the treated water or contamination. It is possible to improve the processing efficiency for objects.

また、材料の組成、樹脂温度(ポリオレフィンのMFR)、ダイス圧力及び温度を調整することで、ストランドの表面状態を制御することができる。本実施形態においては、いわゆるメルトフラクチャーによって、表面を荒らして表面積を増大させ、また多数の細孔を生じさせ、独立気泡率を低減させることが好ましい。独立気泡率を低減させることで、処理時における処理水等の浸入を容易にでき、処理水等への馴染みを早期できるため、処理効率を向上させることができる。なお、本実施形態において、メルトフラクチャーとは、微生物担体の成形時に、成形品の吹き出し口におけるずり応力が臨界値を越すと発生し、微生物担体の表面が波立つ現象を指す。メルトフラクチャーは、主原料として、比較的低いMFR値を有するポリプロピレン及び/又はポリエチレンを用い、ポリプロピレン及び/又はポリエチレンの樹脂温度を下げることで好適に発生させることができる。 Further, the surface state of the strand can be controlled by adjusting the composition of the material, the resin temperature (MFR of polyolefin), the die pressure and the temperature. In the present embodiment, it is preferable that the so-called melt fracture roughens the surface to increase the surface area and generate a large number of pores to reduce the closed cell ratio. By reducing the closed cell ratio, it is possible to easily infiltrate the treated water or the like during the treatment, and it is possible to quickly adapt to the treated water or the like, so that the treatment efficiency can be improved. In the present embodiment, the melt fracture refers to a phenomenon in which the surface of the microbial carrier undulates when the shear stress at the outlet of the molded product exceeds the critical value during molding of the microbial carrier. The melt fracture can be preferably generated by using polypropylene and / or polyethylene having a relatively low MFR value as a main raw material and lowering the resin temperature of polypropylene and / or polyethylene.

発泡剤としては、プラスチックの発泡に用いられる公知のものを用いることができ、特に限定されない。発泡剤としては、例えば、水、アゾジカルボンアミド等の化学発泡剤、液化ガス発泡剤、ガス発泡剤、小麦粉などの穀物粉等が挙げられる。これらの発泡剤は、1種単独又は2種以上を適宜混合して使用することも可能である。 As the foaming agent, known ones used for foaming plastic can be used, and the foaming agent is not particularly limited. Examples of the foaming agent include water, a chemical foaming agent such as azodicarbonamide, a liquefied gas foaming agent, a gas foaming agent, and grain flour such as wheat flour. These foaming agents may be used alone or in admixture of two or more.

また、微生物担体の製造時には、必要に応じて各成分を均一に溶解又は分散させるための公知の処理(攪拌、混合、混練処理等)を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことにより、例えば、充填材の分散性を向上させることができる。前記の攪拌、混合、混練処理は、例えば、超音波ホモジナイザー等の分散を目的とした攪拌装置、三本ロール、ボールミル、ビーズミル、サンドミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。 Further, at the time of producing the microbial carrier, a known treatment (stirring, mixing, kneading treatment, etc.) for uniformly dissolving or dispersing each component can be performed, if necessary. Specifically, for example, the dispersibility of the filler can be improved by performing the stirring and dispersing treatment using a stirring tank equipped with a stirring machine having an appropriate stirring ability. The stirring, mixing, and kneading treatment may be performed on, for example, a stirring device for dispersing an ultrasonic homogenizer, a device for mixing three rolls, a ball mill, a bead mill, a sand mill, or a revolution or rotation type. It can be appropriately performed using a known device such as a mixing device.

〔微生物担体の使用方法〕
本実施形態の微生物担体は、種々の流動床式廃水処理装置に好ましく使用される。使用にあたっては、微生物担体を処理水等100質量%に対して、通常10〜30質量%充填し、処理槽の水相容積あたり、通常5〜50%の嵩容積になるように充填すると、高い廃水処理効率を発現するので好ましい。
[How to use microbial carrier]
The microbial carrier of the present embodiment is preferably used in various fluidized bed type wastewater treatment devices. In use, it is usually high to fill 100% by mass of the microbial carrier with 100% by mass of treated water or the like so as to have a bulk volume of usually 5 to 50% per aqueous phase volume of the treatment tank. It is preferable because it exhibits wastewater treatment efficiency.

また、本実施形態において、微生物担体は、使用される流動床式廃水処理装置のシステムの特性により、水中浮上性の担体及び水中沈降性の担体のいずれにおいても用いることができる。いずれにしても、水中で比重が一定値に達したときの微生物担体の比重が水の比重に近いことが好ましい。微生物担体の比重が水の比重に近いと廃水処理槽内で微生物担体の均一な流動分布が得られる。本実施形態において、水中で比重が安定した後の吸水した担体の見掛け比重が、0.90〜1.50の範囲のものが好ましい。 Further, in the present embodiment, the microbial carrier can be used in either a water-floating carrier or a water-sedimentable carrier, depending on the characteristics of the system of the fluidized bed type wastewater treatment device used. In any case, it is preferable that the specific gravity of the microbial carrier when the specific gravity reaches a certain value in water is close to the specific gravity of water. When the specific gravity of the microbial carrier is close to the specific gravity of water, a uniform flow distribution of the microbial carrier can be obtained in the wastewater treatment tank. In the present embodiment, the apparent specific gravity of the carrier that has absorbed water after the specific gravity is stabilized in water is preferably in the range of 0.90 to 1.50.

(微生物担体の用途)
本実施形態の微生物担体は、例えば、工場等の排水処理;水族館及び陸上養殖場の循環水処理;食品工場、ホテル、レストラン及びオフイス厨房などから排出される廃食品処理及び廃液処理等に好適である。
(Use of microbial carrier)
The microbial carrier of the present embodiment is suitable for, for example, wastewater treatment of factories and the like; circulating water treatment of aquariums and onshore farms; waste food treatment and waste liquid treatment of waste food discharged from food factories, hotels, restaurants and office kitchens. is there.

本実施形態の微生物担体を工場などの排水処理に用いる場合、排水曝気槽の中で懸濁させるため、水中で比重が安定した後の吸水した担体の見掛け比重が、0.95〜1.05の範囲のものが好ましい。 When the microbial carrier of the present embodiment is used for wastewater treatment in a factory or the like, it is suspended in a wastewater aeration tank, so that the apparent specific gravity of the absorbed carrier after the specific gravity stabilizes in water is 0.95 to 1.05. Those in the range of are preferable.

本実施形態の微生物担体を循環水処理に用いる場合、処理プールに沈めて用いるため、水中で比重が安定した後の吸水した担体の見掛け比重が、1.10〜1.50の範囲のものが好ましい。 When the microbial carrier of the present embodiment is used for circulating water treatment, it is used by submerging it in a treatment pool, so that the apparent specific gravity of the absorbed carrier after the specific gravity stabilizes in water is in the range of 1.10 to 1.50. preferable.

本実施形態の微生物担体を廃食品処理に用いる場合、廃食品と混合して用いるため、水中で比重が安定した後の吸水した担体の見掛け比重が、0.90〜1.50の範囲のものが好ましい。 When the microbial carrier of the present embodiment is used for waste food treatment, it is used by mixing with the waste food, so that the apparent specific gravity of the absorbed carrier after the specific gravity is stabilized in water is in the range of 0.90 to 1.50. Is preferable.

以下に実施例及び比較例を示し、本発明を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Examples and comparative examples are shown below, and the present invention will be described in detail, but the present invention is not limited to these examples.

〔評価方法〕
〔1〕気泡率(%)
気泡率を、次の方法により算出した。
(1)実施例又は比較例で得られた略円柱の形状を有する微生物担体を熱風で乾燥(90℃、約3時間)し、小型押出機にて再造粒を行い、脱気した後、2gを230℃にてプレス成型(10MPa)することによって、気泡を包含しない円盤状サンプル(厚み2mm、直径:30mm)を作製した。この円盤状サンプルについて、23℃の純水(密度:1.0g/cm3)を用いて、アルキメデス法によって密度を測定し、微生物担体を構成する材料の「真密度」ρA(g/cm3)とした。
(2)実施例又は比較例で得られた略円柱の形状を有する微生物担体を熱風で乾燥(90℃、約3時間)し、室温まで冷却した。その後、23℃の純水(密度:1.0g/cm3)を用いて、該微生物担体5gの「見掛け密度」をアルキメデス法により測定し、ρB(g/cm3)とした。
(3)実施例又は比較例で得られた略円柱の形状を有する微生物担体を熱風で乾燥(90℃、約3時間)し、室温まで冷却した。その後、三方コックを装着したナス型フラスコに該微生物担体を充填し、三方コックの一方から、真空ポンプにて100Pa以下になるまで減圧し、その状態で5分間保持した。コックを閉じ、もう一方から、23℃の純水(密度:1.0g/cm3)をフラスコ内に誘導し、該微生物担体を完全に水没させた。その後、該微生物担体を水中から速やかに取り出し、アルキメデス法により、注水した該微生物担体の質量と、この微生物担体を水に浸漬したときの排除体積とから、該微生物担体5gの「注水密度」を算出し、ρC(g/cm3)とした。
(4)前記(1)〜(3)の操作を5回繰り返し、ρA、ρB及びρCのそれぞれの平均値ρAA(平均真密度)、ρBB(平均見かけ密度)及びρCC(平均注水密度)を算出した。
(5)ρAA及びρBBから、次の式(iii)により気泡率を算出した。
気泡率=(1−ρBB/ρAA)×100・・・(iii)
〔Evaluation method〕
[1] Bubble ratio (%)
The bubble ratio was calculated by the following method.
(1) The microbial carrier having a substantially cylindrical shape obtained in Examples or Comparative Examples is dried with hot air (90 ° C., about 3 hours), re-granulated with a small extruder, degassed, and then degassed. By press molding (10 MPa) of 2 g at 230 ° C., a disk-shaped sample (thickness 2 mm, diameter: 30 mm) containing no air bubbles was prepared. The density of this disk-shaped sample was measured by the Archimedes method using pure water at 23 ° C. (density: 1.0 g / cm 3 ), and the "true density" of the material constituting the microbial carrier was ρ A (g / cm). 3 ).
(2) The microbial carrier having a substantially cylindrical shape obtained in Examples or Comparative Examples was dried with hot air (90 ° C., about 3 hours) and cooled to room temperature. Then, using pure water (density: 1.0 g / cm 3 ) at 23 ° C., the “apparent density” of 5 g of the microbial carrier was measured by the Archimedes method to obtain ρ B (g / cm 3 ).
(3) The microbial carrier having a substantially cylindrical shape obtained in Examples or Comparative Examples was dried with hot air (90 ° C., about 3 hours) and cooled to room temperature. Then, the eggplant-shaped flask equipped with the three-way cock was filled with the microbial carrier, and the pressure was reduced from one of the three-way cocks to 100 Pa or less with a vacuum pump, and the flask was held in that state for 5 minutes. The cock was closed and pure water (density: 1.0 g / cm 3 ) at 23 ° C. was guided into the flask from the other side, and the microbial carrier was completely submerged. Then, the microbial carrier was promptly taken out from the water, and the "water injection density" of 5 g of the microbial carrier was determined from the mass of the microbial carrier injected with water by the Archimedes method and the excluded volume when the microbial carrier was immersed in water. It was calculated and used as ρ C (g / cm 3 ).
(4) The above operations (1) to (3) are repeated 5 times, and the average values of ρ A , ρ B and ρ C are ρ AA (average true density), ρ BB (average apparent density) and ρ CC (respectively). Average water injection density) was calculated.
(5) From ρ AA and ρ BB , the bubble ratio was calculated by the following formula (iii).
Bubble ratio = (1-ρ BB / ρ AA ) x 100 ... (iii)

〔2〕独立気泡率(%)
前記〔1〕の気泡率で得られたρAA、ρBB及びρCCから、独立気泡率を次の式(iv)により算出した。
独立気泡率=(1−ρAA(ρCC−ρBB)/(ρAA−ρBB))×100・・・(iv)
[2] Closed cell ratio (%)
From ρ AA , ρ BB and ρ CC obtained by the bubble ratio of [1] above, the closed cell ratio was calculated by the following formula (iv).
Closed cell ratio = (1-ρ AACC −ρ BB ) / (ρ AA −ρ BB )) × 100 ・ ・ ・ (iv)

〔3〕空気透過率(mL/mm2・sec)
空気透過率は、実施例又は比較例で得られた略円柱の形状を有する微生物担体を用いて、次の方法により算出した。
(1)真空ポンプに耐圧真空用ゴム管(アラム株式会社製)を装着した。一方、実施例又は比較例で得られた略円柱の形状を有する微生物担体の側面に二液性エポキシ接着剤(Araldite社製)を塗布して硬化させた。エポキシ接着剤を硬化した後の耐圧真空用ゴム管の真空ポンプが装着されていない側からその耐圧真空用ゴム管内に、該微生物担体を、その側面が耐圧真空用ゴム管の内壁面と接するように挿入した。なお、エポキシ接着剤は、耐圧真空用ゴム管と該微生物担体との間の空隙から、空気を吸引しないようにするために用いられた。
(2)コック付きPVDF(ポリフッ化ビニリデン)製バック(テドラー社製20リットルバック)に16リットルの空気を充填し、耐圧真空用ゴム管の真空ポンプに装着されていない側及び該微生物担体を覆うように、かつ空気が外部に漏れないようにコック付きPVDF製バックを装着した。
(3)真空ポンプを起動した後に空気が流れ始めた時から、16リットルの空気の全量が排気された時までの時間t(秒)を測定した。なお、真空度は、1000Pa以下であった。
(4)時間t(秒)を用いて、空気透過率を次の式(v)により算出した。
空気透過率=16リットル/(担体断面積(mm2)×排気時間t(秒)・・・(v)
[3] Air permeability (mL / mm 2 · sec)
The air transmittance was calculated by the following method using the microbial carrier having a substantially cylindrical shape obtained in Examples or Comparative Examples.
(1) A rubber tube for pressure-resistant vacuum (manufactured by Alam Co., Ltd.) was attached to the vacuum pump. On the other hand, a two-component epoxy adhesive (manufactured by Araldite) was applied to the side surfaces of the microbial carrier having a substantially cylindrical shape obtained in Examples or Comparative Examples and cured. The microbial carrier is placed in the pressure-resistant vacuum rubber tube from the side where the vacuum pump of the pressure-resistant vacuum rubber tube after curing the epoxy adhesive is not mounted, so that the side surface thereof is in contact with the inner wall surface of the pressure-resistant vacuum rubber tube. Inserted in. The epoxy adhesive was used to prevent air from being sucked from the gap between the pressure-resistant vacuum rubber tube and the microbial carrier.
(2) Fill a PVDF (polyvinylidene fluoride) bag with a cock (20 liter bag manufactured by Tedler) with 16 liters of air to cover the side of the pressure-resistant vacuum rubber tube that is not attached to the vacuum pump and the microbial carrier. A PVDF bag with a cock was attached so that air would not leak to the outside.
(3) The time t (seconds) from the time when the air started to flow after the vacuum pump was started to the time when the entire amount of 16 liters of air was exhausted was measured. The degree of vacuum was 1000 Pa or less.
(4) Using the time t (seconds), the air transmittance was calculated by the following equation (v).
Air transmittance = 16 liters / (carrier cross-sectional area (mm 2 ) x exhaust time t (seconds) ... (v)

〔4〕処理水におけるBOD除去率(%)
処理水におけるBOD除去率を、次の方法により算出した。
(1)水処理用微生物、及び実施例及び比較例で得られた略円柱の形状を有する微生物担体を馴養槽(20リットル)に入れた。馴養1ヶ月後、活性汚泥を処分し、微生物担体(0.4リットル)を3リットル流動槽に充填した。
(2)食品工場の実排水にて調製したBOD500mg/リットルの実験用処理水(2リットル)を同流動槽に充填した。
(3)同流動層に空気を10リットル/分の流量で24時間吹き込んだ。
(4)24時間後の処理水中のBODを測定し、(100%−([24時間後のBOD濃度]÷[投入時のBOD濃度]))にて、BOD除去率を算出した。
[4] BOD removal rate (%) in treated water
The BOD removal rate in the treated water was calculated by the following method.
(1) Microorganisms for water treatment and microbial carriers having a substantially cylindrical shape obtained in Examples and Comparative Examples were placed in a habitat tank (20 liters). After 1 month of acclimation, the activated sludge was disposed of and a 3 liter fluidized tank was filled with a microbial carrier (0.4 liters).
(2) The fluid tank was filled with experimental treated water (2 liters) having a BOD of 500 mg / liter prepared from actual wastewater from a food factory.
(3) Air was blown into the fluidized bed at a flow rate of 10 liters / minute for 24 hours.
(4) The BOD in the treated water after 24 hours was measured, and the BOD removal rate was calculated by (100% − ([BOD concentration after 24 hours] ÷ [BOD concentration at the time of charging])).

(実施例1)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン、MFR:0.5(g/10分))100質量部と、ポリスチレン(PSジャパン(株)製ホモポリスチレン)20質量部と、帯電防止剤(花王(株)社製ステアリン酸モノステアレート)0.8質量部と、炭酸カルシウム(白石工業(株)社製)20質量部に、発泡剤としてアゾジカルボンアミド1.4質量部を混合し、40mmφベント付きフルフライトスクリュー押出機にて、3mmφの孔4個を有するストランドダイより押し出して発泡ストランドを得た。この発泡ストランドを水槽に沈め、引き取り速度が50cm/秒にて発泡ストランドを引き取りながら、冷却固化した後、カッターにて直径5mm(断面積:19.6mm2)、略円柱高さ5mmに切断して、略円柱の形状を有する微生物担体を得た。
(Example 1)
Polypropylene (Homopolypropylene manufactured by Sun Aroma Co., Ltd., MFR: 0.5 (g / 10 minutes)) 100 parts by mass, polystyrene (Homopolystyrene manufactured by PS Japan Co., Ltd.) 20 parts by mass, and antistatic agent (Kao Co., Ltd.) ) 0.8 parts by mass of polystyrene stearate) and 20 parts by mass of calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd.) mixed 1.4 parts by mass of azodicarboxylic amide as a foaming agent with a 40 mmφ vent. A foamed strand was obtained by extruding from a strand die having four holes of 3 mmφ with a full flight screw extruder. Submerged The foamed strands in a water bath, while drawing the foamed strands take-off speed is at 50 cm / sec, was cooled and solidified, 5mm diameter with a cutter (cross-sectional area: 19.6 mm 2), was cut into a substantially cylindrical height 5mm A microbial carrier having a substantially cylindrical shape was obtained.

前記気泡率の評価方法に準じて測定したところ、平均真密度は1.03g/cm3であり、平均見掛け密度は0.61g/cm3であり、平均注水密度は1.01g/cm3であった。これらの数値を用いて、気泡率及び独立気泡率を算出しところ、それぞれ41%及び4%であった。また、前記空気透過率の評価方法に準じて測定したところ、空気透過率は0.81mL/mm2・secであった。 When measured according to the evaluation method of the bubble ratio, the average true density was 1.03 g / cm 3 , the average apparent density was 0.61 g / cm 3 , and the average water injection density was 1.01 g / cm 3 . there were. When the bubble ratio and the closed cell ratio were calculated using these values, they were 41% and 4%, respectively. Further, when measured according to the above-mentioned evaluation method of air transmittance, the air transmittance was 0.81 mL / mm 2 · sec.

得られた微生物担体を用いて水処理実験を行った。水処理用微生物及び得られた微生物担体を馴養槽(20リットル)に入れたところ、76時間で安定した懸濁状態を得た。馴養1ヶ月後、前記処理水におけるBOD除去率の評価方法に準じてBOD除去率を測定したところ、80%であった。結果を表1に示す。なお、表1において、「PO」、「PP」、「PS」及び「PE」は、それぞれポリオレフィン、ポリプロピレン、ポリスチレン及びポリエチレンの略記である。 A water treatment experiment was carried out using the obtained microbial carrier. When the microorganism for water treatment and the obtained microbial carrier were placed in a habitat tank (20 liters), a stable suspension state was obtained in 76 hours. One month after acclimatization, the BOD removal rate was measured according to the method for evaluating the BOD removal rate in the treated water, and it was 80%. The results are shown in Table 1. In Table 1, "PO", "PP", "PS" and "PE" are abbreviations for polyolefin, polypropylene, polystyrene and polyethylene, respectively.

(実施例2)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン、MFR:0.5(g/10分))100質量部と、ポリスチレン(PSジャパン(株)製ホモポリスチレン)20質量部と、炭酸カルシウム(白石工業(株)社製)69質量部に、発泡剤としてアゾジカルボンアミド2.0質量部を混合し、40mmφベント付きフルフライトスクリュー押出機にて、3mmφの孔4個を有するストランドダイより押し出して発泡ストランドを得た。この発泡ストランドを水槽に沈め、引き取り速度が50cm/秒にて発泡ストランドを引き取りながら、冷却固化した後、カッターにて直径5mm(断面積:19.6mm2)、略円柱高さ5mmに切断して、略円柱の形状を有する微生物担体を得た。
(Example 2)
100 parts by mass of polypropylene (homopolypropylene manufactured by Sun Aroma Co., Ltd., MFR: 0.5 (g / 10 minutes)), 20 parts by mass of polystyrene (homopolystyrene manufactured by PS Japan Co., Ltd.), and calcium carbonate (Shiraishi Kogyo Co., Ltd.) ) Manufactured by) Mixing 2.0 parts by mass of azodicarbonamide as a foaming agent with 69 parts by mass and extruding it from a strand die having 4 holes of 3 mmφ with a full flight screw extruder with a 40 mmφ vent to produce foamed strands. Obtained. Submerged The foamed strands in a water bath, while drawing the foamed strands take-off speed is at 50 cm / sec, was cooled and solidified, 5mm diameter with a cutter (cross-sectional area: 19.6 mm 2), was cut into a substantially cylindrical height 5mm A microbial carrier having a substantially cylindrical shape was obtained.

前記の評価方法に準じて、得られた微生物担体を用いて、気泡率、独立気泡率及び空気透過率を算出したところ、それぞれ25%、6%及び0.80mL/mm2・secであった。 When the bubble ratio, closed cell ratio and air permeability were calculated using the obtained microbial carrier according to the above evaluation method, they were 25%, 6% and 0.80 mL / mm 2 · sec, respectively. ..

また、得られた微生物担体を用いて、実施例1と同様にBOD除去率を測定したところ、72%であった。結果を表1に示す。 Moreover, when the BOD removal rate was measured using the obtained microbial carrier in the same manner as in Example 1, it was 72%. The results are shown in Table 1.

(実施例3)
発泡剤としてアゾジカルボンアミドの添加量を1.4質量部から2.0質量部に変更し、発泡ストランドの引き取り速度を1.3倍に上げた以外は、実施例1と同様にして微生物担体を製造した。結果を表1に示す。
(Example 3)
The microbial carrier was carried out in the same manner as in Example 1 except that the amount of azodicarbonamide added as a foaming agent was changed from 1.4 parts by mass to 2.0 parts by mass and the take-up rate of the foamed strands was increased 1.3 times. Manufactured. The results are shown in Table 1.

(実施例4)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)の代わりに、ポリプロピレン(サンアロマー(株)製PL500A(商品名)、MFR:5.0(g/10分))を用い、発泡ストランドの引き取り速度を0.8倍に下げた以外は、実施例1と同様にして微生物担体を製造した。結果を表1に示す。
(Example 4)
Instead of polypropylene (homopolypropylene manufactured by SunAllomer Ltd.), polypropylene (PL500A (trade name) manufactured by SunAllomer Ltd., MFR: 5.0 (g / 10 minutes)) was used, and the take-up speed of the foamed strand was set to 0. A microbial carrier was produced in the same manner as in Example 1 except that it was lowered by 8 times. The results are shown in Table 1.

(実施例5)
発泡ストランドを固化して得られたストランドを、引き取り方向に対して平行に近接する3本のローラー(直径60mm)の間を、互い違いに蛇行するように通して、S字に変形させた。その後、カッターにて直径5mm(断面積:19.6mm2)、略円柱高さ5mmに切断して、略円柱の形状を有する微生物担体を得た。この微生物担体に対して、実施例1と同様にして、気泡率、独立気泡率、空気透過率及びBOD除去率を算出した。それらの結果を表1に示す。
(Example 5)
The strands obtained by solidifying the foamed strands were passed through three rollers (diameter 60 mm) adjacent to each other in parallel with the picking direction in a meandering manner in an alternating manner to be deformed into an S shape. Then, it was cut with a cutter to a diameter of 5 mm (cross-sectional area: 19.6 mm 2 ) and a substantially cylindrical height of 5 mm to obtain a microbial carrier having a substantially cylindrical shape. For this microbial carrier, the bubble ratio, closed cell ratio, air permeability and BOD removal rate were calculated in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)の代わりに、ポリプロピレン(サンアロマー(株)製PB170A(商品名)、MFR:0.3(g/10分))を用い、発泡ストランドの引き取り速度を0.8倍に下げ、樹脂温度を10℃下げた以外は、実施例1と同様にして微生物担体を製造した。結果を表1に示す。
(Example 6)
Instead of polypropylene (homopolypropylene manufactured by SunAllomer Ltd.), polypropylene (PB170A (trade name) manufactured by SunAllomer Ltd., MFR: 0.3 (g / 10 minutes)) was used, and the take-up speed of the foamed strand was set to 0. A microbial carrier was produced in the same manner as in Example 1 except that the temperature was lowered by 8 times and the resin temperature was lowered by 10 ° C. The results are shown in Table 1.

(実施例7)
発泡ストランドの引き取り速度を0.7倍に下げた以外は、実施例6と同様にして微生物担体を製造した。結果を表1に示す。
(Example 7)
A microbial carrier was produced in the same manner as in Example 6 except that the take-up rate of the foamed strand was reduced 0.7 times. The results are shown in Table 1.

(実施例8)
発泡ストランドの引き取り速度を1.2倍に上げた以外は、実施例6と同様にして微生物担体を製造した。結果を表1に示す。
(Example 8)
A microbial carrier was produced in the same manner as in Example 6 except that the take-up rate of the foamed strand was increased 1.2 times. The results are shown in Table 1.

(実施例9〜12)
カッター刃の回転数を変えることで、略円柱高さを変更する以外は実施例1と同様にして、微生物担体をそれぞれ製造した。それらの結果を表1に示す。
(Examples 9 to 12)
Microbial carriers were produced in the same manner as in Example 1 except that the height of the cylinder was changed by changing the rotation speed of the cutter blade. The results are shown in Table 1.

(実施例13)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)100質量部の代わりに、ポリエチレン(日本ポリエチレン(株)製ノバテック(登録商標)UE320(商品名)、MFR:1.0(g/10分))100質量部を用いた以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 13)
Instead of 100 parts by mass of polypropylene (homopolypropylene manufactured by SunAllomer Ltd.), 100 parts by mass of polyethylene (Novatec (registered trademark) UE320 (trade name) manufactured by Japan Polyethylene Corporation, MFR: 1.0 (g / 10 minutes)) A microbial carrier was produced in the same manner as in Example 1 except that the portion was used. The results are shown in Table 1.

(実施例14)
ポリエチレン(日本ポリエチレン(株)製ノバテック(登録商標)UE320(商品名))の代わりに、ポリエチレン(日本ポリエチレン(株)社製LF640MA(商品名)、MFR:5.0(g/10分))を用い、発泡ストランドの引き取り速度を0.8倍に下げた以外は、実施例13と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 14)
Instead of polyethylene (Novatec (registered trademark) UE320 (trade name) manufactured by Japan Polyethylene Corporation), polyethylene (LF640MA (trade name) manufactured by Japan Polyethylene Corporation, MFR: 5.0 (g / 10 minutes)) A microbial carrier was produced in the same manner as in Example 13 except that the take-up rate of the foamed strand was reduced to 0.8 times. The results are shown in Table 1.

(実施例15)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)100質量部の代わりに、ポリプロピレン(サンアロマー(株)製ホモポリプロピレン、MFR:0.5(g/10分))50質量部及びポリエチレン(日本ポリエチレン社製ノバテック(登録商標)UE320(商品名)、MFR:1.0(g/10分))50質量部を用いた以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 15)
Instead of 100 parts by mass of polypropylene (Homopolypropylene manufactured by SunAllomer Ltd.), 50 parts by mass of polypropylene (Homopolypropylene manufactured by SunAllomer Ltd., MFR: 0.5 (g / 10 minutes)) and polyethylene (Novatec manufactured by Nippon Polyethylene Co., Ltd.) A microbial carrier was produced in the same manner as in Example 1 except that 50 parts by mass of UE320 (trade name), MFR: 1.0 (g / 10 minutes)) was used. The results are shown in Table 1.

(実施例16)
ポリエチレン(日本ポリエチレン社製ノバテック(登録商標)UE320(商品名))の代わりに、ポリエチレン(日本ポリエチレン(株)製LF640MA、MFR:5.0(g/10分))を用い、発泡ストランドの引き取り速度を0.8倍に下げた以外は、実施例15と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 16)
Taking over foamed strands using polyethylene (LF640MA manufactured by Japan Polyethylene Corporation, MFR: 5.0 (g / 10 minutes)) instead of polyethylene (Novatec (registered trademark) UE320 (trade name) manufactured by Japan Polyethylene Corporation) A microbial carrier was produced in the same manner as in Example 15 except that the rate was reduced 0.8 times. The results are shown in Table 1.

(実施例17)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)100質量部の代わりに、ポリプロピレン(サンアロマー(株)製ホモポリプロピレン、MFR:0.5(g/10分))104質量部を用い、ポリスチレン(PSジャパン社製ホモポリスチレン)20質量部の代わりに、ポリスチレン(PSジャパン社製ホモポリスチレン)16質量部を用いた以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 17)
Polystyrene (PS Japan Corporation) uses 104 parts by mass of polypropylene (Homopolypropylene manufactured by SunAroma Co., Ltd., MFR: 0.5 (g / 10 minutes)) instead of 100 parts by mass of polypropylene (Homopolypropylene manufactured by Sun Aroma Co., Ltd.). A microbial carrier was produced in the same manner as in Example 1 except that polystyrene (polystyrene manufactured by PS Japan Corporation) was used in place of 20 parts by mass. The results are shown in Table 1.

(実施例18)
ポリスチレン(PSジャパン(株)製ホモポリスチレン)20質量部の代わりに、ポリスチレン(PSジャパン(株)製ホモポリスチレン)18質量部を用い、炭酸カルシウム(白石工業(株)社製)20質量部の代わりに、タルク(日本タルク(株)製L1K(商品名))19質量部を用いた以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 18)
Instead of 20 parts by mass of polystyrene (homopolystyrene manufactured by PS Japan Corporation), 18 parts by mass of polystyrene (homopolystyrene manufactured by PS Japan Corporation) is used, and 20 parts by mass of calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd.) Instead, a microbial carrier was produced in the same manner as in Example 1 except that 19 parts by mass of talc (L1K (trade name) manufactured by Nippon Tarku Co., Ltd.) was used. The results are shown in Table 1.

(実施例19)
炭酸カルシウム(白石工業(株)社製)20質量部を用いず、帯電防止剤(花王(株)社製ステアリン酸モノステアレート)0.8質量部の代わりに、帯電防止剤(花王(株)社製ステアリン酸モノステアレート)0.7質量部を用い、発泡剤としてアゾジカルボンアミド1.4質量部の代わりに、発泡剤としてアゾジカルボンアミド1.2質量部を用いた以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Example 19)
Calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd.) 20 parts by mass is not used, and instead of 0.8 parts by mass of antistatic agent (monostearate stearic acid manufactured by Kao Co., Ltd.), an antistatic agent (Kao Co., Ltd.) ) Stearic acid monostearate) 0.7 parts by mass was used, and 1.2 parts by mass of azodicarbonamide was used as the foaming agent instead of 1.4 parts by mass of azodicarbonamide as the foaming agent. A microbial carrier was produced in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
発泡剤としてアゾジカルボンアミド1.4質量部の代わりに、アゾジカルボンアミド0.7質量部を用いた以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Comparative Example 1)
A microbial carrier was produced in the same manner as in Example 1 except that 0.7 parts by mass of azodicarbonamide was used as the foaming agent instead of 1.4 parts by mass of azodicarbonamide. The results are shown in Table 1.

(比較例2)
微生物担体(デンカエンジニアリング(株)製バイオリアクター(商品名))を用いて、前記の評価方法に準じて、気泡率、独立気泡率及び空気透過率を算出した。結果を表1に示す。
(Comparative Example 2)
Using a microbial carrier (Bioreactor (trade name) manufactured by Denka Engineering Co., Ltd.), the bubble ratio, closed cell ratio and air permeability were calculated according to the above evaluation method. The results are shown in Table 1.

(比較例3)
ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)100質量部の代わりに、ポリプロピレン(サンアロマー(株)製ホモポリプロピレン)120質量部を用い、ポリスチレン(PSジャパン社製ホモポリスチレン)20質量部を用いなかった以外は、実施例1と同様にして、微生物担体を製造した。結果を表1に示す。
(Comparative Example 3)
Except that 120 parts by mass of polypropylene (homopolypropylene manufactured by SunAllomer Ltd.) was used instead of 100 parts by mass of polypropylene (homopolypropylene manufactured by SunAllomer Ltd.) and 20 parts by mass of polystyrene (homopolystyrene manufactured by PS Japan Corporation) was not used. Produced a microbial carrier in the same manner as in Example 1. The results are shown in Table 1.

Figure 0006869307
Figure 0006869307

Claims (1)

ポリオレフィンと、前記ポリオレフィンと相溶しないポリスチレンと、無機充填材とを含む、微生物担体であって、
前記ポリオレフィンが、ポリエチレン、ポリプロピレン、又はこれらの混合物を含み、
前記無機充填材が、炭酸カルシウムを含み、
前記ポリスチレンの含有量が、前記ポリオレフィン及び前記ポリスチレンの合計100質量%に対して、16質量%以上18質量%以下であり、
下記式(i)によって表される気泡率が25%以上であり、かつ、
下記式(ii)によって表される独立気泡率が20%以下である、微生物担体。
気泡率=(1−ρB/ρA)×100・・・(i)
(式(i)中、ρAは微生物担体を構成する材料の真密度(g/cm3)を示し、ρBは微生物担体の見掛け密度(g/cm3)を示す。)。
独立気泡率=(1−ρA(ρC−ρB)/(ρA−ρB))×100・・・(ii)
(式(ii)中、ρAは微生物担体を構成する材料の真密度(g/cm3)を示し、ρBは微生物担体の見掛け密度(g/cm3)を示し、ρCはアルキメデス法により導き出される注水密度(g/cm3)を示す。)。
A microbial carrier containing a polyolefin, polystyrene that is incompatible with the polyolefin, and an inorganic filler.
The polyolefin comprises polyethylene, polypropylene, or a mixture thereof.
The inorganic filler contains calcium carbonate and
The content of the polystyrene, the total 100 wt% of the polyolefin and the polystyrene, or less 16 wt% to 18 wt%,
The bubble ratio represented by the following formula (i) is 25% or more, and
A microbial carrier having a closed cell ratio of 20% or less represented by the following formula (ii).
Bubble ratio = (1-ρ B / ρ A ) × 100 ... (i)
(In formula (i), ρ A indicates the true density (g / cm 3 ) of the material constituting the microbial carrier, and ρ B indicates the apparent density (g / cm 3 ) of the microbial carrier).
Closed cell ratio = (1-ρ AC − ρ B ) / (ρ A − ρ B )) × 100 ・ ・ ・ (ii)
(In formula (ii), ρ A indicates the true density (g / cm 3 ) of the material constituting the microbial carrier, ρ B indicates the apparent density of the microbial carrier (g / cm 3 ), and ρ C is the Archimedes method. The water injection density (g / cm 3 ) derived from is shown.).
JP2019184000A 2018-10-04 2019-10-04 Microbial carrier Active JP6869307B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018189395 2018-10-04
JP2018189395 2018-10-04

Publications (2)

Publication Number Publication Date
JP2020059021A JP2020059021A (en) 2020-04-16
JP6869307B2 true JP6869307B2 (en) 2021-05-12

Family

ID=70219254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184000A Active JP6869307B2 (en) 2018-10-04 2019-10-04 Microbial carrier

Country Status (1)

Country Link
JP (1) JP6869307B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592097A (en) * 2020-05-15 2020-08-28 江苏中车环保设备有限公司 Aerobic carrier for domestic sewage treatment and preparation method and application thereof
CN115504570B (en) * 2021-06-07 2024-02-13 中国石油化工股份有限公司 Autotrophic denitrification process device and sewage treatment method
CN113736165A (en) * 2021-09-03 2021-12-03 桐乡市小老板特种塑料制品有限公司 Water treatment material
CN114536584B (en) * 2022-01-28 2023-08-22 青岛思普润水处理股份有限公司 Moving bed biomembrane suspension carrier for sewage treatment and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587733B2 (en) * 1999-06-17 2004-11-10 デンカエンジニアリング株式会社 Microbial carrier and wastewater treatment equipment
JP2003055562A (en) * 2001-08-14 2003-02-26 Daicel Novafoam Ltd Extruded molding and method for producing the same
JP3977775B2 (en) * 2003-06-03 2007-09-19 デンカエンジニアリング株式会社 Microbial carrier
JP5005173B2 (en) * 2005-02-08 2012-08-22 ダイセルノバフォーム株式会社 Resin composition for foam and foam using the same
JP4979946B2 (en) * 2005-12-27 2012-07-18 栗田工業株式会社 Method for producing biofilm-forming carrier and biofilm-forming carrier
JP5650373B2 (en) * 2007-08-23 2015-01-07 日清紡ホールディングス株式会社 Method for manufacturing fluid processing carrier

Also Published As

Publication number Publication date
JP2020059021A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6869307B2 (en) Microbial carrier
TWI545194B (en) A carrier for fluid treatment and a method for producing the same
JP3143412B2 (en) Microbial immobilization carrier for fluidized bed
CN104558780A (en) High-density polyethylene microporous foamed tube and preparation method thereof
JP6364769B2 (en) Resin composition, microorganism-immobilized carrier and purification method
WO2001005569A1 (en) Method for forming an article comprising closed-cell microfoam from thermoplastic
CN102811800A (en) Aeration system with antimicrobial properties
MX2014006454A (en) Method of foaming polyolefin using acrylated epoxidized fatty acid and foam produced therefrom.
JP4722518B2 (en) Microbial carrier for water treatment and production method thereof
JP2004358328A (en) Microorganism carrier
JP7082611B2 (en) Manufacturing method of polypropylene-based resin foamed particles, polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molded product
JP2003055562A (en) Extruded molding and method for producing the same
JP6295877B2 (en) Wastewater treatment system containing animal and vegetable oils
JP2010241946A (en) Polycarbonate resin foam and method for producing the same
JP2024506676A (en) High melt strength polypropylene composition
JP5964195B2 (en) Microbial carrier
JP3718570B2 (en) Method for producing extruded foam
JP2005021831A (en) Carrier for microorganism proliferation, and its using method
JP6787025B2 (en) Perforated film
Ghahramani Design and fabrication of open-cell foams for biological organic removal from wastewater
JP6885154B2 (en) Microbial immobilization carrier for wastewater treatment and wastewater treatment method
JP2007283222A (en) Biological treatment carrier
JPWO2009001959A1 (en) Method for producing polyolefin resin non-crosslinked foam
WO2014097382A1 (en) Packing for food and drink container, and lid for liquid container and liquid container with lid using said packing
JP2017066178A (en) Resin composition, foam, microorganism carrier and foam production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6869307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250