JP6874146B2 - Non-contact internal measuring device, non-contact internal measuring method, and internal measurement result display system - Google Patents
Non-contact internal measuring device, non-contact internal measuring method, and internal measurement result display system Download PDFInfo
- Publication number
- JP6874146B2 JP6874146B2 JP2019547021A JP2019547021A JP6874146B2 JP 6874146 B2 JP6874146 B2 JP 6874146B2 JP 2019547021 A JP2019547021 A JP 2019547021A JP 2019547021 A JP2019547021 A JP 2019547021A JP 6874146 B2 JP6874146 B2 JP 6874146B2
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- unit
- measurement
- polarization
- internal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims description 332
- 238000000034 method Methods 0.000 title description 25
- 230000010287 polarization Effects 0.000 claims description 93
- 238000004458 analytical method Methods 0.000 claims description 72
- 238000001514 detection method Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000000691 measurement method Methods 0.000 claims description 10
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 230000001419 dependent effect Effects 0.000 claims description 3
- 210000003491 skin Anatomy 0.000 description 94
- 238000012545 processing Methods 0.000 description 41
- 238000010586 diagram Methods 0.000 description 39
- 238000010521 absorption reaction Methods 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 230000008859 change Effects 0.000 description 22
- 230000006870 function Effects 0.000 description 15
- 238000004891 communication Methods 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000003550 marker Substances 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 9
- 210000000434 stratum corneum Anatomy 0.000 description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 102000011782 Keratins Human genes 0.000 description 6
- 108010076876 Keratins Proteins 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000002537 cosmetic Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003020 moisturizing effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 206010019345 Heat stroke Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 102000034240 fibrous proteins Human genes 0.000 description 1
- 108091005899 fibrous proteins Proteins 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K5/00—Irradiation devices
- G21K5/10—Irradiation devices with provision for relative movement of beam source and object to be irradiated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14558—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters by polarisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/443—Evaluating skin constituents, e.g. elastin, melanin, water
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4869—Determining body composition
- A61B5/4875—Hydration status, fluid retention of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6844—Monitoring or controlling distance between sensor and tissue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3554—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0013—Medical image data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/082—Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/097—Devices for facilitating collection of breath or for directing breath into or through measuring devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6887—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
- A61B5/6898—Portable consumer electronic devices, e.g. music players, telephones, tablet computers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
本発明は、非接触内部計測装置、非接触内部計測方法、および内部計測結果表示システムに関する。 The present invention relates to a non-contact internal measuring device, a non-contact internal measuring method, and an internal measurement result display system.
本技術分野の背景技術として、例えば、特開2016−53528(特許文献1)がある。特許文献1には課題として「テラヘルツ波を用いて角層の水分量を測定する方法を提供することを課題とする」と記載があり、その解決手段として「本発明に係る角層の水分量計測方法は、テラヘルツ波出射面であるプリズム表面に皮膚表面を接触させ、好ましくは周波数が0.1THz以上3.0THz以下のテラヘルツ波を照射して吸収係数を求める工程を有する計測方法であって、屈折率が2.0以上、好ましくは2.5以上、さらに望ましくは3.0以上のプリズムを用いる方法である。」と記載されている。
As a background technology in this technical field, for example, there is Japanese Patent Application Laid-Open No. 2016-53528 (Patent Document 1).
また、例えば、特公昭63−19016号公報(特許文献2)には、「本発明は表皮状態測定方法、さらに詳しく言えば表皮角質の水分含有率から表皮角質の病変とか、クリーム等の効果を推定するのに適した表皮角質の状態測定方法に関する。」との記載があり、「本発明の目的は高周波を用いて表皮角質の損失(インダクタンス)を測定することができる表皮角質の状態測定方法を提供することにある。」と記載されている。 Further, for example, Japanese Patent Application Laid-Open No. 63-19016 (Patent Document 2) states, "In the present invention, the method for measuring the state of the epidermis, more specifically, the effect of epidermal keratin lesions, cream, etc. from the water content of the epidermal keratin. There is a description that "a method for measuring the state of epidermal keratin suitable for estimation" is stated, and "the object of the present invention is a method for measuring the state of epidermal keratin that can measure the loss (inductivity) of the epidermal keratin using a high frequency wave." Is to provide. "
人体の皮膚は、皮膚呼吸や発汗などにより生体内の環境や温度を調整するだけでなく、外界からの刺激(異物、細菌、微生物等)から生体の内部組織を保護する役目も担っている。このため熱中症予防やアトピー性皮膚炎によるドライスキンの防止等の健康維持の観点、また化粧品や医薬品の評価、美容など実用的な観点においても皮膚内部の水分量の情報を取得することは重要である。また、皮膚内部の水分や肌の状態(キメの細かさ)をモニタリングすることで日常的な皮膚の変化を監視することも上記の観点から重要である。 The human skin not only regulates the environment and temperature in the living body by cutaneous respiration and sweating, but also protects the internal tissues of the living body from external stimuli (foreign substances, bacteria, microorganisms, etc.). For this reason, it is important to obtain information on the amount of water inside the skin from the perspective of maintaining health, such as preventing heat stroke and preventing dry skin due to atopic dermatitis, and from the perspective of practical purposes such as evaluation of cosmetics and pharmaceuticals, and beauty. Is. It is also important from the above viewpoint to monitor daily changes in the skin by monitoring the moisture inside the skin and the condition of the skin (fineness of texture).
特許文献1の方法は、計測対象物にプリズムを接触させることで、皮膚内部の水分などを計測することができる。したがって、プリズムを接触させたときに(計測時に)皮膚の表面を傷つける可能性がある。また、特許文献1の方法では、角層の水分量以外の状態を計測することはできない。
In the method of
特許文献2の方法は、皮膚の電気的性質に着目して角層の水分量を計測するものである。したがって、皮膚の表面の状態(例えば、化粧品等が塗布された状態)によって、電気の流れが阻害または促進されることがあり、必ずしも水分量のみを反映した計測値を精度よく表皮角質の状態を測定できるものではない。
The method of
すなわち、従来技術を用いて計測対象物の内部の状態を計測するには、その計測対象物に接触して計測する必要があるが、そうすると、計測対象物の表面に影響を与えて傷を付ける可能性がある。また、電気的性質を用いて計測するならば、計測対象物の表面の状態によって計測値の正確さに支障が生ずることがある。 That is, in order to measure the internal state of the object to be measured using the prior art, it is necessary to contact the object to be measured for measurement, but this will affect the surface of the object to be measured and damage it. there is a possibility. In addition, if measurement is performed using electrical properties, the accuracy of the measured value may be hindered depending on the surface condition of the object to be measured.
そこで、本発明は、表面の状態に影響を受けずに非接触で計測対象物の内部の状態を精度よく計測できる非接触内部計測装置等を提供することを目的とする。 Therefore, an object of the present invention is to provide a non-contact internal measuring device or the like that can accurately measure the internal state of a measurement object without being affected by the surface condition.
本発明は、非接触内部計測装置に関するものであって、計測対象に向けて電磁波を照射する電磁波照射部と、前記計測対象において反射される電磁波を検出する電磁波受信部と、を備え、前記電磁波照射部は、前記計測対象に対する前記電磁波の入射角がブリュースター角近傍になるように配置され、前記電磁波受信部は、複数の電磁波検出器を備え、前記電磁波検出器のそれぞれの大きさは、前記電磁波照射部が照射する前記電磁波のビームウェストの半径以下であり、前記電磁波検出器は、前記電磁波照射部が照射する電磁波の偏波と異なる偏波の電磁波の強度を検出するように配置されている、ことを特徴とする。 The present invention relates to a non-contact internal measuring device, and includes an electromagnetic wave irradiating unit that irradiates an electromagnetic wave toward a measurement target and an electromagnetic wave receiving unit that detects an electromagnetic wave reflected by the measurement target. The irradiation unit is arranged so that the incident angle of the electromagnetic wave with respect to the measurement target is close to the Brewster angle, the electromagnetic wave receiving unit includes a plurality of electromagnetic wave detectors, and the size of each of the electromagnetic wave detectors is large. The electromagnetic wave detector is arranged so as to detect the intensity of an electromagnetic wave having a polarization different from that of the electromagnetic wave irradiated by the electromagnetic wave irradiation unit, which is equal to or less than the radius of the beam waist of the electromagnetic wave irradiated by the electromagnetic wave irradiation unit. It is characterized by being.
本発明によれば、表面の状態に影響を受けずに非接触で計測対象物の内部の状態を精度よく計測できる。 According to the present invention, the internal state of the object to be measured can be accurately measured without being affected by the state of the surface.
以下、本発明に係る非接触内部計測装置の実施形態について、図面を参照しながら説明する。本発明に係る非接触内部計測装置は、化粧や衣類、プラスチックなどを透過する周波数帯の電磁波を用いて、計測対象の内部状態を非接触で精度良く計測するものである。ここで、当該非接触内部計測装置を用いるときの計測対象は、例えば、人体である。また、当該非接触内部計測装置に用いる電磁波の周波数帯は、例えば、10GHz以上から30THz以下である。本発明に係る非接触内部計測装置は、計測対象である人体の肌の状態を、非接触、かつ肌の表面に影響を与えずに内部の状態を計測できる。また、本発明に係る非接触内部計測装置は、肌表面に化粧品などが塗布されていても、その表面状態による計測結果へ影響を少なく、精度のよい内部計測を行うことができる。したがって、本発明に係る非接触内部計測装置によれば、肌への影響を少なく、また、肌表面の状態に影響を避けながら、肌内部の水分量や肌の荒れの状態を精度よく計測することができる。 Hereinafter, embodiments of the non-contact internal measuring device according to the present invention will be described with reference to the drawings. The non-contact internal measuring device according to the present invention uses electromagnetic waves in a frequency band transmitted through makeup, clothing, plastic, etc. to measure the internal state of a measurement target in a non-contact and accurate manner. Here, the measurement target when the non-contact internal measuring device is used is, for example, the human body. The frequency band of the electromagnetic wave used in the non-contact internal measuring device is, for example, 10 GHz or more and 30 THz or less. The non-contact internal measuring device according to the present invention can measure the internal state of the human body, which is the object of measurement, in a non-contact manner without affecting the surface of the skin. Further, the non-contact internal measuring device according to the present invention can perform accurate internal measurement with little influence on the measurement result due to the surface condition even if cosmetics or the like are applied to the skin surface. Therefore, according to the non-contact internal measuring device according to the present invention, the amount of water inside the skin and the state of rough skin are accurately measured while having little influence on the skin and avoiding the influence on the condition of the skin surface. be able to.
図1は、本発明に係る非接触内部計測装置の第1実施例の構成を示す図である。図1に示すように本実施例に係る計測装置100は、計測対象物1に照射する電磁波を出射する電磁波照射部である電磁波発生部(radio transmitter)2と、計測対象物1で反射した電磁波を検出する電磁波受信部である受信部(receiver)3と、電磁波発生部2と受信部3の其々の動作 を制御する制御部(main controller)4と、受信部3が受信した電磁波の信号処理を行う信号処理部(signal processor)5と、を備える。
FIG. 1 is a diagram showing a configuration of a first embodiment of a non-contact internal measuring device according to the present invention. As shown in FIG. 1, the measuring
計測対象物1は、内部状態を計測対象領域とする物体であって、本実施例の説明においては、その厚さを「d」とする。なお、本実施例では、計測対象物1として人の肌を例にあげて示す。
The
電磁波発生部2から出射される電磁波は、例えば、10GHz以上30THz以下の周波数帯であって、計測対象物1の内部成分で吸収されやすい周波数の電磁波である。したがって、電磁波発生部2と計測対象物1の表面との間に衣類やプラスチック、化粧品などが介在していても、電磁波発生部2から出射された電磁波は計測対象物1の表面に照射され、内部にも到達する。電磁波発生部2から出射された電磁射が計測対象物1に照射されるときの入射角θは、後述するブリュースター角になるように調整されている。なお、以下の説明においては、図1に示すように、電磁波を破線の矢印線で描画することとする。
The electromagnetic wave emitted from the electromagnetic
受信部3は、計測対象物1から反射された電磁波を検出する機能を備える。受信部3において検出された電磁波の強度など検出結果は信号処理部5に通知される。
The receiving
制御部4は、電磁波発生部2の動作を制御し、計測対象物1に対して電磁波を出射させる。また、制御部4は、受信部3の動作を制御し、計測対象物1が反射した電磁波を検出する。また、制御部4は、受信部3が検出した電磁波の電磁波強度などに基づいて信号処理部5の動作を制御し、計測結果を算出させる。
The
信号処理部5は、制御部4の制御により、受信部3が検出した電磁波の強度などの情報に基づいて、計測対象物1の内部状態に関係する計測値を算出する。制御部4、信号処理部5の其々は、制御部4、信号処理部5の其々の機能を実現するサーキットやMPU(micro processor unit)、CPU(central processor unit)の他、サーキットにより構成されれてもよい。
The
計測対象物1に照射される電磁波は、p偏波(あるいはp偏光)の電磁波である。p偏波の電磁波は、屈折率が異なる境界面への入射角θがある角度になると、反射率が略零になる。この反射率が略零になる角度を「ブリュースター角」という。
The electromagnetic wave applied to the
図2は、電磁波発生部2が出射した電磁波が計測対象物1に入射する入射角θを横軸とし、計測対象物1の表面で反射した電磁波を受信部3で受信した受信(検出)信号振幅を縦軸とした場合のグラフの一例である。電磁波発生部2から出射される電磁波はp偏波(あるいはp偏光)の電磁波であるから、図3のグラフが示すように、計測対象物1の表面(屈折率の異なる境界面)において、p偏波の反射率が略零となる入射角θが存在する。この角度を「ブリュースター角」という。
In FIG. 2, the reception (detection) signal received by the receiving
計測装置100は、電磁波発生部2が出射する電磁波が計測対象物1に照射される入射角θが「ブリュースター角の近傍の値」になるように、電磁波発生部2の配置を調整したものである。なお、「ブリュースター角の近傍の値」とは、例えば、ブリュースター角を70度とした場合、±10度(60度〜80度)程度の範囲の値をいう。本発明に係る実施例では、計測対象物1へ照射される電磁波の入射角θをブリュースター角近傍になるように、電磁波発生部2と受信部3の配置を調整したものを計測装置100として用いる。この計測装置100の備える電磁波発生部2が出射した電磁波(p偏波)は、計測対象物1による表面反射がほぼ無い状態で内部へ伝播し、計測対象物1の厚さdにある境界面で反射する。この反射してきた電磁波を受信部3において受信し、信号処理を行えば、計測対象物1の内部状態を反映した計測値を得ることができる。したがって、計測装置100のように、電磁波発生部2からの電磁波の計測対象物1への入射角θをブリュースター角になるように、電磁波発生部2を配置すれば、計測対象物1の内部をセンシングすることにおいて好適である。
The measuring
受信部3は、計測対象物1の内部を伝播して反射した電磁波を受信するために、計測対象物1の表面で屈折してくる角度をブリュースター角近傍の値に相当する角度になるように配置されている。
In order to receive the electromagnetic wave propagated and reflected inside the
電磁波発生部2が出射する電磁波の強度を出射電磁波強度Iin、電磁波が計測対象物1の内部成分によって吸収されて減衰する係数を吸収係数α0とする。この場合、厚さdの計測対象物1の内部で反射してきた反射電磁波強度Ioは、以下の式1による求めることができる。The intensity of the electromagnetic wave emitted by the electromagnetic
計測装置100が計測すべき値は、計測対象物1の吸収係数α0である。しかし、式1において、計測対象物1の厚みdは必ずしも既知ではない。したがって、計測対象物1の厚みdを特定しなければ電磁波の強度に基づいて吸収係数α0を算出することはできない。ところが、計測対象物1をモニタリングして、その状態(あるいは時間)変化を観測する場合であれば、計測対象物1の厚みdは変化しない固定値とみなしてもよい。異なる計測対象物1をモニタリングするとしても、計測対象を予め管理して、計測値の時間変化率や計測時刻毎の計測値の偏差を計測値とすることで、計測対象物1の厚みdは変化しないものと同等に扱うことができる。そこで、式1における「α0・d」を新たに「α’」として考えると、式1は以下の式2のように変形することができる。The value to be measured by the measuring
式2によれば、電磁波発生部2から出射された電磁波の出射電磁波強度Iinと、受信部3が受信した電磁波の反射電磁波強度Ioを計測することで、計測対象物1の吸収係数α0を簡易的に吸収係数α’として算出できる。この吸収係数α’を算出するように計測装置100を動作させることで、計測対象物1の内部の状態を非接触で計測できるようになる。According to
次に、実施例1に係る計測装置100が備える電磁波発生部2の内部構造について説明する。図3は電磁波発生部2の内部構造の例を示す図である。図3に示すように、電磁波発生部2は、その内部に、電磁波発生器7と、少なくとも1枚のレンズ8を備える。電磁波発生器7は、制御部4の制御により所定の周波数の電磁波の出射および停止をする。電磁波発生器7には、例えば、ガンダイオード、インパットダイオード、タンネットダイオード、共鳴トンネルダイオードなどを用いることができる。
Next, the internal structure of the electromagnetic
レンズ8は、電磁波発生器7から出射された電磁波のビームウエストの半径ω0に成形するものである。計測装置100は、計測対象物1に対して非接触なので、計測時の電磁波発生部2と計測対象物1の表面との距離は安定しない可能性がある。この影響によって測定値にバラツキが生じ無いようにする必要がある。電磁波発生器7から出射された電磁波の波長をλとすると、略平行な電磁波と見なせる領域ZRは、以下の式3のようになる。The
式3から明らかなように、電磁波発生器7から出射された電磁波のビームウエストの半径ω0の2乗で、計測対象物1に照射される電磁波は発散する。計測する度に変化する計測装置100と計測対象物1との距離のずれに対処するには、距離のずれに対する計測結果への感度を低減させればよい。その対処方法としては、ビームウエストの半径ω0をある程度大きな値にすることで解決できる。As is clear from
例えば、ビームウエストを1cmとし、電磁波発生部2から出射する電磁波の周波数を0.1THz(100GHz)とすると、式3により、ZRは10.5cmとなる。この場合、計測対象物1の計測面から10.5cmの範囲内であれば、ほぼ平行な電磁波とみなせる。したがって、計測装置100と計測対象物1の表面との距離を10.5cm以内にすればよい。可搬型の計測装置100を計測対象物1との距離が10.5cm以内になるように保持しながら計測をすれば、照射される電磁波が平行な電磁波とみなせる範囲で用いることになる。これによって、計測装置100を手に持って皮膚の状態を計測するときにおいて、手振れなどによる焦点方向の距離ずれに対する計測結果への影響の感度を下げることができる。For example, assuming that the beam waist is 1 cm and the frequency of the electromagnetic wave emitted from the electromagnetic
次に、本実施例に係る計測装置100が備える受信部3の内部構造について説明する。図4は受信部3の内部構造の例を示す図である。図4に示すように、受信部3は、受信器(radio detector)9と、レンズ10を備える。受信器9は、制御部4により電磁波の受信および停止をする。レンズ10は受信器9の面上に電磁波を集光する役目を担う。受信器9には、例えば、ショットキーバリアダイオード、共鳴トンネルダイオード、高移動度トランジスタ(HEMT)、ヘテロバリアダイオード、カーボンナノチューブなどを用いることができる。
Next, the internal structure of the receiving
次に、実施例1に係る受信器9の内部構造の例について説明する。図5Aは、実施例1に係る受信器9を一つの受信素子(receiver element)90 を用いて構成した例である。図5Bは、実施例1に係る受信器9を複数の受信素子90を 用いて構成した例である。なお、図5Aおよび図5Bの図中に示す二点鎖線の矢印線Aは、受信素子90が受信可能な電磁波の偏波方向を例示している。同様に、一点鎖線の矢印線Bは、電磁波発生部2から出射された電磁波の偏波方向を例示している。
Next, an example of the internal structure of the
図5Aに示した構成例は、ビームウエストの半径ω0に成形された電磁波が、計測対象物1で反射して受信器9で受信されるとき、そのビームウエストの半径ω0’に対して1つの受信素子90で検出信号を得る構成である。図5Bに示した構成例は、ビームウエストの半径ω0’に対して、面状に配列されている複数の受信素子90の検出信号を加算器91により加算して、各検出信号の総和に相当となる検出信号を得る構成である。なお受信器9は電磁波検出器として機能する。Configuration example shown in FIG. 5A, the electromagnetic waves that are formed in the radial omega 0 of the beam waist, when received by the
式3を用いて説明したように、計測装置100を用いて計測可能な分解能は電磁波発生部2が出射する電磁波の波長λで決まる。ビームウエストの半径ω0’に対して受信器9が小さい場合、図5Aに示すように、電磁波を受信する受信面において、受信素子90をビームウエストの半径ω0’の内側に配置すればよい。As described with reference to
また、図5Bに示すように、受信器9は、複数の受信素子90を電磁波の受信面上に配列して構成してもよい。複数の受信素子90の其々は、ビームウエスト(2ω0’)に相当する直径の円の内側に配置され、各受信素子90の検出信号の総和を検出信号として取り出せばよい。これによって、電磁波の受信面積を拡大することができ、信号対雑音比の信号成分を改善することができる 。Further, as shown in FIG. 5B, the
図6Aは、計測対象物1の模式図の一例である。図6Bは、計測対象物1の内部の電磁波の伝播過程をより詳細に示す模式図の一例である。ここでは、計測対象物1の屈折率を「n1」、計測対象物1の複屈折率を「n2」とする。FIG. 6A is an example of a schematic diagram of the
図6Aに示すように、計測対象物1の入射面側の界面(屈折率n1と複屈折率n2との界面)において反射される電磁波には、反射電磁波強度Io1と反射電磁波強度Io2がある。図6Bに示すように、反射電磁波強度Io1は、屈折率n1と複屈折率n2との界面で反射された電磁波の強度である。反射電磁波強度Io2は、屈折率n1の界面を透過して計測対象物1の内部を伝播し、計測対象物1の裏面側の界面(複屈折率n2と屈折率n1との界面)で反射された電磁波の強度である。なお、計測対象物1の厚さは「d」とする。As shown in FIG. 6A, the electromagnetic waves reflected at the interface on the incident surface side of the object to be measured 1 (the interface between the refractive index n 1 and the double refractive index n 2 ) include the reflected electromagnetic wave intensity I o1 and the reflected electromagnetic wave intensity I. There is o2. As shown in FIG. 6B, the reflected wave intensity I o1 is the intensity of electromagnetic waves of reflected at the interface between the refractive index n 1 and the birefringent index n 2. The reflected electromagnetic wave intensity I o2 passes through the interface of the refractive index n 1 and propagates inside the
入射角θをブリュースター角とすれば、計測対象物1の表面反射における反射電磁波強度Io1は、略零と見なすことができる。すなわち、受信部3で受信される電磁波は、計測対象物1の内部で吸収、散乱された電磁波の強度(反射電磁波強度Io2)によるものとみなすことができる。したがって、式2に基づく演算により計測対象物1の吸収係数α’を算出し、この吸収係数α’に基づいて、計測対象物1の内部の状態を計測することができる。If the incident angle θ is the Brewster angle, the reflected electromagnetic wave intensity Io1 in the surface reflection of the
次に、計測装置100の動作の流れについて、図7のフローチャートを用いて説明する。以下、本明細書において説明するフローチャートは、本発明に係る非接触内部計測方法の実施形態の一つある。本実施例に係る各処理ステップは、計測装置100が備える制御部4が計測装置100のハードウェア資源を用いてコンピュータプログラムを実行させることにより実現されるものである。
Next, the operation flow of the measuring
まず、制御部4が電磁波発生器7に対して所定の周波数で電磁波を発生するように設定する周波数設定ステップを実行する(S701)。計測対象物1の内部成分の違いによって、内部を計測するのに好適な周波数が異なる。したがって、計測対象物1の内部成分の計測に適した周波数を任意に設定すればよい。
First, the
続いて、制御部4が電磁波発生部2に対して、所定の周波数かつ所定の強度の電磁波を計測対象物1に照射するように電磁波照射開始ステップを実行する(S702)。S702において電磁波発生部2から出射電磁波強度Iinの電磁波が出射される。Subsequently, the
続いて、制御部4が受信部3に対して、電磁波の受信を開始させる電磁波受信開始ステップを実行する(S703)。S703において、複数の受信器9が計測対象物1から反射した電磁波を受信し、反射電磁波強度Io1と反射電磁波強度Io2の総和に相当する検出信号を取得する。Subsequently, the
続いて、信号処理部5が、受信部3が算出した検出信号の総和と、電磁波発生部2から出射された電磁波の出射電磁波強度Iinを用いて、式2に基づき、計測対象物1の吸収係数α’を算出する吸収係数算出ステップを実行する(S704)。Subsequently, the
以上の処理によって、ある時刻における計測装置100を用いた計測対象物1の内部の状態を示す値を計測することができる。例えば、計測対象物1の内部が水であれば、10GHz以上から30THz以下の周波数帯のうち、どの周波数の電磁波を照射しても、吸収係数α’はピークを持たない。すなわち、計測対象物1の内部が水であれば、10GHz以上から30THz以下の周波数帯のどの周波数でもブロードなスペクトルであるため、S701において設定される周波数は、上記の範囲のいずれを用いても、水分の検出が可能である。この場合、過去に測定した計測値と比較するならば、そのときの周波数と同じ周波数を設定する方が望ましい。仮に、制御部4において過去の計測結果を保持していれば、S704の後に、水分量の変化を算出することもできる。
By the above processing, it is possible to measure a value indicating the internal state of the
仮に、計測対象物1の内部が水蒸気であれば、電磁波の周波数によっては吸収係数α’にピークが生ずる。具体的には、周波数が0.56THzや0.75Hzのときに吸収係数α’がピークになることが知られている。したがって、計測対象物1の内部が水蒸気であることが予め分かっている場合であれば、S701において制御部4が電磁波発生器7に設定する周波数を0.56THzまたは0.75Hzにすればよい。
If the inside of the object to be measured 1 is water vapor, a peak occurs in the absorption coefficient α'depending on the frequency of the electromagnetic wave. Specifically, it is known that the absorption coefficient α'peaks when the frequency is 0.56 THz or 0.75 Hz. Therefore, if it is known in advance that the inside of the
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。さらに、本実施例は計測対象物1の内部の屈折率を複屈折率n2として例示したが、吸収係数を持たない屈折率への適用も同様の構成で可能である。また、電磁波発生部2から計測対象物1に照射する電磁波の偏波は、偏波素子(フィルターなど)を用いて、p偏波を生成してもよい。The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration. Furthermore, this embodiment has been illustrated refractive index inside of the
次に、本発明に係る非接触内部計測装置の第2実施例について説明する。すでに説明した実施例1との違いは、受信器9が、計測対象物1に照射される電磁波の偏波方向と垂直な偏波方向(垂直方向)を含め少なくとも2方向以上の偏波成分に係る偏波(あるいは偏光)情報を取得できる構成を備える点にある。それ以外の構成については、すでに説明をした実施例1と同様であるので、以下は、実施例1と異なる点を中心に説明する。本実施例において、電磁波発生部2から計測対象物1に照射される電磁波はp偏波とする。
Next, a second embodiment of the non-contact internal measuring device according to the present invention will be described. The difference from the first embodiment described above is that the
図8Aは、実施例2に係る計測対象物1の模式図の一例である。図8Bは、計測対象物1の内部における偏波(偏光)方向を加味した電磁波の伝播過程を詳細に示す模式図である。図8Aおよび図8Bに示すように、計測対象物1の屈折率を「n1」、計測対象物1の複屈折率を「n2」とする。なお、図8は、電磁波の偏波方向を一点鎖線の矢印によって明示している。FIG. 8A is an example of a schematic diagram of the
ここで、反射電磁波強度Io1および反射電磁波強度I’o2のそれぞれの電磁波の偏波成分に着目すると、反射電磁波強度Io1の偏波成分は、p偏波が保持される。一方、反射電磁波強度I’o2の偏波成分は、複屈折を持つ計測対象物1の内部を伝播したことで変化する。実施例1において説明した構成では、照射される電磁波の入射角θがブリュースター角からずれた場合、反射電磁波強度Io1も受信部3で検出される。そこで、ブリュースター角からの「ずれ」に対するロバスト性を高めるには、計測対象物1の表面で反射された反射電磁波強度Io1の電磁波の偏波(p偏波)と、内部の成分による偏波の変化とを、偏波成分の情報を使って検出すればよい。このように検出することで、反射電磁波強度Io1に依存しない反射電磁波強度I’o2による検出信号のみを取り出すことが可能となる。Here, focusing on the polarization components of each of the electromagnetic wave of the reflected wave intensity I o1 and reflection electromagnetic wave intensity I 'o2, polarized component of the reflected wave intensity I o1 is, p polarization is maintained. On the other hand, the polarization component of the reflected electromagnetic wave intensity I'o2 changes as it propagates inside the
上記のような計測を可能にする本実施例に係る受信器9の内部構造について、図9を用いて説明する。図9Aは、面状に配列した複数の受信素子90により構成される受信器9の例である。図9Bは、面状に配列した複数の受信素子90により構成される受信器9の別例である。なお、図9Aおよび図9Bの図中に示す二点鎖線の矢印線Aは、受信素子90が受信可能な電磁波の偏波方向を例示している。同様に、一点鎖線の矢印線Bは、電磁波発生部2から出射された電磁波の偏波方向を例示している。
The internal structure of the
図9Aに示した構成では、電磁波発生部2から出射された電磁波の偏波と同じ偏波の電磁波と、その偏波に対して90度回転させた電磁波を検出するように受信素子90を配置している。図9Bに示した構成では、電磁波発生部2から出射された電磁波の偏波と同じ偏波の電磁波と、その偏波に対して90度回転させた電磁波と、その偏波に対して±45度回転させた電磁波と、を検出するように受信素子90を配置している。なお、図9Bに示した例では、受信素子90を放射状に配置している。
In the configuration shown in FIG. 9A, the receiving
図9Aおよび図9Bに示す受信器9は、偏波方向が同じ受信素子90からの検出信号を加算する加算器91を備える 。図9Aに示した構成では、加算器91aと、加算器91bと、を備える。加算器91aは、電磁波発生部2から計測対象物1に照射された電磁波と同じ偏波を検出する5個の受信素子90の検出信号の和を出力する。加算器91bは、電磁波発生部2から計測対象物1に照射された電磁波の偏波に対して90度回転した電磁波を検出する4個の受信素子90の検出信号の和を出力する。
The
本実施例に係る受信器9によれば、加算器91aから出力される和信号1と、加算器91bから出力される和信号2とを用いて反射電磁波強度Io1に依存しない反射電磁波強度I’o2による検出信号のみを取り出すことが可能となる。ここで、各偏波の検出に用いる受信素子90の個数は、上記の数に限定されるものではなく、計測対象物1からある偏波のみを検出するようにしてもよい。According to the
図9Bに示した構成では、受信器9は、加算器91aと、加算器91bと、加算器91cと、加算器91dと、を備える。加算器91aは、電磁波発生部2から計測対象物1に照射された電磁波と同じ偏波を検出する3個の受信素子90の検出信号の和である和信号1を出力する。加算器91bおよび加算器91cは、電磁波発生部2から計測対象物1に照射された電磁波の偏波に対して±45度回転させた電磁波を検出する各方向2個の受信素子90の検出信号の和である和信号2および和信号3を出力する。加算器91dは、電磁波発生部2から計測対象物1に照射された電磁波の偏波に対して90度回転させた電磁波を検出する2個の受信素子90の検出信号の和である和信号4を出力する。
In the configuration shown in FIG. 9B, the
本実施例に係る受信器9によれば、和信号1と、和信号2と、和信号3と、和信号4とを用いて反射電磁波強度Io1に依存しない反射電磁波強度I’o2による検出信号のみを取り出すことが可能となる。ここで、各偏波の検出に用いる受信素子90の個数は、上記の数に限定されるものではなく、計測対象物1から反射された電磁波のうち、ある偏波のみを検出するようにしてもよい。これにより、受信部3で受信される信号のうち、反射電磁波強度Io1のp偏波とそれ以外の反射電磁波強度とを偏波毎に計測することが可能となる。According to the
次に、本実施例に係る計測装置100の動作の流れについて、図10のフローチャートを用いて説明する。まず、制御部4が電磁波発生器7に対して所定の周波数で電磁波を発生するように設定する周波数設定ステップを実行する(S1001)。計測対象物1の内部成分の違いによって、内部を計測するのに好適な周波数が異なる。したがって、計測対象物1の内部成分の計測に適した周波数を任意に設定すればよい。
Next, the operation flow of the measuring
続いて、制御部4が電磁波発生部2に対して、所定の周波数であって出射電磁波強度Iinの電磁波を計測対象物1に照射するように電磁波照射開始ステップを実行する(S1002)。Subsequently, the
続いて、制御部4が受信部3に対して、電磁波の受信を開始させる電磁波受信開始ステップを実行する(S1003)。S1003において、複数の受信器9のそれぞれが受信した電磁波の強度(反射電磁波強度Io1と反射電磁波強度Io2)に基づいて、上記にて説明した和信号1から和信号4をそれぞれ算出する。Subsequently, the
続いて、信号処理部5が、S1003で算出された和信号から、各偏波の電磁波の反射電磁波強度Io1または反射電磁波強度I’o2を算出し、各偏波に係る偏波成分を算出する反射電磁波強度及び偏波成分算出ステップを実行する(S1004)。
Subsequently, the
続いて、信号処理部5が、S1004で算出された各偏光の電磁波強度に基づいて、各偏光における吸収係数α’を算出する吸収係数算出ステップを実行する(S1005)。
Subsequently, the
以上の処理によって、ある時刻における計測装置100を用いた計測対象物1の内部の状態を示す値を計測することができる。例えば、計測対象物1の内部が水であれば、10GHz以上から30THz以下の周波数帯のうち、どの周波数の電磁波を照射しても、吸収係数α’はピークを持たない。すなわち、計測対象物1の内部が水の場合、10GHz以上から30THz以下の周波数帯のどの周波数でもブロードなスペクトルであるため、S1001において設定される周波数は、上記の範囲のいずれかでよい。この場合、過去に測定した計測値と比較するならば、そのときの周波数と同じ周波数を設定する方が望ましい。仮に、制御部4において過去の計測結果を保持していれば、S1005の後に、水分量の変化や肌の荒れ(偏波方向の乱れ)を測定することもできる。
By the above processing, it is possible to measure a value indicating the internal state of the
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。さらに、本実施例は計測対象物1の内部の屈折率が複屈折率n2を示したが、吸収係数を持たない屈折率への適用も同様の構成で可能である。The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration. Furthermore, this embodiment is internal refractive index of the
また、ブリュースター角に対するロバスト性を高めるには、図9Aに示したように、受信素子90を電磁波発生部2から出射された電磁波の偏波に対して90度回転させた電磁波を検出するように配置してもよい。また、本実施例では受信素子90の数を9個としているが、これに限定されるものではなく、1個の受信素子90が複数の受信器で構成されていてもよい。
Further, in order to enhance the robustness with respect to the Brewster angle, as shown in FIG. 9A, the electromagnetic wave obtained by rotating the receiving
実施例1および実施例2で用いた図6および図8では、計測対象物1が単層の場合を例示した。計測装置100は、図11に示すような多層積層構造の場合にも適用可能である。図11Aに示すように、計測対象物1の別例である計測対象物1aが、第一層11a、第二層12a、第三層13a、のような三層であるとする。そして図11Bに示す様に、各層における屈折率はそれぞれ異なる場合、その境界面において電磁波が反射する。すなわち、受信部3において受信される反射電磁波の強度は、各層の境界面において反射された各反射電磁波の強度を合算したものになる。
In FIGS. 6 and 8 used in Example 1 and Example 2, the case where the
積層構造のものとして、例えば皮膚が挙げられる。皮膚は、角層・表皮層・真皮層・皮下組織層という層が積層された構造になっており、真皮層の7割以上を占めるコラーゲンは繊維状のたんぱく質であり、複屈折の性質がある。 Examples of the laminated structure include skin. The skin has a structure in which layers of the stratum corneum, epidermis layer, dermis layer, and subcutaneous tissue layer are laminated, and collagen, which occupies more than 70% of the dermis layer, is a fibrous protein and has birefringence properties. ..
角層中の水分量が低下し、皮膚内部の環境(状態)が乾燥した場合、水分に電磁波が吸収されない状態になる。この状態のとき、電磁波は健康な状態の皮膚に比べて、より皮膚内部まで到達する。その結果、真皮層の7割を占めるコラーゲンの複屈折による偏波の変化を含んだ電磁波が受信部3において受信されることになる。すなわち、偏波情報をモニタリングすることができ、これによって、皮膚の状態変化をモニタリングすることができる。
When the amount of water in the stratum corneum decreases and the environment (state) inside the skin becomes dry, electromagnetic waves are not absorbed by the water. In this state, the electromagnetic waves reach the inside of the skin more than the healthy skin. As a result, the receiving
一方、肌が乾燥して角層中の水で吸収される量が減り、より肌内部まで到達するため計測対象物1の厚さdを一定として見なすことはできなくなる。その場合、角層中の水分による吸収をモニタリングする偏波を、ある偏波に固定し、その偏波の強度の相対変化をモニタリングすることで、角層中の水分量変化を知ることは可能である。
On the other hand, since the skin dries and the amount absorbed by water in the stratum corneum decreases and reaches the inside of the skin more, the thickness d of the
次に、本発明に係る内部計測結果表示システムの実施形態について説明する。本実施例では、内部計測結果表示システムの一例である皮膚情報取得端末103について説明する。図12は、皮膚情報取得端末103の使用態様を示している。皮膚情報取得端末103は、使用者25の肌(図12は顔の肌)の内部状態に基づく計測をし、その結果を表示する機能を備える可搬型の情報処理装置である。皮膚情報取得端末103を使用者25の側面から少し離れたところで保持して非接触のまま所定の操作を行うことで、使用者25の肌の内部状態(水分量や肌荒れの度合い)を測定することができる。
Next, an embodiment of the internal measurement result display system according to the present invention will be described. In this embodiment, the skin
図13Aは、皮膚情報取得端末103の外観を示す図であって、計測対象物1を含む使用者25に向ける側の構成の配置を示す図である。図13Bは、計測結果が表示される側の構成の配置を示す図である。本実施例に係る皮膚情報取得端末103は、表示側とセンサ側とが別の面に配置されている例である。
FIG. 13A is a diagram showing the appearance of the skin
図13Aに示すように計測対象に向ける側には、計測装置100が備える電磁波発生部2と受信部3が配置されている。電磁波発生部2は、計測対象に向けて電磁波を出射し、受信部3は計測対象が反射した電磁波を受信する。電磁波発生部2と受信部3は、すでに説明をしたとおり、電磁波発生部2から出射された電磁波の計測対象物1に対する入射角θがブリュースター角近傍の値になり、この電磁波の反射波を受信するような位置関係において配置されている。また計測対象に向ける側には、内蔵カメラである画像撮影部101のレンズ、距離計測部102も配置されている。
As shown in FIG. 13A, an electromagnetic
そして、図13Bに示すように、計測対象に向ける面の反対面であって結果が表示される側には、表示部(ディスプレイ)16 が配置されている。図13Bにおいて表示部16には、計測対象を撮影した写真26に計測位置を示す計測位置マーカー27を重ね合わせた画像が表示される。計測位置マーカー27は、前回の計測と同じ場所を計測していることを表示する。
Then, as shown in FIG. 13B, the display unit (display) 16 is arranged on the side opposite to the surface facing the measurement target and on which the result is displayed. In FIG. 13B, the
図14は、本実施例における皮膚情報取得端末103の機能構成を示す図である。図14に基づいて、皮膚情報取得端末103の動作の概略について説明する。
FIG. 14 is a diagram showing a functional configuration of the skin
皮膚情報取得端末103は、画像撮影部(カメラ) 101で使用者25の計測部位を撮影し、その写真を解析する画像解析処理を実行することで、紫外線、乾燥、ストレスなどを解析結果として表示部16に表示することができる。また、皮膚情報取得端末103は、計測装置100により計測部位の皮膚内部の水分や肌の状態(キメの細かさ)の計測値を取得し、その計測値を解析した結果を表示部16に表示する。このときの表示は、図13Bにおいて例示したように、写真26と判定結果(或いは乾燥注意などの表示や保湿量や変化幅)を共に表示する。
The skin
画像撮影部101は、例えば、可視光波長に対する感度を持つRGBカメラ、赤外線に対する感度を持つカメラ、赤外線から可視光の波長に対する感度を持つRGBカメラなどを用いることができる。また、画像撮影部101には、可視光から紫外線の波長、或いは赤外線から可視光を経て紫外線の波長に対する感度を持つRGBカメラなどを用いることもできる。
As the
距離計測部(距離センサ)102 は、計測対象と皮膚情報取得端末103との距離を計測する。計測された距離に関するデータはデータ保持部160に記憶される。距離計測部102によって、計測時の皮膚情報取得端末103の位置を推定することができ、これによって、前回と同じ位置を計測していることを知ることができる。例えば、距離計測部102により取得された距離情報と画像撮影部101により取得された画像を解析することで計測対象が同じ場所であることを推定できる。なお、皮膚情報取得端末103が同じ位置を計測していると推定したときに、後述するサウンド部161を用いて音を発し、使用者25に知らせるようにしてもよい。
The distance measuring unit (distance sensor) 102 measures the distance between the measurement target and the skin
図14は本実施例における皮膚情報取得端末103の構成の一例を示す。図14を用いて皮膚情報取得端末103の各部について、処理の概念的な流れとともに説明する。以降、特別な指定がない場合、皮膚情報取得端末103を構成する各部はシステムバス17により接続されたシステム制御部14からの信号により制御されるものとする。すでに説明したとおり、計測装置100は,計測対象物1に対する入射角θがブリュースター角近傍の値となるように電磁波を出射する電磁波発生部2と、計測対象物1から反射した電磁波を受信する受信部3の配置が調整されている。計測装置100は、上記のように配置が調整されている構成の他に、電磁波発生部2と受信部3を制御する制御部4および受信部3で受信した電磁波の信号処理を行う信号処理部5を備える。
FIG. 14 shows an example of the configuration of the skin
入力部40(例えばタッチセンサ、ボタン)を 介して使用者25を識別する情報、計測位置に関する情報(顔、腕など)を入力する。その後、計測装置100における信号処理の結果を計測情報取得部11が取得する。式2に示したように計測対象物1である使用者25からの反射強度の比を算出は、計測値解析部18で行う。計測値解析部18では、データ保持部160に蓄積された過去のデータを参照して、ある時刻の測定値だけではなく、過去の履歴を含んだ時系列データとして、使用者25の皮膚の状態変化を解析する。ここで、例えば、データ保持部160には複数の個人を特定する番号を付加して、複数人の計測データを保持してもよい。計測値解析部18は、計測装置100の受信部3が受信した電磁波に基づく検出信号から、当該受信した電磁波の強度と、偏波成分に基づく偏波依存特性を解析する処理を実行する。
Information for identifying the
次に、画像撮影部101により使用者25の計測部位を撮影する。取得した画像の取得は画像情報取得部12で行う。さらに、計測部位との距離は距離計測部102で行い、その測定した距離の結果は、距離情報取得部13で取得する。これらの測定結果は、データ保持部160に保存される。表示処理部15は、撮影された写真から画像解析し、紫外線、乾燥、ストレスなどを表示部16に表示する。さらに、表示処理部15は、計測装置100から得られた計測部位の皮膚内部の水分や肌の状態(キメの細かさ)の計測値を解析した結果を写真26とともに表示部16に表示する。ここで、表示部16で表示する内容は、例えば、保湿量などの値や変化幅のグラフや図13Bに例示したレーダー図などである。
Next, the
さらに長期のモニタリングする場合には、測定位置を合わせて、略同一部位を計測することが望まれる。そこでシステム制御部14が、前回あるいはこれまで画像撮影部101で撮影した画像結果から測定部位を特定し、距離計測部102の距離結果から測定条件を算出し、計測位置を推定する。推定された計測位置を図13Bの計測位置マーカー27のように表示部16に表示してもよい。この場合、システム制御部14が計測位置推定部として機能する。ここで、例えば、図13Aのような構成の皮膚情報取得端末103では、使用者25が撮影しながら皮膚情報取得端末103の表示部16を確認できない。このような場合には、サウンド部161を使って、過去に取得された計測位置マーカー27が示す位置と画像撮影部101が現在撮影している位置との差分の情報を音、例えば音程の変化や音量の変化、或いは音声などを知らせることも可能である。この場合、システム制御部14が、過去の計測位置マーカー27が示す位置と現在撮影している位置の差分を演算する演算部として機能し、システム制御部14が演算した結果に基づいて上記のように差分に関連した処理を実行し計測位置を決定する。サウンド部161は、音声処理プロセッサとスピーカとを含む 。図14において、計測情報取得部11、画像情報取得部12、距離情報取得部13、計測値解析部18、システム制御部14、サウンド部161のうちの音声処理プロセッサ、及び表示処理部15は、皮膚情報取得端末103を構成するプロセッサーやサーキットにより構成される。またデータ保持部160は、皮膚情報取得端末103を構成するメモリにより構成される。
For longer-term monitoring, it is desirable to align the measurement positions and measure substantially the same site. Therefore, the
次に、皮膚情報取得端末103の動作の流れについて、図15のフローチャートを用いて説明する。まず、システム制御部14で入力部40を制御して、使用者25に、識別情報や計測部位に関する情報を入力するインターフェースを提示する入力ステップを実行する(S1501)。例えば、S1501において表示部16に入力画面を表示し、使用者25に所定の情報を入力させればよい。
Next, the operation flow of the skin
続いて、システム制御部14で画像撮影部101を制御して、使用者25の測定部位を撮影する撮影ステップを実行する(S1502)。
Subsequently, the
次に、システム制御部14で距離計測部102を制御して、使用者25の測定部位と皮膚情報取得端末103との距離を計測する距離計測ステップを実行する(S1503)。
Next, the
次に、測定した距離の結果を距離情報取得部13により取得する距離情報取得ステップを実行する(S1504)。
Next, the distance information acquisition step of acquiring the result of the measured distance by the distance
さらに、計測位置マーカー27の位置を算出するために、皮膚情報取得端末103の電磁波発生部2と受信部3の位置とS1504で得られた距離の結果から、使用者25に対する測定位置を算出する測定位置算出ステップを実行する(S1505)。S1505において、算出された測定位置が過去の測定位置と合致しているか否かを判定し、サウンド部161を用いて判定結果に対応する音を出力する音出力ステップをさらに実行してもよい。この場合、S1505における判定結果は、測定位置の推定結果と同義である。すなわち、S1505に係る処理動作は、計測位置推定ステップとしても実行される。
Further, in order to calculate the position of the
また、S1504で距離情報取得ステップを実行しているときに、並列でシステム制御部14から計測装置100の制御部4を通じて電磁波発生部2の電磁波発生器7を制御する。この制御に基づいて、出射電磁波強度Iinの電磁波を使用者25に照射する電磁波照射ステップと、使用者25に反射された電磁波の強度を取得する電磁波検出ステップと、を実行する(S1506)。Further, when the distance information acquisition step is being executed in S1504, the
S1506において取得された電磁波の強度を信号処理部5から計測情報取得部11が受け取り、システム制御部14が受け取った情報から反射電磁波強度情報と偏波情報を解析する解析ステップを実行する。さらに、式2に示したように取得された情報から、ある時刻の吸収量と偏波の情報を加え、各偏波における吸収量に換算する吸収量換算ステップを実行する(S1507)。S1507の解析段階で例えばデータ保持部160に保持された過去のデータの水分量と比較して相対的な水分量変化に換算してもよい。
The measurement
次に、S1505とS1507から得られた測定位置と強度/偏波信号の解析結果とS1502で撮影した画像を表示処理部15で処理をして、図13Bのような表示を表示部16に表示させる表示ステップを実行する(S1508)。
Next, the
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
例えば、カラー画像と距離画像とを同時に取得可能な単眼カメラを使えば、画像撮影部101と距離計測部102のような別々の機能を一つの機能で実現することができ、小型化かつコストな皮膚情報取得端末103が実現できる。また、皮膚情報取得端末103は皮膚の状態計測の専用端末に限るものではない。例えば、皮膚情報取得端末103の電磁波発生部2と受信部3に、共鳴トンネルダイオードなどの小型光源やヘテロバリアダイオードやカーボンナノチューブなどの小型検出器を用いてもよい。これによって、多様な情報処理機能を備える携帯電話(スマートフォン)と組み合わせることが可能である。
For example, if a monocular camera capable of simultaneously acquiring a color image and a distance image is used, separate functions such as the
また図14では、本実施例における皮膚情報取得端末103の構成の一例を示したが、すべての解析を皮膚情報取得端末103で行う必要は無い。例えば、図16に示すように通信部19を備えた皮膚情報取得端末1031を使うことで複雑な解析のすべて或いは一部を外部のサーバ104で行うことも可能である。外部サーバを使う場合は、S1508の統合処理をサーバ104の情報統合部23を加えることで、表示処理部15の処理負荷が低減し、表示部16のフレームレートの改善への効果が期待できる。
Further, although FIG. 14 shows an example of the configuration of the skin
図16に示す様に、サーバ104と連携する皮膚情報取得端末1031は、サーバ104とのデータ通信を行う通信部19と、計測値解析部18を持たず、同機能はサーバ104に配置される。サーバ104は、計測値解析部18の他、画像情報解析部21と、画像診断部22と、情報統合部23と、通信部20 と、を備える。計測値解析部18、画像情報解析部21、画像診断部22、及び情報統合部23は、サーバ104を構成するCPUやサーキット等のコンピュータにより構成される。通信部19、20は、ネットワーク通信装置、例えばWifi(登録商標)、8P8Cモジュラーコネクタ等の通信用コネクタなどのハードウェアを用いて構成される。
As shown in FIG. 16, the skin
画像情報解析部21は、画像情報取得部12において取得された画像(計測対象物1の画像)を解析し、その結果を出力する。
The image
画像診断部22は、画像情報解析部21の出力に基づいて、画像情報取得部12から取得された画像に対する診断を行う。
The
情報統合部23は、画像診断部22における診断の結果と、計測値解析部18の解析結果を用いて、表示部16に表示するための情報を統合して出力する。
The
次に、皮膚情報取得端末1031の動作の流れについて図17のフローチャートを用いて説明する。まず、システム制御部14で入力部40を制御して、使用者25に、識別情報や計測部位に関する情報を入力するインターフェースを提示する入力ステップを実行する(S1701)。例えば、S1701において表示部16に入力画面を表示し、使用者25に所定の情報を入力させればよい。
Next, the operation flow of the skin
続いて、システム制御部14で画像撮影部101を制御して、使用者25の測定部位を撮影する撮影ステップを実行する(S1702)。
Subsequently, the
次に、システム制御部14で距離計測部102を制御して、使用者25の測定部位と皮膚情報取得端末1031との距離を計測する距離計測ステップを実行する(S1703)。
Next, the
次に、測定した距離の結果を距離情報取得部13により取得する距離情報取得ステップを実行する(S1704)。
Next, the distance information acquisition step of acquiring the result of the measured distance by the distance
さらに、皮膚情報取得端末1031の電磁波発生部2と受信部3の位置とS1704で得られた距離の結果から、使用者25の測定位置を算出する測定位置算出ステップを実行する(S1705)。
Further, a measurement position calculation step of calculating the measurement position of the
また、S1704で距離情報取得ステップを実行しているときに、並列でシステム制御部14から制御部4を通じて電磁波発生部2の電磁波発生器7を制御して、出射電磁波強度Iinの電磁波を使用者25に照射する。照射された出射電磁波強度Iinの電磁波が使用者25により反射したことによる反射電磁波強度情報と偏波情報を取得する計測情報取得ステップを実行する(S1706)。Further, when the distance information acquisition step is being executed in S1704, the
次に、S1702で撮影された画像、S1705による測定位置の演算結果、およびS1706で得られた反射電磁波強度情報と偏波情報を通信部19と通じてサーバ104に出力するサーバ出力ステップを実行する(S1707)。その後、サーバ104において、式2に示したように取得された情報から、ある時刻の吸収量の算出と偏波の情報を加え、各偏波における吸収量に換算する吸収量換算ステップを実行する(S1708)。S1707において、通信部19を通じてサーバ104にデータを出力する際に、データ保持部160に保持されたデータの一部あるいはすべてを参照して、S1708の解析段階で水分量の相対変化に換算可能である。
Next, the server output step of outputting the image taken by S1702, the calculation result of the measurement position by S1705, and the reflected electromagnetic wave intensity information and the polarization information obtained by S1706 to the
続いて、サーバ104が、測定位置と強度/偏波信号の解析結果とS1702で撮影した画像とを図13Bに例示したような表示ができるように、表示用の情報を統合する情報統合ステップを実行する(S1709)。
Subsequently, an information integration step of integrating display information is performed so that the
次に、S1709で統合された表示用情報をサーバ104から通信部19へ送信する送信ステップを実行し(S1710)、最後に、統合情報を表示処理部15で処理した結果を表示部16に表示する表示ステップを実行する(S1711)。
Next, a transmission step of transmitting the display information integrated in S1709 from the
また、図13で例示した皮膚情報取得端末103では、画像撮影部101と表示部16が同じ面ではなく反対面に配置されている。この構造だと使用者25が画像撮影部101で撮影しているときに、表示部16を見ながら測定位置を合わせるなどの操作はできない。そこで、図18A及び図18Bに示すように、画像撮影部101と表示部16は同じ面に配置してもよい。図18A及び図18Bに示す皮膚情報取得端末103のような構成であれば、この皮膚情報取得端末103の使用者25が、表示部16を見ながら、測定位置を調整できるので利便性が向上する。
Further, in the skin
さらに、撮影しながら皮膚情報取得端末103の表示部16を確認し、表示内容を見ながらサウンド部161の機能によって、計測位置マーカー27と画像撮影部101で撮影されている現在の位置との差分を音で知らせるように動作させることもできる。さらに、使用者の感覚と計測値が異なる場合には自分で必要な計測幅を設定するようにしてもよい。
Further, the
次に、本発明に係る非接触内部計測装置の別の実施形態について説明する。図19は、本実施形態に係る計測装置100aの構成を示す図である。本実施例に係る計測装置100aは、すでに説明をした実施例1に係る計測装置100と同様の構成を備え、電磁波発生部2、受信部3、制御部4、信号処理部5、を備えている。これらの構成および配置条件などの特徴は、実施例1のものと同じであるので詳細な説明を省略する。
Next, another embodiment of the non-contact internal measuring device according to the present invention will be described. FIG. 19 is a diagram showing a configuration of the
本実施例に係る計測装置100aは、画像撮影部101と、画像情報取得部12と、距離計測部102と、距離情報取得部13と、データ保持部160と、をさらに備えている。これらの構成も、実施例3において説明した皮膚情報取得端末103が備える同符号の構成と共通し、同一の機能を備える。したがって、カラー画像と距離画像とを同時に取得可能な単眼カメラを画像撮影部101に用いるならば、画像撮影部101と距離計測部102を別々の構成として搭載する必要はない。
The measuring
実施例3で示したように、例えば、画像撮影部101によって使用者25の計測部位の写真を撮影し、撮影した画像の取得は画像情報取得部12で行う。また、使用者25の計測部位との距離は距離計測部102で行い、その測定した距離の結果は、距離情報取得部13で取得する。本実施例おいては、図19に示すように、計測装置100aと計測対象物1との目標となる距離を「L」と仮定する。
As shown in the third embodiment, for example, the
図20は、計測対象物1の表面(使用者25の計測部位に相当)と計測装置100aとの距離が目標距離Lからずれた場合の測定位置の補正について説明する図である。図20Aに示すように、計測装置100aが計測対象物1に対して目標距離Lより近づきすぎた場合、計測対象物1に対する目標照射位置に対して電磁波の照射位置がずれることになる。また、図20Bに示すように、計測装置100aが計測対象物1に対して目標距離Lから遠のいた場合も同様である。
FIG. 20 is a diagram illustrating correction of a measurement position when the distance between the surface of the measurement object 1 (corresponding to the measurement site of the user 25) and the
ここでは図20Aおよび図20Bのように、目標距離Lを原点と仮定して、「奥」と「手前」を定義する。なお、目標距離Lとは、画像撮影部101の光軸と電磁波発生部2から出射した電磁波が計測対象物1(使用者25の計測部位に相当)の表面に照射される位置と一致する場合の計測対象物1と計測装置100aの距離である。
Here, as shown in FIGS. 20A and 20B, “back” and “front” are defined assuming that the target distance L is the origin. The target distance L is a case where the optical axis of the
例えば、図20Aは、計測装置100aと計測対象物1との距離が遠くなり、測定位置が奥側にずれたケースを例示している。図20Bは、計測装置100aと計測対象物1との距離が近づき、測定位置が手前側にずれたケースを例示している。
For example, FIG. 20A illustrates a case where the distance between the measuring
図20Aに例示するケースの場合、計測位置マーカー27の位置はX’=|L-L’|tanθで算出することができる。また、図20Bに例示するケースの場合、計測位置マーカー27の位置はX”=|L-L”|tanθで算出することができる。この「X’」、「X”」を用いて、計測位置マーカー27の位置を補正する必要がある。なお、「X’」および「X”」の符号によって、計測装置100aの移動方向は判定できる。
In the case illustrated in FIG. 20A, the position of the
次に、計測装置100aの動作の流れについて、図21のフローチャートを用いて説明する。まず、制御部4が画像撮影部101を制御して、使用者25の測定部位の撮影を行う撮影ステップを実行する(S2101)。
Next, the operation flow of the
次に、制御部4が距離計測部102を制御して、計測対象物1(実施例3では使用者25の測定部位に相当)と計測装置100aとの距離を計測する距離計測ステップを実行する(S2102)。
Next, the
次に、測定した距離結果を距離情報取得部13により取得する距離情報取得ステップを実行する(S2103)。
Next, the distance information acquisition step of acquiring the measured distance result by the distance
さらに、計測装置100aの電磁波発生部2と受信部3の位置とS2103で得られた距離の結果から、図20Aおよび図20Bを用いて説明したように、「手前」または「奥」のいずれかにずれた場合の距離ずれ量を算出する。そして、距離ずれ量から測定位置を算出する測定位置算出ステップを実行する(S2104)。
Further, from the results of the positions of the electromagnetic
また、S2103において距離情報を取得しているときに、並列で制御部4が通じて電磁波発生部2の電磁波発生器7を制御し、出射電磁波強度Iinの電磁波を使用者25に照射する。そして、使用者25から反射した電磁波強度情報と偏波情報を取得する電磁波強度情報および偏波情報取得ステップを実行する(S2105)。Further, when the distance information is acquired in S2103, the
次に、式2に示したように取得された情報から、ある時刻の吸収量を算出し、偏波の情報を加え、各偏波における吸収量に換算する吸収量換算ステップを実行する(S2106)。なお、S2106でデータ保持部160に保持された過去のデータの水分量と比較して相対的な水分量変化に換算してもよい。
Next, from the information acquired as shown in
次に、S2104とS2106から得られた測定位置と強度/偏波信号の解析結果とS2101で撮影した画像とを表示処理部15で処理して、図18Bのような表示を表示部16に表示させる表示ステップを実行する(S2107)。
Next, the
次に、制御部4において、今回の計測が初期学習かどうかを判断する初期学習判断ステップを実行する(S2108)。このS2108は、計測対象物1の状態(あるいは時間)変化を観測のための基準値を取得するためのステップである。制御部4はデータ保持部160に過去の計測値が保持されているか否かを判定する。過去の計測値が保持されていれば(S2108/YES)、S2101からS2107において取得された撮影画像、測定値、強度/偏波解析結果を基準値として、データ保持部160にすでに保存されている情報を書き換える情報書換ステップを実行する(S2109)。
Next, the
一方、S2108において、過去の計測値が保持されていなければ(S2108/NO)、S2101からS2107において取得された撮影画像、測定値、強度/偏波解析結果と、データ保持部160に保存されている基準値との差分を保存する保存ステップを実行する(S2110)。S2110においては、S2101からS2107において取得された撮影画像、測定値、強度/偏波解析結果を新たな基準値として保存してもよい。
On the other hand, if the past measured values are not retained in S2108 (S2108 / NO), the captured images, measured values, intensity / polarization analysis results acquired in S2101 to S2107 are stored in the
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of the embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
また、皮膚情報取得端末103は皮膚計測の専用機に限るものではない。例えば、共鳴トンネルダイオードなどの小型光源やヘテロバリアダイオードやカーボンナノチューブなどの小型検出器を電磁波発生部2と受信部3に使えばスマートフォンと組み合わせることは可能である。さらにS2110でデータを保存する際に、例えば、スマートフォンから得られる日時や温度、天候などの情報も追加してもよい。
Further, the skin
次に、本発明に係る内部計測結果表示システムの別の実施形態について説明する。本実施例に係る呼気分析端末105は、測定対象を人間の呼気とする装置であって、電磁波を用いて非接触で、呼気に含まれる成分を分析し、表示する機能を備える。特定の疾病を罹患している患者の呼気には、健常者とは異なる成分の気体が含まれることが知られている。例えば、糖尿病の患者の呼気にはアセトンの量が多く含まれており、慢性気管支炎の患者の呼気は一酸化炭素が増加する傾向があるといわれている。このアセトンや一酸化炭素の濃度は、テラヘルツ周波数帯の電磁波を用いて計測できる。そこで、呼気分析端末105は、計測対象とする記載に適した周波数の電磁波を出射するように設定して用いる。なお、呼気分析端末105を用いて水分の計測も可能である。
Next, another embodiment of the internal measurement result display system according to the present invention will be described. The exhaled
図22は、呼気分析端末105の使用態様を示している。呼気分析端末105は、使用者25の呼気の分析をするための呼気計測システム106を備える。図22に示すように、使用者25は、呼気分析端末105に向けて息を吐くことで、使用者25の呼気に含まれる成分などを解析して表示する機能を備える可搬型の情報処理端末である。
FIG. 22 shows a usage mode of the
図23A及び図23Bは、呼気分析端末105の外観を示す図である。図23Aは、使用者25が吐いた分析対象の呼気を受ける側の模式図である。図23Bは、呼気の分析結果が表示される側の模式図である。図23Aに示すように、呼気分析端末105は、使用者25に向けられる側において、呼気計測システム106が備える電磁波発生部2と受信部3が配置されている。電磁波発生部2および受信部3は、ガス流路31の開口部を挟む状態で配置されている。また、内蔵カメラである画像撮影部101のレンズ、距離計測部102も配置されている。
23A and 23B are views showing the appearance of the
画像撮影部101および距離計測部102については、すでに説明をした実施例3と同様であるので詳細な説明を省略する。なお、画像撮影部101は、例えば、可視光波長に対する感度を持つRGBカメラ、赤外線に対する感度を持つカメラなどを適用できる。その他にも、赤外線から可視光の波長、或いは可視光から紫外線の波長、或いは赤外線から可視光を経て紫外線の波長に対する感度を持つRGBカメラなども適用できる。このように画像撮影を行うことで、画像認識で計測モードを肌であるか呼気であるかを自動的に切替えることが可能となる。また、使用者25が自ら計測モードを切替えるようにしてもよい。
Since the
図23Bに示すように呼気分析端末105は、呼気計測システム106で呼気の成分を計測し、解析した結果を表示部16に呼気計測結果として、例えば、一酸化炭素やアセトンの濃度を表示する。また、今回呼気計測システム106で測定した測定値を濃度で表示するだけではなく、例えばガス濃度測定結果28を表示部に表示してもよい。また、図18A、図18Bに示したように、呼気分析端末105の使用者25が、表示部16の表示(例えば濃度)を見ながら計測を行えるようにするために、呼気計測システム106と画像撮影部101と表示部16は同じ面にしてもよい。
As shown in FIG. 23B, the
さらに、撮影しながら、かつ、呼気分析端末105の表示部16を確認しながら、健康上の注意事項などを知らせるために、注意事項やそのデータなどの表示に加えて、サウンド部161を用いて、使用者25に音で状況を知らせてもよい。さらに、使用者の感覚と計測値が異なる場合には自分で必要な値を設定しておき、設定値との乖離が大きいときに注意事項等を知らせるようにしてもよい。
Further, while taking a picture and checking the
図24に本実施例における呼気計測システム106の構成の一例を示す。図24に示すように、呼気計測システム106は、計測対象である呼気に適した電磁波を照射する電磁波発生部2、呼気の影響により変化した電磁波を受信する受信部3、電磁波発生部2と受信部3を制御する制御部4と、受信部3で受信した電磁波の強度に基づき呼気に含まれる所定のガスの濃度を計測するガス濃度計測部29と、を備える。
FIG. 24 shows an example of the configuration of the
呼気計測システム106は、呼気の流路として機能するガス流路31と、ガス流路31と連通し、電磁波発生部2と受信部3の間を長手方向とする管状のガス濃度計測空間32と、を備える。また、ガス流路31は、呼気の流入用流路31aと呼気の排気用流路31bを含んで構成されている。流入用流路31aと排気用流路31bは、ガス濃度計測空間32の長手方向の端部付近に1対となるように配置されている。流入用流路31aと排気用流路31bの内側の開口部、すなわち、流入用流路31a及び排気用流路31bのガス濃度計測空間32との連通箇所には、呼気の気流Rで開閉する弁30がそれぞれ配置されている。流入用流路31aに配置されている流入弁30aは、呼気の流入によって内側に開くようになっている。また、排気用流路31bに配置されている排気弁30bは、ガス流路31に呼気が流入してきたときに、内部に滞留しているガスに押されて外側に開くようになっている。
The
ここで、電磁波発生部2が発する電磁波は、測定対象のガス成分に吸収され易い周波数を使う。例えば、測定対象の呼気が水蒸気であれば、例えば0.56THzや0.75THzなどが好適である。
Here, the electromagnetic wave generated by the electromagnetic
使用者25が呼気を吹き付けると、流入弁30aが呼気の勢いによって押されて開き、ガス流路31の内部に流入する。このとき、電磁波発生部2から電磁波が出射されれば、呼気の成分によって吸収または減衰した電磁波が受信部3で受診される。
When the
図25は、本実施例における呼気分析端末105の構成の一例を示す。図25を用いて、呼気分析端末105の各部について、処理の概念的な流れとともに説明する。以降、特別な指定がない場合、呼気分析端末105を構成する各部はシステムバス17により接続されたシステム制御部14からの信号により制御されるものとする。
FIG. 25 shows an example of the configuration of the
呼気計測システム106は,計測対象物である呼気に対して電磁波を照射する電磁波発生部2、呼気の影響により変化した電磁波を受信する受信部3、電磁波発生部2と受信部3を制御する制御部4および受信部3で受信した電磁波のガス濃度の濃度を計測するガス濃度計測部29、を備える。呼気計測システム106で用いられる電磁波発生部2と受信部3は、すでに説明した計測装置100で使用する電磁波発生部2と受信部3と共通のものでよい。なお、呼気計測システム106で用いる電磁波発生部2と受信部3としては、計測装置100のものとは別々の電磁波発生部2と受信部3を使ってもよい。
The exhaled
この呼気計測システム106によって計測されたガス濃度の取得は、ガス濃度情報取得部33とガス濃度値解析部34において行なう。ガス濃度情報取得部33は、式2に示したように計測対象物1である使用者25の呼気の影響による電磁波の変化を照射した電磁波と反射電磁波との強度の比からガス濃度情報を取得する。そして、ガス濃度値解析部34は、ガス濃度情報を解析して、ガス濃度を取得する。
The gas concentration measured by the
ガス濃度値解析部34では、データ保持部160に蓄積された過去のデータなどを参照して、ある時刻の測定値だけではなく、過去の履歴を含んだ時系列データとして、呼気のガス濃度変化の解析を行うこともできる。この場合、図23に示したように、表示部16にガス濃度測定結果28を表示することができる。呼気分析端末105の、ガス濃度情報取得部33、ガス濃度値解析部34、計測情報取得部11、画像情報取得部12、距離情報取得部13、計測値解析部18、システム制御部14、サウンド部161のうちの音声処理プロセッサ、及び表示処理部15は、呼気分析端末105を構成するプロセッサーやサーキットにより構成される。またデータ保持部160は、呼気分析端末105を構成するメモリにより構成される。
The gas concentration
呼気計測システム106は、電磁波の周波数を所定の範囲で変化させながら反射強度の比を測定し、ピークとなる周波数からガスの成分を特定する処理も行うことができる。また、ガスの成分が特定できれば、ガス濃度の計測を行うこともできる。
The
次に、呼気分析端末105の動作の流れについて、図26のフローチャートを用いて説明する。まず、システム制御部14で画像撮影部101を制御して、使用者25の測定部位の撮影を行う撮影ステップを実行する(S2601)。
Next, the operation flow of the
次に、システム制御部14で距離計測部102を制御して、使用者25の測定部位と呼気分析端末105との距離を計測する距離計測ステップを実行する(S2602)。
Next, the
次に、測定した距離結果を距離情報取得部13により取得する距離情報取得ステップを実行する(S2603)。
Next, the distance information acquisition step of acquiring the measured distance result by the distance
さらに、呼気分析端末105の電磁波発生部2と受信部3の位置とS2603で得られた距離の結果から、使用者25の測定位置を算出する測定位置算出ステップを実行する(S2604)。
Further, a measurement position calculation step of calculating the measurement position of the
S2603で距離情報取得ステップを実行しているときに、並列で、S2601で撮影された画像から呼気のガス濃度を測定しようとしているのか皮膚を測定しようとしているかを判断する測定物判定ステップを実行する(S2605)。S2605において、測定対象がガスであると判定されたとき(S2605/Yes)、ガス濃度を計測するフローに移行する。また、S2605において測定対象物がガスではないと判定されたときは(S2605/No)、使用者25の皮膚の水分量を計測するフローに移行する。
While executing the distance information acquisition step in S2603, in parallel, execute the measuring object determination step for determining whether the exhaled gas concentration is to be measured or the skin is to be measured from the image taken in S2601. (S2605). In S2605, when it is determined that the measurement target is gas (S2605 / Yes), the flow shifts to the flow for measuring the gas concentration. When it is determined in S2605 that the object to be measured is not gas (S2605 / No), the flow shifts to the flow of measuring the water content of the skin of the
ガス濃度を計測するフローにおいて、システム制御部14から制御部4を通じて電磁波発生部2の電磁波発生器7を制御して、出射電磁波強度Iinを使用者25に照射する。そして、制御部4で受信部3の受信器9を制御して、使用者25の呼気を通過した電磁波の電磁波強度を取得する受信電磁波強度取得ステップを実行する(S2608)。In the flow for measuring the gas concentration, the
次に、式2に示したように取得された情報から、ある時刻のガス濃度を算出するために吸光度の解析を行う吸光度解析ステップを実行する(S2609)。 Next, an absorbance analysis step of analyzing the absorbance in order to calculate the gas concentration at a certain time is executed from the information acquired as shown in Equation 2 (S2609).
ここで、例えば、使用者25の一酸化炭素を計測したい場合について詳細に説明する。一酸化炭素に対して10GHz(0.1THz)以上30THz以下の周波数帯の電磁波を照射した場合、その吸収スペクトルは、約0.4THzから2.5THzの周波数帯に等間隔で急峻な状態で現れる。したがって、例えば1.5THzの電磁波を上記にて説明した呼気計測システム106に用いると、一酸化炭素の計測において好適である。また、0.4THzから0.6THzの電磁波を用いれば、狭い周波数範囲で水蒸気と一酸化炭素の吸収スペクトルを計測することが可能になる。
Here, for example, a case where the
データ保持部160に保持された過去の計測値と比較して、S2609の解析段階でガス濃度の変化に換算してもよい。S2604とS2609から得られた測定位置と吸光度の解析結果とS2601で撮影した画像とを表示処理部15で処理して、図23Bのような表示を表示部16に行う表示ステップを実行する(S2610)。
It may be converted into a change in gas concentration at the analysis stage of S2609 by comparing with the past measured value held in the
皮膚の水分量を計測するフローにおいて、システム制御部14から制御部4を通じて電磁波発生部2の電磁波発生器7を制御して、出射電磁波強度Iinを使用者25に照射する。そして、制御部4で受信部3の受信器9を制御して、使用者25から反射した電磁波強度情報と偏波情報を取得する(S2606)。In the flow for measuring the amount of water in the skin, the
次に、式2に示したように取得された情報から、ある時刻の吸収量を算出し、偏波の情報を加え、各偏波における吸収量に換算する(S2607)。ここで、S2604とS2607から得られた測定位置と強度/偏波信号の解析結果とS2601で撮影した画像とを表示処理部15で処理して、図23Bのような表示を表示部16に行う(S2610)。
Next, from the information acquired as shown in
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
1…計測対象物、2…電磁波発生部、3…受信部、4…制御部、5…信号処理部、7…電磁波発生器、8…レンズ、9…受信器、10…レンズ、11…計測情報取得部、12…画像情報取得部、13…距離情報取得部、14…システム制御部、15…表示処理部、16…表示部、17…システムバス、18…計測値解析部、19…通信部、20…通信部、21…画像情報解析部、22…画像診断部、23…情報統合部、25…使用者、26…写真、27…計測位置マーカー、28…ガス濃度測定結果、29…ガス濃度計測部、30…弁、31…ガス流路、32…ガス濃度計測空間、33…ガス濃度情報取得部、34…ガス濃度値解析部、40…入力部、90…受信素子、91…加算器、91a…加算器、91b…加算器、91c…加算器、91d…加算器、100…計測装置、100a…計測装置、101…画像撮影部、102…距離計測部、103…皮膚情報取得端末、104…サーバ、105…呼気分析端末、106…呼気計測システム、160…データ保持部、161…サウンド部、1031…皮膚情報取得端末 1 ... Measurement object, 2 ... Electromagnetic wave generator, 3 ... Receiver unit, 4 ... Control unit, 5 ... Signal processing unit, 7 ... Electromagnetic wave generator, 8 ... Lens, 9 ... Receiver, 10 ... Lens, 11 ... Measurement Information acquisition unit, 12 ... Image information acquisition unit, 13 ... Distance information acquisition unit, 14 ... System control unit, 15 ... Display processing unit, 16 ... Display unit, 17 ... System bus, 18 ... Measurement value analysis unit, 19 ... Communication Department, 20 ... Communication unit, 21 ... Image information analysis unit, 22 ... Image diagnosis unit, 23 ... Information integration unit, 25 ... User, 26 ... Photograph, 27 ... Measurement position marker, 28 ... Gas concentration measurement result, 29 ... Gas concentration measurement unit, 30 ... valve, 31 ... gas flow path, 32 ... gas concentration measurement space, 33 ... gas concentration information acquisition unit, 34 ... gas concentration value analysis unit, 40 ... input unit, 90 ... receiving element, 91 ... Adder, 91a ... Adder, 91b ... Adder, 91c ... Adder, 91d ... Adder, 100 ... Measuring device, 100a ... Measuring device, 101 ... Imaging unit, 102 ... Distance measuring unit, 103 ... Skin information acquisition Terminal, 104 ... server, 105 ... breath analysis terminal, 106 ... breath measurement system, 160 ... data holding unit, 161 ... sound unit, 1031 ... skin information acquisition terminal
Claims (11)
前記計測対象において反射される電磁波を検出する電磁波受信部と、を備え、
前記電磁波照射部は、前記計測対象に対する前記電磁波の入射角がブリュースター角近傍になるように配置され、
前記電磁波受信部は、複数の電磁波検出器を備え、
前記電磁波検出器のそれぞれの大きさは、前記電磁波照射部が照射する前記電磁波のビームウェストの半径以下であり、
前記電磁波検出器は、前記電磁波照射部が照射する電磁波の偏波と異なる偏波の電磁波の強度を検出するように配置されている、
ことを特徴とする非接触内部計測装置。 An electromagnetic wave irradiation unit that irradiates an electromagnetic wave toward the measurement target,
An electromagnetic wave receiving unit for detecting an electromagnetic wave reflected by the measurement target is provided.
The electromagnetic wave irradiation unit is arranged so that the incident angle of the electromagnetic wave with respect to the measurement target is close to the Brewster angle.
The electromagnetic wave receiving unit includes a plurality of electromagnetic wave detectors, and has a plurality of electromagnetic wave detectors.
The size of each of the electromagnetic wave detectors is equal to or less than the radius of the beam waist of the electromagnetic wave irradiated by the electromagnetic wave irradiation unit.
The electromagnetic wave detector is arranged so as to detect the intensity of an electromagnetic wave having a polarization different from that of the electromagnetic wave irradiated by the electromagnetic wave irradiation unit.
A non-contact internal measuring device characterized by the fact that .
前記電磁波検出器は、前記電磁波照射部が照射する電磁波の偏波方向と同じ偏波方向に垂直な偏波方向の成分を含め少なくとも2方向以上の偏波成分を検出するように配置されている、
ことを特徴とする非接触内部計測装置。 The non-contact internal measuring device according to claim 1.
The electromagnetic wave detector is arranged so as to detect polarization components in at least two directions including a component in a polarization direction perpendicular to the polarization direction of the electromagnetic wave irradiated by the electromagnetic wave irradiation unit. ,
A non-contact internal measuring device characterized by the fact that.
前記計測対象において反射される電磁波を検出する電磁波受信部と、
を備え、
前記電磁波照射部は、前記電磁波受信部で検出される電磁波の偏波成分のうち当該前記電磁波照射部が照射する電磁波の偏波成分と同じ偏波成分が少なくなるように配置されている非接触内部計測装置を含み、
前記電磁波受信部で受信した信号から強度および偏波依存特性を解析する解析部と、
前記計測対象との距離を計測するための計測部と、
前記計測部から得られる距離から計測位置を推定する計測位置推定部と、
前記計測対象の撮影画像を表示する表示部と、をさらに有し、
前記計測部から得られる距離から前記計測位置推定部により推定された計測位置を、前記解析部の解析結果とともに前記表示部に表示する、
ことを特徴とする内部計測結果表示システム。 An electromagnetic wave irradiation unit that irradiates an electromagnetic wave toward the measurement target,
An electromagnetic wave receiver that detects electromagnetic waves reflected by the measurement target, and
With
The electromagnetic wave irradiating unit is arranged so that the polarization component of the electromagnetic wave detected by the electromagnetic wave receiving unit is less than the polarization component of the electromagnetic wave irradiated by the electromagnetic wave irradiating unit. Including internal measuring device
An analysis unit that analyzes the intensity and polarization-dependent characteristics from the signal received by the electromagnetic wave reception unit, and
A measuring unit for measuring the distance to the measurement target,
A measurement position estimation unit that estimates the measurement position from the distance obtained from the measurement unit, and a measurement position estimation unit.
It further has a display unit for displaying a captured image to be measured, and has a display unit.
The measurement position estimated by the measurement position estimation unit from the distance obtained from the measurement unit is displayed on the display unit together with the analysis result of the analysis unit.
An internal measurement result display system characterized by this.
前記計測対象を撮影するための画像撮影部をさらに含む、
ことを特徴とする内部計測結果表示システム。 The internal measurement result display system according to claim 3.
An image capturing unit for photographing the measurement target is further included.
An internal measurement result display system characterized by this.
前記計測部において計測された距離、前記計測位置推定部において推定された計測位置に関するデータを保持するデータ保持部と、前記データ保持部に保持されている前記計測位置と現在撮影されている計測位置との差分を演算する演算部と、をさらに有し、
前記演算部の結果に基づいて、前記計測位置を決定する、
ことを特徴とする内部計測結果表示システム。 The internal measurement result display system according to claim 3.
A data holding unit that holds data related to the distance measured by the measuring unit and the measured position estimated by the measuring position estimation unit, the measuring position held by the data holding unit, and the currently photographed measurement position. It also has an arithmetic unit that calculates the difference between
The measurement position is determined based on the result of the calculation unit.
An internal measurement result display system characterized by this.
前記計測位置の推定の結果に係る情報を音で知らせるサウンド部と、
前記計測対象の計測位置を入力するための入力部と、をさらに有し、
前記計測部から得られる距離から前記計測位置推定部により推定された計測位置と前記入力部に入力された測定位置との差分の情報を前記サウンド部の音で知らせる機能を有する、
ことを特徴とする内部計測結果表示システム。 The internal measurement result display system according to claim 3.
A sound unit that informs information related to the estimation result of the measurement position by sound, and
Further having an input unit for inputting the measurement position of the measurement target,
It has a function of notifying the information of the difference between the measurement position estimated by the measurement position estimation unit and the measurement position input to the input unit from the distance obtained from the measurement unit by the sound of the sound unit.
An internal measurement result display system characterized by this.
前記計測対象において反射される電磁波を検出する電磁波検出ステップと、
受信した信号から強度および偏波依存特性を解析する解析ステップと、
前記計測対象との距離を計測する計測ステップと、
前記計測対象との距離から計測位置を推定する計測位置推定ステップと、
前記推定した計測位置を、前記解析ステップにおける結果とともに表示する表示ステップと、を有し、
前記電磁波照射ステップにおいて、前記電磁波検出ステップにおいて検出される電磁波の偏波成分のうち、計測対象に照射する電磁波の偏波成分と同じ成分が少なくなるように前記電磁波を照射する、
ことを特徴とする非接触内部計測方法。 An electromagnetic wave irradiation step that irradiates an electromagnetic wave toward the measurement target,
An electromagnetic wave detection step for detecting an electromagnetic wave reflected by the measurement target, and
Analysis steps to analyze the intensity and polarization-dependent characteristics from the received signal,
A measurement step for measuring the distance to the measurement target,
A measurement position estimation step that estimates the measurement position from the distance to the measurement target, and
It has a display step that displays the estimated measurement position together with the result in the analysis step.
In the electromagnetic wave irradiation step, the electromagnetic wave is irradiated so that the same component as the polarization component of the electromagnetic wave to be irradiated to the measurement target is reduced among the polarization components of the electromagnetic wave detected in the electromagnetic wave detection step.
A non-contact internal measurement method characterized by the fact that.
前記電磁波照射ステップにおいて、前記計測対象に対する入射角がブリュースター角近傍になるように前記電磁波を照射する、
ことを特徴とする非接触内部計測方法。 The non-contact internal measurement method according to claim 7.
In the electromagnetic wave irradiation step, the electromagnetic wave is irradiated so that the angle of incidence on the measurement target is close to the Brewster's angle.
A non-contact internal measurement method characterized by the fact that.
前記電磁波検出ステップにおいて検出される電磁波の偏波成分のうち、計測対象に照射する電磁波の偏波方向と垂直方向の偏波成分と、当該垂直方向の偏波成分と異なる偏波成分を含め、少なくとも2方向以上の偏波方向に係る偏波成分を検出する、
ことを特徴とする非接触内部計測方法。 The non-contact internal measurement method according to claim 7.
Among the polarization components of the electromagnetic wave detected in the electromagnetic wave detection step, the polarization component in the direction perpendicular to the polarization direction of the electromagnetic wave irradiating the measurement target and the polarization component different from the polarization component in the vertical direction are included. Detects polarization components related to at least two or more polarization directions,
A non-contact internal measurement method characterized by the fact that.
計測対象を撮影する撮影ステップと、を含み、
前記表示ステップにおいて、前記推定した計測位置を、前記解析ステップにおける結果および撮影した前記計測対象の画像とともに表示する、
ことを特徴とする非接触内部計測方法。 The non-contact internal measurement method according to claim 7.
Including shooting steps to shoot the measurement target,
In the display step, the estimated measurement position is displayed together with the result in the analysis step and the captured image of the measurement target.
A non-contact internal measurement method characterized by the fact that.
前記計測位置推定ステップにおける推定結果を音で情報を知らせる音出力ステップと、
前記計測対象における測定位置を入力する入力ステップと、を含み、
前記音出力ステップにおいて、前記推定した計測位置と前記入力された測定位置との差分の示す音を出力する、
ことを特徴とする非接触内部計測方法。 The non-contact internal measurement method according to claim 7.
A sound output step that informs information of the estimation result in the measurement position estimation step by sound, and
Including an input step for inputting a measurement position in the measurement target.
In the sound output step, the sound indicated by the difference between the estimated measurement position and the input measurement position is output.
A non-contact internal measurement method characterized by the fact that.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017195240 | 2017-10-05 | ||
JP2017195240 | 2017-10-05 | ||
PCT/JP2018/037281 WO2019070042A1 (en) | 2017-10-05 | 2018-10-04 | Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019070042A1 JPWO2019070042A1 (en) | 2020-10-22 |
JP6874146B2 true JP6874146B2 (en) | 2021-05-19 |
Family
ID=65994882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019547021A Active JP6874146B2 (en) | 2017-10-05 | 2018-10-04 | Non-contact internal measuring device, non-contact internal measuring method, and internal measurement result display system |
Country Status (4)
Country | Link |
---|---|
US (2) | US11430581B2 (en) |
JP (1) | JP6874146B2 (en) |
CN (1) | CN111183353A (en) |
WO (1) | WO2019070042A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111183353A (en) * | 2017-10-05 | 2020-05-19 | 麦克赛尔株式会社 | Non-contact internal measurement device, non-contact internal measurement method, and internal measurement result display system |
WO2024006716A1 (en) | 2022-06-30 | 2024-01-04 | The Procter & Gamble Company | Absorbent articles with absorbent chassis and belt bonding arrangements and frangible pathways |
CN116108603B (en) * | 2023-04-12 | 2023-06-27 | 中国空气动力研究与发展中心计算空气动力研究所 | Method for constructing wind tunnel air supply valve unit level information physical system |
CN118347971B (en) * | 2024-06-18 | 2024-08-23 | 石家庄康力药业有限公司 | Finished product quality detection method and detection system for tablets |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2563271B2 (en) | 1986-07-11 | 1996-12-11 | 松下電器産業株式会社 | Hot water mixing controller |
JPS63128211A (en) | 1986-11-19 | 1988-05-31 | Hitachi Ltd | Spacing measuring method |
US4748329A (en) * | 1987-02-17 | 1988-05-31 | Canadian Patents And Development Ltd. | Method for on-line thickness monitoring of a transparent film |
JPH09329542A (en) | 1996-06-10 | 1997-12-22 | Kao Corp | Luster measuring method, and apparatus therefor |
JP2001083080A (en) * | 1999-09-13 | 2001-03-30 | Hitachi Ltd | Crystal defect measuring device |
US7545503B2 (en) | 2005-09-27 | 2009-06-09 | Verity Instruments, Inc. | Self referencing heterodyne reflectometer and method for implementing |
US7755808B2 (en) | 2005-11-17 | 2010-07-13 | Xerox Corporation | Document scanner dust detection systems and methods |
JP2008064691A (en) | 2006-09-08 | 2008-03-21 | Moritex Corp | Apparatus for measuring optical anisotropy parameter |
JP4918679B2 (en) | 2006-12-26 | 2012-04-18 | 国立大学法人金沢大学 | Method and apparatus for measuring thickness of transparent layer |
JP2008175794A (en) | 2007-01-17 | 2008-07-31 | Tohoku Univ | Reflection measuring apparatus and method |
WO2009027898A1 (en) * | 2007-08-24 | 2009-03-05 | Koninklijke Philips Electronics N.V. | Method and apparatuses for measuring skin properties |
DE102008013821B4 (en) * | 2008-03-10 | 2010-11-18 | Westphal, Peter, Dr. | Method and device for measuring dissolved substances in human or animal ocular aqueous humor |
JP5648193B2 (en) * | 2009-02-13 | 2015-01-07 | 国立大学法人京都工芸繊維大学 | Interference measuring apparatus and interference measuring method |
US8564777B1 (en) * | 2010-08-16 | 2013-10-22 | J.A. Woollam Co., Inc. | System and method for compensating detector non-idealities |
JP5706226B2 (en) | 2011-05-09 | 2015-04-22 | 株式会社 資生堂 | Evaluation method for collagen state in skin and evaluation method for skin aging |
DE102012102756A1 (en) * | 2012-03-30 | 2013-10-02 | Hseb Dresden Gmbh | Method for detecting buried layers |
JP2013228330A (en) * | 2012-04-26 | 2013-11-07 | Jfe Steel Corp | Film thickness measuring apparatus and film thickness measuring method |
JP6074908B2 (en) * | 2012-04-26 | 2017-02-08 | Jfeスチール株式会社 | Surface inspection apparatus and defect measurement method |
JP6454498B2 (en) | 2014-09-03 | 2019-01-16 | 国立大学法人京都大学 | Method for measuring skin stratum corneum moisture content using terahertz waves |
US9770213B2 (en) * | 2014-10-30 | 2017-09-26 | Koninklijke Philips N.V. | Device, system and method for extracting physiological information |
US10031457B2 (en) * | 2015-01-21 | 2018-07-24 | Ricoh Company, Ltd. | Optical sensor, recording medium discrimination device, and image forming apparatus |
WO2016121540A1 (en) | 2015-01-29 | 2016-08-04 | 国立大学法人香川大学 | Spectrometry device and spectrometry method |
US10799129B2 (en) * | 2016-01-07 | 2020-10-13 | Panasonic Intellectual Property Management Co., Ltd. | Biological information measuring device including light source, light detector, and control circuit |
JP6744005B2 (en) | 2016-03-02 | 2020-08-19 | 国立大学法人 香川大学 | Spectrometer |
CN111183353A (en) * | 2017-10-05 | 2020-05-19 | 麦克赛尔株式会社 | Non-contact internal measurement device, non-contact internal measurement method, and internal measurement result display system |
-
2018
- 2018-10-04 CN CN201880064797.8A patent/CN111183353A/en active Pending
- 2018-10-04 US US16/753,299 patent/US11430581B2/en active Active
- 2018-10-04 JP JP2019547021A patent/JP6874146B2/en active Active
- 2018-10-04 WO PCT/JP2018/037281 patent/WO2019070042A1/en active Application Filing
-
2022
- 2022-07-25 US US17/872,653 patent/US11721452B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2019070042A1 (en) | 2020-10-22 |
US11721452B2 (en) | 2023-08-08 |
US20220384065A1 (en) | 2022-12-01 |
US20200243211A1 (en) | 2020-07-30 |
US11430581B2 (en) | 2022-08-30 |
CN111183353A (en) | 2020-05-19 |
WO2019070042A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6874146B2 (en) | Non-contact internal measuring device, non-contact internal measuring method, and internal measurement result display system | |
US20210264598A1 (en) | Human detection device equipped with light source projecting at least one dot onto living body | |
US10524671B2 (en) | Electronic device that computes health data | |
US20210153744A1 (en) | Contactless system and method for assessing and/or determining hemodynamic parameters and/or vital signs | |
US8182425B2 (en) | Method for measuring skin hydration | |
EP2005886B1 (en) | Method and apparatus for measuring skin texture | |
US7417727B2 (en) | Method and apparatus for standoff detection of liveness | |
CN106793950B (en) | Non-invasive in situ glucose level detection using electromagnetic radiation | |
KR20190057743A (en) | Apparatus and method for estimating bio-information | |
US20160045143A1 (en) | Apparatus for noninvasively measuring bio-analyte and method of noninvasively measuring bio-analyte | |
TWI603081B (en) | System for physiologic parameter examination and method for test strip recognition and interpretation | |
Zhang et al. | Physiological model using diffuse reflectance spectroscopy for nonmelanoma skin cancer diagnosis | |
KR20230009202A (en) | Apparatus and method for estimating blood glucose | |
WO2019117032A1 (en) | Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method | |
US20190274547A1 (en) | System and method of noncontact vital signs monitoring through light sensing | |
US20160192885A1 (en) | Apparatus and method for measuring biological signal | |
JP7323682B2 (en) | Non-contact gas measuring device, non-contact gas measuring system, portable terminal, and non-contact gas measuring method | |
Tesselaar et al. | Objective assessment of skin microcirculation using a smartphone camera | |
US20240245315A1 (en) | Contactless sensor-driven device, system and method enabling cardiovascular and respiratory assessment based on face and hand imaging | |
Rodriguez et al. | Experimental integration of a spatial frequency domain spectroscopy and pulse cam system for quantifying changes in skin optical properties and vasculature among individuals with obesity | |
Lisenko et al. | Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin | |
Lisenko et al. | Systems for real-time optical diagnostics of biological objects | |
KR20190019378A (en) | Apparatus and method for assessment spectrum quality, appratus for estimating bioinformation | |
JP2019191125A (en) | Non-contact gas measurement device, non-contact gas measurement system, and non-contact gas measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200331 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201104 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6874146 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |