JP2018167228A - Microorganism-immobilized support for effluent treatment and effluent treatment method - Google Patents
Microorganism-immobilized support for effluent treatment and effluent treatment method Download PDFInfo
- Publication number
- JP2018167228A JP2018167228A JP2017068545A JP2017068545A JP2018167228A JP 2018167228 A JP2018167228 A JP 2018167228A JP 2017068545 A JP2017068545 A JP 2017068545A JP 2017068545 A JP2017068545 A JP 2017068545A JP 2018167228 A JP2018167228 A JP 2018167228A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- microorganism
- microorganisms
- outer diameter
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、嫌気性処理で用いられる排水処理用微生物固定化担体に関する。 The present invention relates to a microorganism-immobilized carrier for wastewater treatment used in anaerobic treatment.
微生物を用いて生活排水や工場廃水等を生物化学的に処理する方法が知られており、空気や酸素を大量に曝気して行う好気性処理と、空気等を曝気せず嫌気性雰囲気下で行う嫌気性処理に大別される。嫌気性処理は、好気性処理よりも余剰汚泥の発生量が少ない、酸素の供給が不要なため動力が少ない等のメリットがあり、今後更に普及していくと予想される。 There are known methods for biochemical treatment of domestic wastewater and factory wastewater using microorganisms, and aerobic treatment in which a large amount of air and oxygen are aerated and in an anaerobic atmosphere without aeration of air and the like It is divided roughly into the anaerobic process to be performed. Anaerobic treatment has advantages such as less generation of excess sludge than aerobic treatment and less power because it does not require supply of oxygen, and is expected to become more popular in the future.
嫌気性処理の方法としては、嫌気性微生物の保持等の方法により、グラニュールを用いた上向流嫌気性汚泥床法(UASB)や膨張汚泥床法(EGSB)、膜や担体に嫌気性微生物を固定化した生物膜を用いた嫌気性固定床法や嫌気性流動床法等がある。 Anaerobic treatment methods include retention of anaerobic microorganisms, upflow anaerobic sludge bed method (UASB) and expanded sludge bed method (EGSB) using granules, and anaerobic microorganisms for membranes and carriers. There are an anaerobic fixed bed method and an anaerobic fluidized bed method using a biofilm in which sucrose is immobilized.
また、無機物や有機物の表面に排水を効率よく浄化する微生物を固定化させて排水を浄化する微生物固定化方法は、排水中の微生物濃度を高くすることが可能であり、排水の浄化効率が向上し、浄化槽の小型化が可能であるという利点がある。 In addition, the method of immobilizing microorganisms that purifies wastewater by immobilizing microorganisms that efficiently purify wastewater on the surface of inorganic and organic substances can increase the concentration of microorganisms in the wastewater, improving the efficiency of wastewater purification. However, there is an advantage that the septic tank can be downsized.
微生物固定化担体を排水中に浮遊、流動させて浄化する流動床法は、浄化効率を高くできるだけでなく、長期間安定して運転することができるため、近年注目を集めている。具体的には、流動床の微生物固定化担体としては、ポリウレタンの発泡体(例えば、特許文献1参照。)やポリオレフィンの発泡体(例えば、特許文献2、3参照。)や成形体(例えば、特許文献4参照。)、PVAやPEGを架橋したゲルを用いる方法(例えば、特許文献5、6参照。)が開示されている。 In recent years, the fluidized bed method in which the microorganism-immobilized carrier is purified by floating and flowing in the wastewater has attracted attention in recent years because it not only has high purification efficiency but also can be stably operated for a long period of time. Specifically, as a microorganism-immobilized carrier for a fluidized bed, a polyurethane foam (for example, see Patent Document 1), a polyolefin foam (for example, see Patent Documents 2 and 3) and a molded body (for example, Patent Document 4), and a method using a gel obtained by crosslinking PVA or PEG (for example, see Patent Documents 5 and 6).
しかしながら、通常流動床で使用される微生物固定化担体を嫌気性処理で使用すると、嫌気性菌の代謝作用により発生するメタンガス、炭酸ガスや窒素ガスが担体内に存在し、担体が浮上して流動障害が起こり、処理性能は著しく低下するという問題があり、嫌気性処理に適した微生物固定化担体が望まれている。 However, when the microorganism-immobilized carrier that is usually used in a fluidized bed is used in anaerobic treatment, methane gas, carbon dioxide gas, and nitrogen gas generated by the metabolic action of anaerobic bacteria are present in the carrier, and the carrier floats and flows. There is a problem that a failure occurs and the treatment performance is remarkably lowered, and a microorganism-immobilized carrier suitable for anaerobic treatment is desired.
本発明の微生物固定化担体は、嫌気性処理で使用され、微生物の代謝作用で発生するガスによる担体浮上が抑制でき、微生物の付着性、流動性を兼ね備えた排水処理能力の高い担体を提供することにある。 The microorganism-immobilized carrier of the present invention is used in anaerobic treatment, and can suppress the carrier floating due to gas generated by the metabolic action of microorganisms, and provides a carrier with high wastewater treatment capability that has both adhesion and fluidity of microorganisms. There is.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明に到達した。すなわち、合成樹脂と無機物質を含み、密度が1.0〜1.10g/cm3、外径(D)10〜25mm、厚さ(t)1〜2mm、長さ(L)が外径(D)の0.2〜0.8倍の筒状であり、該筒外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有することを特徴とする、嫌気性処理で用いる排水処理用微生物固定化担体を提供する。 The inventors of the present invention have reached the present invention as a result of intensive studies to solve the above problems. That is, it contains a synthetic resin and an inorganic substance, the density is 1.0 to 1.10 g / cm 3 , the outer diameter (D) is 10 to 25 mm, the thickness (t) is 1 to 2 mm, and the length (L) is the outer diameter ( D) is 0.2 to 0.8 times as long as the cylinder, and extends outward in the length direction of a plurality of widths (W) of 0.5 to 2 mm and heights (H) of 0.5 to 2 mm. Provided is a microorganism-immobilized carrier for wastewater treatment used in anaerobic treatment, characterized by having ribs.
本発明の微生物固定化担体は、嫌気性処理で使用され、微生物の代謝作用で発生するガスによる担体浮上が抑制でき、微生物の付着性、流動性を兼ね備えた排水処理能力の高い担体が提供できる。具体的には、担体形状の外径(D)と長さ(L)の比を0.2〜0.8とすることで、担体内部の微生物層の形成を制限し、担体内部が微生物層によって閉塞することを抑制する。これにより微生物層に存在する代謝ガスを排水中に逃がすことができ、担体浮上が抑制できるため、嫌気性処理槽内での流動性が確保できる。また、担体外部表面に長さ方向に伸びるリブを有するため、微生物付着量が増加し、排水処理能力が高い担体が提供できる。 The microorganism-immobilized carrier of the present invention can be used in anaerobic treatment, can suppress carrier floating due to gas generated by the metabolic action of microorganisms, and can provide a carrier with high wastewater treatment capacity that has both adhesion and fluidity of microorganisms. . Specifically, the ratio of the outer diameter (D) to the length (L) of the carrier shape is set to 0.2 to 0.8, thereby restricting the formation of the microbial layer inside the carrier, and the inside of the carrier is the microbial layer. To prevent obstruction. As a result, the metabolic gas present in the microbial layer can be released into the waste water, and the carrier floating can be suppressed, so that fluidity in the anaerobic treatment tank can be ensured. In addition, since the ribs extending in the length direction are provided on the outer surface of the carrier, the amount of attached microorganisms can be increased and a carrier having a high wastewater treatment capacity can be provided.
本発明の微生物固定化担体は、合成樹脂と無機物質を含み、密度が1.0〜1.10g/cm3、外径(D)10〜25mm、厚さ(t)0.5〜2mm、長さ(L)が外径(D)の0.2〜0.8倍の筒状であり、該筒外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有することを特徴とする、排水処理用微生物固定化担体である。 The microorganism-immobilized carrier of the present invention includes a synthetic resin and an inorganic substance, and has a density of 1.0 to 1.10 g / cm 3 , an outer diameter (D) of 10 to 25 mm, a thickness (t) of 0.5 to 2 mm, The length (L) is 0.2 to 0.8 times the outer diameter (D), and a plurality of width (W) 0.5 to 2 mm, height (H) 0. A microorganism-immobilized carrier for wastewater treatment, comprising a rib extending in a length direction of 5 to 2 mm.
担体の材料としては、密度、サイズ、強度、柔軟性、表面状態、成形加工性などから合成樹脂および無機物質を組み合わせることが好ましい。合成樹脂としては、ポリエチレン、ポリプロピレン等の柔軟性があり、軽量のポリオレフィン系熱可塑性樹脂が好ましく、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体等のエチレン−α−オレフィン共重合体が例示できる。これらは2種以上を使用しても良い。 As a material for the carrier, it is preferable to combine a synthetic resin and an inorganic substance in view of density, size, strength, flexibility, surface state, moldability, and the like. As the synthetic resin, a flexible polyolefin thermoplastic resin such as polyethylene and polypropylene is preferable, and low density polyethylene (LDPE), high density polyethylene (HDPE), ethylene-vinyl acetate copolymer (EVA), Examples thereof include ethylene-α-olefin copolymers such as an ethylene-propylene copolymer, an ethylene-butene copolymer, and an ethylene-hexene copolymer. Two or more of these may be used.
合成樹脂のメルトフローレート(MFR)としては、特に限定はないが、微生物固定化担体として用いる場合には担体の成形方法により好ましいMFRは異なり、射出成形等で成形する場合は、MFRは1〜100g/10minが好ましく、押出成形等で成形する場合は、MFRは0.01〜20g/10minである。この範囲であれば、それぞれの成形方法において成形性が良好になる。MFRは、JIS K 7210−1999で測定され、例えばポリエチレンの場合、190℃、荷重2.16kgで測定される。 The melt flow rate (MFR) of the synthetic resin is not particularly limited, but when used as a microorganism-immobilized carrier, the preferred MFR differs depending on the carrier molding method. When molding by injection molding or the like, the MFR is 1 to 100 g / 10 min is preferable, and when forming by extrusion molding etc., MFR is 0.01-20 g / 10 min. If it is this range, a moldability will become favorable in each shaping | molding method. The MFR is measured according to JIS K 7210-1999. For example, in the case of polyethylene, the MFR is measured at 190 ° C. and a load of 2.16 kg.
無機物質としては、密度1.3〜6.0g/cm3のものが用いられ、特に限定されるものではない。例えば、炭酸カルシウム、タルク、硫酸バリウム、酸化鉄、水酸化アルミニウム、ゼオライト等を挙げることができ、それらを単独または複数種類組み合わせて使用することができる。合成樹脂の密度は、1.0g/cm3以下であるので、これら無機物質は合成樹脂の密度調整と担体表面の粗面化、親水性付与の目的も兼ねて組み合わされる。 As the inorganic substance, a substance having a density of 1.3 to 6.0 g / cm 3 is used and is not particularly limited. Examples thereof include calcium carbonate, talc, barium sulfate, iron oxide, aluminum hydroxide, zeolite, and the like, and these can be used alone or in combination of a plurality of types. Since the density of the synthetic resin is 1.0 g / cm 3 or less, these inorganic substances are combined for the purpose of adjusting the density of the synthetic resin, roughening the surface of the carrier, and imparting hydrophilicity.
上記の合成樹脂、無機物質の材質的な組み合わせによる担体性能の差はほとんどないので、密度および表面状態が目的の範囲に入るように混合比を調整する。但し、無機物質の割合が多くなると破損しやすくなるので、前記の比重範囲に入る混合割合が強度の点からも適している。 Since there is almost no difference in the carrier performance due to the material combination of the above synthetic resin and inorganic substance, the mixing ratio is adjusted so that the density and surface state fall within the target ranges. However, since it becomes easy to break when the ratio of the inorganic substance increases, the mixing ratio within the specific gravity range is also suitable from the viewpoint of strength.
本発明の効果を損なわない範囲で、充填剤、添加剤、加工助剤、親水化剤、着色剤等を添加しても構わないが、排水浄化用の微生物固定化担体として用いる場合には、可能な限り環境や生物への影響が少ないものを最小限度の添加量にすることが望ましい。 In the range not impairing the effect of the present invention, fillers, additives, processing aids, hydrophilizing agents, coloring agents, etc. may be added, but when used as a microorganism-immobilizing carrier for wastewater purification, It is desirable to make the minimum addition amount that has the least impact on the environment and organisms as much as possible.
このような添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ラクトン系酸化防止剤、耐光安定剤、帯電防止剤等を挙げることができる。加工助剤としては、例えば、ワックス類、金属石鹸、ステアリン酸のような脂肪酸、フッ素系化合物等の滑剤等を挙げることができる。親水化剤としては、両性界面活性剤、イオン系界面活性剤、非イオン系界面活性剤等を挙げることができる。 Examples of such additives include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, lactone antioxidants, light stabilizers, and antistatic agents. Examples of processing aids include waxes, metal soaps, fatty acids such as stearic acid, lubricants such as fluorine compounds, and the like. Examples of the hydrophilizing agent include amphoteric surfactants, ionic surfactants, and nonionic surfactants.
本発明の微生物固定化担体は、密度が1.0〜1.10g/cm3である。流動床用として微生物固定化担体を用いる場合には、水面に浮上していると排水との接触が少なくなって浄化効率が低下するので、密度は水よりも大きい方が好ましい。一方、密度を1.10よりも大きくすると処理槽へ担体を投入した際の初期の担体沈降性は良好であるが、微生物付着により微生物層が形成してくると処理槽底部に沈んだままとなり、流動性が悪くなる。 The microorganism-immobilized carrier of the present invention has a density of 1.0 to 1.10 g / cm 3 . When the microorganism-immobilized carrier is used for a fluidized bed, the density is preferably larger than that of water since the contact with the drainage is reduced and the purification efficiency is lowered if it floats on the water surface. On the other hand, when the density is higher than 1.10, the initial carrier sedimentation property when the carrier is introduced into the treatment tank is good, but when the microbial layer is formed by the adhesion of microorganisms, it remains submerged at the bottom of the treatment tank. , The fluidity becomes worse.
従って、少ない動力で撹拌して担体を流動、循環させるために、微生物固定化担体の密度は1.0〜1.10g/cm3であることが好ましい。 Therefore, the density of the microorganism-immobilized support is preferably 1.0 to 1.10 g / cm 3 in order to cause the support to flow and circulate with stirring with a small amount of power.
本発明の微生物固定化担体は、担体の外径(D)は10〜25mmである。担体のサイズは、小さいほど表面積が大きくなるため微生物付着の観点からは好ましいが、流出防止スクリーンを小さくするため目詰まり等のトラブルが発生しやすくなる。また、大き過ぎると流動性が悪化するので、担体の外径(D)は10〜25mmが好ましい。 The microorganism-immobilized carrier of the present invention has an outer diameter (D) of 10 to 25 mm. The smaller the carrier size, the larger the surface area, which is preferable from the viewpoint of adhesion of microorganisms. However, since the outflow prevention screen is reduced, problems such as clogging are likely to occur. Moreover, since fluidity | liquidity will deteriorate when too large, the outer diameter (D) of a support | carrier is 10-25 mm.
本発明の微生物固定化担体は、担体の厚み(t)は0.5〜2mmである。担体の厚みが0.5mmよりも薄いと担体の強度が低下するだけでなく成形性が低下する。一方、担体の厚みが2mmを上回ると、材料のコスト上昇を招くだけでなく、担体の内径が小さくなり、微生物層の形成により担体内部が閉塞しやすくなるため、担体の厚み(t)は0.5〜2mmが好ましい。 The microorganism-immobilized carrier of the present invention has a carrier thickness (t) of 0.5 to 2 mm. If the thickness of the carrier is less than 0.5 mm, not only the strength of the carrier is lowered but also the moldability is lowered. On the other hand, when the thickness of the carrier exceeds 2 mm, not only the cost of the material is increased, but also the inner diameter of the carrier becomes small and the inside of the carrier is easily blocked by the formation of the microorganism layer, so the thickness (t) of the carrier is 0. 0.5-2 mm is preferable.
本発明の微生物固定化担体は、担体の長さ(L)は、外径(D)の0.2〜0.8倍である。担体の長さをこの範囲に調整することにより、担体内部の微生物層の形成を制限し、担体内部が微生物層によって閉塞することを抑制する。これにより微生物層に存在する窒素ガスを排水中に逃がすことができ、担体浮上が抑制でき、嫌気性処理槽内での流動性が確保できるため好ましい。 In the microorganism-immobilized carrier of the present invention, the carrier length (L) is 0.2 to 0.8 times the outer diameter (D). By adjusting the length of the carrier within this range, the formation of the microbial layer inside the carrier is restricted and the inside of the carrier is prevented from being blocked by the microbial layer. This is preferable because the nitrogen gas present in the microorganism layer can be released into the waste water, the carrier floating can be suppressed, and the fluidity in the anaerobic treatment tank can be secured.
本発明の微生物固定化担体は、担体の形状は筒状である。担体の一方の端面が閉塞した、コップ型のような形状は、排水浄化に伴って発生する窒素ガスが担体内部に溜まり、担体が浮上しやすいため好ましくなく、両端が開放された筒状が好ましい。特に、中空円筒形のものが製造も容易であり好ましい。 In the microorganism-immobilized carrier of the present invention, the carrier has a cylindrical shape. A cup-like shape in which one end surface of the carrier is closed is not preferable because nitrogen gas generated along with the purification of drainage is accumulated inside the carrier and the carrier tends to float, and a cylindrical shape with both ends open is preferred. . In particular, a hollow cylindrical shape is preferable because it is easy to manufacture.
本発明の微生物固定化担体は、担体の外側に複数の、幅(W)0.5〜2mm、高さ(H)0.5〜2mmの長さ方向に伸びるリブを有する。このようなリブを設けることで、担体の表面積が拡大できるため、微生物担持量が大きくなるだけでなく、処理槽内での担体同士が衝突した際に、担体に付着した微生物層が剥離するのを抑制できる。 The microorganism-immobilized carrier of the present invention has a plurality of ribs extending in the length direction having a width (W) of 0.5 to 2 mm and a height (H) of 0.5 to 2 mm on the outside of the carrier. By providing such ribs, the surface area of the carrier can be increased, so that not only the amount of microorganisms loaded becomes large, but also when the carriers collide with each other in the treatment tank, the microbial layer attached to the carrier is peeled off. Can be suppressed.
本発明の微生物固定化担体の成形方法としては、射出成形、押出成形、プレス成形等したものをそのまま使用してもよく、更に担体を所定の大きさに切断、粉砕、融着、接着等の二次加工して使用しても構わない。特に、生産性が高く、連続成形する押出成形が好ましく、特に、中空円筒形の押出成形が好ましい。 As a method for molding the microorganism-immobilized carrier of the present invention, those obtained by injection molding, extrusion molding, press molding and the like may be used as they are, and further, the carrier is cut into a predetermined size, pulverized, fused, adhered, etc. Secondary processing may be used. In particular, productivity is high, and extrusion molding with continuous molding is preferable, and hollow cylindrical extrusion molding is particularly preferable.
押出成形に使用する押出機としては、特に制限はないが、通常の単軸押出機、二軸押出機等を用いればよい。 Although there is no restriction | limiting in particular as an extruder used for extrusion molding, What is necessary is just to use a normal single screw extruder, a twin screw extruder, etc.
また、担体を成形する時に材料の混練を兼ねることも制限はないが、例えば、同方向二軸押出機、単軸押出機等を用いて成形すればよい。更に、この場合、前述した混練方法と同様に、材料の供給方法はいかなる方法でも制限はないが、材料の供給と分散性等を向上させるために、マスターバッチにて供給するのが好ましい。 Further, there is no restriction on the material kneading at the time of molding the carrier, but for example, it may be molded using a same-direction twin screw extruder, a single screw extruder, or the like. Further, in this case, like the kneading method described above, the material supply method is not limited by any method, but in order to improve the material supply and dispersibility, the material is preferably supplied in a master batch.
担体の外側に複数のリブを導入するためには、例えば、押出成形用金型の外面に一定間隔で溝を切削した金型を用いて押出成形する方法を用いればよい。 In order to introduce a plurality of ribs to the outside of the carrier, for example, a method of extruding using a mold in which grooves are cut at regular intervals on the outer surface of an extrusion mold may be used.
中空円筒形とするためには、例えば、ホースやパイプ、ストロー等のように押出機の先端に中空円筒用の金型を取り付け、樹脂の融点以上の温度で押し出ることで形成できる。押し出された成形品を冷却用水槽等で冷却し、適当な切断機(例えば、ペレット切断用のペレタイザー)にて所定の大きさに切断して担体とする。また、金型から押し出された直後に、例えば、冷却水を噴霧した雰囲気で連続回転式カッターのような切断機で連続的に切断、冷却することで製造してもよい。 In order to obtain a hollow cylindrical shape, for example, a hollow cylindrical mold such as a hose, pipe, or straw is attached to the tip of the extruder and extruded at a temperature equal to or higher than the melting point of the resin. The extruded product is cooled in a cooling water tank or the like, and cut into a predetermined size with an appropriate cutting machine (for example, a pelletizer for pellet cutting) to form a carrier. Alternatively, immediately after being extruded from the mold, for example, it may be produced by continuously cutting and cooling with a cutting machine such as a continuous rotary cutter in an atmosphere sprayed with cooling water.
押出成形の温度としては、微生物固定化担体が成形できればよいが、成形温度が低すぎると成形時の押出負荷がかかりやすくなり、生産性の低下や形状不安定になるため、120〜250℃の範囲が好ましく、更に、150〜180℃の範囲が特に好ましい。 As the temperature of extrusion molding, it is sufficient that the microorganism-immobilized carrier can be molded. However, if the molding temperature is too low, an extrusion load at the time of molding tends to be applied, and the productivity is lowered and the shape becomes unstable. The range is preferable, and the range of 150 to 180 ° C. is particularly preferable.
本発明の微生物固定化担体は、嫌気性雰囲気下で適宜微生物を固定化させて用いればよい。例えば、排水の浄化に用いる場合には、担体の表面に排水を浄化するのに用いる微生物を固定化させて用いる。更に、浄化する排水の性状と温度、浄化槽の構造等に応じて、適当量の微生物固定化担体を排水中に投入し、接触させて用いればよい。 The microorganism-immobilized carrier of the present invention may be used by appropriately immobilizing microorganisms in an anaerobic atmosphere. For example, when used for purification of waste water, microorganisms used for purification of waste water are immobilized on the surface of the carrier. Furthermore, an appropriate amount of the microorganism-immobilized carrier may be put into the wastewater and used in contact with the wastewater to be purified, depending on the properties and temperature of the wastewater, the structure of the purification tank, and the like.
本発明の微生物固定化担体の使用方法としては、固定床法と流動床法の如何なる方法でも使用できるが、微生物固定化担体内部の閉塞が少ないことから、流動床法で用いるのが好ましい。流動床法にて本発明の微生物固定化担体を排水中で流動させる方法としては、例えば、モーターの先端に付いた撹拌翼で撹拌する方法、ポンプで排水の一部を吸引、排出して撹拌する方法、適当な気体を曝気することで排水を撹拌する方法、排水槽に邪魔板を設けてその間に排水を流すことで自然に撹拌する方法等を挙げることができ、撹拌方法としては上下水平如何なる方向でも特に制限はない。撹拌が弱すぎると、微生物固定化担体が排水中を流動せずに排水と微生物との接触が少なくなるので浄化効率が低下し、撹拌が強すぎると、微生物固定化担体の表面に固定化した微生物が剥げ落ちるため、適度な強さ(速さ)での撹拌が望ましい。また、浄化した排水の排出口には、本発明の微生物固定化担体の流出防止のため、担体の外径や長さよりも小さい網目を有する仕切りを有することが望ましい。 As the method for using the microorganism-immobilized carrier of the present invention, any method such as a fixed bed method and a fluidized bed method can be used. However, since the clogging inside the microorganism-immobilized carrier is small, it is preferably used in the fluidized bed method. Examples of the fluidized bed method for flowing the microorganism-immobilized carrier of the present invention in wastewater include, for example, a method of stirring with a stirring blade attached to the tip of a motor, and stirring by sucking and discharging part of the wastewater with a pump. A method of agitating the drainage by aeration of an appropriate gas, a method of agitating naturally by providing a baffle plate in the drainage tank and flowing the drainage between them, etc. There is no particular limitation in any direction. If the agitation is too weak, the microbial immobilization carrier does not flow in the wastewater and the contact between the wastewater and the microorganisms is reduced, so the purification efficiency is reduced. If the agitation is too strong, the microorganism immobilization carrier is immobilized on the surface of the microorganism immobilization carrier. Since the microorganisms peel off, it is desirable to stir at an appropriate strength (speed). Moreover, it is desirable that the purified waste water outlet has a partition having a mesh smaller than the outer diameter and length of the carrier in order to prevent the microorganism-immobilized carrier of the present invention from flowing out.
本発明の微生物固定化担体に微生物を固定化させる方法としては、担体を直接排水に投入して自然に微生物を固定化させてもよいが、事前に高濃度に微生物を増殖させた水槽に本発明の微生物固定化担体を投入し微生物を固定化させてから取り出し、排水の浄化槽に投入しても構わない。このように事前に微生物を固定化させてから排水中に微生物固定化担体を投入する方法は、正常に浄化するまでの時間を短縮できるため好ましく、嫌気性微生物は増殖が特に遅いので嫌気性処理の場合は特に好ましい。また、一部の微生物固定化担体に予め微生物を固定化させてから、浄化槽に投入してもよい。 As a method for immobilizing microorganisms on the microorganism-immobilized carrier of the present invention, the carrier may be directly injected into the waste water to naturally immobilize the microorganisms, but this method may be applied to a water tank in which microorganisms have been grown to a high concentration in advance. The microorganism-immobilized carrier of the present invention may be introduced to immobilize microorganisms and then taken out and put into a wastewater septic tank. The method of immobilizing microorganisms in advance and then introducing the microorganism-immobilized carrier into the wastewater is preferable because it can shorten the time until normal purification, and anaerobic treatment is particularly slow because anaerobic microorganisms grow particularly slowly. Is particularly preferable. Alternatively, microorganisms may be immobilized on a part of the microorganism-immobilized carrier in advance and then introduced into the septic tank.
本発明の微生物固定化担体は、化学的に安定な合成樹脂と無機物質から構成されるので、長期保存安定性がよく、保管方法に特に制限はないが、保管の簡便性と輸送の観点から、乾燥状態で保管するのが好ましい。 Since the microorganism-immobilized carrier of the present invention is composed of a chemically stable synthetic resin and an inorganic substance, it has good long-term storage stability, and there is no particular limitation on the storage method, but from the viewpoint of easy storage and transportation. It is preferable to store in a dry state.
以下に実施例に基づき本発明を更に詳しく説明するが、これらは本発明の理解を助けるための例であって、本発明はこれらの実施例により何等制限を受けるものではない。
(汚泥の付着性評価および担体の流動性評価)
容量約1.5Lの容器に嫌気性汚泥を入れた模擬排水1L(硝酸態窒素300mg/L)に担体100mLを投入し、窒素雰囲気条件下、水温20℃、pH7で一定に保ち、約1ケ月間ゆっくりと撹拌し続け、微生物層の付着状況および担体の流動性を評価した。
The present invention will be described in more detail based on the following examples, but these are examples for helping understanding of the present invention, and the present invention is not limited to these examples.
(Evaluation of sludge adhesion and carrier fluidity)
100 mL of carrier is introduced into 1 L of simulated waste water (300 mg / L nitrate nitrate) containing anaerobic sludge in a container with a capacity of about 1.5 L, and kept constant at a water temperature of 20 ° C. and a pH of 7 under about 1 month. The stirring was continued slowly, and the adhesion state of the microbial layer and the fluidity of the carrier were evaluated.
<微生物付着性>
◎:中空円筒形内部が閉塞するほど微生物層が付着
○:担体表面にほぼ均一となるほど微生物層が付着
△:微生物層が付着していない部分が半分以上認められる。
<Microbe adhesion>
A: The microbial layer adheres as the inside of the hollow cylindrical shape is blocked. B: The microbial layer adheres to the carrier surface almost uniformly. Δ: More than half of the part where the microbial layer is not attached is observed.
<担体流動性>
○:担体は浮上せず、撹拌槽内を流動
×:担体が浮上し、撹拌層上部に滞留
(実施例1)
低密度ポリエチレン(ペトロセン170、密度0.92g/cm3、MFR=1.0g/10min、東ソー株式会社製)75重量部、炭酸カルシウムMB(PEX10560AL、密度1.9g/cm3、東京インキ株式会社製)25重量部、フェノール系酸化防止剤(アデカスタブAO−60、株式会社ADEKA製)0.1重量部を混合し、ラボプラストミル単軸押出機(株式会社東洋精機製作所製)と図1に示すような円筒形の外側にリブがついたダイスを用いて170℃で中空押出成形後、冷却水槽で冷却して中空円筒形の外側に突起がついた成形体を得た。次いで、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=8mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
<Carrier fluidity>
○: The carrier does not float and flows in the stirring tank ×: The carrier floats and stays in the upper part of the stirring layer (Example 1)
Low-density polyethylene (Petrocene 170, density 0.92 g / cm 3 , MFR = 1.0 g / 10 min, manufactured by Tosoh Corporation) 75 parts by weight, calcium carbonate MB (PEX10560AL, density 1.9 g / cm 3 , Tokyo Ink Co., Ltd.) 1) 25 parts by weight and 0.1 parts by weight of a phenolic antioxidant (Adeka Stub AO-60, manufactured by ADEKA Co., Ltd.) are mixed, and a lab plast mill single screw extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd.) and FIG. Using a die having a cylindrical outer rib as shown, hollow extrusion molding was performed at 170 ° C., followed by cooling in a cooling water bath to obtain a molded body having a hollow cylindrical outer protrusion. Next, it is cut with a cutter knife at a predetermined length, and the outer diameter D = 10 mm, the length L = 8 mm, the thickness t = 0.8 mm, the rib width W = 0.5 mm, and the height H = 0.5 mm. A carrier having protrusions on the outside of a hollow cylinder was obtained.
模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例2)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=6mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
When the carrier was put into the simulated waste water and the adhesion of microorganisms was evaluated, the microorganism layer was uniformly deposited on the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 2)
The rib-formed hollow cylindrical body formed in Example 1 was cut with a cutter knife to a predetermined length, the outer diameter D = 10 mm, the length L = 6 mm, the thickness t = 0.8 mm, the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 0.5 mm and a height H of 0.5 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例3)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=4mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 3)
The rib-formed hollow cylindrical body obtained in Example 1 was cut with a cutter knife to a predetermined length, the outer diameter D = 10 mm, the length L = 4 mm, the thickness t = 0.8 mm, the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 0.5 mm and a height H of 0.5 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例4)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=2mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
Example 4
The rib-formed hollow cylindrical body obtained in Example 1 was cut with a cutter knife to a predetermined length, the outer diameter D = 10 mm, the length L = 2 mm, the thickness t = 0.8 mm, the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 0.5 mm and a height H of 0.5 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例5)
実施例1で中空押出成形する際のダイスの径を大きくした以外は同様な操作を行い、外径D=15mm、長さL=12mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 5)
The same operation was performed except that the diameter of the die at the time of hollow extrusion molding in Example 1 was increased, and the outer diameter D = 15 mm, the length L = 12 mm, the thickness t = 1 mm, and the rib width W = 0.8 mm. A carrier with a protrusion on the outside of a hollow cylinder having a height H = 0.8 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に汚泥が付着した。また、担体は撹拌層内を流動していた。
(実施例6)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=9mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
As in Example 1, the carrier was put into the simulated waste water and the adhesion of microorganisms was evaluated. As a result, the sludge uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 6)
The rib-formed hollow cylinder formed body obtained in Example 5 was cut with a cutter knife to a predetermined length, the outer diameter D = 15 mm, the length L = 9 mm, the thickness t = 1 mm, and the rib width W = 0. A carrier having a projection on the outside of a hollow cylindrical shape having a height of 0.8 mm and a height of H = 0.8 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例7)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=6mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 7)
The rib-formed hollow cylinder forming body obtained in Example 5 was cut with a cutter knife to a predetermined length, the outer diameter D = 15 mm, the length L = 6 mm, the thickness t = 1 mm, and the rib width W = 0. A carrier having a projection on the outside of a hollow cylindrical shape having a height of 0.8 mm and a height of H = 0.8 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例8)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=3mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mm、の中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 8)
The rib-formed hollow cylinder forming body obtained in Example 5 was cut with a cutter knife at a predetermined length, the outer diameter D = 15 mm, the length L = 3 mm, the thickness t = 1 mm, and the rib width W = 0. A carrier with a projection on the outside of a hollow cylinder having a height of 0.8 mm and a height of H = 0.8 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例9)
実施例1で中空押出成形する際のダイスの径を大きくした以外は同様な操作を行い、外径D=25mm、長さL=20mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mm、の中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
Example 9
The same operation was performed except that the diameter of the die at the time of hollow extrusion molding in Example 1 was increased, the outer diameter D = 25 mm, the length L = 20 mm, the thickness t = 1.5 mm, and the rib width W = 1 mm. A carrier with a protrusion on the outside of a hollow cylinder having a height H of 1 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例10)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=15mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 10)
The rib-formed hollow cylindrical formed body obtained in Example 9 was cut with a cutter knife to a predetermined length, the outer diameter D = 25 mm, the length L = 15 mm, the thickness t = 1.5 mm, and the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 1 mm and a height H of 1 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例11)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=10mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 11)
The rib-formed hollow cylinder-shaped body obtained in Example 9 was cut with a cutter knife to a predetermined length, the outer diameter D = 25 mm, the length L = 10 mm, the thickness t = 1.5 mm, and the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 1 mm and a height H of 1 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
(実施例12)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=5mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
(Example 12)
The rib-formed hollow cylindrical formed body obtained in Example 9 was cut with a cutter knife to a predetermined length, the outer diameter D = 25 mm, the length L = 5 mm, the thickness t = 1.5 mm, and the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 1 mm and a height H of 1 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体表面に均一に微生物層が付着した。また、担体は撹拌層内を流動していた。
以上の結果を表1にまとめた。
In the same manner as in Example 1, the carrier was put into the simulated waste water, and the adhesion of microorganisms was evaluated. As a result, the microorganism layer uniformly adhered to the surface of the carrier. The carrier was flowing in the stirring layer.
The above results are summarized in Table 1.
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=10mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
The rib-formed hollow cylindrical body obtained in Example 1 was cut with a cutter knife to a predetermined length, the outer diameter D = 10 mm, the length L = 10 mm, the thickness t = 0.8 mm, the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 0.5 mm and a height H of 0.5 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例2)
実施例1で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=10mm、長さL=15mm、厚さt=0.8mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered as the hollow cylindrical shape was blocked. Further, the carrier stayed in the upper part of the stirring layer.
(Comparative Example 2)
The rib-formed hollow cylindrical body obtained in Example 1 was cut with a cutter knife to a predetermined length, the outer diameter D = 10 mm, the length L = 15 mm, the thickness t = 0.8 mm, the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 0.5 mm and a height H of 0.5 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例3)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=15mm、厚さt=1mm、リブの幅W=0.5mm、高さH=0.5mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered as the hollow cylindrical shape was blocked. Further, the carrier stayed in the upper part of the stirring layer.
(Comparative Example 3)
The rib-formed hollow cylinder forming body obtained in Example 5 was cut with a cutter knife to a predetermined length, the outer diameter D = 15 mm, the length L = 15 mm, the thickness t = 1 mm, and the rib width W = 0. A carrier with a protrusion on the outside of a hollow cylindrical shape having a height of 0.5 mm and a height of H = 0.5 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例4)
実施例5で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=15mm、長さL=2mm、厚さt=1mm、リブの幅W=0.8mm、高さH=0.8mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered as the hollow cylindrical shape was blocked. Further, the carrier stayed in the upper part of the stirring layer.
(Comparative Example 4)
The rib-formed hollow cylindrical body obtained in Example 5 was cut with a cutter knife at a predetermined length, the outer diameter D = 15 mm, the length L = 2 mm, the thickness t = 1 mm, and the rib width W = 0. A carrier having a projection on the outside of a hollow cylindrical shape having a height of 0.8 mm and a height of H = 0.8 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、微生物層が付着していない部分が半分以上認められた。また、担体は撹拌層内を流動していた。
(比較例5)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=25mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, when a carrier was introduced into simulated waste water and the adhesion of microorganisms was evaluated, more than half of the parts where the microorganism layer was not adhered were observed. The carrier was flowing in the stirring layer.
(Comparative Example 5)
The rib-formed hollow cylinder-shaped body obtained in Example 9 was cut with a cutter knife to a predetermined length, the outer diameter D = 25 mm, the length L = 25 mm, the thickness t = 1.5 mm, and the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 1 mm and a height H of 1 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、中空円筒形内部が閉塞するほど微生物層が付着した。また、担体は撹拌層上部に滞留していた。
(比較例6)
実施例9で得られたリブ付き中空円筒形成形体を、カッターナイフで所定の長さで切断し、外径D=25mm、長さL=2mm、厚さt=1.5mm、リブの幅W=1mm、高さH=1mmの中空円筒形の外側に突起がついた担体を得た。
In the same manner as in Example 1, the carrier was put into the simulated waste water and the adhesion of microorganisms was evaluated. As a result, the microorganism layer adhered as the hollow cylindrical shape was blocked. Further, the carrier stayed in the upper part of the stirring layer.
(Comparative Example 6)
The rib-formed hollow cylinder-shaped body obtained in Example 9 was cut with a cutter knife to a predetermined length, the outer diameter D = 25 mm, the length L = 2 mm, the thickness t = 1.5 mm, and the rib width W A carrier having protrusions on the outside of a hollow cylinder having a height of 1 mm and a height H of 1 mm was obtained.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、微生物層が付着していない部分が半分以上認められた。また、担体は撹拌層内を流動していた。
(比較例7)
実施例1で円筒形の外側にリブがついたダイスに代えて、リブが無いダイスを用いた以外は、実施例1と同様に中空押出成形を行い、中空円筒形の外側に突起が無い成形体を得た。カッターナイフで所定の長さで切断し、外径D=10mm、長さL=6mm、厚さt=0.8mmのリブの無い中空円筒形担体を得た。
In the same manner as in Example 1, when a carrier was introduced into simulated waste water and the adhesion of microorganisms was evaluated, more than half of the parts where the microorganism layer was not adhered were observed. The carrier was flowing in the stirring layer.
(Comparative Example 7)
A hollow extrusion molding is performed in the same manner as in Example 1 except that a die having no rib is used instead of the die having a rib on the outer side of the cylindrical shape in Example 1, and molding without a protrusion on the outer side of the hollow cylindrical shape. Got the body. A predetermined length was cut with a cutter knife to obtain a hollow cylindrical carrier without ribs having an outer diameter D = 10 mm, a length L = 6 mm, and a thickness t = 0.8 mm.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体外部には微生物層がほとんど付着していなかった。また、担体は撹拌層内を流動していた。
(比較例8)
実施例5で円筒形の外側にリブがついたダイスに代えて、リブが無いダイスを用いた以外は、実施例5と同様に中空押出成形を行い、中空円筒形の外側に突起が無い成形体を得た。カッターナイフで所定の長さで切断し、外径D=15mm、長さL=9mm、厚さt=1mmのリブの無い中空円筒形担体を得た。
As in Example 1, the carrier was put into the simulated waste water and the adhesion of the microorganisms was evaluated. As a result, the microorganism layer was hardly adhered to the outside of the carrier. The carrier was flowing in the stirring layer.
(Comparative Example 8)
A hollow extrusion molding is performed in the same manner as in Example 5 except that a die without ribs is used instead of the die having ribs on the outer side of the cylindrical shape in Example 5, and molding without protrusions on the outer side of the hollow cylindrical shape. Got the body. A predetermined length was cut with a cutter knife to obtain a hollow cylindrical carrier having an outer diameter D = 15 mm, a length L = 9 mm, and a thickness t = 1 mm without ribs.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体外部には微生物層がほとんど付着していなかった。また、担体は撹拌層内を流動していた。
(比較例9)
実施例9で円筒形の外側にリブがついたダイスに代えて、リブが無いダイスを用いた以外は、実施例9と同様に中空押出成形を行い、中空円筒形の外側に突起が無い成形体を得た。カッターナイフで所定の長さで切断し、外径D=25mm、長さL=15mm、厚さt=1.5mmのリブの無い中空円筒形担体を得た。
As in Example 1, the carrier was put into the simulated waste water and the adhesion of the microorganisms was evaluated. As a result, the microorganism layer was hardly adhered to the outside of the carrier. The carrier was flowing in the stirring layer.
(Comparative Example 9)
A hollow extrusion molding is performed in the same manner as in Example 9 except that a die having no rib is used instead of the die having a rib on the outer side of the cylindrical shape in Example 9. Got the body. A cutter knife was cut to a predetermined length to obtain a hollow cylindrical carrier without ribs having an outer diameter D = 25 mm, a length L = 15 mm, and a thickness t = 1.5 mm.
実施例1と同様に、模擬排水中に担体を投入し、微生物の付着性を評価したところ、担体外部には微生物層がほとんど付着していなかった。また、担体は撹拌層内を流動していた。 As in Example 1, the carrier was put into the simulated waste water and the adhesion of the microorganisms was evaluated. As a result, the microorganism layer was hardly adhered to the outside of the carrier. The carrier was flowing in the stirring layer.
以上の結果を表2にまとめた。 The above results are summarized in Table 2.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017068545A JP6885154B2 (en) | 2017-03-30 | 2017-03-30 | Microbial immobilization carrier for wastewater treatment and wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017068545A JP6885154B2 (en) | 2017-03-30 | 2017-03-30 | Microbial immobilization carrier for wastewater treatment and wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018167228A true JP2018167228A (en) | 2018-11-01 |
JP6885154B2 JP6885154B2 (en) | 2021-06-09 |
Family
ID=64017614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017068545A Active JP6885154B2 (en) | 2017-03-30 | 2017-03-30 | Microbial immobilization carrier for wastewater treatment and wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6885154B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10314780A (en) * | 1997-05-16 | 1998-12-02 | Showa Eng Kk | Carrier for attachment of bacteria |
JP2003117577A (en) * | 2001-10-16 | 2003-04-22 | Mitsubishi Rayon Co Ltd | Microorganism immobilized carrier and method for manufacturing the same, and waste water treating method using the carrier |
JP2015124306A (en) * | 2013-12-26 | 2015-07-06 | 東ソー株式会社 | Resin composition, microorganism immobilization support and purification method |
-
2017
- 2017-03-30 JP JP2017068545A patent/JP6885154B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10314780A (en) * | 1997-05-16 | 1998-12-02 | Showa Eng Kk | Carrier for attachment of bacteria |
JP2003117577A (en) * | 2001-10-16 | 2003-04-22 | Mitsubishi Rayon Co Ltd | Microorganism immobilized carrier and method for manufacturing the same, and waste water treating method using the carrier |
JP2015124306A (en) * | 2013-12-26 | 2015-07-06 | 東ソー株式会社 | Resin composition, microorganism immobilization support and purification method |
Also Published As
Publication number | Publication date |
---|---|
JP6885154B2 (en) | 2021-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6364769B2 (en) | Resin composition, microorganism-immobilized carrier and purification method | |
KR101727452B1 (en) | Anaerobic treatment method | |
JP6869307B2 (en) | Microbial carrier | |
JPH10257885A (en) | Microorganism immobilized carrier for fluidized bed | |
CN103224283A (en) | Honeycomb modified biological stuffing applied to water treatment and preparation method thereof | |
KR20150137061A (en) | Anaerobic treatment method | |
CN110980934A (en) | Suspended filler and preparation method thereof | |
JP6885154B2 (en) | Microbial immobilization carrier for wastewater treatment and wastewater treatment method | |
KR100951109B1 (en) | A microorganism carrier and its manufacturing method | |
JP2003117577A (en) | Microorganism immobilized carrier and method for manufacturing the same, and waste water treating method using the carrier | |
US11565957B2 (en) | Method for preparing electron donor biofilm carrier | |
JP2004174491A (en) | Microorganism carrier for treating sewage, method for preparing the same, and method for treating sewage using the same | |
JP3587733B2 (en) | Microbial carrier and wastewater treatment equipment | |
CN115477387A (en) | Anoxic pond enhanced denitrification suspended filler and preparation method thereof | |
JP6295877B2 (en) | Wastewater treatment system containing animal and vegetable oils | |
JP2018118200A (en) | Support and drain water treatment method using same | |
JP6571471B2 (en) | Resin composition, foam, microbial carrier and method for producing foam | |
JP2003340480A (en) | Microbial cell immobilization support, method for producing the same and method for treating waste water using the same | |
KR20170016126A (en) | Microbe Carrier and Method for Wastewater Treatment | |
JP2004136182A (en) | Biodegradable microorganism carrier for treating sewage, its manufacturing method and sewage treatment method using the carrier | |
Ghahramani | Design and fabrication of open-cell foams for biological organic removal from wastewater | |
JP2004065021A (en) | Microorganism-immobilizing support and method for treating wastewater using the same | |
JP4229426B2 (en) | Microorganism immobilization carrier and waste water treatment method using the same | |
KR100661873B1 (en) | Cellular bio-media material for waste food or water treatment | |
KR100344914B1 (en) | Bio membrane board manufacture method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210426 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6885154 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |