WO2019117032A1 - Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method - Google Patents

Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method Download PDF

Info

Publication number
WO2019117032A1
WO2019117032A1 PCT/JP2018/045075 JP2018045075W WO2019117032A1 WO 2019117032 A1 WO2019117032 A1 WO 2019117032A1 JP 2018045075 W JP2018045075 W JP 2018045075W WO 2019117032 A1 WO2019117032 A1 WO 2019117032A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
gas
unit
electromagnetic wave
measured
Prior art date
Application number
PCT/JP2018/045075
Other languages
French (fr)
Japanese (ja)
Inventor
美沙子 河野
幸修 田中
啓太 山口
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2019117032A1 publication Critical patent/WO2019117032A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Definitions

  • the present invention relates to a non-contact gas measurement device, a non-contact gas measurement system, a portable terminal, and a non-contact gas measurement method, and in particular to a technique effective for non-contact measurement of gas on the skin surface.
  • Patent Document 1 Japanese Patent Application Laid-Open Nos. 2002-263072
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-172543
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-169658
  • Patent Document 1 describes, as a problem, "a device for measuring the amount of water evaporation which is capable of measurement with necessary and sufficient accuracy and which is compact, lightweight, inexpensive and easy to handle", and the solution thereof
  • the circuit board is placed inside the frame to be in contact with the skin surface, and only one capacitive polymer thin film humidity sensor is placed on the circuit board as a humidity detection element.
  • the drive circuit of the humidity detection element is also the circuit board
  • the amount of water evaporation is calculated from the circuit output taken out through the handle shaft, and since only one humidity detection element is used, the number of parts is reduced as compared with the case where two are used and The cost of coordination and maintenance will be low. ”
  • Patent Document 2 describes, as a problem, "a device for estimating the amount of transcutaneous water evaporation simply and accurately and further evaluating the barrier function of the skin based on this," and means for solving the problem.
  • the main body an application electrode which can apply a plurality of alternating voltages installed in the main body, and any one of susceptance (B), admittance (Y) or conductance (G) which is installed in the main body” Amount of transdermal water loss based on any of the detected susceptance (B), admittance (Y), or conductance (G) contained in the detection electrode 13, the display unit installed in the body unit, and the body unit And a calculator configured to calculate a characteristic value (P) that can be an estimated value of, to estimate the amount of transepidermal water loss based on the calculated characteristic value (P), and to evaluate the skin barrier function based on this.
  • P characteristic value
  • Patent Document 3 describes, as a problem, “Analyze gas supplied from a gas supply site efficiently.”
  • “capture film 3 for capturing gas for example, porous) (E.g., organic polymers, etc.), such that the gas captured by the capture film (e.g., skin gas generated from the human body) interacts with the terahertz wave or infrared light generated from the generator.
  • It has a capturing part (a member composed of a capturing membrane and a collecting container) in which the membrane can be placed, and the capturing part can be in contact with a site (for example, a human body such as an arm or a hand) which supplies the gas.
  • the structure is provided so as to maintain the capture membrane and the site 1 in a non-contact state.
  • JP 2002-263072 A JP, 2010-172543, A JP, 2010-169658, A
  • the skin of the human body not only regulates the environment and temperature in the living body by skin respiration and perspiration, but also plays a role of protecting the internal tissues of the living body from external stimuli such as foreign matter, bacteria, and microorganisms.
  • the amount of water inside the skin and the amount of water transpired from the skin It is important to obtain information on the so-called transdermal water loss.
  • the amount of transcutaneous water loss is of great interest as an index for evaluating the skin barrier function that protects the living body from external stimuli and protects the water from transpiration out of the body.
  • Patent Document 1 In the measurement of the amount of percutaneous water evaporation, there is known a technique (for example, Patent Document 1) of measuring the amount of water loss transpiration from the skin surface using, for example, a humidity sensor or the like. This technique requires a mechanism for stabilizing a humidity sensor that measures the amount of water loss from the skin surface. As a result, there is a problem that the measuring equipment becomes expensive and large. In addition, since it is a contact type in which a part of the measurement device is brought into contact with an object, ie, the skin, measurement may affect or scratch the skin surface of the patient at the time of measurement. Considering the influence on the patient's skin etc., the measurement point is limited.
  • Patent Document 2 there is a technique (for example, Patent Document 2) or the like for evaluating the barrier function of the skin at a small size and at low cost by measuring the electrical property of the skin. Similar to Patent Document 1 described above, in order to measure the electrical property of the object, it is necessary to bring a part of the measuring device into contact with the skin which is the measuring part.
  • An object of the present invention is to provide a technique capable of measuring a gas from an object with a simple configuration without affecting the skin or the like of the user.
  • a typical noncontact gas measurement system has a noncontact gas measurement device, an analysis unit, and a system control unit.
  • a non-contact gas measuring device measures the gas to be measured emitted from an object using electromagnetic waves.
  • the analysis unit analyzes the gas to be measured from the measurement value measured by the non-contact gas measurement device.
  • the system control unit controls the operation of the noncontact gas measurement device and the analysis unit.
  • the non-contact gas measurement device includes a reception oscillation unit and a control unit.
  • the reception oscillation unit emits and detects an electromagnetic wave.
  • the control unit controls the reception oscillation unit.
  • the receiving and oscillating unit irradiates the electromagnetic wave to the object based on the command of the control unit, and outputs the value of the voltage or current, which changes according to the intensity of the electromagnetic wave reflected from the object, to the analysis unit as a measured value.
  • the reception oscillation unit is formed of an electronic device that oscillates an electromagnetic wave in the negative resistance region.
  • the noncontact gas measuring device and the noncontact gas measuring system can be miniaturized.
  • FIG. 5 is an explanatory drawing showing an example of the configuration of the non-contact gas measurement device according to the first embodiment. It is explanatory drawing which shows an example of the characteristic in the receiving oscillator which the non-contact gas measuring device of FIG. 1 has. It is a flowchart which shows an example in operation
  • FIG. 5 is a schematic perspective view showing an example of the non-contact gas measurement system of FIG. 4; It is explanatory drawing which shows an example at the time of using the non-contact gas measurement system of FIG.
  • FIG. 16 is an explanatory drawing showing an example of the configuration of a reception oscillation unit and an information correction unit according to Embodiment 2;
  • FIG. 16 is an explanatory drawing showing an example of the configuration of a portable terminal according to Embodiment 3; It is explanatory drawing which shows an example of the outline of the portable terminal of FIG. It is explanatory drawing which shows an example of the display by the input-output part which the portable terminal of FIG. 15 has. It is a flowchart which shows an example in operation
  • FIG. 1 is an explanatory view showing an example of the configuration of the non-contact gas measurement apparatus 100 according to the first embodiment.
  • the non-contact gas measurement apparatus 100 measures the measurement target gas 601 emitted from the object 600 using an electromagnetic wave.
  • This non-contact gas measuring apparatus 100 has a receiving / oscillating unit 101 and a control unit 110 as shown in FIG.
  • the reception oscillation unit 101 has a configuration in which oscillation and reception of an electromagnetic wave are simplified, and emits and detects the electromagnetic wave.
  • the reception / oscillation unit 101 has a transmitter / receiver 102 and a lens 103.
  • the transmitter / receiver 102 oscillates and receives an electromagnetic wave.
  • the lens 103 collimates the electromagnetic wave oscillated by the transmitter / receiver 102 to the object 600 and condenses the reflected wave from the object 600.
  • the electromagnetic wave oscillated by the transmitter / receiver 102 is irradiated perpendicularly to the object 600 so that it passes through the gas 601 to be measured and the reflected wave returns to the transmitter / receiver 102.
  • the object 600 is, for example, the skin of the user.
  • Control unit 110 controls reception oscillation unit 101.
  • the electromagnetic wave oscillated by the reception oscillation unit 101 uses a frequency that is easily absorbed by the gas.
  • a frequency such as about 0.56 THz or about 0.75 THz is preferable.
  • the transmitter / receiver 102 is an electronic device that oscillates an electromagnetic wave in, for example, a negative resistance region, and is, for example, a resonant tunneling diode.
  • FIG. 1 shows the resonant tunneling diode for the sake of convenience, the oscillator is not limited to this.
  • a device that oscillates an electromagnetic wave such as a laser may be used.
  • an oscillator that oscillates a frequency of about 0.56 THz or about 0.75 THz there is, for example, a quantum cascade laser or a resonant tunneling diode.
  • FIG. 2 is an explanatory view showing an example of the characteristics of the transmitter / receiver 102 which the non-contact gas measurement apparatus 100 of FIG. 1 has.
  • FIG. 2 shows the relationship between the intensity of the reflected wave from the object 600 and the current flowing between the terminals of the transmitter / receiver 102, and the electromagnetic wave oscillated from the transmitter / receiver 102 is regarded as the reflected wave as the reflected wave.
  • the electromagnetic wave oscillated from the transmitter / receiver 102 is regarded as the reflected wave as the reflected wave.
  • an electromagnetic wave is oscillated in the negative resistance region by applying a specific voltage between the terminals of the resonant tunneling diode.
  • Non-Patent Document Masahiro Asada and Safumi Suzuki 2015 Jpn. J. Appl. Phys. 54 070309 describes that when the reflectivity of the reflector is different, the current flowing between the terminals of the oscillator changes.
  • the present inventor notes that this phenomenon can be applied to non-contact gas measurement by making the thing shown as the reflectance of the reflecting object in the above-mentioned non-patent document be the attenuation due to the absorption of electromagnetic waves in the gas to be measured. did.
  • the transmitter / receiver 102 oscillates an electromagnetic wave, and a difference occurs in the current flowing through the transmitter / receiver 102 according to the intensity of the reflected wave that is reflected from the object 600 and returns to the transmitter / receiver 102. . Since the intensity of the reflected wave changes according to the amount of the gas to be measured 601 in the electromagnetic wave path, it becomes possible to perform gas measurement using the difference in current or voltage applied to the transmitter / receiver 102.
  • the measurement target gas 601 is measured from the correlation between the absorption by the gas and the amount. It is possible to
  • the graph shown in FIG. 2 shows an example, and the data structure is not limited to this, and the configuration showing the relationship between the measured current value and the gas to be measured, for example, information such as table configuration If it is ⁇ Operation example of gas measurement device>
  • FIG. 3 is a flow chart showing an example of the operation of gas measurement by the non-contact gas measurement apparatus 100 of FIG.
  • control unit 110 controls the reception oscillation unit 101 to irradiate an electromagnetic wave of a preset frequency to the target object 600 to be measured (step S101).
  • step S101 since the non-contact gas measurement apparatus 100 need only irradiate an electromagnetic wave toward the object 600, there is no need to bring the non-contact gas measurement apparatus 100 into close contact with the object 600 such as skin. As shown in FIG. 1, the gas measurement is performed with a distance between the non-contact gas measurement device 100 and the object 600.
  • the electromagnetic wave emitted perpendicularly to the object 600 passes through the gas 601 to be measured and is irradiated onto the object 600, and the reflected wave is collected on the lens 103 and returns to the transmitter / receiver 102.
  • the control unit 110 acquires the value of the current or voltage according to the intensity of the reflected wave received by the reception oscillation unit 101 (step S102).
  • gas measurement can be performed without bringing the non-contact gas measurement apparatus 100 into close contact with the object 600 as described above, so that the influence on the skin surface of the patient can be reduced during measurement.
  • the measurement position is not limited, and accurate measurement results can be easily obtained.
  • the intensity of the reflected wave in FIG. 2 can be replaced with the concentration of the gas to be measured 601 by measuring the value quantitatively in advance.
  • the concentration of the gas to be measured 601 can be calculated using the current value or the voltage value measured in the process of step S102.
  • FIG. 4 is an explanatory view showing an example of a configuration of a non-contact gas measurement system 500 using the non-contact gas measurement apparatus 100 of FIG.
  • the non-contact gas measurement system 500 has a non-contact gas measurement apparatus 100, an information correction unit 200, a distance measurement unit 300, a system control unit 400, an analysis unit 410, an input / output unit 420, and a memory 430 as shown in FIG. .
  • the non-contact gas measurement apparatus 100, the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, the input / output unit 420, and the memory 430 are mutually connected by a system bus 401.
  • the configuration and operation of the non-contact gas measurement apparatus 100 are the same as those shown in FIG.
  • the information correction unit 200 acquires a correction wave that reduces the measurement error due to the environment.
  • This correction wave is an electromagnetic wave.
  • the amount of water vapor in the air may differ depending on the environment where the user is present, which may affect the measured value. Therefore, the influence of water vapor due to the environment is removed using the correction wave acquired by the information correction unit 200.
  • the distance measuring unit 300 measures the distance from the distance measuring unit 300 to the object 600.
  • the system control unit 400 acquires various data, and controls the non-contact gas measurement system 500. In particular, when measuring the gas 601 to be measured, the system control unit 400 controls the non-contact gas measurement apparatus 100 with reference to a control information management table 800 shown in FIG. 10 described later.
  • the analysis unit 410 analyzes the measured value of the detected electromagnetic wave.
  • the input / output unit 420 is an interface with the user, and includes an input unit 421 and an output unit 422 shown in FIG. 5 described later.
  • the input unit 421 is, for example, a button
  • the output unit 422 is, for example, a display unit.
  • the memory 430 is formed of, for example, a non-volatile semiconductor memory exemplified by a flash memory, and stores received data, an analysis result, and the like.
  • the control information management table 800 of FIG. 10, which will be described later, and the measurement result table 900 of FIG. 11 are stored.
  • FIG. 5 is a schematic perspective view showing an example of the non-contact gas measurement system 500 of FIG.
  • the non-contact gas measurement system 500 is housed in a case 501 which is, for example, a rectangular parallelepiped, and an input unit 421 and an output unit 422 are provided on the main surface of the case 501.
  • the input unit 421 is a button.
  • the user inputs information such as a measurement start instruction and selection of a gas to be measured from the input unit 421.
  • the input unit 421 is not limited to a button, and may be, for example, a touch panel or a keyboard.
  • the output unit 422 is a liquid crystal display in the example of FIG.
  • the measurement result and the like are displayed on the output unit 422.
  • the output unit 422 is not limited to the liquid crystal display, and may be, for example, a light emitting diode (LED) or a buzzer.
  • the measurement result of the measurement target gas 601 is displayed on the output unit 422. This allows the user to know the measurement result.
  • an LED for the output unit 422 for example, it is possible to present information such as measurement completion of green light emission and measurement error of red light emission.
  • an emission port 504 is formed on the side surface 503 of the case 501.
  • the emission port 504 emits an electromagnetic wave oscillated by the reception oscillation unit 101 of the non-contact gas measurement apparatus 100.
  • the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, and the memory 430, which constitute the other non-contact gas measurement system 500, are housed in the case 501.
  • the analysis unit 410 refers to the past data stored in the memory 430, and analyzes the change in the state of the skin of the user as time series data including the past history as well as the measurement value at a certain time.
  • non-contact gas measurement system 500 when used by a plurality of users, for example, information such as numbers identifying the respective users can be added to the memory 430 to identify measurement data of a plurality of persons respectively. You may hold it. ⁇ Usage example of non-contact gas measurement system>
  • FIG. 6 is an explanatory view showing an example when using the non-contact gas measurement system 500 of FIG.
  • FIG. 7 is an explanatory view showing an example of the configuration of the reception / oscillation unit 101 and the information correction unit 200 which the non-contact gas measurement system 500 of FIG. 4 has.
  • the information correction unit 200 is for obtaining the correction wave from which the reception oscillation unit 101 removes the influence due to other than the measurement target gas 601.
  • the information correction unit 200 is configured by, for example, a mirror.
  • the information correction unit 200 is not limited to a mirror, and may be a reflector or an optical element that reflects an electromagnetic wave.
  • the information correction unit 200 is provided in the vicinity of the emission port 504 provided in the case 501, and is provided to face the emission surface of the electromagnetic wave in the reception oscillation unit 101. In this case, a part of the electromagnetic wave emitted from the reception oscillation unit 101 is reflected on the surface of the information correction unit 200 and reflected.
  • the reception oscillation unit 101 acquires the reflection wave of the information correction unit 200 as a correction wave.
  • the system control unit 400 in FIG. 4 determines whether the object 600 is sufficiently separated.
  • the distance measuring unit 300 in FIG. 4 measures the distance to the object 600 when acquiring the correction wave.
  • the measurement result is output to the system control unit 400 of FIG.
  • the system control unit 400 determines that the object 600 is sufficiently separated.
  • the first measurement determination distance is stored in, for example, the memory 430.
  • the receiving and oscillating unit 101 After acquiring the correction wave, the receiving and oscillating unit 101 emits an electromagnetic wave.
  • the electromagnetic wave passes through the gas to be measured 601 to hit the object 600, and measures the reflected wave.
  • the distance between the receiving / oscillating unit 101 and the object 600 is within the measurable distance, and the measuring object gas 601 can be measured.
  • the system control unit 400 determines whether or not it is within the measurable distance from the distance result measured by the distance measuring unit 300. When the distance measured by the distance measurement unit 300 is shorter than the second measurement determination distance set in advance, the system control unit 400 determines that the object 600 approaches sufficiently.
  • the second measurement determination distance is stored, for example, in the memory 430.
  • the measurement wave of the measurement target gas 601 also includes a correction wave. This is because the reflected wave that is reflected to the information correction unit 200 is included when the measurement target gas 601 is measured. However, even if the measurement wave of the measurement target gas 601 includes the correction wave, the measurement target gas 601 is measured with high accuracy by correcting using the correction wave acquired before the measurement target gas 601 is measured. be able to.
  • the electromagnetic waves emitted from the reception / oscillation unit 101 are collimated by using the lens 103 as shown in FIG. 1, but may be divergent instead of collimated light. In that case, the lens 103 is unnecessary.
  • FIG. 8 is an explanatory view showing another configuration example of the reception oscillation unit 101 and the information correction unit 200 which the non-contact gas measurement system 500 of FIG. 4 has.
  • FIG. 9 is an explanatory view continued from FIG.
  • the information correction unit 200 shown in FIG. 8 has a mirror 201 and a motor 202.
  • the information correction unit 200 in FIG. 7 is only a mirror, and the mirror is fixed.
  • the information correction unit 200 in FIG. 8 includes a mirror 201 and a motor 202.
  • the mirror 201 is provided in the vicinity of the emission port 504 provided in the case 501 of FIG. In FIG. 8, the mirror 201 is rotatably mounted with two corner portions above the mirror 201 as rotation axes.
  • the motor 202 rotates the mirror 201 based on, for example, the mode signal output from the system control unit 400 of FIG. 4.
  • mode signals output by the system control unit 400 include an information correction mode signal and a measurement mode signal.
  • the information correction mode signal is a signal output when acquiring the correction wave
  • the measurement mode signal is a signal output when measuring the measurement target gas 601.
  • the motor 202 rotates the mirror 201 as shown in FIG. 8 to move the mirror 201 to a position where the light exit 504 is blocked.
  • the electromagnetic wave emitted from the receiving and oscillating unit 101 is reflected by the mirror 201 and can return to the receiving and oscillating unit 101 to obtain a correction wave.
  • the motor 202 rotates the mirror 201 by about 90 ° as shown in FIG. 9 and moves the mirror 201 to a position where it does not block the exit 504. That is, the mirror 201 is removed from between the reception oscillation unit 101 and the object 600.
  • the electromagnetic wave emitted from the receiving and oscillating unit 101 passes through the gas to be measured 601 and is reflected on the object 600, so that the receiving and oscillating unit 101 can acquire the measurement wave of the gas to be measured 601 .
  • control information management table 800 will be described.
  • FIG. 10 is an explanatory diagram showing an example of the configuration of the control information management table 800 to which the system control unit 400 of the non-contact gas measurement system 500 of FIG. 4 refers.
  • the control information management table 800 is a table storing measurement control information.
  • the measurement control information is information for measuring the gas to be measured 601, such as the frequency of an electromagnetic wave oscillating when the non-contact gas measurement apparatus 100 measures the gas to be measured 601, and information on acquisition of a correction wave.
  • the control information management table 800 has items of a measurement target gas name 801, a frequency 802, and an information correction control 803 from the left to the right as shown in FIG.
  • the measurement target gas name 801 is information for identifying the measurement target gas 601.
  • the frequency 802 indicates the frequency at which the measurement target gas 601 is measured.
  • Information correction control 803 is information indicating whether it is necessary to control the information correction unit 200 at the time of measurement.
  • control information management table 800 are not limited to those shown in FIG. 10, as long as information for controlling the non-contact gas measurement apparatus 100 and the information correction unit 200 may be stored.
  • information for controlling the non-contact gas measurement apparatus 100 and the information correction unit 200 may be stored.
  • a voltage value or a current value for controlling the non-contact gas measurement device 100 may be used.
  • the information stored in the control information management table 800 may be stored in advance in the memory 430 or the like, or may be acquired via a network or the like. Further, the user may edit the information stored in the control information management table 800.
  • control information management table 800 is unnecessary.
  • the measurement control information does not depend on the data structure, and may be any data structure.
  • the measurement control information can be stored by a data structure appropriately selected from a list or a database.
  • the control information management table 800 may be stored not in the memory 430, for example, as described above, but in a memory (not shown) of the system control unit 400, for example. In addition, for example, it may be stored in an external storage device connected via a network. ⁇ Example of configuration of measurement result table>
  • FIG. 11 is an explanatory view showing an example of a measurement result table 900 stored in the memory 430 of the non-contact gas measurement system 500 of FIG. 4.
  • the measurement result table 900 stores the measurement result of the measurement target gas 601 by the non-contact gas measurement system 500 and analysis using the measurement result.
  • the measurement result table 900 has items of date and time 901, measurement target gas name 902, frequency 903, target presence / absence 904, and value 905 from left to right.
  • the date and time 901 indicates the measured or analyzed date and time.
  • the gas name to be measured 902 indicates information for identifying the gas to be measured 601.
  • the frequency 903 indicates the frequency used to measure the gas 601 to be measured.
  • the object presence / absence 904 indicates whether or not the measurement target gas 601 has been measured at the time of measurement.
  • the value 905 indicates the value of the measured or analyzed result.
  • the items of the measurement result table 900 are not limited to those shown in FIG. 11, and other information acquired or generated by the non-contact gas measurement system 500 may be stored. ⁇ Operation example of non-contact gas measurement system>
  • FIG. 12 is a flowchart showing an example of measurement processing of the gas to be measured 601 by the non-contact gas measurement system 500 of FIG. 4.
  • the system control unit 400 of FIG. 4 mainly controls control unless otherwise specified.
  • the user operates the input / output unit 420 to acquire input information (step S201).
  • the input information is, for example, as shown in FIG. 6, an instruction to start measurement by the user pressing the button of the input unit 421.
  • the system control unit 400 receives the input information input by the user.
  • step S202 When the system control unit 400 receives the input information, distance measurement is performed by the distance measurement unit 300 in FIG. 4, and it is determined whether the gas to be measured 601 is within the measurement range (step S202).
  • the system control unit 400 controls the distance measurement unit 300 to measure the distance between the reception oscillation unit 101 and the object 600.
  • the system control unit 400 compares the distance measured by the distance measurement unit 300 with the first measurement determination distance stored in the memory 430, and determines whether the measurement target gas 601 is within the measurement range or not.
  • the measurable distance of the non-contact gas measurement system 500 is about 10 cm.
  • the first measurement determination distance is about 10 cm.
  • the distance between the receiving oscillator 101 and the object 600 is about 5 cm, it is determined to be within the measurement range because it is less than about 10 cm of the first measurement determination distance, and 10 cm if the measured distance is 15 cm. It is judged to be out of the measurement range because it is longer than this.
  • the determination result is stored in the object presence / absence 904 in the measurement result table 900 of FIG. As shown in FIG. 11, for example, if the determination result is within the measurement range, “Yes” is displayed, and if the determination result is outside the measurement range, “None” is indicated.
  • measurement control information is acquired from the control information management table 800 (step S203). Specifically, the system control unit 400 acquires control information necessary for measuring the measurement target gas 601 from the control information management table 800 of FIG. 10 stored in the memory 430.
  • control information management table 800 information is acquired from the control information management table 800, but control may be performed based on information directly input by the user via the input unit 421.
  • the system control unit 400 determines whether to control the information correction unit 200 based on the information acquired in the process of step S203 (step S204). For example, in FIG. 10, if the information correction control 803 is "YES" (YES), the process proceeds to step S205. If the information correction control 803 is "NO” (NO), the process proceeds to step S206.
  • the presence or absence of the information correction control 803 depends on the configuration of the non-contact gas measurement system 500 and the gas 601 to be measured. For example, in the case of the information correction unit 200 shown in FIG. 7, the control of the information correction is not necessary, so that it is always “absent”. On the other hand, in the case of the information correction unit 200 shown in FIG. 8, when the correction wave is necessary, it is “Yes”, and when the correction wave is unnecessary, it is “No”.
  • the system control unit 400 controls the information correction unit 200 (step S205).
  • the process of step S205 depends on the configuration of the information correction unit 200. For example, in the case of the information correction unit 200 shown in FIG. 8, the system control unit 400 rotates the mirror 201 by controlling the motor 202 of the information correction unit 200. Then, the mirror 201 moves the light emission port 504 to a position where the light emission port 504 is shielded.
  • the system control unit 400 determines whether to control the frequency of the electromagnetic wave irradiated by the non-contact gas measurement apparatus 100 based on the control information acquired in the process of step S203 (step S206).
  • control information management table 800 of FIG. 10 Taking the control information management table 800 of FIG. 10 as an example, if the frequency 802 and the information set in the non-contact gas measurement apparatus 100 are different, it is necessary to control and the process proceeds to step S207.
  • step S208 If the frequency 802 and the information set in the non-contact gas measurement apparatus 100 are the same, the control is not necessary, and thus the process proceeds to step S208. Specifically, when 0.558 THz is acquired from the frequency 802, the non-contact gas measurement device 100 is left as it is if it can oscillate 0.558 THz, and if it is different, the non-contact gas measurement device 100 is processed in step S207. Is controlled to oscillate 0.558 THz. In addition, when the frequency of the non-contact gas measuring device 100 is fixed, this process becomes unnecessary.
  • the non-contact gas measuring device 100 is controlled, and an electromagnetic wave is made into a specific frequency (step S207).
  • the frequency of the electromagnetic wave is changed by changing the voltage or current of the transmitter / receiver 102.
  • the measurement of the measurement target gas 601 is started, and the reception oscillation unit 101 acquires the value of the current or the voltage (step S208).
  • the measured value is stored in the value 905 of the measurement result table 900.
  • step S209 it is determined whether all the frequencies to be measured have been measured. If there is a frequency to be measured, the process returns to step S206. When the measurement of all the frequencies is completed, the measurement ends.
  • measurement is completed at two frequencies of 0.558 THz and 0.600 THz of frequency 802. Determine if it is present and repeat until measurement is complete.
  • the analysis unit 410 performs analysis using the values 905 of the measurement result table 900 (step S210).
  • the system control unit 400 having received the measurement end instructs the analysis unit 410 to analyze the measured data, and the analysis unit 410 analyzes the data by referring to the measurement result table 900 on the memory 430. Do.
  • the first is an electromagnetic wave in which the object 600 is irradiated with a frequency that is highly sensitive to water vapor, for example, a frequency of about 0.558 THz. Since the electromagnetic waves reflected from the skin return, the intensity including information on water vapor in the air, water vapor transpired from the skin, absorption by the skin, and diffusion of internally reflected light is detected.
  • the second is an electromagnetic wave in which the information correction unit 200 is irradiated with a frequency with high sensitivity to water vapor, for example, a frequency of about 0.558 THz. Since only the electromagnetic wave reflected by the mirror returns, the intensity including information of water vapor in the air is detected.
  • the third is an electromagnetic wave in which the object 600 is irradiated with a frequency at which the sensitivity to water vapor is low, for example, a frequency of about 0.600 THz. Since the electromagnetic wave reflected from the skin returns, the intensity including information of absorption by the skin and diffusion of internally reflected light is detected.
  • the fourth is an electromagnetic wave in which the information correction unit 200 is irradiated with a frequency at which the sensitivity due to water vapor is low, for example, a frequency of about 0.600 THz. Only the electromagnetic wave reflected by the mirror is returned and can be used as a reference signal.
  • the first and second detection results include attenuation by water vapor in the same air. Therefore, the difference between the first and second is attenuation due to diffusion of absorption and internal reflection light by the skin and attenuation due to water vapor transpired from the skin.
  • the difference between the third and fourth is the attenuation due to the diffusion of absorbed and internally reflected light by the skin. Therefore, by subtracting the third and fourth differences from the first and second differences, it is possible to detect attenuation due to water vapor transpired from the skin.
  • the system control unit 400 stores the result analyzed in the process of step S210 in the memory 430 (step S211).
  • the analysis result may be stored in the measurement result table 900 stored in the memory 430, or may be stored in another area of the memory 430.
  • the process of step S211 may be omitted and the process may proceed to the process of step S212.
  • the system control unit 400 displays the analysis result on the output unit 422. For example, as shown in FIG. 5, a display is made on the output unit 422 so that the user can recognize the analysis result (step S212).
  • the system control unit 400 detects the failure and outputs an alert to the output unit 422.
  • the output unit 422 is a liquid crystal display
  • the content of the alert is displayed.
  • the output unit 422 is a speaker or the like
  • an alert is transmitted by a sound such as a voice or a buzzer.
  • the output unit 422 is an LED, an alert is notified by light or the like.
  • the reception / oscillation unit 101 that emits and receives an electromagnetic wave can be integrated with a simple configuration, and the non-contact gas measurement apparatus 100 can be miniaturized.
  • the object 600 is irradiated with an electromagnetic wave, and the measurement target gas 601 is measured from the strength of the reflected wave, so that the reception oscillation unit 101 is separated from the object 600, that is, measured without contact with the skin surface. it can.
  • measurement can be performed without bringing the non-contact gas measurement device 100 into close contact with the user's skin or the like, so high-accuracy measurement can be performed without limitation on the measurement location.
  • the burden on the affected part of the user can be reduced.
  • the measurement accuracy of the non-contact gas measurement system 500 can be improved by measuring the gas to be measured using the correction wave by the information correction unit 200.
  • FIG. 13 is an explanatory diagram showing an example of the configuration of the reception and oscillation units 101 and 101a and the information correction unit 200 according to the second embodiment.
  • the configuration is such that the measurement wave and the correction wave are respectively acquired by one reception oscillation unit 101, but in the case of FIG. 13, the reception oscillation which is the first reception oscillation unit In addition to the unit 101, a reception oscillation unit 101a, which is a second reception oscillation unit, is newly provided.
  • the reception oscillation unit 101 is used when measuring the measurement target gas 601, and the reception oscillation unit 101a is used when measuring the correction wave.
  • the structure in the other non-contact gas measurement system 500 since it is the same as that of FIG. 4 of the said Embodiment 1, description is abbreviate
  • the information correction unit 200 includes, for example, a mirror, and is provided so as to face the emission surface of the electromagnetic wave in the reception oscillation unit 101a.
  • the information correction unit 200 acquires a correction wave for the reception oscillation unit 101 a to remove the influence of the gas other than the measurement target gas 601.
  • the reception oscillation unit 101a irradiates the information correction unit 200 with an electromagnetic wave, and acquires the reflected wave as a correction wave.
  • the receiving oscillation unit 101 irradiates an electromagnetic wave to the object 600 to be measured, receives the reflected wave irradiated by the object 600, and acquires a current or voltage value according to the intensity of the received reflected wave.
  • the electromagnetic wave emitted from the reception oscillation unit 101 passes through the gas 601 to be measured, is reflected on the object 600 and is returned, thereby measuring the measurement wave.
  • the correction wave can be more accurately acquired by providing the reception oscillation unit 101a.
  • the measurement target gas 601 can be measured with higher accuracy, and the reliability of the non-contact gas measurement system 500 can be improved.
  • FIG. 14 is an explanatory view showing an example of a configuration of the portable terminal 560 according to the third embodiment.
  • the portable terminal 560 includes the non-contact gas measurement system 500, an imaging unit 440, and a communication unit 450.
  • the non-contact gas measurement system 500 has the same configuration as the non-contact gas measurement system 500 of FIG. 4 of the first embodiment.
  • the imaging unit 440 is a camera that acquires an image.
  • the imaging unit 440 is used for a technique for matching measurement positions, which will be described later, and a measurement specific technique.
  • the communication unit 450 is wirelessly connected to a communication line such as, for example, an Internet line or a telephone communication line, and performs communication with the outside.
  • FIG. 14 shows an example of connection with a server 460 externally connected by the communication unit 450.
  • the communication unit 450 transmits and receives, to the server 460, information acquired by, for example, the non-contact gas measurement apparatus 100, the distance measurement unit 300, and the imaging unit 440.
  • the imaging unit 440 may be, for example, an R (Red) G (Green) B (Blue) camera having sensitivity to visible light wavelength, an infrared light camera having sensitivity to infrared light, or an RGB camera having sensitivity to wavelengths from infrared to visible light. and so on.
  • it may be an RGB camera having sensitivity to the wavelength of visible light to ultraviolet light, or from infrared light to visible light to ultraviolet light wavelength.
  • the input / output unit 420 of the non-contact gas measurement system 500 may use an input / output unit such as a touch panel of the portable terminal 560.
  • the non-contact gas measurement system 500 is provided in a portable terminal 560 such as a smartphone, but for example, the non-contact gas measurement system 500 newly includes an imaging unit 440 and a communication unit 450 which are functions of the portable terminal 560. It may be configured to be added. ⁇ Overview of mobile terminal>
  • FIG. 15 is an explanatory view showing an example of an overview of the portable terminal 560 of FIG. FIG. 15 (a) shows the front of the portable terminal 560, and FIG. 15 (b) shows the back of the portable terminal 560.
  • the surface on which the input / output unit 420 is provided is taken as the front of the portable terminal 560, and the surface facing it is taken as the back.
  • an image can be taken by the imaging unit 440 from either the front side of the portable terminal 560 shown in FIG. 15A or the back side of the portable terminal 560 shown in FIG. It is a structure.
  • FIG. 16 is an explanatory view showing an example of display by the input / output unit 420 which the portable terminal 560 of FIG. 15 has.
  • the input / output unit 420 is formed of, for example, a touch panel display.
  • a menu screen for the user to select a measurement target for example, a menu screen for the user to select a measurement target, or as shown in FIG. 16B, an image captured by the imaging unit 440 or Display the analysis result etc.
  • the name of the gas to be measured that can be measured is displayed so that the user can select one.
  • the measurement target gas 601 selected by the user can be easily applied to input information in the process of step S201 of FIG. Can.
  • a measurement result as shown in FIG. 16B, for example, a graph in which the amount of percutaneous water evaporation is displayed in time series, a measurement position marker indicating the previous measurement position acquired by the imaging unit 440, etc. It may be displayed at 420.
  • a measurement position marker indicating the previous measurement position acquired by the imaging unit 440, etc. It may be displayed at 420.
  • FIG. 17 is a flowchart showing an example of an operation of gas measurement by the portable terminal 560 of FIG.
  • step S301 input information is acquired (step S301).
  • the process of step S301 is the same as the process of step S201 in FIG. 12 of the first embodiment.
  • the imaging unit 440 captures an image of the measurement site of the user, and the system control unit 400 analyzes the captured image (step S302).
  • the measurement site is specified from the image result captured by the imaging unit 440 last time or before, and the result is notified to the user by displaying the result on the output unit 422.
  • the measurement position marker may be displayed on the input / output unit 420, or information on the difference between the measurement position marker and the current position captured by the imaging unit 440 using a speaker or the like may be used as a sound, for example, a change in pitch or volume It is also possible to notify by a change of, or by voice.
  • the object 600 is photographed at the front of the imaging unit 440 of FIG. 15A, that is, the portable terminal 560, or the object 600 is at the imaging unit 440 of FIG. It is determined whether the image has been taken on the side, and the measurement by the reception oscillation unit 101 is performed on the side of the taken image.
  • the gas to be measured 601 is present on the front of the portable terminal or on the back, imaging can be easily performed.
  • the reception oscillation unit 101 on the back side of FIG. 15 (b) is used, and in the case of measuring the face etc., the reception oscillation unit 101 in the front of FIG. Do.
  • the user can measure while looking at the display as the input / output unit 420.
  • step S303 when the analysis of the image is completed, the measurement target gas 601 is measured (step S303).
  • the process of step S303 is similar to the process of steps S202 to S209 of FIG.
  • the measurement result is transmitted (step S304).
  • the system control unit 400 transfers measurement results and the like to the server 460 externally connected by the communication unit 450. Thereafter, the server 460 analyzes the transferred measurement result (step S305).
  • the measurement result acquired in the process of step S304 and the image analysis result in the process of step S302 are transmitted from the communication unit 450 to the server 460.
  • the server 460 performs analysis of all or part of the complex analysis.
  • the specific process is the same as the process of step S210 in FIG. Thereby, the processing load of the non-contact gas measurement system 500 can be reduced.
  • the communication unit 450 acquires the result analyzed by the server 460 (step S306).
  • the system control unit 400 displays the result acquired from the server 460 on the input / output unit 420 (step S307). At this time, the system control unit 400 stores the result acquired from the server 460 in the memory 430.
  • the convenience of the user can be further improved by providing the non-contact gas measurement system 500 in the portable terminal 560. Further, since the analysis of the measurement target gas 601 is analyzed by the external server 460, the measurement target gas 601 can be analyzed in a shorter time.
  • the configuration of the non-contact gas measurement system 500 can be further simplified, contributing to downsizing and cost reduction. be able to.
  • the present invention is not limited to the above-mentioned embodiment, and various modifications are included.
  • the imaging unit 440 and the distance measurement unit 300 in FIG. The system can be realized.
  • Reference Signs List 100 non-contact gas measuring apparatus 101 reception oscillation unit 101a reception oscillation unit 102 transmission / reception device 103 lens 110 control unit 200 information correction unit 201 mirror 202 motor 300 distance measurement unit 400 system control unit 401 system bus 410 analysis unit 420 input / output unit 421 Input unit 422 Output unit 430 Memory 440 Imaging unit 450 Communication unit 460 Server 500 Non-contact gas measurement system 560 Mobile terminal 600 Object 601 Measurement target gas

Abstract

The present invention measures a gas from an object by means of a simple configuration thereof, without influencing the skin of a user and the like. In a noncontact gas measurement system 500 according to the present invention, a noncontact gas measurement device 100 measures a gas 601 to be measured, which is generated from an object 600, by using an electromagnetic wave. An analysis unit 410 analyzes the gas 601 to be measured, from a measurement value measured by the noncontact gas measurement device 100. The noncontact gas measurement device 100 is provided with a signal receiving oscillation unit and a control unit. The signal receiving oscillation unit outputs and detects an electromagnetic wave. The control unit controls the signal receiving oscillation unit. The signal receiving oscillation unit outputs, to the analysis unit 410, a value of a voltage or a current which changes in response to an intensity of an electromagnetic wave reflected from the object 600 after the electromagnetic wave is irradiated onto the object 600 as a measurement value, on the basis of an instruction of the control unit.

Description

非接触ガス計測装置、非接触ガス計測システム、携帯端末、および非接触ガス計測方法Non-contact gas measurement device, non-contact gas measurement system, portable terminal, and non-contact gas measurement method
 本発明は、非接触ガス計測装置、非接触ガス計測システム、携帯端末、および非接触ガス計測方法に関し、特に、非接触による皮膚表面のガス計測に有効な技術に関する。 The present invention relates to a non-contact gas measurement device, a non-contact gas measurement system, a portable terminal, and a non-contact gas measurement method, and in particular to a technique effective for non-contact measurement of gas on the skin surface.
 本技術分野の背景技術として、例えば、特開2002-263072(特許文献1)、特開2010-172543(特許文献2)、及び特開2010-169658(特許文献3)がある。 As background art of the present technical field, there are, for example, Japanese Patent Application Laid-Open Nos. 2002-263072 (Patent Document 1), Japanese Patent Application Laid-Open No. 2010-172543 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2010-169658 (Patent Document 3).
 特許文献1には、課題として「必要十分な精度の測定が可能であって、しかも、小型軽量、安価で取扱いが容易な水分蒸散量測定装置を提供する。」と記載があり、その解決手段として「皮膚表面に接触させる枠の内側に回路基板を配置して、回路基板上に湿度検出素子として電気容量型高分子薄膜湿度センサを1個だけ配置する。湿度検出素子の駆動回路も回路基板上に配置される。ハンドル軸を通じて取り出した回路出力から水分蒸散量を演算する。湿度検出素子を1つしか使用しないから、2つ使用する場合に比較して部品点数が削減されるとともに、組立調整や維持管理のコストが低くなる。」と記載されている。 Patent Document 1 describes, as a problem, "a device for measuring the amount of water evaporation which is capable of measurement with necessary and sufficient accuracy and which is compact, lightweight, inexpensive and easy to handle", and the solution thereof The circuit board is placed inside the frame to be in contact with the skin surface, and only one capacitive polymer thin film humidity sensor is placed on the circuit board as a humidity detection element. The drive circuit of the humidity detection element is also the circuit board The amount of water evaporation is calculated from the circuit output taken out through the handle shaft, and since only one humidity detection element is used, the number of parts is reduced as compared with the case where two are used and The cost of coordination and maintenance will be low. ”
 また、特許文献2には、課題として「簡便かつ的確に経皮水分蒸散量を推定し、さらにこれに基づいて皮膚のバリア機能を評価する装置を提供する。」と記載があり、その解決手段として「本体部と、本体部に設置される複数の交流電圧を印加し得る印加電極と、本体部に設置されるサセプタンス(B)、アドミタンス(Y)、又はコンダクタンス(G)のいずれかを検出する検出電極13と、本体部に設置される表示部と、本体部に内蔵され、検出したサセプタンス(B)、アドミタンス(Y)、又はコンダクタンス(G)のいずれかに基づいて経皮水分蒸散量の推定値となりえる特性値(P)を算出する演算部とを備え、算出された特性値(P)に基づいて経皮水分蒸散量を推定し、これに基づいて皮膚バリア機能を評価する。」と記載されている。 In addition, Patent Document 2 describes, as a problem, "a device for estimating the amount of transcutaneous water evaporation simply and accurately and further evaluating the barrier function of the skin based on this," and means for solving the problem. As “the main body, an application electrode which can apply a plurality of alternating voltages installed in the main body, and any one of susceptance (B), admittance (Y) or conductance (G) which is installed in the main body” Amount of transdermal water loss based on any of the detected susceptance (B), admittance (Y), or conductance (G) contained in the detection electrode 13, the display unit installed in the body unit, and the body unit And a calculator configured to calculate a characteristic value (P) that can be an estimated value of, to estimate the amount of transepidermal water loss based on the calculated characteristic value (P), and to evaluate the skin barrier function based on this. "And write It is.
 また、特許文献3には、課題として「気体を供給する部位から供給された気体を効率良く分析する。」と記載があり、その解決手段として「気体を捕獲する捕獲膜3(例えば、多孔質性のポリマーなど。)を含み、該捕獲膜に捕獲された気体(例えば、人体から発生した皮膚ガス。)と前記発生部から発生したテラヘルツ波もしくは赤外光とが相互作用するように該捕獲膜を配置可能な捕獲部(捕獲膜と捕集容器とで構成される部材。)を備える。前記捕獲部は、前記気体を供給する部位(例えば、腕や手などの人体。)に接触可能な構造体(捕集容器)を含む。そして、前記構造体は、前記捕獲膜と前記部位1とを非接触状態として維持するように設けられる。」と記載されている。 In addition, Patent Document 3 describes, as a problem, “Analyze gas supplied from a gas supply site efficiently.” As a solution, “capture film 3 for capturing gas (for example, porous) (E.g., organic polymers, etc.), such that the gas captured by the capture film (e.g., skin gas generated from the human body) interacts with the terahertz wave or infrared light generated from the generator. It has a capturing part (a member composed of a capturing membrane and a collecting container) in which the membrane can be placed, and the capturing part can be in contact with a site (for example, a human body such as an arm or a hand) which supplies the gas. And the structure is provided so as to maintain the capture membrane and the site 1 in a non-contact state.
特開2002-263072号公報JP 2002-263072 A 特開2010-172543号公報JP, 2010-172543, A 特開2010-169658号公報JP, 2010-169658, A
 人体の皮膚は、皮膚呼吸や発汗などにより生体内の環境や温度を調整するだけでなく、異物、細菌、あるいは微生物などの外部刺激から生体の内部組織を保護する役目も担っている。 The skin of the human body not only regulates the environment and temperature in the living body by skin respiration and perspiration, but also plays a role of protecting the internal tissues of the living body from external stimuli such as foreign matter, bacteria, and microorganisms.
 このため熱中症予防やアトピー性皮膚炎によるドライスキンの防止などの健康維持の観点、あるいは化粧品や医薬品の評価、美容など実用的な観点においても皮膚内部の水分量と皮膚から蒸散される水分量、いわゆる経皮水分蒸散量の情報を取得することは重要である。特に、経皮水分蒸散量は、外部刺激から生体を守り、水分が体外に蒸散しないよう防御する皮膚バリア機能を評価する指標として関心が高い。 Therefore, from the viewpoint of health maintenance such as prevention of heat stroke and prevention of dry skin due to atopic dermatitis, or evaluation of cosmetics and medicines, and practical viewpoints such as beauty, the amount of water inside the skin and the amount of water transpired from the skin It is important to obtain information on the so-called transdermal water loss. In particular, the amount of transcutaneous water loss is of great interest as an index for evaluating the skin barrier function that protects the living body from external stimuli and protects the water from transpiration out of the body.
 また、ヘルスケアなどにおいては、皮膚から蒸散される水分だけでなく、皮膚ガスなどのガスの計測も行われている。皮膚ガスにより、特定の疾病を発見することができる。例えば、皮膚ガスにアセトンが多く含まれている場合には、糖尿病との関連があり、アンモニアが多く含まれている場合には、慢性肝疾患との関連があるといわれている。 Further, in healthcare and the like, not only water that is evaporated from the skin, but also gas such as skin gas is measured. Skin gases allow certain diseases to be discovered. For example, when skin gas contains a large amount of acetone, it is said to be related to diabetes, and when a large amount of ammonia is contained, it is related to chronic liver disease.
 経皮水分蒸散量の計測においては、例えば湿度センサなどを使用して皮膚表面から蒸散する水分損失量を測定する技術(例えば、特許文献1)が知られている。この技術では、皮膚表面から蒸散する水分損失量を測定する湿度センサを安定化する機構などが必要となる。そのために、測定機器が高価となり、かつ大がかりなものとなってしまうという問題がある。また、測定機器の一部を対象物、すなわち皮膚などに接触させて計測する接触型であるために、計測時に患者の皮膚表面に影響を与えてしまったり、傷をつけてしまう恐れがある。患者の皮膚などへの影響を考慮すると、計測箇所を限定してしまう。 In the measurement of the amount of percutaneous water evaporation, there is known a technique (for example, Patent Document 1) of measuring the amount of water loss transpiration from the skin surface using, for example, a humidity sensor or the like. This technique requires a mechanism for stabilizing a humidity sensor that measures the amount of water loss from the skin surface. As a result, there is a problem that the measuring equipment becomes expensive and large. In addition, since it is a contact type in which a part of the measurement device is brought into contact with an object, ie, the skin, measurement may affect or scratch the skin surface of the patient at the time of measurement. Considering the influence on the patient's skin etc., the measurement point is limited.
 一方では、皮膚の電気的性質を測定することにより、皮膚のバリア機能を小型で低コストにて評価する技術(例えば、特許文献2)などがある。上記特許文献1と同様に、対象物の電気的性質を測定するために測定機器の一部を計測部分である皮膚に接触させる必要がある。 On the other hand, there is a technique (for example, Patent Document 2) or the like for evaluating the barrier function of the skin at a small size and at low cost by measuring the electrical property of the skin. Similar to Patent Document 1 described above, in order to measure the electrical property of the object, it is necessary to bring a part of the measuring device into contact with the skin which is the measuring part.
 また、皮膚ガスを測定する技術としては、皮膚ガスを捕獲して、捕獲した皮膚ガスを電磁波を用いて計測する技術(例えば、特許文献3)などが知られている。この技術では、計測機器の構成として、皮膚ガスを捕捉および計測するために赤外光などを発生させる光源と検出器とが必要である。よって、装置構成が複雑で大がかりなものとなってしまうという問題がある。 Moreover, as a technique of measuring skin gas, a technique (for example, patent document 3) etc. which capture skin gas and measure captured skin gas using electromagnetic waves are known. In this technology, a light source and a detector that generate infrared light and the like are required as components of the measuring device to capture and measure skin gas. Therefore, there is a problem that the device configuration becomes complicated and large.
 この特許文献3の技術においても、測定機器の一部を対象物で皮膚に接触させて計測する構成であるため、上記特許文献1,2と同様に、計測箇所を限定してしまう。 Also in the technique of Patent Document 3, a part of the measurement device is brought into contact with the skin with the object to perform measurement, and therefore, as in the case of Patent Documents 1 and 2, measurement points are limited.
 本発明の目的は、利用者の皮膚などに影響を与えず、簡易な構成によって対象物からのガスを測定することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of measuring a gas from an object with a simple configuration without affecting the skin or the like of the user.
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 The outline of typical ones of the inventions disclosed in the present application will be briefly described as follows.
 すなわち、代表的な非接触ガス計測システムは、非接触ガス計測装置、解析部、およびシステム制御部を有する。非接触ガス計測装置は、対象物から発せられる計測対象ガスを電磁波を用いて計測する。解析部は、非接触ガス計測装置が計測した計測値から計測対象ガスを解析する。システム制御部は、非接触ガス計測装置および解析部の動作を制御する。非接触ガス計測装置は、受信発振部および制御部を備える。受信発振部は、電磁波の出射および検出を行う。制御部は、受信発振部を制御する。 That is, a typical noncontact gas measurement system has a noncontact gas measurement device, an analysis unit, and a system control unit. A non-contact gas measuring device measures the gas to be measured emitted from an object using electromagnetic waves. The analysis unit analyzes the gas to be measured from the measurement value measured by the non-contact gas measurement device. The system control unit controls the operation of the noncontact gas measurement device and the analysis unit. The non-contact gas measurement device includes a reception oscillation unit and a control unit. The reception oscillation unit emits and detects an electromagnetic wave. The control unit controls the reception oscillation unit.
 また、受信発振部は、制御部の指令に基づいて、対象物に電磁波を照射して、対象物から反射した電磁波の強度に応じて変化する電圧または電流の値を計測値として解析部に出力する。特に、受信発振部は、負性抵抗領域にて電磁波を発振する電子デバイスからなる。 Further, the receiving and oscillating unit irradiates the electromagnetic wave to the object based on the command of the control unit, and outputs the value of the voltage or current, which changes according to the intensity of the electromagnetic wave reflected from the object, to the analysis unit as a measured value. Do. In particular, the reception oscillation unit is formed of an electronic device that oscillates an electromagnetic wave in the negative resistance region.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described as follows.
 (1)利用者の利便性を向上することができる。 (1) The convenience of the user can be improved.
 (2)非接触ガス計測装置および非接触ガス計測システムを小型化することができる。 (2) The noncontact gas measuring device and the noncontact gas measuring system can be miniaturized.
実施の形態1による非接触ガス計測装置における構成の一例を示す説明図である。FIG. 5 is an explanatory drawing showing an example of the configuration of the non-contact gas measurement device according to the first embodiment. 図1の非接触ガス計測装置が有する受発振器における特性の一例を示す説明図である。It is explanatory drawing which shows an example of the characteristic in the receiving oscillator which the non-contact gas measuring device of FIG. 1 has. 図1の非接触ガス計測装置によるガス計測の動作における一例を示すフローチャートである。It is a flowchart which shows an example in operation | movement of the gas measurement by the non-contact gas measuring device of FIG. 図1の非接触ガス計測装置を用いた非接触ガス計測システムにおける構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure in the non-contact gas measurement system using the non-contact gas measurement apparatus of FIG. 図4の非接触ガス計測システムの一例を示す概観斜視図である。FIG. 5 is a schematic perspective view showing an example of the non-contact gas measurement system of FIG. 4; 図5の非接触ガス計測システムを使用する際の一例を示す説明図である。It is explanatory drawing which shows an example at the time of using the non-contact gas measurement system of FIG. 図4の非接触ガス計測システムが有する受信発振部および情報補正部における構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure in the receiving oscillation part which the non-contact gas measurement system of FIG. 4 has, and an information correction part. 図4の非接触ガス計測システムが有する受信発振部および情報補正部における他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example in the receiving oscillation part and the information correction part which the non-contact gas measurement system of FIG. 4 has. 図8に続く説明図である。It is explanatory drawing following FIG. 図4の非接触ガス計測システムが有するシステム制御部が参照する制御情報管理テーブルにおける構成の一例を示した説明図である。It is explanatory drawing which showed an example of the structure in the control information management table which the system control part which the non-contact gas measurement system of FIG. 4 has refers to. 図4の非接触ガス計測システムが有するメモリに格納される計測結果テーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the measurement result table stored in the memory which the non-contact gas measurement system of FIG. 4 has. 図4の非接触ガス計測システムによる計測対象ガスの計測処理の一例を示すフローチャートである。It is a flowchart which shows an example of a measurement process of measurement object gas by the non-contact gas measurement system of FIG. 実施の形態2による受信発振部および情報補正部における構成の一例を示す説明図である。FIG. 16 is an explanatory drawing showing an example of the configuration of a reception oscillation unit and an information correction unit according to Embodiment 2; 実施の形態3による携帯端末における構成の一例を示す説明図である。FIG. 16 is an explanatory drawing showing an example of the configuration of a portable terminal according to Embodiment 3; 図14の携帯端末の概観の一例を示す説明図である。It is explanatory drawing which shows an example of the outline of the portable terminal of FIG. 図15の携帯端末が有する入出力部による表示の一例を示す説明図である。It is explanatory drawing which shows an example of the display by the input-output part which the portable terminal of FIG. 15 has. 図14の携帯端末によるガス計測の動作における一例を示すフローチャートである。It is a flowchart which shows an example in operation | movement of the gas measurement by the portable terminal of FIG.
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 以下、実施の形態を詳細に説明する。
 〈非接触ガス計測装置の構成例〉
In all the drawings for describing the embodiment, the same reference numeral is attached to the same member in principle, and the repeated description thereof is omitted.
Embodiment 1
Hereinafter, the embodiment will be described in detail.
<Configuration example of non-contact gas measurement device>
 図1は、本実施の形態1による非接触ガス計測装置100における構成の一例を示す説明図である。 FIG. 1 is an explanatory view showing an example of the configuration of the non-contact gas measurement apparatus 100 according to the first embodiment.
 非接触ガス計測装置100は、対象物600から発せられる計測対象ガス601を電磁波を用いて計測する。この非接触ガス計測装置100は、図1に示すように受信発振部101および制御部110を有する。受信発振部101は、電磁波の発振と受信とが単体化された構成となっており、電磁波を出射および検出する。 The non-contact gas measurement apparatus 100 measures the measurement target gas 601 emitted from the object 600 using an electromagnetic wave. This non-contact gas measuring apparatus 100 has a receiving / oscillating unit 101 and a control unit 110 as shown in FIG. The reception oscillation unit 101 has a configuration in which oscillation and reception of an electromagnetic wave are simplified, and emits and detects the electromagnetic wave.
 受信発振部101は、受発信器102およびレンズ103を有している。受発信器102は、電磁波の発振および受信を行う。レンズ103は、受発信器102が発振した電磁波を平行光にして対象物600に照射し、対象物600からの反射波を集光する。 The reception / oscillation unit 101 has a transmitter / receiver 102 and a lens 103. The transmitter / receiver 102 oscillates and receives an electromagnetic wave. The lens 103 collimates the electromagnetic wave oscillated by the transmitter / receiver 102 to the object 600 and condenses the reflected wave from the object 600.
 受発信器102が発振した電磁波は、対象物600に対して垂直に照射されることにより、計測対象ガス601を通過してその反射波が受発信器102に戻る。ここで、対象物600は、使用者の皮膚などである。制御部110は、受信発振部101を制御する。 The electromagnetic wave oscillated by the transmitter / receiver 102 is irradiated perpendicularly to the object 600 so that it passes through the gas 601 to be measured and the reflected wave returns to the transmitter / receiver 102. Here, the object 600 is, for example, the skin of the user. Control unit 110 controls reception oscillation unit 101.
 受信発振部101が発振する電磁波は、ガスに吸収され易い周波数を用いる。例えば、対象物600が皮膚であって、計測対象ガス601が皮膚から蒸散する水蒸気である場合には、0.56THz程度や0.75THz程度などの周波数が好適である。 The electromagnetic wave oscillated by the reception oscillation unit 101 uses a frequency that is easily absorbed by the gas. For example, when the object 600 is skin and the measurement target gas 601 is water vapor transpiration from the skin, a frequency such as about 0.56 THz or about 0.75 THz is preferable.
 受発信器102は、例えば負性抵抗領域にて電磁波を発振する電子デバイスであり、例えば共鳴トンネルダイオードなどである。図1では、便宜上共鳴トンネルダイオードにて示しているが、受発振器については、これに限定されるものではない。 The transmitter / receiver 102 is an electronic device that oscillates an electromagnetic wave in, for example, a negative resistance region, and is, for example, a resonant tunneling diode. Although FIG. 1 shows the resonant tunneling diode for the sake of convenience, the oscillator is not limited to this.
 例えばレーザなどの電磁波を発振するデバイスでもよい。0.56THz程度や0.75THz程度の周波数を発振する発振器としては、例えば量子カスケードレーザあるいは共鳴トンネルダイオードなどがある。
 〈受発信器の特性〉
For example, a device that oscillates an electromagnetic wave such as a laser may be used. As an oscillator that oscillates a frequency of about 0.56 THz or about 0.75 THz, there is, for example, a quantum cascade laser or a resonant tunneling diode.
<Characteristics of receiver / transmitter>
 図2は、図1の非接触ガス計測装置100が有する受発信器102における特性の一例を示す説明図である。 FIG. 2 is an explanatory view showing an example of the characteristics of the transmitter / receiver 102 which the non-contact gas measurement apparatus 100 of FIG. 1 has.
 この図2は、対象物600からの反射波の強さと受発信器102の端子間を流れる電流と関係を示したものであり、受発信器102から発振した電磁波が反射波として該受発信器102に戻ったときに該受発信器102の発振特性に影響を与える現象の一例である。 FIG. 2 shows the relationship between the intensity of the reflected wave from the object 600 and the current flowing between the terminals of the transmitter / receiver 102, and the electromagnetic wave oscillated from the transmitter / receiver 102 is regarded as the reflected wave as the reflected wave. When returning to 102, it is an example of the phenomenon which affects the oscillation characteristic of the transmitter-receiver 102.
 例えば受発信器102として共鳴トンネルダイオードが用いられた場合は、該共鳴トンネルダイオードの端子間に特定の電圧をかけることによって負性抵抗領域にて電磁波が発振する。 For example, when a resonant tunneling diode is used as the transmitter / receiver 102, an electromagnetic wave is oscillated in the negative resistance region by applying a specific voltage between the terminals of the resonant tunneling diode.
 非特許文献Masahiro Asada and Safumi Suzuki 2015 Jpn.J.Appl.Phys. 54 070309には、反射物の反射率が異なると、発振器の端子間を流れる電流が変化することが記載されている。 Non-Patent Document Masahiro Asada and Safumi Suzuki 2015 Jpn. J. Appl. Phys. 54 070309 describes that when the reflectivity of the reflector is different, the current flowing between the terminals of the oscillator changes.
 これは、発振回路に仮想アドミタンスが付与されることで起こる。また、半導体レーザの場合も同様に、反射波が発振特性に影響を与えるが、こちらは共振器中で発振波と反射波が干渉することで生じる。これらの現象はこれまでノイズとして扱われていた。 This is caused by the virtual admittance being given to the oscillation circuit. Similarly, in the case of a semiconductor laser, the reflected wave affects the oscillation characteristics, but this is caused by interference between the oscillation wave and the reflected wave in the resonator. These phenomena have been treated as noise until now.
 本発明者は、上記した非特許文献にて反射物体の反射率として示されているものを計測対象ガスにおける電磁波の吸収による減衰とすることによって、この現象を非接触ガス計測に適用できることに着目した。 The present inventor notes that this phenomenon can be applied to non-contact gas measurement by making the thing shown as the reflectance of the reflecting object in the above-mentioned non-patent document be the attenuation due to the absorption of electromagnetic waves in the gas to be measured. did.
 つまり、受発信器102は、電磁波を発振して、該電磁波が対象物600から反射されて該受発信器102に戻る反射波の強度に応じて、受発信器102を流れる電流に差が生じる。この電磁波路中の計測対象ガス601の量によって反射波の強さは変化するために受発信器102にかかる電流または電圧の差を用いてガス計測することが可能となる。 That is, the transmitter / receiver 102 oscillates an electromagnetic wave, and a difference occurs in the current flowing through the transmitter / receiver 102 according to the intensity of the reflected wave that is reflected from the object 600 and returns to the transmitter / receiver 102. . Since the intensity of the reflected wave changes according to the amount of the gas to be measured 601 in the electromagnetic wave path, it becomes possible to perform gas measurement using the difference in current or voltage applied to the transmitter / receiver 102.
 例えば図2では、共鳴トンネルダイオードの端子間を流れる電流が少ないと反射波の強さが弱くなっており、その結果、計測対象ガス601による電磁波の吸収が強かったことが分かる。すなわち計測対象ガス601の量が多いことが分かる。 For example, in FIG. 2, when the current flowing between the terminals of the resonant tunneling diode is small, the intensity of the reflected wave is weak. As a result, it can be seen that the absorption of the electromagnetic wave by the gas to be measured 601 is strong. That is, it can be seen that the amount of the gas to be measured 601 is large.
 このように、受発信器102の端子間の電流または電圧変化を検出して、計測対象ガス601による電磁波の吸収量を算出することによって、ガスによる吸収と量の相関から計測対象ガス601を計測することが可能となる。 As described above, by detecting the current or voltage change between the terminals of the transmitter / receiver 102 and calculating the amount of absorption of the electromagnetic wave by the measurement target gas 601, the measurement target gas 601 is measured from the correlation between the absorption by the gas and the amount. It is possible to
 また、図2に示したグラフは一例を示したものであり、データ構造はこれに限定されるものではなく、計測した電流値と計測対象ガスとの関係を示す構成、例えばテーブル構成などの情報であればよい。
 〈ガス計測装置の動作例〉
Further, the graph shown in FIG. 2 shows an example, and the data structure is not limited to this, and the configuration showing the relationship between the measured current value and the gas to be measured, for example, information such as table configuration If it is
<Operation example of gas measurement device>
 図3は、図1の非接触ガス計測装置100によるガス計測の動作における一例を示すフローチャートである。 FIG. 3 is a flow chart showing an example of the operation of gas measurement by the non-contact gas measurement apparatus 100 of FIG.
 まず、制御部110は、受信発振部101を制御することにより、予め設定された周波数の電磁波を計測対象の対象物600に照射させる(ステップS101)。このステップS101の処理において、非接触ガス計測装置100は、電磁波を対象物600に向けて照射するだけでよいので、非接触ガス計測装置100を皮膚などの対象物600に密着させる必要はなく、図1に示したように、非接触ガス計測装置100と対象物600との間に距離を置いてガス計測を行う。 First, the control unit 110 controls the reception oscillation unit 101 to irradiate an electromagnetic wave of a preset frequency to the target object 600 to be measured (step S101). In the process of step S101, since the non-contact gas measurement apparatus 100 need only irradiate an electromagnetic wave toward the object 600, there is no need to bring the non-contact gas measurement apparatus 100 into close contact with the object 600 such as skin. As shown in FIG. 1, the gas measurement is performed with a distance between the non-contact gas measurement device 100 and the object 600.
 そして、対象物600に対して垂直に照射された電磁波は、計測対象ガス601を通過して対象物600に照射され、その反射波がレンズ103に集光されて受発信器102に戻る。続いて、制御部110は、受信発振部101が受信した反射波の強度に応じた電流または電圧の値を取得する(ステップS102)。 Then, the electromagnetic wave emitted perpendicularly to the object 600 passes through the gas 601 to be measured and is irradiated onto the object 600, and the reflected wave is collected on the lens 103 and returns to the transmitter / receiver 102. Subsequently, the control unit 110 acquires the value of the current or voltage according to the intensity of the reflected wave received by the reception oscillation unit 101 (step S102).
 これにより、上述のように非接触ガス計測装置100を対象物600に密着させずにガス計測することができるので、計測時に患者の皮膚表面への影響を低減することができる。また、皮膚などへの影響を考慮しなくてよいので、計測箇所が制限されることがなくなり、容易に正確な計測結果を得ることができる。 As a result, gas measurement can be performed without bringing the non-contact gas measurement apparatus 100 into close contact with the object 600 as described above, so that the influence on the skin surface of the patient can be reduced during measurement. In addition, since the influence on the skin or the like does not have to be taken into consideration, the measurement position is not limited, and accurate measurement results can be easily obtained.
 計測対象ガス601が一意に決まっている場合には、事前に値を定量計測することにより、図2における反射波の強さを計測対象ガス601の濃度と置換することが可能である。この場合、ステップS102の処理にて測定した電流値または電圧値を用いて、計測対象ガス601の濃度を算出することができる。また、過去に計測した電流または電圧の結果と比較し、計測対象ガス601の変化を換算することも可能である。
 〈非接触ガス計測システムの構成例〉
When the gas to be measured 601 is uniquely determined, the intensity of the reflected wave in FIG. 2 can be replaced with the concentration of the gas to be measured 601 by measuring the value quantitatively in advance. In this case, the concentration of the gas to be measured 601 can be calculated using the current value or the voltage value measured in the process of step S102. In addition, it is also possible to convert the change of the gas to be measured 601 in comparison with the result of the current or voltage measured in the past.
<Configuration example of non-contact gas measurement system>
 図4は、図1の非接触ガス計測装置100を用いた非接触ガス計測システム500における構成の一例を示す説明図である。 FIG. 4 is an explanatory view showing an example of a configuration of a non-contact gas measurement system 500 using the non-contact gas measurement apparatus 100 of FIG.
 非接触ガス計測システム500は、図4に示すように非接触ガス計測装置100、情報補正部200、距離測定部300、システム制御部400、解析部410、入出力部420、およびメモリ430を有する。 The non-contact gas measurement system 500 has a non-contact gas measurement apparatus 100, an information correction unit 200, a distance measurement unit 300, a system control unit 400, an analysis unit 410, an input / output unit 420, and a memory 430 as shown in FIG. .
 これら非接触ガス計測装置100、情報補正部200、距離測定部300、システム制御部400、解析部410、入出力部420、およびメモリ430は、システムバス401によって相互に接続されている。なお、非接触ガス計測装置100の構成および動作については、図1と同様であるので説明は省略する。 The non-contact gas measurement apparatus 100, the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, the input / output unit 420, and the memory 430 are mutually connected by a system bus 401. The configuration and operation of the non-contact gas measurement apparatus 100 are the same as those shown in FIG.
 情報補正部200は、環境による計測の誤差を減少させる補正波を取得する。この補正波は、電磁波である。例えば、計測対象ガスとして皮膚から蒸散された水蒸気を計測する場合、使用者が存在する環境により空気中の水蒸気量が異なるために計測値に影響を及ぼす恐れがある。このため、情報補正部200が取得する補正波を用いて、環境による水蒸気の影響を除く。 The information correction unit 200 acquires a correction wave that reduces the measurement error due to the environment. This correction wave is an electromagnetic wave. For example, when measuring water vapor evaporated from the skin as the gas to be measured, the amount of water vapor in the air may differ depending on the environment where the user is present, which may affect the measured value. Therefore, the influence of water vapor due to the environment is removed using the correction wave acquired by the information correction unit 200.
 距離測定部300は、該距離測定部300から対象物600までの距離を測定する。システム制御部400は、各種データを取得し、非接触ガス計測システム500における制御を司る。特に、システム制御部400は、計測対象ガス601を計測する際に後述する図10に示す制御情報管理テーブル800を参照して非接触ガス計測装置100を制御する。 The distance measuring unit 300 measures the distance from the distance measuring unit 300 to the object 600. The system control unit 400 acquires various data, and controls the non-contact gas measurement system 500. In particular, when measuring the gas 601 to be measured, the system control unit 400 controls the non-contact gas measurement apparatus 100 with reference to a control information management table 800 shown in FIG. 10 described later.
 解析部410は、検出した電磁波の計測値を解析する。入出力部420は、使用者とのインターフェースであり、後述する図5に示す入力部421および出力部422からなる。入力部421は、例えばボタンなどであり、出力部422は、例えば表示部である。 The analysis unit 410 analyzes the measured value of the detected electromagnetic wave. The input / output unit 420 is an interface with the user, and includes an input unit 421 and an output unit 422 shown in FIG. 5 described later. The input unit 421 is, for example, a button, and the output unit 422 is, for example, a display unit.
 メモリ430は、例えばフラッシュメモリなどに例示される不揮発性半導体メモリなどからなり、受信したデータや解析結果などを格納する。特に、後述する図10の制御情報管理テーブル800および図11の計測結果テーブル900などを格納する。
 〈非接触ガス計測システムの概観例〉
The memory 430 is formed of, for example, a non-volatile semiconductor memory exemplified by a flash memory, and stores received data, an analysis result, and the like. In particular, the control information management table 800 of FIG. 10, which will be described later, and the measurement result table 900 of FIG. 11 are stored.
<Overview example of non-contact gas measurement system>
 図5は、図4の非接触ガス計測システム500の一例を示す概観斜視図である。 FIG. 5 is a schematic perspective view showing an example of the non-contact gas measurement system 500 of FIG.
 非接触ガス計測システム500は、図5に示すように例えば直方体からなるケース501に収納されており、該ケース501の主面には、入力部421および出力部422がそれぞれ設けられている。図5の例では、入力部421は、ボタンである。 As shown in FIG. 5, the non-contact gas measurement system 500 is housed in a case 501 which is, for example, a rectangular parallelepiped, and an input unit 421 and an output unit 422 are provided on the main surface of the case 501. In the example of FIG. 5, the input unit 421 is a button.
 使用者は、この入力部421から計測開始指示や計測対象ガスの選択などの情報を入力する。入力部421は、ボタンに限定されることはなく、例えばタッチパネルやキーボードなどであってもよい。 The user inputs information such as a measurement start instruction and selection of a gas to be measured from the input unit 421. The input unit 421 is not limited to a button, and may be, for example, a touch panel or a keyboard.
 出力部422は、図5の例では、液晶ディスプレイである。この出力部422に計測した結果などが表示される。出力部422についても液晶ディスプレイに限定されることはなく、例えばLED(Light Emitting Diode)やブザーなどであってもよい。 The output unit 422 is a liquid crystal display in the example of FIG. The measurement result and the like are displayed on the output unit 422. The output unit 422 is not limited to the liquid crystal display, and may be, for example, a light emitting diode (LED) or a buzzer.
 使用者は、入力部421であるボタンを押下する。これによって、ガスの計測が開始され、受信発振部101から電磁波が出射される。他にも、複数の入力部421を設けることによって、計測対象ガス601の種類を使用者に選択させることもできる。 The user presses a button which is the input unit 421. By this, measurement of gas is started and an electromagnetic wave is emitted from the receiving oscillation part 101. In addition, by providing a plurality of input units 421, the user can select the type of measurement target gas 601.
 また、計測対象ガス601の計測結果は、出力部422に表示される。これによって、使用者が計測結果を知ることができる。出力部422にLEDを用いることによって、例えば緑色の発光が計測終了、赤の発光が計測エラーなどの情報を提示することができる。 Further, the measurement result of the measurement target gas 601 is displayed on the output unit 422. This allows the user to know the measurement result. By using an LED for the output unit 422, for example, it is possible to present information such as measurement completion of green light emission and measurement error of red light emission.
 また、ケース501の側面503には、出射口504が形成されている。出射口504は、非接触ガス計測装置100が有する受信発振部101が発振する電磁波を出射する。また、その他の非接触ガス計測システム500を構成する情報補正部200、距離測定部300、システム制御部400、解析部410、およびメモリ430については、ケース501に収納されている。 In addition, an emission port 504 is formed on the side surface 503 of the case 501. The emission port 504 emits an electromagnetic wave oscillated by the reception oscillation unit 101 of the non-contact gas measurement apparatus 100. In addition, the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, and the memory 430, which constitute the other non-contact gas measurement system 500, are housed in the case 501.
 解析部410は、メモリ430に蓄積された過去のデータを参照して、ある時刻の計測値だけではなく、過去の履歴を含んだ時系列のデータとして使用者の皮膚の状態変化を解析する。 The analysis unit 410 refers to the past data stored in the memory 430, and analyzes the change in the state of the skin of the user as time series data including the past history as well as the measurement value at a certain time.
 ここで、非接触ガス計測システム500を複数の使用者によって使用する際には、例えばメモリ430に各々の使用者を特定する番号などの情報を付加して、複数人の計測データをそれぞれ識別できるように保持してもよい。
 〈非接触ガス計測システムの使用例〉
Here, when the non-contact gas measurement system 500 is used by a plurality of users, for example, information such as numbers identifying the respective users can be added to the memory 430 to identify measurement data of a plurality of persons respectively. You may hold it.
<Usage example of non-contact gas measurement system>
 図6は、図5の非接触ガス計測システム500を使用する際の一例を示す説明図である。 FIG. 6 is an explanatory view showing an example when using the non-contact gas measurement system 500 of FIG.
 非接触ガス計測システム500を用いて使用者の皮膚を測定する場合には、図6に示すように使用者は図5のケース501の出射口504を皮膚に向けながら入力部421を指などによって押下する。
 〈情報補正部の構成例〉
When the user's skin is measured using the non-contact gas measurement system 500, as shown in FIG. 6, the user directs the exit 504 of the case 501 of FIG. Press down.
<Configuration Example of Information Correction Unit>
 図7は、図4の非接触ガス計測システム500が有する受信発振部101および情報補正部200における構成の一例を示す説明図である。 FIG. 7 is an explanatory view showing an example of the configuration of the reception / oscillation unit 101 and the information correction unit 200 which the non-contact gas measurement system 500 of FIG. 4 has.
 情報補正部200は、受信発振部101が計測対象ガス601以外による影響を除去する補正波を取得するためのものである。この情報補正部200は、例えばミラーによって構成されている。 The information correction unit 200 is for obtaining the correction wave from which the reception oscillation unit 101 removes the influence due to other than the measurement target gas 601. The information correction unit 200 is configured by, for example, a mirror.
 なお、情報補正部200は、ミラーに限定されるものではなく、電磁波を反射させる反射物や光学素子などであればよい。 The information correction unit 200 is not limited to a mirror, and may be a reflector or an optical element that reflects an electromagnetic wave.
 情報補正部200は、ケース501に設けられた出射口504の近傍に設けられており、受信発振部101における電磁波の出射面と対向するように設けられている。この場合、受信発振部101から出射された一部の電磁波は、情報補正部200の表面にあたり反射される。受信発振部101は、情報補正部200の反射波を補正波として取得する。 The information correction unit 200 is provided in the vicinity of the emission port 504 provided in the case 501, and is provided to face the emission surface of the electromagnetic wave in the reception oscillation unit 101. In this case, a part of the electromagnetic wave emitted from the reception oscillation unit 101 is reflected on the surface of the information correction unit 200 and reflected. The reception oscillation unit 101 acquires the reflection wave of the information correction unit 200 as a correction wave.
 この補正波の取得の際には、非接触ガス計測システム500の計測可能な距離よりも対象物600が十分に離れていていることが前提となる。すなわち計測対象ガスを計測していない状況が前提となる。 In acquiring this correction wave, it is premised that the object 600 is sufficiently separated from the measurable distance of the non-contact gas measurement system 500. That is, it is assumed that the measurement target gas is not measured.
 対象物600が十分に離れていているか否かは、例えば図4のシステム制御部400が判定する。図4の距離測定部300は、補正波の取得の際に対象物600までの距離を測定する。その測定結果は、図4のシステム制御部400に出力される。 For example, the system control unit 400 in FIG. 4 determines whether the object 600 is sufficiently separated. The distance measuring unit 300 in FIG. 4 measures the distance to the object 600 when acquiring the correction wave. The measurement result is output to the system control unit 400 of FIG.
 システム制御部400は、距離測定部300が測定した距離が予め設定された第1の測定判定距離よりも長い場合に、対象物600が十分に離れていていると判定する。また、第1の測定判定距離は、例えばメモリ430に格納される。 When the distance measured by the distance measurement unit 300 is longer than the first measurement determination distance set in advance, the system control unit 400 determines that the object 600 is sufficiently separated. The first measurement determination distance is stored in, for example, the memory 430.
 補正波を取得した後、受信発振部101が電磁波を出射する。電磁波は、計測対象ガス601を通過して対象物600にあたり、その反射波を計測する。このとき、受信発振部101と対象物600との距離が計測可能な距離内であり、計測対象ガス601を計測可能である状況が前提となる。 After acquiring the correction wave, the receiving and oscillating unit 101 emits an electromagnetic wave. The electromagnetic wave passes through the gas to be measured 601 to hit the object 600, and measures the reflected wave. At this time, it is assumed that the distance between the receiving / oscillating unit 101 and the object 600 is within the measurable distance, and the measuring object gas 601 can be measured.
 ここでも、システム制御部400は、距離測定部300が測定した距離結果から計測可能な距離内であるか否かを判定する。システム制御部400は、距離測定部300が測定した距離が予め設定された第2の測定判定距離よりも短い場合に、対象物600が十分に近づいていると判定する。第2の測定判定距離は、例えばメモリ430に格納される。 Also here, the system control unit 400 determines whether or not it is within the measurable distance from the distance result measured by the distance measuring unit 300. When the distance measured by the distance measurement unit 300 is shorter than the second measurement determination distance set in advance, the system control unit 400 determines that the object 600 approaches sufficiently. The second measurement determination distance is stored, for example, in the memory 430.
 なお、計測対象ガス601の測定波には、補正波も含まれている。これは、計測対象ガス601を測定する際に情報補正部200に反射する反射波が含まれるためである。しかし、計測対象ガス601の測定波に補正波が含まれていても、計測対象ガス601を計測する前に取得した補正波を用いて補正することにより、計測対象ガス601を高精度に計測することができる。 The measurement wave of the measurement target gas 601 also includes a correction wave. This is because the reflected wave that is reflected to the information correction unit 200 is included when the measurement target gas 601 is measured. However, even if the measurement wave of the measurement target gas 601 includes the correction wave, the measurement target gas 601 is measured with high accuracy by correcting using the correction wave acquired before the measurement target gas 601 is measured. be able to.
 受信発振部101が出射する電磁波は、図1に示したようにレンズ103を用いて平行光とされるが、平行光とはせずに発散光としてもよい。その場合、レンズ103は、不要となる。 The electromagnetic waves emitted from the reception / oscillation unit 101 are collimated by using the lens 103 as shown in FIG. 1, but may be divergent instead of collimated light. In that case, the lens 103 is unnecessary.
 平行光の場合は、計測時の計測位置による誤差の影響を抑えることができる。発散光の場合、計測可能距離が短くなるため、計測対象ガス601の情報を含まない補正波を取得しやすくなる。
 〈情報補正部の他の構成例〉
In the case of parallel light, it is possible to suppress the influence of an error due to the measurement position at the time of measurement. In the case of diverging light, the measurable distance becomes short, so it becomes easy to obtain a correction wave that does not include information of the gas to be measured 601.
<Another Configuration Example of Information Correction Unit>
 図8は、図4の非接触ガス計測システム500が有する受信発振部101および情報補正部200における他の構成例を示す説明図である。図9は、図8に続く説明図である。 FIG. 8 is an explanatory view showing another configuration example of the reception oscillation unit 101 and the information correction unit 200 which the non-contact gas measurement system 500 of FIG. 4 has. FIG. 9 is an explanatory view continued from FIG.
 図8に示す情報補正部200は、ミラー201およびモータ202を有する。図7の情報補正部200は、ミラーのみであり、該ミラーが固定された構成であったが、図8の情報補正部200は、ミラー201およびモータ202から構成されている。 The information correction unit 200 shown in FIG. 8 has a mirror 201 and a motor 202. The information correction unit 200 in FIG. 7 is only a mirror, and the mirror is fixed. However, the information correction unit 200 in FIG. 8 includes a mirror 201 and a motor 202.
 ミラー201は、図5のケース501に設けられた出射口504の近傍に設けられている。このミラー201は、図8において、ミラー201の上方の2つのコーナ部を回転軸として回転可能に取り付けられている。 The mirror 201 is provided in the vicinity of the emission port 504 provided in the case 501 of FIG. In FIG. 8, the mirror 201 is rotatably mounted with two corner portions above the mirror 201 as rotation axes.
 モータ202は、例えば図4のシステム制御部400から出力されるモード信号に基づいてミラー201を回転させる。システム制御部400が出力するモード信号としては、例えば情報補正モード信号および計測モード信号がある。情報補正モード信号は、補正波を取得する際に出力される信号であり、計測モード信号は、計測対象ガス601を計測する際に出力される信号である。 The motor 202 rotates the mirror 201 based on, for example, the mode signal output from the system control unit 400 of FIG. 4. Examples of mode signals output by the system control unit 400 include an information correction mode signal and a measurement mode signal. The information correction mode signal is a signal output when acquiring the correction wave, and the measurement mode signal is a signal output when measuring the measurement target gas 601.
 情報補正モード信号が出力されると、モータ202は、図8に示すようにミラー201を回転させて該ミラー201が出射口504を遮蔽する位置まで移動させる。これにより、受信発振部101から出射された電磁波は、ミラー201によって反射され、該受信発振部101に戻ることによって補正波を取得できる。 When the information correction mode signal is output, the motor 202 rotates the mirror 201 as shown in FIG. 8 to move the mirror 201 to a position where the light exit 504 is blocked. As a result, the electromagnetic wave emitted from the receiving and oscillating unit 101 is reflected by the mirror 201 and can return to the receiving and oscillating unit 101 to obtain a correction wave.
 また、計測モード信号が出力されると、モータ202は、図9に示すようにミラー201を90°程度回転させて、該ミラー201が出射口504を遮らない位置まで移動させる。すなわち、受信発振部101と対象物600との間からミラー201が除かれた状態になる。これにより、受信発振部101から出射された電磁波は、計測対象ガス601を通過して対象物600にあたり反射されるので、受信発振部101は、計測対象ガス601の計測波を取得することができる。
 〈制御情報管理テーブルの構成例〉
Further, when the measurement mode signal is output, the motor 202 rotates the mirror 201 by about 90 ° as shown in FIG. 9 and moves the mirror 201 to a position where it does not block the exit 504. That is, the mirror 201 is removed from between the reception oscillation unit 101 and the object 600. Thus, the electromagnetic wave emitted from the receiving and oscillating unit 101 passes through the gas to be measured 601 and is reflected on the object 600, so that the receiving and oscillating unit 101 can acquire the measurement wave of the gas to be measured 601 .
<Configuration Example of Control Information Management Table>
 続いて、制御情報管理テーブル800について説明する。 Subsequently, the control information management table 800 will be described.
 図10は、図4の非接触ガス計測システム500が有するシステム制御部400が参照する制御情報管理テーブル800における構成の一例を示した説明図である。 FIG. 10 is an explanatory diagram showing an example of the configuration of the control information management table 800 to which the system control unit 400 of the non-contact gas measurement system 500 of FIG. 4 refers.
 制御情報管理テーブル800には、計測制御情報を格納したテーブルである。計測制御情報は、非接触ガス計測装置100が計測対象ガス601を計測する際に発振する電磁波の周波数や、補正波の取得に関する情報などの計測対象ガス601を計測する情報である。 The control information management table 800 is a table storing measurement control information. The measurement control information is information for measuring the gas to be measured 601, such as the frequency of an electromagnetic wave oscillating when the non-contact gas measurement apparatus 100 measures the gas to be measured 601, and information on acquisition of a correction wave.
 制御情報管理テーブル800は、図10に示すように、左から右にかけて、計測対象ガス名801、周波数802、および情報補正制御803の項目を有する。計測対象ガス名801は、計測対象ガス601を識別する情報である。周波数802は、計測対象ガス601を計測する周波数を示す。情報補正制御803は、計測時に情報補正部200を制御する必要があるか否かを示す情報である。 The control information management table 800 has items of a measurement target gas name 801, a frequency 802, and an information correction control 803 from the left to the right as shown in FIG. The measurement target gas name 801 is information for identifying the measurement target gas 601. The frequency 802 indicates the frequency at which the measurement target gas 601 is measured. Information correction control 803 is information indicating whether it is necessary to control the information correction unit 200 at the time of measurement.
 ただし、制御情報管理テーブル800の項目は、図10に限定されるものではなく、非接触ガス計測装置100や情報補正部200を制御する情報が格納されていればよい。例えば、非接触ガス計測装置100を制御する電圧値や電流値などであってもよい。 However, the items of the control information management table 800 are not limited to those shown in FIG. 10, as long as information for controlling the non-contact gas measurement apparatus 100 and the information correction unit 200 may be stored. For example, a voltage value or a current value for controlling the non-contact gas measurement device 100 may be used.
 制御情報管理テーブル800に格納される情報は、予めメモリ430などに格納してもよいし、あるいはネットワーク経由などによって取得してもよい。また、使用者などが制御情報管理テーブル800に格納される情報を編集してもよい。 The information stored in the control information management table 800 may be stored in advance in the memory 430 or the like, or may be acquired via a network or the like. Further, the user may edit the information stored in the control information management table 800.
 なお、非接触ガス計測装置100および情報補正部200の制御が不要な場合、制御情報管理テーブル800は不要である。計測制御情報は、データ構造に依存せず、どのようなデータ構造であってもよい。図10の制御情報管理テーブル800以外にも、例えばリストあるいはデータベースなどから適切に選択したデータ構造体などによって該計測制御情報を格納することができる。 In addition, when control of the non-contact gas measuring device 100 and the information correction part 200 is unnecessary, the control information management table 800 is unnecessary. The measurement control information does not depend on the data structure, and may be any data structure. In addition to the control information management table 800 of FIG. 10, for example, the measurement control information can be stored by a data structure appropriately selected from a list or a database.
 この制御情報管理テーブル800は、上述したように例えばメモリ430ではなく、例えばシステム制御部400が有する図示しないメモリなどに格納するようにしてもよい。その他に、例えばネットワークを経由して接続された外部の記憶デバイスなどに格納するようにしてもよい。
 〈計測結果テーブルの構成例〉
The control information management table 800 may be stored not in the memory 430, for example, as described above, but in a memory (not shown) of the system control unit 400, for example. In addition, for example, it may be stored in an external storage device connected via a network.
<Example of configuration of measurement result table>
 図11は、図4の非接触ガス計測システム500が有するメモリ430に格納される計測結果テーブル900の一例を示す説明図である。 FIG. 11 is an explanatory view showing an example of a measurement result table 900 stored in the memory 430 of the non-contact gas measurement system 500 of FIG. 4.
 計測結果テーブル900は、非接触ガス計測システム500が計測対象ガス601を計測および計測結果を用いて解析した結果が格納される。 The measurement result table 900 stores the measurement result of the measurement target gas 601 by the non-contact gas measurement system 500 and analysis using the measurement result.
 計測結果テーブル900は、図11に示すように左から右にかけて、日時901、計測対象ガス名902、周波数903、対象物有無904、および値905の項目を有している。 As shown in FIG. 11, the measurement result table 900 has items of date and time 901, measurement target gas name 902, frequency 903, target presence / absence 904, and value 905 from left to right.
 日時901は、計測または解析した日時を示す。計測対象ガス名902は、計測対象ガス601を識別する情報を示す。周波数903は、計測対象ガス601の計測に用いた周波数を示す。対象物有無904は、計測時に計測対象ガス601を計測したか否かを示す。値905は、計測または解析した結果の値を示す。 The date and time 901 indicates the measured or analyzed date and time. The gas name to be measured 902 indicates information for identifying the gas to be measured 601. The frequency 903 indicates the frequency used to measure the gas 601 to be measured. The object presence / absence 904 indicates whether or not the measurement target gas 601 has been measured at the time of measurement. The value 905 indicates the value of the measured or analyzed result.
 ただし、計測結果テーブル900の項目は、図11に限定されるものではなく、非接触ガス計測システム500が取得、あるいは生成した他の情報を格納するようにしてもよい。
 〈非接触ガス計測システムの動作例〉
However, the items of the measurement result table 900 are not limited to those shown in FIG. 11, and other information acquired or generated by the non-contact gas measurement system 500 may be stored.
<Operation example of non-contact gas measurement system>
 続いて、非接触ガス計測システム500による計測動作について説明する。 Subsequently, the measurement operation by the non-contact gas measurement system 500 will be described.
 図12は、図4の非接触ガス計測システム500による計測対象ガス601の計測処理の一例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of measurement processing of the gas to be measured 601 by the non-contact gas measurement system 500 of FIG. 4.
 図12のフローチャートにおいて、特に指定がない場合には、図4のシステム制御部400が主体となって制御するものとする。 In the flowchart of FIG. 12, the system control unit 400 of FIG. 4 mainly controls control unless otherwise specified.
 まず、使用者が入出力部420を操作することによって入力情報を取得する(ステップS201)。入力情報は、例えば図6に示したように、使用者が入力部421のボタンを押下したことによる計測開始指示のことである。使用者が入力した入力情報は、システム制御部400が受け取る。 First, the user operates the input / output unit 420 to acquire input information (step S201). The input information is, for example, as shown in FIG. 6, an instruction to start measurement by the user pressing the button of the input unit 421. The system control unit 400 receives the input information input by the user.
 システム制御部400が入力情報を受け付けると、図4の距離測定部300による距離計測が行われ、計測対象ガス601が計測範囲内か否かの判定を開始する(ステップS202)。 When the system control unit 400 receives the input information, distance measurement is performed by the distance measurement unit 300 in FIG. 4, and it is determined whether the gas to be measured 601 is within the measurement range (step S202).
 具体的には、まずシステム制御部400が距離測定部300を制御して、受信発振部101と対象物600との距離を計測する。システム制御部400は、距離測定部300が計測した距離とメモリ430に格納されている第1の測定判定距離とを比較し、計測対象ガス601が計測範囲内か外かの判定を行う。 Specifically, first, the system control unit 400 controls the distance measurement unit 300 to measure the distance between the reception oscillation unit 101 and the object 600. The system control unit 400 compares the distance measured by the distance measurement unit 300 with the first measurement determination distance stored in the memory 430, and determines whether the measurement target gas 601 is within the measurement range or not.
 例えば非接触ガス計測システム500の計測可能距離が約10cmであるとする。この場合、第1の測定判定距離は、約10cmである。測定結果において、受信発振部101と対象物600との距離が約5cmの場合には、第1の測定判定距離の約10cmよりも短いので計測範囲内と判定し、計測した距離が15cmなら10cmよりも長いため計測範囲外と判定する。 For example, it is assumed that the measurable distance of the non-contact gas measurement system 500 is about 10 cm. In this case, the first measurement determination distance is about 10 cm. In the measurement results, if the distance between the receiving oscillator 101 and the object 600 is about 5 cm, it is determined to be within the measurement range because it is less than about 10 cm of the first measurement determination distance, and 10 cm if the measured distance is 15 cm. It is judged to be out of the measurement range because it is longer than this.
 この判定結果は、図11の計測結果テーブル900における対象物有無904に格納される。図11に示すように、例えば判定結果が測定範囲内なら「有」となり、判定結果が測定範囲外なら「無」と示される。 The determination result is stored in the object presence / absence 904 in the measurement result table 900 of FIG. As shown in FIG. 11, for example, if the determination result is within the measurement range, “Yes” is displayed, and if the determination result is outside the measurement range, “None” is indicated.
 続いて、制御情報管理テーブル800から計測制御情報を取得する(ステップS203)。具体的には、システム制御部400が、メモリ430に格納された図10の制御情報管理テーブル800から計測対象ガス601の計測に必要な制御情報を取得する。 Subsequently, measurement control information is acquired from the control information management table 800 (step S203). Specifically, the system control unit 400 acquires control information necessary for measuring the measurement target gas 601 from the control information management table 800 of FIG. 10 stored in the memory 430.
 図10を例にすると、計測対象ガス601として経皮水分蒸散量を測定する場合には、計測対象ガス名801の経皮水分蒸散量の行から周波数802の0.558THz、0.600THzおよび情報補正制御803の「有」の情報を取得する。 For example, in FIG. 10, when measuring the amount of transdermal water evaporation as the gas 601 to be measured, 0.558 THz, 0.600 THz of frequency 802 and information from the row of the amount of skin to be evaporated Information of “presence” of the correction control 803 is acquired.
 ここでは、説明の便宜上、制御情報管理テーブル800から情報を取得しているが、入力部421を経由して使用者が直接入力した情報に基づいて制御してもよい。 Here, for convenience of explanation, information is acquired from the control information management table 800, but control may be performed based on information directly input by the user via the input unit 421.
 システム制御部400は、ステップS203の処理にて取得した情報に基づいて、情報補正部200を制御するか否かを判定する(ステップS204)。例えば図10において、情報補正制御803が「有」(YES)の場合は、ステップS205の処理に進み、情報補正制御803が「無」(NO)の場合は、ステップS206の処理に進む。 The system control unit 400 determines whether to control the information correction unit 200 based on the information acquired in the process of step S203 (step S204). For example, in FIG. 10, if the information correction control 803 is "YES" (YES), the process proceeds to step S205. If the information correction control 803 is "NO" (NO), the process proceeds to step S206.
 情報補正制御803の有無は、非接触ガス計測システム500の構成および計測対象ガス601による。例えば図7に示した情報補正部200の場合には、情報補正の制御が不要となるため常に「無」となる。一方、図8に示した情報補正部200の場合、補正波が必要な場合は「有」となり、補正波が不要な場合は「無」となる。 The presence or absence of the information correction control 803 depends on the configuration of the non-contact gas measurement system 500 and the gas 601 to be measured. For example, in the case of the information correction unit 200 shown in FIG. 7, the control of the information correction is not necessary, so that it is always "absent". On the other hand, in the case of the information correction unit 200 shown in FIG. 8, when the correction wave is necessary, it is “Yes”, and when the correction wave is unnecessary, it is “No”.
 システム制御部400は、情報補正部200を制御する(ステップS205)。このステップS205の処理は、情報補正部200の構成によるが、例えば図8に示す情報補正部200の場合、システム制御部400は、情報補正部200のモータ202を制御することによりミラー201を回転させて該ミラー201が出射口504を遮蔽する位置まで移動させる。 The system control unit 400 controls the information correction unit 200 (step S205). The process of step S205 depends on the configuration of the information correction unit 200. For example, in the case of the information correction unit 200 shown in FIG. 8, the system control unit 400 rotates the mirror 201 by controlling the motor 202 of the information correction unit 200. Then, the mirror 201 moves the light emission port 504 to a position where the light emission port 504 is shielded.
 システム制御部400は、ステップS203の処理にて取得した制御情報に基づいて、非接触ガス計測装置100が照射する電磁波の周波数を制御するか否かを判定する(ステップS206)。 The system control unit 400 determines whether to control the frequency of the electromagnetic wave irradiated by the non-contact gas measurement apparatus 100 based on the control information acquired in the process of step S203 (step S206).
 図10の制御情報管理テーブル800を例にすると、周波数802と非接触ガス計測装置100に設定されている情報とが異なる場合には、制御する必要があるためステップS207の処理に進む。 Taking the control information management table 800 of FIG. 10 as an example, if the frequency 802 and the information set in the non-contact gas measurement apparatus 100 are different, it is necessary to control and the process proceeds to step S207.
 周波数802と非接触ガス計測装置100に設定されている情報とが同じ場合には、制御が不要であるため、ステップS208の処理に進む。具体的には、周波数802から0.558THzを取得した場合、非接触ガス計測装置100が0.558THzを発振できる状態ならそのままとし、異なる場合は、ステップS207の処理にて非接触ガス計測装置100が0.558THzを発振できるように制御する。なお、非接触ガス計測装置100の周波数が固定されている場合は、この処理は不要となる。 If the frequency 802 and the information set in the non-contact gas measurement apparatus 100 are the same, the control is not necessary, and thus the process proceeds to step S208. Specifically, when 0.558 THz is acquired from the frequency 802, the non-contact gas measurement device 100 is left as it is if it can oscillate 0.558 THz, and if it is different, the non-contact gas measurement device 100 is processed in step S207. Is controlled to oscillate 0.558 THz. In addition, when the frequency of the non-contact gas measuring device 100 is fixed, this process becomes unnecessary.
 そして、ステップS206の処理における周波数制御の情報に基づいて、非接触ガス計測装置100を制御して、電磁波を特定の周波数とする(ステップS207)。例えば、受発信器102の電圧または電流を変化させることによって電磁波の周波数を変更する。 And based on the information of the frequency control in the process of step S206, the non-contact gas measuring device 100 is controlled, and an electromagnetic wave is made into a specific frequency (step S207). For example, the frequency of the electromagnetic wave is changed by changing the voltage or current of the transmitter / receiver 102.
 これにより、計測対象ガス601の計測が開始され、受信発振部101が電流または電圧の値を取得する(ステップS208)。計測した値は、計測結果テーブル900の値905に格納される。 As a result, the measurement of the measurement target gas 601 is started, and the reception oscillation unit 101 acquires the value of the current or the voltage (step S208). The measured value is stored in the value 905 of the measurement result table 900.
 ステップS203の処理にて取得した制御情報を参照して、計測する周波数をすべて計測したか否かを判定する(ステップS209)。計測する周波数がある場合には、ステップS206の処理に戻る。すべての周波数の計測が完了した場合には、計測が終了となる。 With reference to the control information acquired in the process of step S203, it is determined whether all the frequencies to be measured have been measured (step S209). If there is a frequency to be measured, the process returns to step S206. When the measurement of all the frequencies is completed, the measurement ends.
 具体的には、図10を例にすると、計測対象ガス601として経皮水分蒸散量を測定したい場合には、周波数802の0.558THzおよび0.600THzの2つの周波数にて計測を完了しているか否かを判断し、計測が終わるまで繰り返す。 Specifically, taking FIG. 10 as an example, when it is desired to measure the amount of transdermal water evaporation as the gas to be measured 601, measurement is completed at two frequencies of 0.558 THz and 0.600 THz of frequency 802. Determine if it is present and repeat until measurement is complete.
 計測が終了すると、解析部410は、計測結果テーブル900の値905を用いて解析を行う(ステップS210)。 When the measurement is completed, the analysis unit 410 performs analysis using the values 905 of the measurement result table 900 (step S210).
 具体的には、計測終了を受けたシステム制御部400は、解析部410に計測したデータの解析を指示して、該解析部410がメモリ430上の計測結果テーブル900を参照することにより解析を行う。 Specifically, the system control unit 400 having received the measurement end instructs the analysis unit 410 to analyze the measured data, and the analysis unit 410 analyzes the data by referring to the measurement result table 900 on the memory 430. Do.
 例えば、経皮水分蒸散量を算出する場合は、次のような計算方法となる。 For example, in the case of calculating the amount of transdermal water loss, the following calculation method is used.
 経皮水分蒸散量を算出するためには、4パターンの電磁波にて解析を行う。1つ目は、水蒸気に感度が高い周波数、例えば、0.558THz程度の周波数を対象物600に照射した電磁波である。皮膚から反射された電磁波が戻るため、空気中の水蒸気、皮膚から蒸散された水蒸気、皮膚による吸収、および内部反射光の拡散の情報などを含んだ強度が検出される。 In order to calculate the amount of transdermal water loss, analysis is performed using four patterns of electromagnetic waves. The first is an electromagnetic wave in which the object 600 is irradiated with a frequency that is highly sensitive to water vapor, for example, a frequency of about 0.558 THz. Since the electromagnetic waves reflected from the skin return, the intensity including information on water vapor in the air, water vapor transpired from the skin, absorption by the skin, and diffusion of internally reflected light is detected.
 2つ目は、水蒸気による感度が高い周波数、例えば、0.558THz程度の周波数を情報補正部200に照射した電磁波である。ミラーにて反射された電磁波のみが戻るため、空気中の水蒸気の情報を含んだ強度が検出される。 The second is an electromagnetic wave in which the information correction unit 200 is irradiated with a frequency with high sensitivity to water vapor, for example, a frequency of about 0.558 THz. Since only the electromagnetic wave reflected by the mirror returns, the intensity including information of water vapor in the air is detected.
 3つ目は、水蒸気に感度が低い周波数、例えば、0.600THz程度の周波数を対象物600に照射した電磁波である。皮膚から反射された電磁波が戻るため、皮膚による吸収および内部反射光の拡散の情報を含んだ強度が検出される。 The third is an electromagnetic wave in which the object 600 is irradiated with a frequency at which the sensitivity to water vapor is low, for example, a frequency of about 0.600 THz. Since the electromagnetic wave reflected from the skin returns, the intensity including information of absorption by the skin and diffusion of internally reflected light is detected.
 4つ目は、水蒸気による感度が低い周波数、例えば、0.600THz程度の周波数を情報補正部200に照射した電磁波である。ミラーにて反射された電磁波のみが戻り、参照信号として用いることができる。 The fourth is an electromagnetic wave in which the information correction unit 200 is irradiated with a frequency at which the sensitivity due to water vapor is low, for example, a frequency of about 0.600 THz. Only the electromagnetic wave reflected by the mirror is returned and can be used as a reference signal.
 1つ目と2つ目の検出結果は、同じ空気中の水蒸気による減衰を含む。このため1つ目と2つ目の差分は、皮膚による吸収および内部反射光の拡散による減衰と、皮膚から蒸散された水蒸気による減衰となる。 The first and second detection results include attenuation by water vapor in the same air. Therefore, the difference between the first and second is attenuation due to diffusion of absorption and internal reflection light by the skin and attenuation due to water vapor transpired from the skin.
 3つ目と4つ目の差分は、皮膚による吸収および内部反射光の拡散による減衰となる。そこで、1つ目と2つ目の差分から3つ目と4つ目の差分を引くことにより、皮膚から蒸散された水蒸気による減衰を検出することができる。 The difference between the third and fourth is the attenuation due to the diffusion of absorbed and internally reflected light by the skin. Therefore, by subtracting the third and fourth differences from the first and second differences, it is possible to detect attenuation due to water vapor transpired from the skin.
 続いて、システム制御部400は、ステップS210の処理にて解析した結果をメモリ430に格納する(ステップS211)。例えば、解析結果は、メモリ430が記憶する計測結果テーブル900に格納してもよいし、メモリ430の他の領域に格納するようにしてもよい。このステップS211の処理は、省略してステップS212の処理に進むようにしてもよい。 Subsequently, the system control unit 400 stores the result analyzed in the process of step S210 in the memory 430 (step S211). For example, the analysis result may be stored in the measurement result table 900 stored in the memory 430, or may be stored in another area of the memory 430. The process of step S211 may be omitted and the process may proceed to the process of step S212.
 そして、システム制御部400は、出力部422に解析結果を表示する。例えば、図5に示したように出力部422に使用者が解析結果を認識できるように表示を行う(ステップS212)。 Then, the system control unit 400 displays the analysis result on the output unit 422. For example, as shown in FIG. 5, a display is made on the output unit 422 so that the user can recognize the analysis result (step S212).
 ここで、非接触ガス計測システム500に不具合がある場合、システム制御部400は、それらの不具合を検知して出力部422にアラートを出力する。例えば出力部422が液晶ディスプレイの場合には、アラートの内容を表示する。また、出力部422がスピーカなどの場合には、音声やブザーなどの音によってアラートを伝える。出力部422が、LEDの場合には、光などによってアラートを知らせる。 Here, when there is a failure in the non-contact gas measurement system 500, the system control unit 400 detects the failure and outputs an alert to the output unit 422. For example, when the output unit 422 is a liquid crystal display, the content of the alert is displayed. When the output unit 422 is a speaker or the like, an alert is transmitted by a sound such as a voice or a buzzer. When the output unit 422 is an LED, an alert is notified by light or the like.
 以上、共鳴トンネルダイオードなどを用いることによって、簡易な構成によって電磁波の照射および受信する受信発振部101を一体化することができ、非接触ガス計測装置100を小型化することができる。 As described above, by using a resonant tunneling diode or the like, the reception / oscillation unit 101 that emits and receives an electromagnetic wave can be integrated with a simple configuration, and the non-contact gas measurement apparatus 100 can be miniaturized.
 また、対象物600に電磁波照射して、その反射波の強弱から計測対象ガス601を計測するので、受信発振部101を対象物600から離して、すなわち皮膚表面と非接触にて計測することができる。 Further, the object 600 is irradiated with an electromagnetic wave, and the measurement target gas 601 is measured from the strength of the reflected wave, so that the reception oscillation unit 101 is separated from the object 600, that is, measured without contact with the skin surface. it can.
 これにより、利用者の皮膚などに非接触ガス計測装置100を密着させることなく計測できるので、測定箇所が制限されることなく高精度な計測を行うことができる。また、利用者の患部への負担を軽減することができる。 As a result, measurement can be performed without bringing the non-contact gas measurement device 100 into close contact with the user's skin or the like, so high-accuracy measurement can be performed without limitation on the measurement location. In addition, the burden on the affected part of the user can be reduced.
 さらに、情報補正部200による補正波を用いて、計測対象ガスを計測することにより、非接触ガス計測システム500の計測精度を向上させることができる。
 (実施の形態2)
Furthermore, the measurement accuracy of the non-contact gas measurement system 500 can be improved by measuring the gas to be measured using the correction wave by the information correction unit 200.
Second Embodiment
 〈受信発振部および情報補正部の構成例〉 <Configuration Example of Reception Oscillator and Information Correction Unit>
 本実施の形態2では、受信発振部および情報補正部における他の構成例について説明する。 In the second embodiment, another configuration example of the reception oscillation unit and the information correction unit will be described.
 図13は、本実施の形態2による受信発振部101,101aおよび情報補正部200における構成の一例を示す説明図である。 FIG. 13 is an explanatory diagram showing an example of the configuration of the reception and oscillation units 101 and 101a and the information correction unit 200 according to the second embodiment.
 前記実施の形態1の図7では、1つの受信発振部101によって測定波と補正波とをそれぞれ取得する構成であったが、図13の場合には、第1の受信発振部である受信発振部101に加えて、第2の受信発振部である受信発振部101aが新たに設けられた構成となっている。 In FIG. 7 of the first embodiment, the configuration is such that the measurement wave and the correction wave are respectively acquired by one reception oscillation unit 101, but in the case of FIG. 13, the reception oscillation which is the first reception oscillation unit In addition to the unit 101, a reception oscillation unit 101a, which is a second reception oscillation unit, is newly provided.
 図13において、受信発振部101は、計測対象ガス601を計測する際に用いられ、受信発振部101aは、補正波を計測する際に用いられる。なお、その他の非接触ガス計測システム500における構成については、前記実施の形態1の図4と同様であるので説明は省略する。 In FIG. 13, the reception oscillation unit 101 is used when measuring the measurement target gas 601, and the reception oscillation unit 101a is used when measuring the correction wave. In addition, about the structure in the other non-contact gas measurement system 500, since it is the same as that of FIG. 4 of the said Embodiment 1, description is abbreviate | omitted.
 情報補正部200は、例えばミラーなどからなり、受信発振部101aにおける電磁波の出射面と対向するように設けられている。情報補正部200は、受信発振部101aが計測対象ガス601以外のガスによる影響を除去するための補正波を取得する。受信発振部101aは、情報補正部200に電磁波を照射し、その反射波を補正波として取得する。 The information correction unit 200 includes, for example, a mirror, and is provided so as to face the emission surface of the electromagnetic wave in the reception oscillation unit 101a. The information correction unit 200 acquires a correction wave for the reception oscillation unit 101 a to remove the influence of the gas other than the measurement target gas 601. The reception oscillation unit 101a irradiates the information correction unit 200 with an electromagnetic wave, and acquires the reflected wave as a correction wave.
 受信発振部101は、電磁波を計測対象の対象物600に照射して、該対象物600が照射した反射波を受信し、受信した反射波の強度に応じた電流または電圧の値を取得する。受信発振部101から出射された電磁波は、計測対象ガス601を通過して対象物600にあたり反射されて戻ることにより計測波を計測する。 The receiving oscillation unit 101 irradiates an electromagnetic wave to the object 600 to be measured, receives the reflected wave irradiated by the object 600, and acquires a current or voltage value according to the intensity of the received reflected wave. The electromagnetic wave emitted from the reception oscillation unit 101 passes through the gas 601 to be measured, is reflected on the object 600 and is returned, thereby measuring the measurement wave.
 以上により、受信発振部101aを設けることにより、より正確に補正波を取得することができる。その結果、より高精度に計測対象ガス601を計測することができ、非接触ガス計測システム500の信頼性を向上させることができる。
 (実施の形態3)
As described above, the correction wave can be more accurately acquired by providing the reception oscillation unit 101a. As a result, the measurement target gas 601 can be measured with higher accuracy, and the reliability of the non-contact gas measurement system 500 can be improved.
Third Embodiment
 本実施の形態3では、非接触ガス計測システム500を携帯端末、例えばスマートフォンやタブレットなどに設けた構成について説明する。
 〈携帯端末の構成例〉
In the third embodiment, a configuration in which the non-contact gas measurement system 500 is provided to a portable terminal such as a smartphone or a tablet will be described.
<Configuration Example of Mobile Terminal>
 図14は、本実施の形態3による携帯端末560における構成の一例を示す説明図である。 FIG. 14 is an explanatory view showing an example of a configuration of the portable terminal 560 according to the third embodiment.
 携帯端末560は、非接触ガス計測システム500、撮像部440、および通信部450から構成されている。非接触ガス計測システム500は、前記実施の形態1の図4の非接触ガス計測システム500と同様の構成からなる。 The portable terminal 560 includes the non-contact gas measurement system 500, an imaging unit 440, and a communication unit 450. The non-contact gas measurement system 500 has the same configuration as the non-contact gas measurement system 500 of FIG. 4 of the first embodiment.
 撮像部440は、画像を取得するカメラである。撮像部440は、後述する測定位置を一致させる技術および計測特定の技術などに用いられる。通信部450は、例えばインターネット回線や電話通信回線などの通信回線と無線接続され、外部との通信を行う。 The imaging unit 440 is a camera that acquires an image. The imaging unit 440 is used for a technique for matching measurement positions, which will be described later, and a measurement specific technique. The communication unit 450 is wirelessly connected to a communication line such as, for example, an Internet line or a telephone communication line, and performs communication with the outside.
 図14では、通信部450によって外部接続されたサーバ460と接続される例を示している。通信部450は、例えば非接触ガス計測装置100、距離測定部300、および撮像部440などが取得した情報をサーバ460に送受信する。 FIG. 14 shows an example of connection with a server 460 externally connected by the communication unit 450. The communication unit 450 transmits and receives, to the server 460, information acquired by, for example, the non-contact gas measurement apparatus 100, the distance measurement unit 300, and the imaging unit 440.
 撮像部440は、例えば可視光波長に対する感度を持つR(Red)G(Green)B(Blue)カメラ、赤外線に対する感度を持つ赤外光カメラ、または赤外線から可視光の波長に対する感度を持つRGBカメラなどがある。あるいは可視光から紫外線の波長、または赤外線から可視光を経て紫外線の波長に対する感度を持つRGBカメラなどであってもよい。 The imaging unit 440 may be, for example, an R (Red) G (Green) B (Blue) camera having sensitivity to visible light wavelength, an infrared light camera having sensitivity to infrared light, or an RGB camera having sensitivity to wavelengths from infrared to visible light. and so on. Alternatively, it may be an RGB camera having sensitivity to the wavelength of visible light to ultraviolet light, or from infrared light to visible light to ultraviolet light wavelength.
 なお、非接触ガス計測システム500が有する入出力部420は、携帯端末560が有するタッチパネルなどの入出力部を流用してもよい。 The input / output unit 420 of the non-contact gas measurement system 500 may use an input / output unit such as a touch panel of the portable terminal 560.
 図14では、スマートフォンなどの携帯端末560に非接触ガス計測システム500を設けた構成としたが、例えば非接触ガス計測システム500に携帯端末560の機能である撮像部440および通信部450を新たに追加する構成としてもよい。
 〈携帯端末の概観例〉
In FIG. 14, the non-contact gas measurement system 500 is provided in a portable terminal 560 such as a smartphone, but for example, the non-contact gas measurement system 500 newly includes an imaging unit 440 and a communication unit 450 which are functions of the portable terminal 560. It may be configured to be added.
<Overview of mobile terminal>
 図15は、図14の携帯端末560の概観の一例を示す説明図である。図15(a)は、携帯端末560の正面を示しており、図15(b)は、携帯端末560の背面を示している。ここでは、入出力部420が設けられている面を携帯端末560の正面とし、それに対向する面を背面とする。 FIG. 15 is an explanatory view showing an example of an overview of the portable terminal 560 of FIG. FIG. 15 (a) shows the front of the portable terminal 560, and FIG. 15 (b) shows the back of the portable terminal 560. Here, the surface on which the input / output unit 420 is provided is taken as the front of the portable terminal 560, and the surface facing it is taken as the back.
 図15の例では、撮像部440によって図15(a)に示す携帯端末560の正面側および図15(b)に示す携帯端末560の背面側のいずれの面からも画像を撮影することができる構成となっている。 In the example of FIG. 15, an image can be taken by the imaging unit 440 from either the front side of the portable terminal 560 shown in FIG. 15A or the back side of the portable terminal 560 shown in FIG. It is a structure.
 同様に、図15の例では、受信発振部101においても、図15(a)に示す携帯端末560の正面側および図15(b)に示す背面側のいずれの面からも電磁波の照射および受信を行うことができる構成となっている。
 〈入出力部の表示例〉
Similarly, in the example of FIG. 15, also in the receiving and oscillating unit 101, irradiation and reception of electromagnetic waves from both the front side of the portable terminal 560 shown in FIG. 15 (a) and the back side shown in FIG. Is configured to be able to
<Display example of input / output unit>
 図16は、図15の携帯端末560が有する入出力部420による表示の一例を示す説明図である。 FIG. 16 is an explanatory view showing an example of display by the input / output unit 420 which the portable terminal 560 of FIG. 15 has.
 この場合、入出力部420は、例えばタッチパネル式のディスプレイからなるものとする。この入出力部420には、図16(a)に示すように、例えば使用者が計測対象を選択するメニュー画面や、図16(b)に示すように、撮像部440にて撮像した画像や解析した結果などを表示する。 In this case, the input / output unit 420 is formed of, for example, a touch panel display. In the input / output unit 420, as shown in FIG. 16A, for example, a menu screen for the user to select a measurement target, or as shown in FIG. 16B, an image captured by the imaging unit 440 or Display the analysis result etc.
 図16(a)に示すメニュー画面では、計測可能な計測対象ガス名を表示し、使用者が選択できるようにする。メニューボタンと前記実施の形態1の図10の制御情報管理テーブル800とを関連付けることにより、例えば図12のステップS201の処理における入力情報に使用者が選択した計測対象ガス601を簡単に付与することができる。 In the menu screen shown in FIG. 16A, the name of the gas to be measured that can be measured is displayed so that the user can select one. By associating the menu button with the control information management table 800 of FIG. 10 of the first embodiment, for example, the measurement target gas 601 selected by the user can be easily applied to input information in the process of step S201 of FIG. Can.
 また、計測結果として、図16(b)に示すように、例えば経皮水分蒸散量を時系列に表示したグラフ、撮像部440が取得した前回の測定位置を示す測定位置マーカなどを入出力部420に表示するようにしてもよい。
 〈携帯端末の動作例〉
In addition, as a measurement result, as shown in FIG. 16B, for example, a graph in which the amount of percutaneous water evaporation is displayed in time series, a measurement position marker indicating the previous measurement position acquired by the imaging unit 440, etc. It may be displayed at 420.
<Operation example of mobile terminal>
 図17は、図14の携帯端末560によるガス計測の動作における一例を示すフローチャートである。 FIG. 17 is a flowchart showing an example of an operation of gas measurement by the portable terminal 560 of FIG.
 まず、入力情報を取得する(ステップS301)。このステップS301の処理は、前記実施の形態1の図12におけるステップS201の処理と同じである。続いて、撮像部440が使用者の測定部位の撮影を行い、システム制御部400が撮影された画像を解析する(ステップS302)。 First, input information is acquired (step S301). The process of step S301 is the same as the process of step S201 in FIG. 12 of the first embodiment. Subsequently, the imaging unit 440 captures an image of the measurement site of the user, and the system control unit 400 analyzes the captured image (step S302).
 これにより、測定位置を前回の場所と一致させることや、受信発振部101による計測を携帯端末560の正面または背面のいずれの面によって計測するかなどを認識することができる。 This makes it possible to make the measurement position coincide with the previous position, and to recognize which surface of the front or back of the portable terminal 560 the measurement by the reception oscillation unit 101 is to be measured.
 測定位置を一致させる技術について説明する。 A technique for matching measurement positions will be described.
 長期のモニタリングを行う場合には、測定位置を合わせて、略同一部位を計測することが望まれる。そこで、前回あるいはこれまで撮像部440にて撮影した画像結果から測定部位を特定して、その結果を出力部422に表示することによって使用者に知らせる。 When performing long-term monitoring, it is desirable to match the measurement position and measure approximately the same site. Therefore, the measurement site is specified from the image result captured by the imaging unit 440 last time or before, and the result is notified to the user by displaying the result on the output unit 422.
 入出力部420に測定位置マーカを表示してもよいし、スピーカなどを使って測定位置マーカと撮像部440にて撮影されている現在位置との差分の情報を音、例えば音程の変化、音量の変化、あるいは音声などによって知らせることも可能である。 The measurement position marker may be displayed on the input / output unit 420, or information on the difference between the measurement position marker and the current position captured by the imaging unit 440 using a speaker or the like may be used as a sound, for example, a change in pitch or volume It is also possible to notify by a change of, or by voice.
 受信発振部101による計測を携帯端末560の正面または背面のいずれによって計測しているかを特定させる計測特定の技術について説明する。 A technique of measurement specification for specifying whether the measurement by the reception oscillation unit 101 is being performed by the front surface or the back surface of the portable terminal 560 will be described.
 例えば、対象物600が図15(a)の撮像部440、すなわち携帯端末560の正面側にて撮影されたか、あるいは対象物600が図15(b)の撮像部440、すなわち携帯端末560の背面側にて撮影されたかを判定し、撮影された面側において受信発振部101による計測を行う。 For example, the object 600 is photographed at the front of the imaging unit 440 of FIG. 15A, that is, the portable terminal 560, or the object 600 is at the imaging unit 440 of FIG. It is determined whether the image has been taken on the side, and the measurement by the reception oscillation unit 101 is performed on the side of the taken image.
 これにより、計測対象ガス601が携帯端末の正面に有る場合も、背面に有る場合も簡単に撮影できる。具体的には、腕を計測する場合は、図15(b)の背面側の受信発振部101を使用し、顔面などを計測する場合は、図15(a)正面の受信発振部101を使用する。これにより、利用者は、入出力部420であるディスプレイを見ながら計測することができる。 Thus, even when the gas to be measured 601 is present on the front of the portable terminal or on the back, imaging can be easily performed. Specifically, in the case of measuring the arm, the reception oscillation unit 101 on the back side of FIG. 15 (b) is used, and in the case of measuring the face etc., the reception oscillation unit 101 in the front of FIG. Do. Thus, the user can measure while looking at the display as the input / output unit 420.
 図17において、画像の解析が終了すると、計測対象ガス601の計測を行う(ステップS303)。このステップS303の処理は、図12のステップS202~S209の処理と同様である。 In FIG. 17, when the analysis of the image is completed, the measurement target gas 601 is measured (step S303). The process of step S303 is similar to the process of steps S202 to S209 of FIG.
 続いて、計測結果の送信が行われる(ステップS304)。システム制御部400は、通信部450によって外部接続されたサーバ460に計測結果などを転送する。その後、サーバ460は、転送された計測結果を解析する(ステップS305)。 Subsequently, the measurement result is transmitted (step S304). The system control unit 400 transfers measurement results and the like to the server 460 externally connected by the communication unit 450. Thereafter, the server 460 analyzes the transferred measurement result (step S305).
 具体的には、ステップS304の処理にて取得した計測結果と、ステップS302の処理にて画像解析結果とが通信部450からサーバ460に送信される。サーバ460は、複雑な解析のすべて或いは一部の解析を実行する。具体的な処理は、図12のステップS210の処理と同じである。これにより、非接触ガス計測システム500の処理負荷を低減させることができる。 Specifically, the measurement result acquired in the process of step S304 and the image analysis result in the process of step S302 are transmitted from the communication unit 450 to the server 460. The server 460 performs analysis of all or part of the complex analysis. The specific process is the same as the process of step S210 in FIG. Thereby, the processing load of the non-contact gas measurement system 500 can be reduced.
 通信部450は、サーバ460が解析した結果を取得する(ステップS306)。システム制御部400は、サーバ460から取得した結果を入出力部420に表示する(ステップS307)。このとき、システム制御部400は、サーバ460から取得した結果をメモリ430に格納する。 The communication unit 450 acquires the result analyzed by the server 460 (step S306). The system control unit 400 displays the result acquired from the server 460 on the input / output unit 420 (step S307). At this time, the system control unit 400 stores the result acquired from the server 460 in the memory 430.
 これにより、携帯端末560に非接触ガス計測システム500を設けることにより、より利用者の利便性を向上させることができる。また、計測対象ガス601の解析を外部のサーバ460に解析させるので、より短時間で計測対象ガス601を解析することができる。 Thus, the convenience of the user can be further improved by providing the non-contact gas measurement system 500 in the portable terminal 560. Further, since the analysis of the measurement target gas 601 is analyzed by the external server 460, the measurement target gas 601 can be analyzed in a shorter time.
 また、非接触ガス計測システム500に計測対象ガス601を解析する機能が不要となるので、該非接触ガス計測システム500の構成をより簡単化することができ、小型化や低コスト化にも貢献することができる。 Further, since the function of analyzing the gas to be measured 601 is not required in the non-contact gas measurement system 500, the configuration of the non-contact gas measurement system 500 can be further simplified, contributing to downsizing and cost reduction. be able to.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、カラー画像と距離画像とを同時に取得可能な単眼カメラを使えば、図14の撮像部440および距離測定部300の機能を実現することができるので、小型化かつ低コストな非接触ガス計測システムを実現することができる。 As mentioned above, although the invention made by the present inventor was concretely explained based on an embodiment, the present invention is not limited to the above-mentioned embodiment, and various modifications are included. For example, if a single-eye camera capable of simultaneously acquiring a color image and a distance image is used, the functions of the imaging unit 440 and the distance measurement unit 300 in FIG. The system can be realized.
100 非接触ガス計測装置
101 受信発振部
101a 受信発振部
102 受発信器
103 レンズ
110 制御部
200 情報補正部
201 ミラー
202 モータ
300 距離測定部
400 システム制御部
401 システムバス
410 解析部
420 入出力部
421 入力部
422 出力部
430 メモリ
440 撮像部
450 通信部
460 サーバ
500 非接触ガス計測システム
560 携帯端末
600 対象物
601 計測対象ガス
Reference Signs List 100 non-contact gas measuring apparatus 101 reception oscillation unit 101a reception oscillation unit 102 transmission / reception device 103 lens 110 control unit 200 information correction unit 201 mirror 202 motor 300 distance measurement unit 400 system control unit 401 system bus 410 analysis unit 420 input / output unit 421 Input unit 422 Output unit 430 Memory 440 Imaging unit 450 Communication unit 460 Server 500 Non-contact gas measurement system 560 Mobile terminal 600 Object 601 Measurement target gas

Claims (15)

  1.  電磁波の出射および検出を行う受信発振部と、
     前記受信発振部を制御する制御部と、
     を有し、
     前記受信発振部は、前記制御部の指令に基づいて、対象物に前記電磁波を照射して、前記対象物から反射した電磁波の強度に応じて変化する電圧または電流の値を計測値として出力する、非接触ガス計測装置。
    A reception oscillation unit that emits and detects an electromagnetic wave;
    A control unit that controls the reception oscillation unit;
    Have
    The receiving and oscillating unit irradiates the object with the electromagnetic wave based on a command from the control unit, and outputs a value of a voltage or current, which changes according to the intensity of the electromagnetic wave reflected from the object, as a measured value. , Non-contact gas measuring device.
  2.  請求項1記載の非接触ガス計測装置において、
     前記受信発振部は、負性抵抗領域にて電磁波を発振する電子デバイスである、非接触ガス計測装置。
    In the noncontact gas measuring device according to claim 1,
    The non-contact gas measurement device, wherein the reception oscillation unit is an electronic device that oscillates an electromagnetic wave in a negative resistance region.
  3.  対象物から発せられる計測対象ガスを電磁波を用いて計測する非接触ガス計測装置と、
     前記非接触ガス計測装置が計測した計測値から前記計測対象ガスを解析する解析部と、
     前記非接触ガス計測装置および前記解析部の動作を制御するシステム制御部と、
     を有し、
     前記非接触ガス計測装置は、
     電磁波の出射および検出を行う受信発振部と、
     前記受信発振部を制御する制御部と、
     を備え、
     前記受信発振部は、前記制御部の指令に基づいて、前記対象物に前記電磁波を照射して、前記対象物から反射した電磁波の強度に応じて変化する電圧または電流の値を計測値として前記解析部に出力する、非接触ガス計測システム。
    A noncontact gas measuring device for measuring a gas to be measured emitted from an object using an electromagnetic wave;
    An analysis unit that analyzes the gas to be measured from the measurement values measured by the non-contact gas measurement device;
    A system control unit that controls the operation of the noncontact gas measurement device and the analysis unit;
    Have
    The non-contact gas measuring device
    A reception oscillation unit that emits and detects an electromagnetic wave;
    A control unit that controls the reception oscillation unit;
    Equipped with
    The reception oscillation unit irradiates the electromagnetic wave on the object based on a command from the control unit, and the value of the voltage or current, which changes according to the intensity of the electromagnetic wave reflected from the object, is used as the measurement value. Non-contact gas measurement system that outputs to analysis unit.
  4.  請求項3記載の非接触ガス計測システムにおいて、
     前記受信発振部は、負性抵抗領域にて電磁波を発振する電子デバイスである、非接触ガス計測システム。
    In the noncontact gas measurement system according to claim 3,
    The non-contact gas measurement system, wherein the reception oscillation unit is an electronic device that oscillates an electromagnetic wave in a negative resistance region.
  5.  請求項3または4記載の非接触ガス計測システムにおいて、
     前記非接触ガス計測装置が計測した前記計測値を補正する補正電磁波を取得する情報補正部を有する、非接触ガス計測システム。
    In the noncontact gas measurement system according to claim 3 or 4,
    The non-contact gas measurement system which has an information correction part which acquires a correction electromagnetic wave which corrects the measurement value which the non-contact gas measurement device measured.
  6.  請求項5記載の非接触ガス計測システムにおいて、
     前記情報補正部は、電磁波を反射させる反射物よりなり、前記反射物によって前記受信発振部が出射した電磁波を反射させて、前記計測対象ガスの情報を含まない補正電磁波を取得する、非接触ガス計測システム。
    In the non-contact gas measurement system according to claim 5,
    The information correction unit is a non-contact gas that is made of a reflector that reflects an electromagnetic wave, reflects the electromagnetic wave emitted by the reception oscillation unit by the reflector, and acquires a correction electromagnetic wave that does not include information of the gas to be measured Measurement system.
  7.  請求項5記載の非接触ガス計測システムにおいて、
     前記受信発振部は、第1の受信発振部および第2の受信発振部からなり、
     前記第1の受信発振部は、前記対象物に対して電磁波を照射して前記計測値を計測し、
     前記第2の受信発振部は、前記情報補正部に対して電磁波を照射して前記計測対象ガスの情報を含まない補正電磁波を取得する、非接触ガス計測システム。
    In the non-contact gas measurement system according to claim 5,
    The receiving and oscillating unit comprises a first receiving and oscillating unit and a second receiving and oscillating unit.
    The first reception oscillation unit irradiates an electromagnetic wave to the object to measure the measurement value.
    The non-contact gas measurement system, wherein the second reception / oscillation unit irradiates an electromagnetic wave to the information correction unit to acquire a correction electromagnetic wave that does not include information of the measurement target gas.
  8.  請求項5記載の非接触ガス計測システムにおいて、
     前記対象物までの距離を計測する距離測定部を有し、
     前記システム制御部は、距離測定部が測定した距離と予め設定される第1の測定判定距離とを比較し、測定した前記距離が前記第1の測定判定距離よりも長い場合に前記受信発振部から電磁波を照射させて前記補正電磁波として取得する、非接触ガス計測システム。
    In the non-contact gas measurement system according to claim 5,
    It has a distance measurement unit that measures the distance to the object,
    The system control unit compares the distance measured by the distance measurement unit with a first measurement determination distance set in advance, and the reception oscillation unit when the measured distance is longer than the first measurement determination distance. The non-contact gas measurement system which irradiates electromagnetic waves from and acquires as said correction electromagnetic waves.
  9.  通信に利用される通信網に接続される携帯端末であって、
     前記通信網に接続する通信部と、
     情報を出力する出力部と、
     画像を取得する撮像部と、
     対象物から発せられる計測対象ガスを電磁波を用いて計測する非接触ガス計測装置と、
     前記非接触ガス計測装置が計測した計測値から前記計測対象ガスを解析する解析部と、
     前記携帯端末の動作を制御するシステム制御部と、
     を有し、
     前記非接触ガス計測装置は、
     電磁波の出射および検出を行う受信発振部と、
     前記受信発振部を制御する制御部と、
     を備え、
     前記受信発振部は、前記制御部の指令に基づいて、前記対象物に前記電磁波を照射して、前記対象物から反射した電磁波の強度に応じて変化する電圧または電流の値を計測値として前記解析部に出力する、携帯端末。
    A portable terminal connected to a communication network used for communication,
    A communication unit connected to the communication network;
    An output unit that outputs information;
    An imaging unit for acquiring an image;
    A noncontact gas measuring device for measuring a gas to be measured emitted from an object using an electromagnetic wave;
    An analysis unit that analyzes the gas to be measured from the measurement values measured by the non-contact gas measurement device;
    A system control unit that controls the operation of the portable terminal;
    Have
    The non-contact gas measuring device
    A reception oscillation unit that emits and detects an electromagnetic wave;
    A control unit that controls the reception oscillation unit;
    Equipped with
    The reception oscillation unit irradiates the electromagnetic wave on the object based on a command from the control unit, and the value of the voltage or current, which changes according to the intensity of the electromagnetic wave reflected from the object, is used as the measurement value. Mobile terminal that outputs to the analysis unit.
  10.  請求項9記載の携帯端末において、
     前記通信部は、前記通信網に接続される解析装置に前記非接触ガス計測装置が計測した電磁波の計測値を送信し、前記解析装置が解析した解析結果を受け取る、携帯端末。
    In the portable terminal according to claim 9,
    The mobile communication terminal transmits the measurement value of the electromagnetic wave measured by the non-contact gas measurement device to an analysis device connected to the communication network, and receives an analysis result analyzed by the analysis device.
  11.  請求項9記載の携帯端末において、
     前記システム制御部は、前記計測対象ガスの計測の際に前記撮像部が撮影した前記対象物の画像から前回に前記計測対象ガスを計測した際の測定部位を認識して、新たに前記計測対象ガスを計測する際に前記測定部位を示す情報を前記出力部に出力する、携帯端末。
    In the portable terminal according to claim 9,
    The system control unit recognizes a measurement site at the time of measuring the gas to be measured last time from an image of the object taken by the imaging unit at the time of measurement of the gas to be measured, and newly adds the measurement object The portable terminal which outputs the information which shows the said measurement site | part to the said output part, when measuring gas.
  12.  対象物から発せられる計測対象ガスを電磁波を用いて計測する非接触ガス計測装置と、前記非接触ガス計測装置が計測した電磁波の計測値を解析する解析部と、前記非接触ガス計測装置および前記解析部の動作を制御するシステム制御部と、前記対象物までの距離を計測する距離測定部と、を備える非接触ガス計測システムによる非接触ガス計測方法であって、
     前記非接触ガス計測装置が前記対象物に電磁波を照射するステップと、
     前記非接触ガス計測装置が前記対象物から反射した電磁波を受信して、受信した電磁波の強さに応じて変化する電圧または電流の値を計測値として前記解析部に出力するステップと、
     を有する、非接触ガス計測方法。
    A noncontact gas measuring device for measuring a gas to be measured emitted from an object using an electromagnetic wave, an analysis unit for analyzing a measured value of the electromagnetic wave measured by the noncontact gas measuring device, the noncontact gas measuring device, and A noncontact gas measurement method by a noncontact gas measurement system, comprising: a system control unit that controls an operation of an analysis unit; and a distance measurement unit that measures a distance to the object,
    Irradiating the electromagnetic wave onto the target by the non-contact gas measurement device;
    The non-contact gas measurement apparatus receives an electromagnetic wave reflected from the object, and outputs a value of a voltage or current which changes according to the intensity of the received electromagnetic wave as a measurement value to the analysis unit;
    Non-contact gas measurement method having
  13.  請求項12記載の非接触ガス計測方法において、
     前記システム制御部が、前記距離測定部が測定した前記対象物との距離が前記計測対象ガスの計測範囲内か否かを判定するステップと、
     前記解析部が、前記非接触ガス計測装置が計測した計測値から前記計測対象ガスを解析するステップと、
     を有し、
     前記システム制御部は、計測範囲内であると判定した際に前記非接触ガス計測装置が前記対象物に電磁波を照射するように制御する、非接触ガス計測方法。
    In the non-contact gas measurement method according to claim 12,
    The system control unit determines whether the distance to the object measured by the distance measurement unit is within the measurement range of the gas to be measured;
    Analyzing the gas to be measured from the measurement value measured by the non-contact gas measurement device, the analysis unit;
    Have
    The non-contact gas measurement method, wherein the system control unit controls the non-contact gas measurement device to irradiate the electromagnetic wave to the object when it is determined that the measurement object is within the measurement range.
  14.  請求項13記載の非接触ガス計測方法において、
     前記非接触ガス計測システムは、前記非接触ガス計測装置が計測した前記計測値を補正する補正電磁波を取得する情報補正部を有し、
     前記計測対象ガスを解析するステップは、前記情報補正部により取得した補正電磁波を用いて前記計測値の誤差を補正する、非接触ガス計測方法。
    In the non-contact gas measurement method according to claim 13,
    The noncontact gas measurement system includes an information correction unit that acquires a correction electromagnetic wave for correcting the measurement value measured by the noncontact gas measurement device.
    The noncontact gas measuring method which corrects an error of the measurement value using the correction electromagnetic wave acquired by the information correction unit in the step of analyzing the measurement target gas.
  15.  請求項13記載の非接触ガス計測方法において、
     前記システム制御部が、取得した前記対象物の画像から前回に前記計測対象ガスを計測した際の測定部位を認識するステップと、
     前記システム制御部が、新たに前記計測対象ガスを計測する際に前記測定部位を示す情報を出力するステップと、
     を有する、非接触ガス計測方法。
    In the non-contact gas measurement method according to claim 13,
    The system control unit recognizes, from the acquired image of the object, a measurement site when measuring the gas to be measured last time;
    Outputting the information indicating the measurement site when the system control unit newly measures the gas to be measured;
    Non-contact gas measurement method having
PCT/JP2018/045075 2017-12-15 2018-12-07 Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method WO2019117032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240535 2017-12-15
JP2017240535A JP7158850B2 (en) 2017-12-15 2017-12-15 Non-contact gas measuring device, non-contact gas measuring system, portable terminal, and non-contact gas measuring method

Publications (1)

Publication Number Publication Date
WO2019117032A1 true WO2019117032A1 (en) 2019-06-20

Family

ID=66820262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045075 WO2019117032A1 (en) 2017-12-15 2018-12-07 Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method

Country Status (2)

Country Link
JP (1) JP7158850B2 (en)
WO (1) WO2019117032A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261886A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Ultraviolet ray absorber, ultraviolet ray-absorbing composition, ultraviolet ray-absorbing film, laminate, and novel compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323682B2 (en) * 2017-12-15 2023-08-08 マクセル株式会社 Non-contact gas measuring device, non-contact gas measuring system, portable terminal, and non-contact gas measuring method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115370A (en) * 1984-11-12 1986-06-02 Nec Corp Semiconductor laser device
JPH0361918A (en) * 1989-07-31 1991-03-18 Sumitomo Cement Co Ltd Semiconductor laser scanning type optical microscope
JP2002094185A (en) * 2000-09-12 2002-03-29 Ricoh Co Ltd Semiconductor laser, its manufacturing method, semiconductor laser array, display device, sensor system, and semiconductor light emitting device
US20040263852A1 (en) * 2003-06-03 2004-12-30 Lasen, Inc. Aerial leak detector
US20100231722A1 (en) * 2009-03-16 2010-09-16 Southwest Research Institute Compact handheld detector for greenhouse gasses
JP2013057651A (en) * 2011-08-12 2013-03-28 Horiba Ltd Gas analyzer
WO2015111282A1 (en) * 2014-01-23 2015-07-30 シャープ株式会社 Sensing system and sensing method
JP2015219101A (en) * 2014-05-16 2015-12-07 アズビル株式会社 Gas detection device
JP2016211955A (en) * 2015-05-08 2016-12-15 古河電気工業株式会社 Bridge inspection support device, bridge inspection support method, bridge inspection support system, and program
WO2017016901A1 (en) * 2015-07-30 2017-02-02 Koninklijke Philips N.V. Laser sensor for multi parameter detection
WO2017022556A1 (en) * 2015-08-04 2017-02-09 コニカミノルタ株式会社 Gas detection device and gas detection method
JP2017110985A (en) * 2015-12-16 2017-06-22 コニカミノルタ株式会社 Gas detection device
CN107328715A (en) * 2017-08-15 2017-11-07 杭州泽天科技有限公司 Single-ended reflective laser analyzer and its scaling method in situ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115370A (en) * 1984-11-12 1986-06-02 Nec Corp Semiconductor laser device
JPH0361918A (en) * 1989-07-31 1991-03-18 Sumitomo Cement Co Ltd Semiconductor laser scanning type optical microscope
JP2002094185A (en) * 2000-09-12 2002-03-29 Ricoh Co Ltd Semiconductor laser, its manufacturing method, semiconductor laser array, display device, sensor system, and semiconductor light emitting device
US20040263852A1 (en) * 2003-06-03 2004-12-30 Lasen, Inc. Aerial leak detector
US20100231722A1 (en) * 2009-03-16 2010-09-16 Southwest Research Institute Compact handheld detector for greenhouse gasses
JP2013057651A (en) * 2011-08-12 2013-03-28 Horiba Ltd Gas analyzer
WO2015111282A1 (en) * 2014-01-23 2015-07-30 シャープ株式会社 Sensing system and sensing method
JP2015219101A (en) * 2014-05-16 2015-12-07 アズビル株式会社 Gas detection device
JP2016211955A (en) * 2015-05-08 2016-12-15 古河電気工業株式会社 Bridge inspection support device, bridge inspection support method, bridge inspection support system, and program
WO2017016901A1 (en) * 2015-07-30 2017-02-02 Koninklijke Philips N.V. Laser sensor for multi parameter detection
WO2017022556A1 (en) * 2015-08-04 2017-02-09 コニカミノルタ株式会社 Gas detection device and gas detection method
JP2017110985A (en) * 2015-12-16 2017-06-22 コニカミノルタ株式会社 Gas detection device
CN107328715A (en) * 2017-08-15 2017-11-07 杭州泽天科技有限公司 Single-ended reflective laser analyzer and its scaling method in situ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIKUGAWA, TOMOYUKI ET AL.: "Laser-based Remote Gas Detector", ANRITSU TECHNICAL BULLETIN, no. 82, March 2006 (2006-03-01), pages 66 - 71 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261886A1 (en) * 2019-06-28 2020-12-30 富士フイルム株式会社 Ultraviolet ray absorber, ultraviolet ray-absorbing composition, ultraviolet ray-absorbing film, laminate, and novel compound

Also Published As

Publication number Publication date
JP7158850B2 (en) 2022-10-24
JP2019109066A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US10524671B2 (en) Electronic device that computes health data
JP6642421B2 (en) Measuring device and measuring method
EP2517624A2 (en) Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
CN106793950B (en) Non-invasive in situ glucose level detection using electromagnetic radiation
WO2013063540A1 (en) Methods and systems for continuous non-invasive blood pressure measurement using photoacoustics
WO2019117032A1 (en) Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method
US11430581B2 (en) Contactless infernal measurement device, contactless internal measurement method, and internal measurement result display system
US20220354398A1 (en) Device, system and method for non-invasive monitoring of physiological measurements
JP6152938B2 (en) Electronic mirror device
JP7323682B2 (en) Non-contact gas measuring device, non-contact gas measuring system, portable terminal, and non-contact gas measuring method
JP2007105331A5 (en)
WO2019208596A1 (en) Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method
EP3913353A1 (en) Method of calibrating optical sensor, optical sensor, and apparatus for estimating bio-information
US10314539B2 (en) Apparatus and method for measuring biological signal
TWI522086B (en) Apparatus for non-invasive glucose monitoring
TWI495864B (en) Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
JP6356524B2 (en) Measuring apparatus and measuring method
JP7411349B2 (en) Glucose measuring device and glucose measuring method
US11698370B2 (en) Home toilet system for monitoring urine components in real time while urination
US11982618B2 (en) Method of calibrating optical sensor, optical sensor, and apparatus for estimating bio-information
US20220233149A1 (en) Apparatus and method for estimating body component
JP2021132925A (en) Glucose measurement device and glucose measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887416

Country of ref document: EP

Kind code of ref document: A1