WO2019208596A1 - Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method - Google Patents

Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method Download PDF

Info

Publication number
WO2019208596A1
WO2019208596A1 PCT/JP2019/017312 JP2019017312W WO2019208596A1 WO 2019208596 A1 WO2019208596 A1 WO 2019208596A1 JP 2019017312 W JP2019017312 W JP 2019017312W WO 2019208596 A1 WO2019208596 A1 WO 2019208596A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
unit
measurement
contact gas
reception
Prior art date
Application number
PCT/JP2019/017312
Other languages
French (fr)
Japanese (ja)
Inventor
幸修 田中
美沙子 河野
啓太 山口
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2019208596A1 publication Critical patent/WO2019208596A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • the present invention relates to a non-contact gas measurement device, a non-contact gas measurement system, and a non-contact gas measurement method, and more particularly to a technique effective for non-contact gas measurement of a skin surface.
  • Patent Document 1 JP 2002-263072
  • JP 2010-172543 Patent Document 2
  • JP 2010-169658 Patent Document 3
  • Japanese Patent Laid-Open No. 2004-228561 describes as a problem “Providing a moisture transpiration measuring device that is capable of measuring with sufficient and sufficient accuracy, and is small, light, inexpensive, and easy to handle.” “A circuit board is arranged inside the frame to be in contact with the skin surface, and only one capacitive polymer thin film humidity sensor is arranged on the circuit board as a humidity detecting element. The driving circuit of the humidity detecting element is also a circuit board. The amount of moisture transpiration is calculated from the circuit output taken out through the handle shaft.Because only one humidity detection element is used, the number of parts is reduced and the assembly is reduced compared to the case of using two humidity detection elements. "Coordination and maintenance costs will be lower.”
  • Patent Document 2 has a description as “Providing a device for estimating the amount of transdermal moisture transpiration easily and accurately, and further evaluating the skin barrier function based on this”, and means for solving the problem.
  • a main body an application electrode installed on the main body that can apply a plurality of AC voltages, and a susceptance (B), admittance (Y), or conductance (G) installed on the main body are detected.
  • Patent Document 3 has a description that “a gas supplied from a gas supply site is efficiently analyzed” as a problem, and “a capture film 3 that captures a gas (for example, porous)
  • the gas for example, skin gas generated from the human body
  • the gas captured by the capture film and the terahertz wave or infrared light generated from the generation unit interact with each other.
  • a capture unit (a member composed of a capture film and a collection container) capable of arranging a film is provided, and the capture unit can contact a portion for supplying the gas (for example, a human body such as an arm or a hand).
  • the structure is provided so as to maintain the capture film and the portion 1 in a non-contact state ”.
  • the human skin not only adjusts the environment and temperature in the living body through skin respiration and sweating, but also plays a role in protecting internal tissues from external stimuli such as foreign substances, bacteria, or microorganisms.
  • the amount of water inside the skin and the amount of water transpirated from the skin from the standpoint of health maintenance such as prevention of heat stroke and prevention of dry skin due to atopic dermatitis, or from practical viewpoints such as evaluation of cosmetics and pharmaceuticals, and beauty. It is important to obtain information on the so-called transdermal moisture transpiration rate.
  • the transdermal moisture transpiration is of great interest as an index for evaluating the skin barrier function that protects the living body from external stimuli and protects the moisture from transpiration outside the body.
  • Patent Document 1 In the measurement of transcutaneous moisture transpiration, a technique (for example, Patent Document 1) that measures the amount of moisture lost from the skin surface using, for example, a humidity sensor is known.
  • This technique requires a mechanism that stabilizes a humidity sensor that measures the amount of moisture lost from the skin surface. For this reason, there is a problem that the measuring instrument becomes expensive and large.
  • the measuring instrument since it is a contact type in which a part of the measurement device is brought into contact with an object, i.e., skin, for measurement, the surface of the patient's skin may be affected or damaged during measurement. Considering the influence on the patient's skin, the measurement location is limited.
  • Patent Document 2 there is a technique (for example, Patent Document 2) that evaluates the skin barrier function in a small size and at low cost by measuring the electrical properties of the skin. Similar to Patent Document 1, it is necessary to bring a part of the measuring device into contact with the skin, which is the measurement part, in order to measure the electrical properties of the object.
  • Patent Document 3 a technique for capturing skin gas and measuring the captured skin gas using electromagnetic waves.
  • a light source and a detector that generate infrared light and the like are necessary for capturing and measuring skin gas as a configuration of the measurement device. Therefore, there is a problem that the apparatus configuration is complicated and large.
  • An object of the present invention is to provide a technique capable of measuring gas from an object with a simple configuration without affecting the user's skin and the like.
  • a typical non-contact gas measurement system has a non-contact gas measurement device, an analysis unit, and a system control unit.
  • the non-contact gas measuring device measures a measurement target gas emitted from an object using electromagnetic waves.
  • An analysis part analyzes measurement object gas from the measured value which the non-contact gas measuring device measured.
  • the system control unit controls operations of the non-contact gas measuring device and the analysis unit.
  • the non-contact gas measuring device includes a reception oscillation unit, an electromagnetic wave irradiation unit, an optical element, and a control unit.
  • the reception oscillation unit emits and detects electromagnetic waves.
  • the electromagnetic wave irradiation unit emits an electromagnetic wave having a frequency different from that of the electromagnetic wave emitted from the reception oscillation unit.
  • the optical element changes the transmittance based on the electromagnetic wave emitted from the electromagnetic wave irradiation unit, and transmits or reflects the electromagnetic wave emitted from the reception oscillation unit.
  • the control unit controls the reception oscillation unit and the electromagnetic wave irradiation unit.
  • control unit stops the electromagnetic wave of the electromagnetic wave irradiation unit when measuring the object, changes the transmittance so that the optical element functions as a transmission plate, and irradiates the object with the electromagnetic wave transmitted through the optical element.
  • the reception oscillating unit outputs a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the object as a measurement value to the analysis unit.
  • the control unit when acquiring a corrected electromagnetic wave for correcting a measurement value, the control unit emits the electromagnetic wave from the electromagnetic wave irradiation unit, changes the transmittance so that the optical element functions as a reflector, and reflects the electromagnetic wave from the optical element. To control.
  • the reception oscillation unit outputs a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the optical element as a correction value to the analysis unit.
  • the non-contact gas measuring device and the non-contact gas measuring system can be miniaturized.
  • FIG. 5 is an explanatory diagram illustrating an example of a configuration of a reception oscillation unit and an information correction unit included in the non-contact gas measurement system of FIG. 4. It is explanatory drawing which shows the other structural example in the reception oscillation part and information correction
  • FIG. 6 is an explanatory diagram illustrating an example of a configuration in a reception oscillation unit and an information correction unit according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of a configuration of a mobile terminal according to Embodiment 3.
  • FIG. It is explanatory drawing which shows an example of the external appearance of the portable terminal of FIG. It is explanatory drawing which shows an example of the display by the input / output part which the portable terminal of FIG. 15 has. It is a flowchart which shows an example in the operation
  • FIG. 10 is an explanatory diagram illustrating an example of film thickness measurement by a non-contact gas measurement device according to Embodiment 5. It is explanatory drawing explaining the principle of the film thickness measurement in the target object of FIG.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the non-contact gas measuring apparatus 100 according to the first embodiment.
  • the non-contact gas measuring device 100 measures the measurement target gas 601 emitted from the target 600 using electromagnetic waves.
  • the non-contact gas measuring device 100 includes a reception oscillation unit 101 and a control unit 110 as shown in FIG.
  • the reception oscillating unit 101 has a configuration in which the oscillation and reception of electromagnetic waves are united, and emits and detects electromagnetic waves.
  • the reception oscillation unit 101 includes a transmitter / receiver 102 and a lens 103.
  • the transmitter / receiver 102 oscillates and receives electromagnetic waves.
  • the lens 103 irradiates the object 600 with the electromagnetic waves oscillated by the transmitter / receiver 102 as parallel light, and collects the reflected wave from the object 600.
  • the electromagnetic wave oscillated by the transmitter / receiver 102 is irradiated perpendicularly to the object 600, thereby passing through the measurement target gas 601 and returning the reflected wave to the receiver / transmitter 102.
  • the object 600 is a user's skin or the like.
  • the control unit 110 controls the reception oscillation unit 101.
  • the electromagnetic wave oscillated by the reception oscillation unit 101 uses a frequency that is easily absorbed by gas.
  • a frequency such as about 0.56 THz or about 0.75 THz is suitable.
  • the transmitter / receiver 102 is, for example, an electronic device that oscillates electromagnetic waves in a negative resistance region, and is, for example, a resonant tunnel diode.
  • a resonant tunnel diode is shown for convenience, but the transmitter / receiver is not limited to this.
  • a device that oscillates electromagnetic waves such as a laser may be used.
  • a device that oscillates at a frequency of about 0.56 THz or 0.75 THz for example, a quantum cascade laser or a resonant tunneling diode is used.
  • FIG. 2 is an explanatory diagram illustrating an example of characteristics of the transmitter / receiver 102 included in the non-contact gas measuring device 100 of FIG.
  • FIG. 2 shows the relationship between the intensity of the reflected wave from the object 600 and the current flowing between the terminals of the transmitter / receiver 102.
  • the electromagnetic wave oscillated from the receiver / transmitter 102 is reflected as the reflected wave. This is an example of a phenomenon that affects the oscillation characteristics of the transmitter / receiver 102 when returning to 102.
  • an electromagnetic wave oscillates in the negative resistance region by applying a specific voltage between the terminals of the resonant tunnel diode.
  • Non-patent document Masahiro Asada and Safumi Suzuki 2015 Jpn. J. et al. Appl. Phys. 54 070309 describes that the current flowing between the terminals of the oscillator changes when the reflectivity of the reflector is different.
  • the inventor of the present invention pays attention to the fact that this phenomenon can be applied to non-contact gas measurement by making the attenuation indicated by the absorption of electromagnetic waves in the measurement target gas what is shown as the reflectance of the reflecting object in the above-mentioned non-patent literature. did.
  • the transmitter / receiver 102 oscillates an electromagnetic wave, and a difference occurs in the current flowing through the transmitter / receiver 102 according to the intensity of the reflected wave that is reflected from the object 600 and returns to the receiver / transmitter 102. . Since the intensity of the reflected wave changes depending on the amount of the measurement target gas 601 in the electromagnetic wave path, it is possible to perform gas measurement using a difference in current or voltage applied to the transmitter / receiver 102.
  • the measurement target gas 601 is measured from the correlation between the absorption and amount by the gas. It becomes possible to do.
  • the graph shown in FIG. 2 is an example, and the data structure is not limited to this.
  • the configuration showing the relationship between the measured current value and the measurement target gas for example, information such as a table configuration If it is.
  • FIG. 3 is a flowchart showing an example of the gas measurement operation by the non-contact gas measuring device 100 of FIG.
  • the control unit 110 controls the reception oscillation unit 101 to irradiate the measurement target object 600 with an electromagnetic wave having a preset frequency (step S101).
  • the non-contact gas measuring device 100 only needs to irradiate the electromagnetic wave toward the target object 600, so that the non-contact gas measuring device 100 does not need to be in close contact with the target object 600 such as skin.
  • gas measurement is performed with a distance between the non-contact gas measurement device 100 and the object 600.
  • the electromagnetic wave irradiated perpendicularly to the object 600 passes through the measurement target gas 601 and is irradiated to the object 600, and the reflected wave is condensed on the lens 103 and returns to the transmitter / receiver 102.
  • the control unit 110 acquires a current or voltage value corresponding to the intensity of the reflected wave received by the reception oscillation unit 101 (step S102).
  • the gas measurement can be performed without bringing the non-contact gas measurement device 100 into close contact with the object 600 as described above, the influence on the skin surface of the patient at the time of measurement can be reduced. Further, since it is not necessary to consider the influence on the skin or the like, the measurement location is not limited, and an accurate measurement result can be obtained easily.
  • the intensity of the reflected wave in FIG. 2 can be replaced with the concentration of the measurement target gas 601 by quantitatively measuring the value in advance.
  • the concentration of the measurement target gas 601 can be calculated using the current value or the voltage value measured in the process of step S102. Further, it is possible to convert the change in the measurement target gas 601 by comparing with the result of the current or voltage measured in the past.
  • FIG. 4 is an explanatory diagram showing an example of a configuration in a non-contact gas measurement system 500 using the non-contact gas measurement device 100 of FIG.
  • the non-contact gas measurement system 500 includes a non-contact gas measurement device 100, an information correction unit 200, a distance measurement unit 300, a system control unit 400, an analysis unit 410, an input / output unit 420, and a memory 430.
  • the non-contact gas measurement device 100, the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, the input / output unit 420, and the memory 430 are connected to each other by a system bus 401.
  • the configuration and operation of the non-contact gas measuring device 100 are the same as those in FIG.
  • the information correction unit 200 acquires a correction wave that reduces measurement errors due to the environment.
  • This correction wave is an electromagnetic wave.
  • the measurement value may be affected because the amount of water vapor in the air varies depending on the environment in which the user exists. For this reason, the influence of water vapor due to the environment is removed using the correction wave acquired by the information correction unit 200.
  • the distance measuring unit 300 measures the distance from the distance measuring unit 300 to the object 600.
  • the system control unit 400 acquires various data and controls the non-contact gas measurement system 500.
  • the system control unit 400 controls the non-contact gas measurement device 100 with reference to a control information management table 800 shown in FIG. 10 described later when measuring the measurement target gas 601.
  • the analysis unit 410 analyzes the measured value of the detected electromagnetic wave.
  • the input / output unit 420 is an interface with a user, and includes an input unit 421 and an output unit 422 shown in FIG.
  • the input unit 421 is, for example, a button
  • the output unit 422 is, for example, a display unit.
  • the memory 430 is composed of, for example, a non-volatile semiconductor memory exemplified by a flash memory, and stores received data, analysis results, and the like.
  • a control information management table 800 shown in FIG. 10 and a measurement result table 900 shown in FIG. 11 are stored.
  • FIG. 5 is a schematic perspective view showing an example of the non-contact gas measurement system 500 of FIG.
  • the non-contact gas measurement system 500 is accommodated in a case 501 made of, for example, a rectangular parallelepiped, and an input unit 421 and an output unit 422 are provided on the main surface of the case 501.
  • the input unit 421 is a button.
  • the user inputs information such as a measurement start instruction and measurement target gas selection from the input unit 421.
  • the input unit 421 is not limited to a button, and may be a touch panel or a keyboard, for example.
  • the output unit 422 is a liquid crystal display in the example of FIG.
  • the output unit 422 displays the measurement result and the like.
  • the output unit 422 is not limited to a liquid crystal display, and may be, for example, an LED (Light Emitting Diode) or a buzzer.
  • the measurement result of the measurement target gas 601 is displayed on the output unit 422. Thereby, the user can know the measurement result.
  • an LED for the output unit 422 for example, information such as the end of measurement of green light emission and the measurement error of red light emission can be presented.
  • an exit 504 is formed on the side surface 503 of the case 501.
  • the emission port 504 emits an electromagnetic wave oscillated by the reception oscillation unit 101 included in the non-contact gas measurement device 100.
  • the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, and the memory 430 constituting the other non-contact gas measurement system 500 are housed in the case 501.
  • the analysis unit 410 refers to the past data stored in the memory 430 and analyzes the change in the state of the user's skin as time-series data including not only the measurement value at a certain time but also the past history.
  • the non-contact gas measurement system 500 when used by a plurality of users, for example, information such as a number specifying each user can be added to the memory 430 to identify measurement data of a plurality of users. You may hold it like this.
  • FIG. 6 is an explanatory diagram showing an example when the non-contact gas measurement system 500 of FIG. 5 is used.
  • the user When measuring the user's skin using the non-contact gas measurement system 500, as shown in FIG. 6, the user directs the input unit 421 with a finger or the like while pointing the exit 504 of the case 501 in FIG. Press.
  • FIG. 7 is an explanatory diagram illustrating an example of a configuration of the reception oscillation unit 101 and the information correction unit 200 included in the non-contact gas measurement system 500 of FIG.
  • the information correction unit 200 is for the reception oscillation unit 101 to acquire a correction wave that eliminates the influence other than the measurement target gas 601.
  • the information correction unit 200 is configured by a mirror, for example.
  • amendment part 200 is not limited to a mirror, What is necessary is just a reflector, an optical element, etc. which reflect electromagnetic waves.
  • the information correction unit 200 is provided in the vicinity of the emission port 504 provided in the case 501, and is provided so as to face the emission surface of the electromagnetic wave in the reception oscillation unit 101. In this case, some of the electromagnetic waves emitted from the reception oscillation unit 101 are reflected by the surface of the information correction unit 200. The reception oscillation unit 101 acquires the reflected wave from the information correction unit 200 as a correction wave.
  • Whether or not the object 600 is sufficiently separated is determined by, for example, the system control unit 400 of FIG.
  • the distance measuring unit 300 in FIG. 4 measures the distance to the object 600 when acquiring the correction wave.
  • the measurement result is output to the system control unit 400 in FIG.
  • the system control unit 400 determines that the object 600 is sufficiently separated when the distance measured by the distance measurement unit 300 is longer than a preset first measurement determination distance. Further, the first measurement determination distance is stored in the memory 430, for example.
  • the reception oscillation unit 101 After obtaining the correction wave, the reception oscillation unit 101 emits an electromagnetic wave.
  • the electromagnetic wave passes through the measurement target gas 601 and hits the target object 600, and the reflected wave is measured. At this time, it is assumed that the distance between the reception oscillation unit 101 and the object 600 is within a measurable distance and the measurement target gas 601 can be measured.
  • the system control unit 400 determines whether or not the distance is measurable from the distance result measured by the distance measurement unit 300.
  • the system control unit 400 determines that the object 600 is sufficiently approached when the distance measured by the distance measurement unit 300 is shorter than the preset second measurement determination distance.
  • the second measurement determination distance is stored in the memory 430, for example.
  • the measurement wave of the measurement target gas 601 includes a correction wave. This is because a reflected wave reflected on the information correction unit 200 when the measurement target gas 601 is measured is included. However, even if a correction wave is included in the measurement wave of the measurement target gas 601, the measurement target gas 601 is measured with high accuracy by performing correction using the correction wave acquired before the measurement target gas 601 is measured. be able to.
  • the electromagnetic wave emitted from the reception oscillating unit 101 is converted into parallel light using the lens 103 as shown in FIG. 1, but it may be divergent light without being converted into parallel light. In that case, the lens 103 becomes unnecessary.
  • FIG. 8 is an explanatory diagram illustrating another configuration example of the reception oscillation unit 101 and the information correction unit 200 included in the non-contact gas measurement system 500 of FIG.
  • FIG. 9 is an explanatory diagram following FIG.
  • the information correction unit 200 shown in FIG. 7 is only a mirror and the mirror is fixed. However, the information correction unit 200 in FIG. 8 includes a mirror 201 and a motor 202.
  • the mirror 201 is provided in the vicinity of the emission port 504 provided in the case 501 of FIG. In FIG. 8, the mirror 201 is attached so as to be rotatable about two corners above the mirror 201 as a rotation axis.
  • the motor 202 rotates the mirror 201 based on a mode signal output from, for example, the system control unit 400 of FIG.
  • Examples of the mode signal output by the system control unit 400 include an information correction mode signal and a measurement mode signal.
  • the information correction mode signal is a signal output when acquiring a correction wave
  • the measurement mode signal is a signal output when measuring the measurement target gas 601.
  • the motor 202 rotates the mirror 201 as shown in FIG. 8 and moves the mirror 201 to a position where the output port 504 is shielded.
  • the electromagnetic wave emitted from the reception oscillation unit 101 is reflected by the mirror 201, and a correction wave can be acquired by returning to the reception oscillation unit 101.
  • the motor 202 rotates the mirror 201 by about 90 ° as shown in FIG. 9 and moves the mirror 201 to a position where the mirror 201 does not block the emission port 504. That is, the mirror 201 is removed from between the reception oscillation unit 101 and the object 600. As a result, the electromagnetic wave emitted from the reception oscillation unit 101 passes through the measurement target gas 601 and is reflected by the target 600, so that the reception oscillation unit 101 can acquire the measurement wave of the measurement target gas 601. .
  • control information management table 800 ⁇ Configuration example of control information management table> Next, the control information management table 800 will be described.
  • FIG. 10 is an explanatory diagram showing an example of a configuration in the control information management table 800 referred to by the system control unit 400 included in the non-contact gas measurement system 500 of FIG.
  • the control information management table 800 is a table storing measurement control information.
  • the measurement control information is information for measuring the measurement target gas 601 such as the frequency of an electromagnetic wave oscillated when the non-contact gas measurement apparatus 100 measures the measurement target gas 601 and information regarding acquisition of a correction wave.
  • the control information management table 800 includes items of a measurement target gas name 801, a frequency 802, and an information correction control 803 from left to right.
  • the measurement target gas name 801 is information for identifying the measurement target gas 601.
  • a frequency 802 indicates a frequency for measuring the measurement target gas 601.
  • the information correction control 803 is information indicating whether or not the information correction unit 200 needs to be controlled at the time of measurement.
  • control information management table 800 are not limited to those in FIG. 10, and information that controls the non-contact gas measuring device 100 and the information correction unit 200 may be stored.
  • information that controls the non-contact gas measuring device 100 and the information correction unit 200 may be stored.
  • a voltage value or a current value for controlling the non-contact gas measuring device 100 may be used.
  • the information stored in the control information management table 800 may be stored in advance in the memory 430 or may be acquired via a network or the like. In addition, information stored in the control information management table 800 may be edited by a user or the like.
  • control information management table 800 is not required.
  • the measurement control information does not depend on the data structure and may have any data structure.
  • the measurement control information can be stored by a data structure appropriately selected from a list or a database, for example.
  • control information management table 800 may be stored in, for example, a memory (not shown) included in the system control unit 400 instead of the memory 430, for example.
  • it may be stored in an external storage device connected via a network.
  • FIG. 11 is an explanatory diagram showing an example of a measurement result table 900 stored in the memory 430 included in the non-contact gas measurement system 500 of FIG.
  • the measurement result table 900 stores the result of the non-contact gas measurement system 500 measuring the measurement target gas 601 and analyzing it using the measurement result.
  • the measurement result table 900 has items of date and time 901, measurement target gas name 902, frequency 903, object presence / absence 904, and value 905 from left to right as shown in FIG.
  • Date 901 indicates the date of measurement or analysis.
  • the measurement target gas name 902 indicates information for identifying the measurement target gas 601.
  • a frequency 903 indicates a frequency used for measurement of the measurement target gas 601.
  • the presence / absence of object 904 indicates whether or not the measurement target gas 601 was measured at the time of measurement.
  • a value 905 indicates a value obtained as a result of measurement or analysis.
  • the items in the measurement result table 900 are not limited to those in FIG. 11, and other information acquired or generated by the non-contact gas measurement system 500 may be stored.
  • FIG. 12 is a flowchart showing an example of measurement processing of the measurement target gas 601 by the non-contact gas measurement system 500 of FIG.
  • the user acquires input information by operating the input / output unit 420 (step S201).
  • the input information is, for example, a measurement start instruction when the user presses a button on the input unit 421 as shown in FIG.
  • the system control unit 400 receives input information input by the user.
  • the distance measurement unit 300 in FIG. 4 performs distance measurement, and starts determining whether the measurement target gas 601 is within the measurement range (step S202).
  • the system control unit 400 controls the distance measurement unit 300 to measure the distance between the reception oscillation unit 101 and the object 600.
  • the system control unit 400 compares the distance measured by the distance measurement unit 300 with the first measurement determination distance stored in the memory 430, and determines whether the measurement target gas 601 is within or outside the measurement range.
  • the measurable distance of the non-contact gas measurement system 500 is about 10 cm.
  • the first measurement determination distance is about 10 cm.
  • the distance between the reception oscillation unit 101 and the object 600 is about 5 cm, it is shorter than the first measurement determination distance of about 10 cm, so it is determined that it is within the measurement range, and if the measured distance is 15 cm, it is 10 cm. It is determined that it is out of the measurement range because it is longer.
  • the determination result is stored in the object presence / absence 904 in the measurement result table 900 of FIG. As shown in FIG. 11, for example, “Yes” is indicated if the determination result is within the measurement range, and “No” is indicated if the determination result is outside the measurement range.
  • measurement control information is acquired from the control information management table 800 (step S203). Specifically, the system control unit 400 acquires control information necessary for measuring the measurement target gas 601 from the control information management table 800 of FIG. 10 stored in the memory 430.
  • the frequency 802 of 0.558 THz, 0.600 THz and information from the row of the transdermal moisture transpiration amount of the measurement target gas name 801 Information of “present” of the correction control 803 is acquired.
  • control information management table 800 information is acquired from the control information management table 800, but control may be performed based on information directly input by the user via the input unit 421.
  • the system control unit 400 determines whether to control the information correction unit 200 based on the information acquired in the process of step S203 (step S204). For example, in FIG. 10, if the information correction control 803 is “Yes” (YES), the process proceeds to step S205. If the information correction control 803 is “No” (NO), the process proceeds to step S206.
  • the presence / absence of the information correction control 803 depends on the configuration of the non-contact gas measurement system 500 and the measurement target gas 601. For example, in the case of the information correction unit 200 shown in FIG. On the other hand, in the case of the information correction unit 200 shown in FIG. 8, “Yes” is set when a correction wave is required, and “No” is set when no correction wave is required.
  • the system control unit 400 controls the information correction unit 200 (step S205).
  • the processing in step S205 depends on the configuration of the information correction unit 200.
  • the system control unit 400 controls the motor 202 of the information correction unit 200 to move the mirror 201.
  • the mirror 201 is rotated and moved to a position where the exit 201 is shielded.
  • the system control unit 400 determines whether or not to control the frequency of the electromagnetic wave irradiated by the non-contact gas measuring device 100 based on the control information acquired in the process of step S203 (step S206).
  • control information management table 800 of FIG. 10 Taking the control information management table 800 of FIG. 10 as an example, if the frequency 802 and the information set in the non-contact gas measuring device 100 are different, it is necessary to control, and the process proceeds to step S207.
  • step S208 If the frequency 802 and the information set in the non-contact gas measuring device 100 are the same, no control is required, and the process proceeds to step S208. Specifically, when 0.558 THz is acquired from the frequency 802, the non-contact gas measuring device 100 is left as it is if the non-contact gas measuring device 100 can oscillate 0.558 THz. Is controlled to oscillate 0.558 THz. If the frequency of the non-contact gas measuring device 100 is fixed, this process is not necessary.
  • the non-contact gas measuring device 100 is controlled to set the electromagnetic wave to a specific frequency (step S207).
  • the frequency of the electromagnetic wave is changed by changing the voltage or current of the transmitter / receiver 102.
  • step S208 measurement of the measurement target gas 601 is started, and the reception oscillation unit 101 acquires a current or voltage value (step S208).
  • the measured value is stored in the value 905 of the measurement result table 900.
  • step S209 it is determined whether all the frequencies to be measured have been measured. If there is a frequency to be measured, the process returns to step S206. When measurement of all frequencies is completed, the measurement ends.
  • the measurement is completed at two frequencies of frequency 802 of 0.558 THz and 0.600 THz. It is judged whether or not the measurement is completed.
  • the analysis unit 410 performs analysis using the value 905 of the measurement result table 900 (step S210).
  • the system control unit 400 that has received the measurement instructs the analysis unit 410 to analyze the measured data, and the analysis unit 410 refers to the measurement result table 900 on the memory 430 to perform the analysis. Do.
  • the first is an electromagnetic wave obtained by irradiating the object 600 with a frequency sensitive to water vapor, for example, a frequency of about 0.558 THz. Since the electromagnetic wave reflected from the skin returns, intensity including information on water vapor in the air, water vapor evaporated from the skin, absorption by the skin, and diffusion of internally reflected light is detected.
  • the second is an electromagnetic wave obtained by irradiating the information correction unit 200 with a frequency with high sensitivity due to water vapor, for example, a frequency of about 0.558 THz. Since only the electromagnetic wave reflected by the mirror returns, the intensity including information on water vapor in the air is detected.
  • 3rd is the electromagnetic wave which irradiated the target object 600 with the frequency with low sensitivity to water vapor
  • 4th is the electromagnetic wave which irradiated the information correction
  • the first and second detection results include attenuation due to water vapor in the same air. For this reason, the first and second differences are attenuation by absorption by the skin and diffusion of internally reflected light, and attenuation by water vapor evaporated from the skin.
  • the difference between the third and fourth is attenuation due to absorption by the skin and diffusion of internally reflected light. Therefore, by subtracting the third and fourth differences from the first and second differences, it is possible to detect the attenuation due to the water vapor evaporated from the skin.
  • the system control unit 400 stores the analysis result in the process of step S210 in the memory 430 (step S211).
  • the analysis result may be stored in the measurement result table 900 stored in the memory 430 or may be stored in another area of the memory 430.
  • the process of step S211 may be omitted and the process may proceed to step S212.
  • the system control unit 400 displays the analysis result on the output unit 422. For example, as shown in FIG. 5, the output unit 422 displays so that the user can recognize the analysis result (step S212).
  • the system control unit 400 detects these problems and outputs an alert to the output unit 422.
  • the output unit 422 is a liquid crystal display
  • the contents of the alert are displayed.
  • the output unit 422 is a speaker or the like
  • the alert is transmitted by sound such as voice or buzzer.
  • the output unit 422 is an LED, an alert is notified by light or the like.
  • the reception oscillating unit 101 that radiates and receives electromagnetic waves with a simple configuration, and the size of the non-contact gas measuring device 100 can be reduced.
  • the reception oscillation unit 101 can be measured away from the object 600, that is, without contact with the skin surface. it can.
  • measurement can be performed without bringing the non-contact gas measurement device 100 into close contact with the user's skin, etc., and high-precision measurement can be performed without limiting the measurement location.
  • the burden on the affected area of the user can be reduced.
  • the measurement accuracy of the non-contact gas measurement system 500 can be improved by measuring the measurement target gas using the correction wave generated by the information correction unit 200.
  • FIG. 13 is an explanatory diagram illustrating an example of the configuration of the reception oscillation units 101 and 101a and the information correction unit 200 according to the second embodiment.
  • the measurement wave and the correction wave are respectively acquired by one reception oscillation unit 101.
  • the reception oscillation which is the first reception oscillation unit.
  • a reception oscillation unit 101a which is a second reception oscillation unit is newly provided.
  • the reception oscillation unit 101 is used when measuring the measurement target gas 601 and the reception oscillation unit 101a is used when measuring the correction wave. Since the configuration of the other non-contact gas measurement system 500 is the same as that of FIG. 4 of the first embodiment, description thereof is omitted.
  • the information correction unit 200 includes, for example, a mirror and is provided so as to face the emission surface of the electromagnetic wave in the reception oscillation unit 101a.
  • the information correction unit 200 acquires a correction wave for the reception oscillation unit 101a to remove the influence of a gas other than the measurement target gas 601.
  • the reception oscillation unit 101a irradiates the information correction unit 200 with an electromagnetic wave, and acquires the reflected wave as a correction wave.
  • the reception oscillation unit 101 irradiates the object 600 to be measured with the electromagnetic wave, receives the reflected wave irradiated by the object 600, and acquires a current or voltage value corresponding to the intensity of the received reflected wave.
  • the electromagnetic wave emitted from the reception oscillation unit 101 passes through the measurement target gas 601, is reflected by the target object 600, and returns to measure the measurement wave.
  • the correction wave can be obtained more accurately by providing the reception oscillation unit 101a.
  • the measurement target gas 601 can be measured with higher accuracy, and the reliability of the non-contact gas measurement system 500 can be improved.
  • FIG. 14 is an explanatory diagram showing an example of the configuration of the mobile terminal 560 according to the third embodiment.
  • the mobile terminal 560 includes a non-contact gas measurement system 500, an imaging unit 440, and a communication unit 450.
  • the non-contact gas measurement system 500 has the same configuration as the non-contact gas measurement system 500 of FIG. 4 of the first embodiment.
  • the imaging unit 440 is a camera that acquires an image.
  • the imaging unit 440 is used for a technique for matching measurement positions, which will be described later, and a measurement specifying technique.
  • the communication unit 450 is wirelessly connected to a communication line such as an Internet line or a telephone communication line, and performs communication with the outside.
  • FIG. 14 shows an example in which the communication unit 450 is connected to an externally connected server 460.
  • the communication unit 450 transmits and receives information acquired by the non-contact gas measurement device 100, the distance measurement unit 300, the imaging unit 440, and the like to the server 460, for example.
  • the imaging unit 440 is, for example, an R (Red) G (Green) B (Blue) camera having sensitivity to visible light wavelengths, an infrared light camera having sensitivity to infrared light, or an RGB camera having sensitivity to infrared to visible light wavelengths. and so on. Alternatively, it may be an RGB camera having sensitivity to the wavelength of ultraviolet light from visible light to ultraviolet light, or from infrared to visible light.
  • the input / output unit 420 included in the non-contact gas measurement system 500 may use an input / output unit such as a touch panel included in the mobile terminal 560.
  • the non-contact gas measurement system 500 is provided in the mobile terminal 560 such as a smartphone.
  • the imaging unit 440 and the communication unit 450 that are functions of the mobile terminal 560 are newly added to the non-contact gas measurement system 500.
  • a configuration may be added.
  • FIG. 15 is an explanatory diagram showing an example of an overview of the mobile terminal 560 of FIG.
  • FIG. 15A shows the front surface of the mobile terminal 560
  • FIG. 15B shows the back surface of the mobile terminal 560.
  • the surface on which the input / output unit 420 is provided is the front surface of the mobile terminal 560, and the surface facing it is the back surface.
  • the imaging unit 440 can capture an image from either the front side of the mobile terminal 560 shown in FIG. 15A or the back side of the mobile terminal 560 shown in FIG. It has a configuration.
  • the reception oscillating unit 101 also emits and receives electromagnetic waves from the front side of the mobile terminal 560 shown in FIG. 15A and the back side shown in FIG. It is the structure which can be performed.
  • FIG. 16 is an explanatory diagram illustrating an example of display by the input / output unit 420 included in the mobile terminal 560 of FIG.
  • the input / output unit 420 is composed of, for example, a touch panel display.
  • the input / output unit 420 as shown in FIG. 16A, for example, a menu screen on which the user selects a measurement target, an image captured by the imaging unit 440 as shown in FIG. Display the analysis results.
  • the measurement target gas name is displayed so that the user can select it.
  • the control information management table 800 of FIG. 10 of the first embodiment for example, the measurement target gas 601 selected by the user can be easily given to the input information in the process of step S201 of FIG. Can do.
  • FIG. 16 (b) a graph displaying transdermal moisture transpiration amount in time series, a measurement position marker indicating the previous measurement position acquired by the imaging unit 440, etc. You may make it display on 420.
  • FIG. 16 (b) a graph displaying transdermal moisture transpiration amount in time series, a measurement position marker indicating the previous measurement position acquired by the imaging unit 440, etc. You may make it display on 420.
  • FIG. 17 is a flowchart showing an example of the gas measurement operation by the mobile terminal 560 of FIG.
  • step S301 input information is acquired (step S301).
  • the processing in step S301 is the same as the processing in step S201 in FIG. 12 of the first embodiment.
  • the imaging unit 440 images the measurement site of the user, and the system control unit 400 analyzes the captured image (step S302).
  • the measurement site is specified from the image results captured by the imaging unit 440 last time or so far, and the result is displayed on the output unit 422 to notify the user.
  • a measurement position marker may be displayed on the input / output unit 420, or information on the difference between the measurement position marker and the current position captured by the imaging unit 440 using a speaker or the like is used as sound, for example, a change in pitch, volume It is also possible to notify by a change in sound or voice.
  • a measurement specifying technique for specifying whether the measurement by the reception oscillating unit 101 is measured by the front side or the back side of the mobile terminal 560 will be described.
  • the object 600 is photographed on the imaging unit 440 in FIG. 15A, that is, the front side of the portable terminal 560, or the object 600 is captured on the imaging unit 440 in FIG. It is determined whether the image is captured on the side, and the reception oscillation unit 101 performs measurement on the imaged surface side.
  • the reception oscillation unit 101 on the back side of FIG. 15B is used, and when measuring the face or the like, the reception oscillation unit 101 on the front side of FIG. 15A is used. To do. Accordingly, the user can perform measurement while looking at the display that is the input / output unit 420.
  • step S303 when the analysis of the image is completed, the measurement target gas 601 is measured (step S303).
  • the processing in step S303 is the same as the processing in steps S202 to S209 in FIG.
  • the measurement result is transmitted (step S304).
  • the system control unit 400 transfers the measurement result and the like to the server 460 externally connected by the communication unit 450. Thereafter, the server 460 analyzes the transferred measurement result (step S305).
  • the measurement result acquired in the process of step S304 and the image analysis result in the process of step S302 are transmitted from the communication unit 450 to the server 460.
  • Server 460 performs all or part of the complex analysis.
  • the specific process is the same as the process of step S210 in FIG. Thereby, the processing load of the non-contact gas measurement system 500 can be reduced.
  • the communication unit 450 acquires the result analyzed by the server 460 (step S306).
  • the system control unit 400 displays the result acquired from the server 460 on the input / output unit 420 (step S307). At this time, the system control unit 400 stores the result acquired from the server 460 in the memory 430.
  • the non-contact gas measurement system 500 in the portable terminal 560, the convenience of the user can be further improved. Further, since the analysis of the measurement target gas 601 is performed by the external server 460, the measurement target gas 601 can be analyzed in a shorter time.
  • the configuration of the non-contact gas measurement system 500 can be simplified, contributing to downsizing and cost reduction. be able to.
  • FIG. 18 is an explanatory diagram showing an example of the configuration of the non-contact gas measuring apparatus 100 according to the fourth embodiment.
  • the information correction unit 200 is configured by the mirror 201 and the motor 202.
  • the visible light source 104 serves as the mirror 201 and the motor 202 so that a driving unit such as a motor is unnecessary.
  • the non-contact gas measuring apparatus 100 includes a reception oscillation unit 101, a control unit 110, and an information correction unit 200 as shown in FIG. Since the reception oscillation unit 101 is the same as that of the first embodiment shown in FIG.
  • the information correction unit 200 includes a visible light source 104, a lens 105, an ITO (Indium Tin Oxide) 106, and an optical element 107.
  • the visible light source 104 that is an electromagnetic wave irradiation unit emits an electromagnetic wave of visible light, that is, visible light based on the control of the control unit 110.
  • the lens 105 irradiates the optical element 107 with the light emitted from the visible light source 104 as parallel light.
  • the ITO 106 has an optical characteristic that reflects the electromagnetic wave emitted from the reception oscillation unit 101 and transmits the light emitted from the visible light source 104.
  • the optical element 107 changes the transmittance by the visible light source 104.
  • a semiconductor such as Si or GaAs or a substance exhibiting photoinduced metal-insulator transition, such as vanadium oxide, is used instead of the semiconductor.
  • the optical element 107 when the light emitted from the visible light source 104 is irradiated onto the optical element 107, carriers due to the photoelectric effect of the semiconductor are generated.
  • the carriers in the semiconductor behave like a metal for the electromagnetic waves generated by the transmitter / receiver 102.
  • the optical element 107 can be switched to function as a reflection plate or a transmission plate depending on the presence or absence of light emitted from the visible light source 104.
  • the electromagnetic wave oscillated by the transmitter / receiver 102 is irradiated perpendicularly to the object 600, thereby passing through the measurement target gas 601 and returning the reflected wave to the receiver / transmitter 102.
  • the object 600 is a user's skin or the like.
  • the control unit 110 controls the reception oscillation unit 101 and the visible light source 104.
  • the electromagnetic wave oscillated by the reception oscillation unit 101 uses a frequency that is easily absorbed by gas.
  • a frequency such as about 0.56 THz or about 0.75 THz is suitable.
  • the non-contact gas measurement system 500 When the non-contact gas measurement system 500 is configured using the non-contact gas measurement device 100 shown in FIG. 18, the non-contact gas measurement system 500 has the same configuration as that of FIG. 4 of the first embodiment.
  • the external appearance of the non-contact gas measurement system 500 using the non-contact gas measurement device 100 shown in FIG. 18 is as shown in FIG. 5 of the above embodiment.
  • the optical element 107 is provided in the vicinity of the emission port 504 provided in the case 501 shown in FIG.
  • Switching of the optical characteristics of the optical element 107 by the visible light source 104 is performed based on a mode signal output from the system control unit 400 shown in FIG.
  • examples of the mode signal output by the system control unit 400 include an information correction mode signal and a measurement mode signal.
  • the information correction mode signal is a signal output when acquiring a correction wave
  • the measurement mode signal is a signal output when measuring the measurement target gas 601.
  • the information correction mode signal or the measurement mode signal output from the system control unit 400 is input to the control unit 110, respectively.
  • the control unit 110 controls to turn on the visible light source 104 when the information correction mode signal is input, and controls to turn off the visible light source 104 when the measurement mode signal is input.
  • FIG. 19 is an explanatory diagram illustrating an example of a time waveform of each functional unit in the non-contact gas measuring apparatus 100 of FIG.
  • the mode signal output from the system control unit 400 of FIG. 4 with respect to time the change in light intensity with respect to the time of the visible light source 104, and the change in electromagnetic wave intensity generated by the reception oscillation unit 101 with respect to time. 2 shows a change in transmittance with respect to time of the optical element 107 and a change in response of a received signal received by the reception oscillating unit 101.
  • the visible light source 104 emits visible light.
  • the optical element 107 functions as a reflecting plate.
  • This correction wave is an electromagnetic wave.
  • the influence of water vapor due to the environment is removed using the correction wave acquired by the information correction unit 200.
  • the visible light source 104 When the measurement mode signal is output from the system control unit 400, the visible light source 104 is turned off. When no visible light is irradiated, the optical element 107 functions as a transmission plate.
  • the reception oscillation unit 101 can acquire the measurement wave of the measurement target gas 601.
  • the transmitter / receiver 102 continuously emits the electromagnetic wave having the electromagnetic wave intensity Iin in both the period in which the optical element 107 does not function as the transmission plate and the period in which the optical element 107 functions as the transmission plate.
  • the reception oscillation unit 101 acquires a correction wave that reduces measurement errors due to the environment. Further, when the optical element 107 is operating as a transmission plate, in the reception oscillation unit 101, the transmitter / receiver 102 detects a reflected wave obtained by measuring the measurement target gas.
  • FIG. 20 is a flowchart illustrating an example of measurement processing of the measurement target gas 601 by the non-contact gas measurement system 500 configured using the non-contact gas measurement device 100 of FIG. In the flowchart of FIG. 20, unless otherwise specified, the system control unit 400 of FIG.
  • steps S401 to S404 in FIG. 20 is the same as the processing in steps S201 to S204 in FIG.
  • step S404 when it is determined that the information correction unit 200 is controlled, the system control unit 400 controls the information correction unit 200 (step S405).
  • step S405 the information correction unit 200 outputs an information correction mode signal to the control unit 110.
  • the control unit 110 performs control so that the visible light source 104 is turned on. Thereby, the optical element 107 functions as a reflector.
  • the system control unit 400 controls the reception oscillation unit 101 to oscillate and receive an electromagnetic wave, thereby starting measurement of the measurement target gas 601 and the reception oscillation unit 101 obtains a current or voltage value. (Step S406). As described above, a correction wave is acquired by the optical element 107 functioning as a reflector.
  • step S407 the system control unit 400 determines whether or not to perform frequency control for information correction.
  • the frequency control determination technique in the process of step S407 will be described by taking as an example the case where the transdermal moisture transpiration amount is measured as the measurement target gas 601.
  • the system control unit 400 determines whether or not to control the frequency of the electromagnetic wave emitted by the non-contact gas measurement device 100 based on the measurement control information acquired from the control information management table 800 of FIG. 10 in the process of step S403. judge.
  • control information management table 800 in FIG. 10 Taking the control information management table 800 in FIG. 10 as an example, if the frequency 802 and the frequency set in the non-contact gas measuring device 100 are different, it is necessary to control the frequency of the electromagnetic wave. It determines with YES.
  • step S403 determines with NO and progresses to the process of step S408.
  • step S407 When it is determined in step S407 that it is not necessary to control the frequency of the electromagnetic wave, or when it is determined in step S404 that the information correction unit 200 is not to be controlled, the system control unit 400 controls the control unit 110.
  • a measurement mode signal is output, and the visible light source 104 of the information correction unit 200 is controlled to be turned off. Since no visible light is irradiated, carriers due to the photoelectric effect of the semiconductor are not generated in the optical element 107, and the optical element 107 functions as a transmission plate.
  • the system control unit 400 determines whether or not to control the frequency of the electromagnetic wave irradiated by the non-contact gas measuring device 100 based on the control information acquired in the process of step S403 (step S408).
  • control information management table 800 of FIG. 10 if the frequency 802 and the frequency set in the non-contact gas measuring device 100 are different, it is necessary to control, so the process proceeds to step S409. .
  • step S410 If the frequency 802 in the control information management table 800 is the same as the frequency set in the non-contact gas measuring device 100, the control is unnecessary, and the process proceeds to step S410.
  • the non-contact gas measuring device 100 when 0.558 THz is acquired from the frequency 802, the non-contact gas measuring device 100 is left as it is if it can oscillate 0.558 THz, and if different, the non-contact gas measurement is performed in the process of step S409.
  • the device 100 is controlled so as to be able to oscillate 0.558 THz. If the frequency of the non-contact gas measuring device 100 is fixed, this process is not necessary.
  • the system control unit 400 controls the non-contact gas measuring device 100 to set the electromagnetic wave to a specific frequency (step S409).
  • the frequency of the electromagnetic wave is changed by changing the voltage or current of the transmitter / receiver 102.
  • step S410 measurement of the measurement target gas 601 is started, and the reception oscillation unit 101 acquires a current or voltage value (step S410).
  • the measured value is stored in the value 905 of the measurement result table 900 of FIG.
  • the system control unit 400 refers to the control information acquired in step S403, and determines whether or not all the frequencies to be measured have been measured (step S411). If there is a frequency to be measured, the process returns to step S408).
  • the measurement is finished. Specifically, taking FIG. 10 as an example, if the transcutaneous moisture transpiration is to be measured as the measurement target gas 601, whether or not the measurement has been completed at two frequencies of frequency 802 of 0.558 THz and 0.600 THz. Repeat until the measurement is completed.
  • the analysis unit 410 When the measurement is completed, the analysis unit 410 performs analysis using the value 905 in the measurement result table 900 of FIG. 11 (step 412).
  • the processing in steps S412 to S414 in FIG. 20 is the same as the processing in steps S210 to S212 in FIG.
  • the measurement result by the non-contact gas measuring device 100 shown in FIG. 18 usually includes noise derived from temperature and vibration. Therefore, in order to obtain a more accurate measurement result, a measurement technique for removing noise from the signal component is required.
  • lock-in measurement is used in which a signal component spectrum and a noise spectrum are separated by modulating a signal.
  • a technique that uses an optical chopper for modulation of this signal uses an optical chopper for modulation of this signal.
  • the technology using this chopper performs modulation by rotating the optical chopper and turning on / off the electromagnetic wave emitted from the transmitter / receiver 102 at the rotational frequency. For this reason, a motor for rotating the optical chopper is required.
  • FIG. 21 is an explanatory diagram showing changes in electromagnetic wave intensity and transmittance when the visible light source is modulated by the non-contact gas measuring device 100 of FIG.
  • FIG. 21 shows the timing of turning on / off the visible light source 104, the electromagnetic wave emitted from the reception oscillating unit 101, and the change in the transmittance of the optical element 107 from above to below.
  • the visible light source 104 emits visible light having a visible light intensity Ivin by repeatedly turning it off and on. The lighting and extinguishing are repeated over time at, for example, about 1 kHz.
  • the control unit 110 controls turning off and turning on the visible light source 104.
  • the reception oscillating unit 101 continuously emits the electromagnetic wave having the electromagnetic wave intensity Iin.
  • the control of the reception oscillation unit 101 is performed by the control unit 110.
  • the transmittance of the optical element 107 changes as the visible light source 104 is turned on and off. As shown in the drawing, when the visible light source 104 is turned on, the optical element 107 functions as a reflection state 2201, that is, a reflection plate. When the visible light source 104 is turned off, the optical element 107 functions as a transmission state 2202, that is, a transmission plate.
  • the control unit 110 changes the visible light intensity Ivin of the visible light source 104 over time
  • the optical element 107 can be controlled over time as shown in FIG.
  • the electromagnetic wave having the electromagnetic wave intensity Iin emitted from the reception oscillating unit 101 is modulated by the optical element 107 at a frequency of about 1 kHz, the spectrum of the signal component and the spectrum of the noise can be well separated. As a result, a more accurate measurement result can be obtained.
  • FIG. 22 is a flowchart showing another example of the measurement process of FIG.
  • the optical characteristics of the optical element 107 change only in the information correction mode signal from the system control unit 400.
  • the optical characteristics are changed in the two modes of the information correction mode signal and the measurement mode signal.
  • FIG. 20 and FIG. 22 are all the same except for the processing in step S508.
  • step S508 in FIG. 22 is performed by controlling the reception oscillation unit 101, the visible light source 104, and the optical element 107 in terms of time as described with reference to FIG. Signal modulation of the electromagnetic wave of the oscillation unit 101 is performed.
  • biometric authentication such as detecting the presence or absence of a biometric.
  • FIG. 23 is an explanatory diagram showing an example of film thickness measurement by the non-contact gas measurement device 100 according to the fifth embodiment.
  • non-contact gas measurement device 100 shown in FIG. 23 is the same as the non-contact gas measurement device 100 shown in FIG. 18 of the fourth embodiment, and thus the description of the non-contact gas measurement device 100 is omitted.
  • FIG. 23 shows a case where the film thickness of the object 600 having a layer structure is measured.
  • the electromagnetic wave 603 emitted from the transmitter / receiver 102 by the layer structure of the object 600 is reflected by the electromagnetic wave 603 reflected on the surface of the film.
  • 2 shows an example in which two electromagnetic waves generated by the electromagnetic wave 604 reflected on the back surface are generated.
  • the peak valley method using the light interference effect is used.
  • the electromagnetic wave 603 reflected from the surface and the electromagnetic wave 604 reflected from the back surface of the object 600 interfere with each other, and the intensity of the interference increases when the phases of the two electromagnetic waves coincide with each other.
  • the film thickness measurement using the peak valley method or the like is executed by, for example, the analysis unit 410 in FIG.
  • FIG. 24 is an explanatory diagram for explaining the principle of film thickness measurement on the object 600 in FIG.
  • FIG. 24 is a graph in which the horizontal axis represents frequency and the vertical axis represents the intensity of interference signals.
  • FIG. 24 (a) shows the principle of film thickness measurement by the peak valley method
  • FIG. 24 (b) shows the principle of film thickness measurement by the curve fit method.
  • the film thickness is calculated from the two frequencies at which the interference signal intensity is maximum using the following equation (1).
  • d is the film thickness of the object 600
  • n is the refractive index of the object 600
  • c is the speed of light
  • ⁇ f is the difference between two frequencies (f2 ⁇ f1) at which the interference signal intensity is maximum.
  • the difference between the two frequencies at which the interference signal intensity becomes maximum is 0.25 THz to 0. .75 THz or so.
  • the refractive index n of the object 600 is not necessarily known.
  • the refractive index of the object 600 may be regarded as a fixed value that does not change, and nd may be considered as d ′.
  • the measurement values may be managed for each object 600.
  • the skin thickness it is possible to determine the rough skin of the user.
  • the epidermis layer is thin due to the influence of the rough skin.
  • convenience for the user can be improved.
  • the film thickness is not measured by the difference between the two frequencies at which the interference signal intensity is maximum, but the frequencies f1 to f4 are measured while changing the frequency. .
  • the film thickness is calculated by curve fitting so that the difference from the estimated value of the interference signal intensity with respect to the frequency obtained from the film structure modeling the change in the intensity of the interference signal with respect to the measured frequency is reduced. is there.
  • the film thickness measurement in the non-contact gas measuring apparatus 100 according to the fifth embodiment is effective not only for measuring the thickness of the skin but also for measuring the thickness of the coating film of a car, for example.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the functions of the imaging unit 440 and the distance measurement unit 300 in FIG. A system can be realized.
  • Non-contact gas measuring device 101 Reception oscillation part 101a Reception oscillation part 102 Receiver / transmitter 103 Lens 104 Visible light source 105 Lens 106 ITO 107 optical element 110 control unit 200 information correction unit 201 mirror 202 motor 300 distance measurement unit 400 system control unit 401 system bus 410 analysis unit 420 input / output unit 421 input unit 422 output unit 430 memory 440 imaging unit 450 communication unit 460 server 500 Contact gas measurement system 560 Portable terminal 600 Object 601 Measurement target gas

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

In a non-contact gas measuring device 100, a reception/oscillation unit 101 emits and detects electromagnetic waves. A visible light source 104 emits electromagnetic waves having a frequency different from that of the electromagnetic waves emitted by the reception/oscillation unit 101. An optical element 107 has a transmittance that changes on the basis of the electromagnetic waves emitted by the visible light source 104, and either transmits or reflects the electromagnetic waves emitted by the reception/oscillation unit 101. When a target object is to be measured, a control unit 110 performs control to change the transmittance in such a way that the electromagnetic waves of the visible light source 104 are stopped and the optical element 107 functions as a transmitting plate, and to cause the electromagnetic waves transmitted through the optical element 107 to be radiated at the target object. The reception/oscillation unit 101 outputs the value of a voltage or a current which varies in accordance with the intensity of the electromagnetic waves reflected from the target object 600, as a measured value.

Description

非接触ガス計測装置、非接触ガス計測システム、および非接触ガス計測方法Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method
 本発明は、非接触ガス計測装置、非接触ガス計測システム、および非接触ガス計測方法に関し、特に、非接触による皮膚表面のガス計測に有効な技術に関する。 The present invention relates to a non-contact gas measurement device, a non-contact gas measurement system, and a non-contact gas measurement method, and more particularly to a technique effective for non-contact gas measurement of a skin surface.
 本技術分野の背景技術として、例えば、特開2002-263072(特許文献1)、特開2010-172543(特許文献2)、及び特開2010-169658(特許文献3)がある。 As background arts in this technical field, for example, there are JP 2002-263072 (Patent Document 1), JP 2010-172543 (Patent Document 2), and JP 2010-169658 (Patent Document 3).
 特許文献1には、課題として「必要十分な精度の測定が可能であって、しかも、小型軽量、安価で取扱いが容易な水分蒸散量測定装置を提供する。」と記載があり、その解決手段として「皮膚表面に接触させる枠の内側に回路基板を配置して、回路基板上に湿度検出素子として電気容量型高分子薄膜湿度センサを1個だけ配置する。湿度検出素子の駆動回路も回路基板上に配置される。ハンドル軸を通じて取り出した回路出力から水分蒸散量を演算する。湿度検出素子を1つしか使用しないから、2つ使用する場合に比較して部品点数が削減されるとともに、組立調整や維持管理のコストが低くなる。」と記載されている。 Japanese Patent Laid-Open No. 2004-228561 describes as a problem “Providing a moisture transpiration measuring device that is capable of measuring with sufficient and sufficient accuracy, and is small, light, inexpensive, and easy to handle.” “A circuit board is arranged inside the frame to be in contact with the skin surface, and only one capacitive polymer thin film humidity sensor is arranged on the circuit board as a humidity detecting element. The driving circuit of the humidity detecting element is also a circuit board. The amount of moisture transpiration is calculated from the circuit output taken out through the handle shaft.Because only one humidity detection element is used, the number of parts is reduced and the assembly is reduced compared to the case of using two humidity detection elements. "Coordination and maintenance costs will be lower."
 また、特許文献2には、課題として「簡便かつ的確に経皮水分蒸散量を推定し、さらにこれに基づいて皮膚のバリア機能を評価する装置を提供する。」と記載があり、その解決手段として「本体部と、本体部に設置される複数の交流電圧を印加し得る印加電極と、本体部に設置されるサセプタンス(B)、アドミタンス(Y)、又はコンダクタンス(G)のいずれかを検出する検出電極13と、本体部に設置される表示部と、本体部に内蔵され、検出したサセプタンス(B)、アドミタンス(Y)、又はコンダクタンス(G)のいずれかに基づいて経皮水分蒸散量の推定値となりえる特性値(P)を算出する演算部とを備え、算出された特性値(P)に基づいて経皮水分蒸散量を推定し、これに基づいて皮膚バリア機能を評価する。」と記載されている。 Further, Patent Document 2 has a description as “Providing a device for estimating the amount of transdermal moisture transpiration easily and accurately, and further evaluating the skin barrier function based on this”, and means for solving the problem. As "a main body, an application electrode installed on the main body that can apply a plurality of AC voltages, and a susceptance (B), admittance (Y), or conductance (G) installed on the main body are detected. Percutaneous moisture transpiration based on one of the detected susceptance (B), admittance (Y), or conductance (G) built in the main body and the detection electrode 13 to be installed, the display unit installed in the main body, And an arithmetic unit that calculates a characteristic value (P) that can be an estimated value of the skin, estimates the transdermal moisture transpiration based on the calculated characteristic value (P), and evaluates the skin barrier function based on this. " It is.
 また、特許文献3には、課題として「気体を供給する部位から供給された気体を効率良く分析する。」と記載があり、その解決手段として「気体を捕獲する捕獲膜3(例えば、多孔質性のポリマーなど。)を含み、該捕獲膜に捕獲された気体(例えば、人体から発生した皮膚ガス。)と前記発生部から発生したテラヘルツ波もしくは赤外光とが相互作用するように該捕獲膜を配置可能な捕獲部(捕獲膜と捕集容器とで構成される部材。)を備える。前記捕獲部は、前記気体を供給する部位(例えば、腕や手などの人体。)に接触可能な構造体(捕集容器)を含む。そして、前記構造体は、前記捕獲膜と前記部位1とを非接触状態として維持するように設けられる。」と記載されている。 Further, Patent Document 3 has a description that “a gas supplied from a gas supply site is efficiently analyzed” as a problem, and “a capture film 3 that captures a gas (for example, porous) The gas (for example, skin gas generated from the human body) captured by the capture film and the terahertz wave or infrared light generated from the generation unit interact with each other. A capture unit (a member composed of a capture film and a collection container) capable of arranging a film is provided, and the capture unit can contact a portion for supplying the gas (for example, a human body such as an arm or a hand). The structure is provided so as to maintain the capture film and the portion 1 in a non-contact state ”.
特開2002-263072号公報JP 2002-263072 A 特開2010-172543号公報JP 2010-172543 A 特開2010-169658号公報JP 2010-169658 A
 人体の皮膚は、皮膚呼吸や発汗などにより生体内の環境や温度を調整するだけでなく、異物、細菌、あるいは微生物などの外部刺激から生体の内部組織を保護する役目も担っている。 The human skin not only adjusts the environment and temperature in the living body through skin respiration and sweating, but also plays a role in protecting internal tissues from external stimuli such as foreign substances, bacteria, or microorganisms.
 このため熱中症予防やアトピー性皮膚炎によるドライスキンの防止などの健康維持の観点、あるいは化粧品や医薬品の評価、美容など実用的な観点においても皮膚内部の水分量と皮膚から蒸散される水分量、いわゆる経皮水分蒸散量の情報を取得することは重要である。特に、経皮水分蒸散量は、外部刺激から生体を守り、水分が体外に蒸散しないよう防御する皮膚バリア機能を評価する指標として関心が高い。 For this reason, the amount of water inside the skin and the amount of water transpirated from the skin from the standpoint of health maintenance such as prevention of heat stroke and prevention of dry skin due to atopic dermatitis, or from practical viewpoints such as evaluation of cosmetics and pharmaceuticals, and beauty. It is important to obtain information on the so-called transdermal moisture transpiration rate. In particular, the transdermal moisture transpiration is of great interest as an index for evaluating the skin barrier function that protects the living body from external stimuli and protects the moisture from transpiration outside the body.
 また、ヘルスケアなどにおいては、皮膚から蒸散される水分だけでなく、皮膚ガスなどのガスの計測も行われている。皮膚ガスにより、特定の疾病を発見することができる。例えば、皮膚ガスにアセトンが多く含まれている場合には、糖尿病との関連があり、アンモニアが多く含まれている場合には、慢性肝疾患との関連があるといわれている。 Also, in health care and the like, not only moisture evaporated from the skin but also gas such as skin gas is measured. With skin gas, certain diseases can be discovered. For example, if the skin gas contains a lot of acetone, it is said to be related to diabetes, and if it contains a lot of ammonia, it is said to be related to chronic liver disease.
 経皮水分蒸散量の計測においては、例えば湿度センサなどを使用して皮膚表面から蒸散する水分損失量を測定する技術(例えば、特許文献1)が知られている。この技術では、皮膚表面から蒸散する水分損失量を測定する湿度センサを安定化する機構などが必要となる。そのために、測定機器が高価となり、かつ大がかりなものとなってしまうという問題がある。また、測定機器の一部を対象物、すなわち皮膚などに接触させて計測する接触型であるために、計測時に患者の皮膚表面に影響を与えてしまったり、傷をつけてしまう恐れがある。患者の皮膚などへの影響を考慮すると、計測箇所を限定してしまう。 In the measurement of transcutaneous moisture transpiration, a technique (for example, Patent Document 1) that measures the amount of moisture lost from the skin surface using, for example, a humidity sensor is known. This technique requires a mechanism that stabilizes a humidity sensor that measures the amount of moisture lost from the skin surface. For this reason, there is a problem that the measuring instrument becomes expensive and large. In addition, since it is a contact type in which a part of the measurement device is brought into contact with an object, i.e., skin, for measurement, the surface of the patient's skin may be affected or damaged during measurement. Considering the influence on the patient's skin, the measurement location is limited.
 一方では、皮膚の電気的性質を測定することにより、皮膚のバリア機能を小型で低コストにて評価する技術(例えば、特許文献2)などがある。上記特許文献1と同様に、対象物の電気的性質を測定するために測定機器の一部を計測部分である皮膚に接触させる必要がある。 On the other hand, there is a technique (for example, Patent Document 2) that evaluates the skin barrier function in a small size and at low cost by measuring the electrical properties of the skin. Similar to Patent Document 1, it is necessary to bring a part of the measuring device into contact with the skin, which is the measurement part, in order to measure the electrical properties of the object.
 また、皮膚ガスを測定する技術としては、皮膚ガスを捕獲して、捕獲した皮膚ガスを電磁波を用いて計測する技術(例えば、特許文献3)などが知られている。この技術では、計測機器の構成として、皮膚ガスを捕捉および計測するために赤外光などを発生させる光源と検出器とが必要である。よって、装置構成が複雑で大がかりなものとなってしまうという問題がある。 Further, as a technique for measuring skin gas, a technique for capturing skin gas and measuring the captured skin gas using electromagnetic waves (for example, Patent Document 3) is known. In this technique, a light source and a detector that generate infrared light and the like are necessary for capturing and measuring skin gas as a configuration of the measurement device. Therefore, there is a problem that the apparatus configuration is complicated and large.
 この特許文献3の技術においても、測定機器の一部を対象物で皮膚に接触させて計測する構成であるため、上記特許文献1,2と同様に、計測箇所を限定してしまう。 Also in the technique of this Patent Document 3, since the measurement is performed by bringing a part of the measuring device into contact with the skin with the object, the measurement location is limited as in the above Patent Documents 1 and 2.
 本発明の目的は、利用者の皮膚などに影響を与えず、簡易な構成によって対象物からのガスを測定することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of measuring gas from an object with a simple configuration without affecting the user's skin and the like.
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 すなわち、代表的な非接触ガス計測システムは、非接触ガス計測装置、解析部、およびシステム制御部を有する。非接触ガス計測装置は、対象物から発せられる計測対象ガスを電磁波を用いて計測する。解析部は、非接触ガス計測装置が計測した計測値から計測対象ガスを解析する。システム制御部は、非接触ガス計測装置および解析部の動作を制御する。 That is, a typical non-contact gas measurement system has a non-contact gas measurement device, an analysis unit, and a system control unit. The non-contact gas measuring device measures a measurement target gas emitted from an object using electromagnetic waves. An analysis part analyzes measurement object gas from the measured value which the non-contact gas measuring device measured. The system control unit controls operations of the non-contact gas measuring device and the analysis unit.
 また、非接触ガス計測装置は、受信発振部、電磁波照射部、光学素子、および制御部を備える。受信発振部は、電磁波の出射および検出を行う。電磁波照射部は、受信発振部が出射する電磁波と異なる周波数の電磁波を出射する。 Further, the non-contact gas measuring device includes a reception oscillation unit, an electromagnetic wave irradiation unit, an optical element, and a control unit. The reception oscillation unit emits and detects electromagnetic waves. The electromagnetic wave irradiation unit emits an electromagnetic wave having a frequency different from that of the electromagnetic wave emitted from the reception oscillation unit.
 光学素子は、電磁波照射部が出射する電磁波に基づいて透過率が変化して、受信発振部が出射する電磁波を透過または反射させる。制御部は、受信発振部および電磁波照射部を制御する。 The optical element changes the transmittance based on the electromagnetic wave emitted from the electromagnetic wave irradiation unit, and transmits or reflects the electromagnetic wave emitted from the reception oscillation unit. The control unit controls the reception oscillation unit and the electromagnetic wave irradiation unit.
 そして、制御部は、対象物を測定する際に電磁波照射部の電磁波を停止させて光学素子が透過板として機能するように透過率を変化させ、光学素子を透過した電磁波を対象物に照射させるように制御する。受信発振部は、対象物から反射した電磁波の強度に応じて変化する電圧または電流の値を計測値として解析部に出力する。 Then, the control unit stops the electromagnetic wave of the electromagnetic wave irradiation unit when measuring the object, changes the transmittance so that the optical element functions as a transmission plate, and irradiates the object with the electromagnetic wave transmitted through the optical element. To control. The reception oscillating unit outputs a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the object as a measurement value to the analysis unit.
 特に、制御部は、計測値を補正する補正電磁波を取得する際に電磁波照射部から電磁波を出射させて光学素子が反射板として機能するように透過率を変化させ、電磁波を光学素子から反射させるように制御する。 In particular, when acquiring a corrected electromagnetic wave for correcting a measurement value, the control unit emits the electromagnetic wave from the electromagnetic wave irradiation unit, changes the transmittance so that the optical element functions as a reflector, and reflects the electromagnetic wave from the optical element. To control.
 また、受信発振部は、光学素子から反射した電磁波の強度に応じて変化する電圧または電流の値を補正値として解析部に出力する。 Also, the reception oscillation unit outputs a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the optical element as a correction value to the analysis unit.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 (1)利用者の利便性を向上することができる。 (1) User convenience can be improved.
 (2)非接触ガス計測装置および非接触ガス計測システムを小型化することができる。 (2) The non-contact gas measuring device and the non-contact gas measuring system can be miniaturized.
実施の形態1による非接触ガス計測装置における構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure in the non-contact gas measuring device by Embodiment 1. 図1の非接触ガス計測装置が有する受発振器における特性の一例を示す説明図である。It is explanatory drawing which shows an example of the characteristic in the receiving oscillator which the non-contact gas measuring device of FIG. 1 has. 図1の非接触ガス計測装置によるガス計測の動作における一例を示すフローチャートである。It is a flowchart which shows an example in the operation | movement of the gas measurement by the non-contact gas measuring device of FIG. 図1の非接触ガス計測装置を用いた非接触ガス計測システムにおける構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure in the non-contact gas measuring system using the non-contact gas measuring device of FIG. 図4の非接触ガス計測システムの一例を示す概観斜視図である。It is a general-view perspective view which shows an example of the non-contact gas measuring system of FIG. 図5の非接触ガス計測システムを使用する際の一例を示す説明図である。It is explanatory drawing which shows an example at the time of using the non-contact gas measuring system of FIG. 図4の非接触ガス計測システムが有する受信発振部および情報補正部における構成の一例を示す説明図である。FIG. 5 is an explanatory diagram illustrating an example of a configuration of a reception oscillation unit and an information correction unit included in the non-contact gas measurement system of FIG. 4. 図4の非接触ガス計測システムが有する受信発振部および情報補正部における他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example in the reception oscillation part and information correction | amendment part which the non-contact gas measurement system of FIG. 4 has. 図8に続く説明図である。It is explanatory drawing following FIG. 図4の非接触ガス計測システムが有するシステム制御部が参照する制御情報管理テーブルにおける構成の一例を示した説明図である。It is explanatory drawing which showed an example of the structure in the control information management table which the system control part which the non-contact gas measuring system of FIG. 4 has has. 図4の非接触ガス計測システムが有するメモリに格納される計測結果テーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the measurement result table stored in the memory which the non-contact gas measurement system of FIG. 4 has. 図4の非接触ガス計測システムによる計測対象ガスの計測処理の一例を示すフローチャートである。It is a flowchart which shows an example of the measurement process of the measurement object gas by the non-contact gas measurement system of FIG. 実施の形態2による受信発振部および情報補正部における構成の一例を示す説明図である。6 is an explanatory diagram illustrating an example of a configuration in a reception oscillation unit and an information correction unit according to Embodiment 2. FIG. 実施の形態3による携帯端末における構成の一例を示す説明図である。10 is an explanatory diagram illustrating an example of a configuration of a mobile terminal according to Embodiment 3. FIG. 図14の携帯端末の概観の一例を示す説明図である。It is explanatory drawing which shows an example of the external appearance of the portable terminal of FIG. 図15の携帯端末が有する入出力部による表示の一例を示す説明図である。It is explanatory drawing which shows an example of the display by the input / output part which the portable terminal of FIG. 15 has. 図14の携帯端末によるガス計測の動作における一例を示すフローチャートである。It is a flowchart which shows an example in the operation | movement of the gas measurement by the portable terminal of FIG. 実施の形態4による非接触ガス計測装置における構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure in the non-contact gas measuring device by Embodiment 4. 図18の非接触ガス計測装置における各機能部の時間波形の一例を示す説明図である。It is explanatory drawing which shows an example of the time waveform of each function part in the non-contact gas measuring device of FIG. 図18の非接触ガス計測装置を用いて構成した非接触ガス計測システムによる計測対象ガスの計測処理の一例を示すフローチャートである。It is a flowchart which shows an example of the measurement process of the measurement object gas by the non-contact gas measuring system comprised using the non-contact gas measuring device of FIG. 図18の非接触ガス計測装置による可視光源を変調した際の電磁波強度および透過率の変化を示す説明図である。It is explanatory drawing which shows the electromagnetic wave intensity | strength and the change of the transmittance | permeability at the time of modulating the visible light source by the non-contact gas measuring device of FIG. 図20の計測処理における他の例を示すフローチャートである。It is a flowchart which shows the other example in the measurement process of FIG. 実施の形態5における非接触ガス計測装置による膜厚測定の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of film thickness measurement by a non-contact gas measurement device according to Embodiment 5. 図23の対象物における膜厚測定の原理を説明する説明図である。It is explanatory drawing explaining the principle of the film thickness measurement in the target object of FIG.
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 In all the drawings for explaining the embodiments, the same members are, in principle, given the same reference numerals, and the repeated explanation thereof is omitted.
 (実施の形態1)
 以下、実施の形態を詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments will be described in detail.
 〈非接触ガス計測装置の構成例〉
 図1は、本実施の形態1による非接触ガス計測装置100における構成の一例を示す説明図である。
<Configuration example of non-contact gas measuring device>
FIG. 1 is an explanatory diagram showing an example of the configuration of the non-contact gas measuring apparatus 100 according to the first embodiment.
 非接触ガス計測装置100は、対象物600から発せられる計測対象ガス601を電磁波を用いて計測する。この非接触ガス計測装置100は、図1に示すように受信発振部101および制御部110を有する。受信発振部101は、電磁波の発振と受信とが単体化された構成となっており、電磁波を出射および検出する。 The non-contact gas measuring device 100 measures the measurement target gas 601 emitted from the target 600 using electromagnetic waves. The non-contact gas measuring device 100 includes a reception oscillation unit 101 and a control unit 110 as shown in FIG. The reception oscillating unit 101 has a configuration in which the oscillation and reception of electromagnetic waves are united, and emits and detects electromagnetic waves.
 受信発振部101は、受発信器102およびレンズ103を有している。受発信器102は、電磁波の発振および受信を行う。レンズ103は、受発信器102が発振した電磁波を平行光にして対象物600に照射し、対象物600からの反射波を集光する。 The reception oscillation unit 101 includes a transmitter / receiver 102 and a lens 103. The transmitter / receiver 102 oscillates and receives electromagnetic waves. The lens 103 irradiates the object 600 with the electromagnetic waves oscillated by the transmitter / receiver 102 as parallel light, and collects the reflected wave from the object 600.
 受発信器102が発振した電磁波は、対象物600に対して垂直に照射されることにより、計測対象ガス601を通過してその反射波が受発信器102に戻る。ここで、対象物600は、使用者の皮膚などである。制御部110は、受信発振部101を制御する。 The electromagnetic wave oscillated by the transmitter / receiver 102 is irradiated perpendicularly to the object 600, thereby passing through the measurement target gas 601 and returning the reflected wave to the receiver / transmitter 102. Here, the object 600 is a user's skin or the like. The control unit 110 controls the reception oscillation unit 101.
 受信発振部101が発振する電磁波は、ガスに吸収され易い周波数を用いる。例えば、対象物600が皮膚であって、計測対象ガス601が皮膚から蒸散する水蒸気である場合には、0.56THz程度や0.75THz程度などの周波数が好適である。 The electromagnetic wave oscillated by the reception oscillation unit 101 uses a frequency that is easily absorbed by gas. For example, when the object 600 is skin and the measurement target gas 601 is water vapor evaporating from the skin, a frequency such as about 0.56 THz or about 0.75 THz is suitable.
 受発信器102は、例えば負性抵抗領域にて電磁波を発振する電子デバイスであり、例えば共鳴トンネルダイオードなどである。図1では、便宜上共鳴トンネルダイオードにて示しているが、受発信器については、これに限定されるものではない。 The transmitter / receiver 102 is, for example, an electronic device that oscillates electromagnetic waves in a negative resistance region, and is, for example, a resonant tunnel diode. In FIG. 1, a resonant tunnel diode is shown for convenience, but the transmitter / receiver is not limited to this.
 例えばレーザなどの電磁波を発振するデバイスでもよい。0.56THz程度や0.75THz程度の周波数を発振する発振器としては、例えば量子カスケードレーザあるいは共鳴トンネルダイオードなどがある。 For example, a device that oscillates electromagnetic waves such as a laser may be used. As an oscillator that oscillates at a frequency of about 0.56 THz or 0.75 THz, for example, a quantum cascade laser or a resonant tunneling diode is used.
 〈受発信器の特性〉
 図2は、図1の非接触ガス計測装置100が有する受発信器102における特性の一例を示す説明図である。
<Characteristics of transmitter / receiver>
FIG. 2 is an explanatory diagram illustrating an example of characteristics of the transmitter / receiver 102 included in the non-contact gas measuring device 100 of FIG.
 この図2は、対象物600からの反射波の強さと受発信器102の端子間を流れる電流と関係を示したものであり、受発信器102から発振した電磁波が反射波として該受発信器102に戻ったときに該受発信器102の発振特性に影響を与える現象の一例である。 FIG. 2 shows the relationship between the intensity of the reflected wave from the object 600 and the current flowing between the terminals of the transmitter / receiver 102. The electromagnetic wave oscillated from the receiver / transmitter 102 is reflected as the reflected wave. This is an example of a phenomenon that affects the oscillation characteristics of the transmitter / receiver 102 when returning to 102.
 例えば受発信器102として共鳴トンネルダイオードが用いられた場合は、該共鳴トンネルダイオードの端子間に特定の電圧をかけることによって負性抵抗領域にて電磁波が発振する。 For example, when a resonant tunnel diode is used as the transmitter / receiver 102, an electromagnetic wave oscillates in the negative resistance region by applying a specific voltage between the terminals of the resonant tunnel diode.
 非特許文献Masahiro Asada and Safumi Suzuki 2015 Jpn.J.Appl.Phys. 54 070309には、反射物の反射率が異なると、発振器の端子間を流れる電流が変化することが記載されている。 Non-patent document Masahiro Asada and Safumi Suzuki 2015 Jpn. J. et al. Appl. Phys. 54 070309 describes that the current flowing between the terminals of the oscillator changes when the reflectivity of the reflector is different.
 これは、発振回路に仮想アドミタンスが付与されることで起こる。また、半導体レーザの場合も同様に、反射波が発振特性に影響を与えるが、こちらは共振器中で発振波と反射波が干渉することで生じる。これらの現象はこれまでノイズとして扱われていた。 This occurs when virtual admittance is added to the oscillation circuit. Similarly, in the case of a semiconductor laser, the reflected wave affects the oscillation characteristics. This is caused by the interference between the oscillation wave and the reflected wave in the resonator. These phenomena have been treated as noise until now.
 本発明者は、上記した非特許文献にて反射物体の反射率として示されているものを計測対象ガスにおける電磁波の吸収による減衰とすることによって、この現象を非接触ガス計測に適用できることに着目した。 The inventor of the present invention pays attention to the fact that this phenomenon can be applied to non-contact gas measurement by making the attenuation indicated by the absorption of electromagnetic waves in the measurement target gas what is shown as the reflectance of the reflecting object in the above-mentioned non-patent literature. did.
 つまり、受発信器102は、電磁波を発振して、該電磁波が対象物600から反射されて該受発信器102に戻る反射波の強度に応じて、受発信器102を流れる電流に差が生じる。この電磁波路中の計測対象ガス601の量によって反射波の強さは変化するために受発信器102にかかる電流または電圧の差を用いてガス計測することが可能となる。 That is, the transmitter / receiver 102 oscillates an electromagnetic wave, and a difference occurs in the current flowing through the transmitter / receiver 102 according to the intensity of the reflected wave that is reflected from the object 600 and returns to the receiver / transmitter 102. . Since the intensity of the reflected wave changes depending on the amount of the measurement target gas 601 in the electromagnetic wave path, it is possible to perform gas measurement using a difference in current or voltage applied to the transmitter / receiver 102.
 例えば図2では、共鳴トンネルダイオードの端子間を流れる電流が少ないと反射波の強さが弱くなっており、その結果、計測対象ガス601による電磁波の吸収が強かったことが分かる。すなわち計測対象ガス601の量が多いことが分かる。 For example, in FIG. 2, it can be seen that when the current flowing between the terminals of the resonant tunneling diode is small, the intensity of the reflected wave is weak, and as a result, the absorption of electromagnetic waves by the measurement target gas 601 is strong. That is, it can be seen that the amount of the measurement target gas 601 is large.
 このように、受発信器102の端子間の電流または電圧変化を検出して、計測対象ガス601による電磁波の吸収量を算出することによって、ガスによる吸収と量の相関から計測対象ガス601を計測することが可能となる。 In this way, by measuring the current or voltage change between the terminals of the transmitter / receiver 102 and calculating the amount of electromagnetic wave absorption by the measurement target gas 601, the measurement target gas 601 is measured from the correlation between the absorption and amount by the gas. It becomes possible to do.
 また、図2に示したグラフは一例を示したものであり、データ構造はこれに限定されるものではなく、計測した電流値と計測対象ガスとの関係を示す構成、例えばテーブル構成などの情報であればよい。 In addition, the graph shown in FIG. 2 is an example, and the data structure is not limited to this. The configuration showing the relationship between the measured current value and the measurement target gas, for example, information such as a table configuration If it is.
 〈ガス計測装置の動作例〉
 図3は、図1の非接触ガス計測装置100によるガス計測の動作における一例を示すフローチャートである。
<Operation example of gas measuring device>
FIG. 3 is a flowchart showing an example of the gas measurement operation by the non-contact gas measuring device 100 of FIG.
 まず、制御部110は、受信発振部101を制御することにより、予め設定された周波数の電磁波を計測対象の対象物600に照射させる(ステップS101)。このステップS101の処理において、非接触ガス計測装置100は、電磁波を対象物600に向けて照射するだけでよいので、非接触ガス計測装置100を皮膚などの対象物600に密着させる必要はなく、図1に示したように、非接触ガス計測装置100と対象物600との間に距離を置いてガス計測を行う。 First, the control unit 110 controls the reception oscillation unit 101 to irradiate the measurement target object 600 with an electromagnetic wave having a preset frequency (step S101). In the process of step S101, the non-contact gas measuring device 100 only needs to irradiate the electromagnetic wave toward the target object 600, so that the non-contact gas measuring device 100 does not need to be in close contact with the target object 600 such as skin. As shown in FIG. 1, gas measurement is performed with a distance between the non-contact gas measurement device 100 and the object 600.
 そして、対象物600に対して垂直に照射された電磁波は、計測対象ガス601を通過して対象物600に照射され、その反射波がレンズ103に集光されて受発信器102に戻る。続いて、制御部110は、受信発振部101が受信した反射波の強度に応じた電流または電圧の値を取得する(ステップS102)。 Then, the electromagnetic wave irradiated perpendicularly to the object 600 passes through the measurement target gas 601 and is irradiated to the object 600, and the reflected wave is condensed on the lens 103 and returns to the transmitter / receiver 102. Subsequently, the control unit 110 acquires a current or voltage value corresponding to the intensity of the reflected wave received by the reception oscillation unit 101 (step S102).
 これにより、上述のように非接触ガス計測装置100を対象物600に密着させずにガス計測することができるので、計測時に患者の皮膚表面への影響を低減することができる。また、皮膚などへの影響を考慮しなくてよいので、計測箇所が制限されることがなくなり、容易に正確な計測結果を得ることができる。 Thereby, since the gas measurement can be performed without bringing the non-contact gas measurement device 100 into close contact with the object 600 as described above, the influence on the skin surface of the patient at the time of measurement can be reduced. Further, since it is not necessary to consider the influence on the skin or the like, the measurement location is not limited, and an accurate measurement result can be obtained easily.
 計測対象ガス601が一意に決まっている場合には、事前に値を定量計測することにより、図2における反射波の強さを計測対象ガス601の濃度と置換することが可能である。この場合、ステップS102の処理にて測定した電流値または電圧値を用いて、計測対象ガス601の濃度を算出することができる。また、過去に計測した電流または電圧の結果と比較し、計測対象ガス601の変化を換算することも可能である。 When the measurement target gas 601 is uniquely determined, the intensity of the reflected wave in FIG. 2 can be replaced with the concentration of the measurement target gas 601 by quantitatively measuring the value in advance. In this case, the concentration of the measurement target gas 601 can be calculated using the current value or the voltage value measured in the process of step S102. Further, it is possible to convert the change in the measurement target gas 601 by comparing with the result of the current or voltage measured in the past.
 〈非接触ガス計測システムの構成例〉
 図4は、図1の非接触ガス計測装置100を用いた非接触ガス計測システム500における構成の一例を示す説明図である。
<Configuration example of non-contact gas measurement system>
FIG. 4 is an explanatory diagram showing an example of a configuration in a non-contact gas measurement system 500 using the non-contact gas measurement device 100 of FIG.
 非接触ガス計測システム500は、図4に示すように非接触ガス計測装置100、情報補正部200、距離測定部300、システム制御部400、解析部410、入出力部420、およびメモリ430を有する。 As shown in FIG. 4, the non-contact gas measurement system 500 includes a non-contact gas measurement device 100, an information correction unit 200, a distance measurement unit 300, a system control unit 400, an analysis unit 410, an input / output unit 420, and a memory 430. .
 これら非接触ガス計測装置100、情報補正部200、距離測定部300、システム制御部400、解析部410、入出力部420、およびメモリ430は、システムバス401によって相互に接続されている。なお、非接触ガス計測装置100の構成および動作については、図1と同様であるので説明は省略する。 The non-contact gas measurement device 100, the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, the input / output unit 420, and the memory 430 are connected to each other by a system bus 401. The configuration and operation of the non-contact gas measuring device 100 are the same as those in FIG.
 情報補正部200は、環境による計測の誤差を減少させる補正波を取得する。この補正波は、電磁波である。例えば、計測対象ガスとして皮膚から蒸散された水蒸気を計測する場合、使用者が存在する環境により空気中の水蒸気量が異なるために計測値に影響を及ぼす恐れがある。このため、情報補正部200が取得する補正波を用いて、環境による水蒸気の影響を除く。 The information correction unit 200 acquires a correction wave that reduces measurement errors due to the environment. This correction wave is an electromagnetic wave. For example, when water vapor evaporated from the skin is measured as the measurement target gas, the measurement value may be affected because the amount of water vapor in the air varies depending on the environment in which the user exists. For this reason, the influence of water vapor due to the environment is removed using the correction wave acquired by the information correction unit 200.
 距離測定部300は、該距離測定部300から対象物600までの距離を測定する。システム制御部400は、各種データを取得し、非接触ガス計測システム500における制御を司る。特に、システム制御部400は、計測対象ガス601を計測する際に後述する図10に示す制御情報管理テーブル800を参照して非接触ガス計測装置100を制御する。 The distance measuring unit 300 measures the distance from the distance measuring unit 300 to the object 600. The system control unit 400 acquires various data and controls the non-contact gas measurement system 500. In particular, the system control unit 400 controls the non-contact gas measurement device 100 with reference to a control information management table 800 shown in FIG. 10 described later when measuring the measurement target gas 601.
 解析部410は、検出した電磁波の計測値を解析する。入出力部420は、使用者とのインターフェースであり、後述する図5に示す入力部421および出力部422からなる。入力部421は、例えばボタンなどであり、出力部422は、例えば表示部である。 The analysis unit 410 analyzes the measured value of the detected electromagnetic wave. The input / output unit 420 is an interface with a user, and includes an input unit 421 and an output unit 422 shown in FIG. The input unit 421 is, for example, a button, and the output unit 422 is, for example, a display unit.
 メモリ430は、例えばフラッシュメモリなどに例示される不揮発性半導体メモリなどからなり、受信したデータや解析結果などを格納する。特に、後述する図10の制御情報管理テーブル800および図11の計測結果テーブル900などを格納する。 The memory 430 is composed of, for example, a non-volatile semiconductor memory exemplified by a flash memory, and stores received data, analysis results, and the like. In particular, a control information management table 800 shown in FIG. 10 and a measurement result table 900 shown in FIG. 11 are stored.
 〈非接触ガス計測システムの概観例〉
 図5は、図4の非接触ガス計測システム500の一例を示す概観斜視図である。
<Overview of non-contact gas measurement system>
FIG. 5 is a schematic perspective view showing an example of the non-contact gas measurement system 500 of FIG.
 非接触ガス計測システム500は、図5に示すように例えば直方体からなるケース501に収納されており、該ケース501の主面には、入力部421および出力部422がそれぞれ設けられている。図5の例では、入力部421は、ボタンである。 As shown in FIG. 5, the non-contact gas measurement system 500 is accommodated in a case 501 made of, for example, a rectangular parallelepiped, and an input unit 421 and an output unit 422 are provided on the main surface of the case 501. In the example of FIG. 5, the input unit 421 is a button.
 使用者は、この入力部421から計測開始指示や計測対象ガスの選択などの情報を入力する。入力部421は、ボタンに限定されることはなく、例えばタッチパネルやキーボードなどであってもよい。 The user inputs information such as a measurement start instruction and measurement target gas selection from the input unit 421. The input unit 421 is not limited to a button, and may be a touch panel or a keyboard, for example.
 出力部422は、図5の例では、液晶ディスプレイである。この出力部422に計測した結果などが表示される。出力部422についても液晶ディスプレイに限定されることはなく、例えばLED(Light Emitting Diode)やブザーなどであってもよい。 The output unit 422 is a liquid crystal display in the example of FIG. The output unit 422 displays the measurement result and the like. The output unit 422 is not limited to a liquid crystal display, and may be, for example, an LED (Light Emitting Diode) or a buzzer.
 使用者は、入力部421であるボタンを押下する。これによって、ガスの計測が開始され、受信発振部101から電磁波が出射される。他にも、複数の入力部421を設けることによって、計測対象ガス601の種類を使用者に選択させることもできる。 The user presses the button that is the input unit 421. As a result, gas measurement is started, and an electromagnetic wave is emitted from the reception oscillation unit 101. In addition, by providing a plurality of input units 421, the user can select the type of the measurement target gas 601.
 また、計測対象ガス601の計測結果は、出力部422に表示される。これによって、使用者が計測結果を知ることができる。出力部422にLEDを用いることによって、例えば緑色の発光が計測終了、赤の発光が計測エラーなどの情報を提示することができる。 Also, the measurement result of the measurement target gas 601 is displayed on the output unit 422. Thereby, the user can know the measurement result. By using an LED for the output unit 422, for example, information such as the end of measurement of green light emission and the measurement error of red light emission can be presented.
 また、ケース501の側面503には、出射口504が形成されている。出射口504は、非接触ガス計測装置100が有する受信発振部101が発振する電磁波を出射する。また、その他の非接触ガス計測システム500を構成する情報補正部200、距離測定部300、システム制御部400、解析部410、およびメモリ430については、ケース501に収納されている。 Further, an exit 504 is formed on the side surface 503 of the case 501. The emission port 504 emits an electromagnetic wave oscillated by the reception oscillation unit 101 included in the non-contact gas measurement device 100. Further, the information correction unit 200, the distance measurement unit 300, the system control unit 400, the analysis unit 410, and the memory 430 constituting the other non-contact gas measurement system 500 are housed in the case 501.
 解析部410は、メモリ430に蓄積された過去のデータを参照して、ある時刻の計測値だけではなく、過去の履歴を含んだ時系列のデータとして使用者の皮膚の状態変化を解析する。 The analysis unit 410 refers to the past data stored in the memory 430 and analyzes the change in the state of the user's skin as time-series data including not only the measurement value at a certain time but also the past history.
 ここで、非接触ガス計測システム500を複数の使用者によって使用する際には、例えばメモリ430に各々の使用者を特定する番号などの情報を付加して、複数人の計測データをそれぞれ識別できるように保持してもよい。 Here, when the non-contact gas measurement system 500 is used by a plurality of users, for example, information such as a number specifying each user can be added to the memory 430 to identify measurement data of a plurality of users. You may hold it like this.
 〈非接触ガス計測システムの使用例〉
 図6は、図5の非接触ガス計測システム500を使用する際の一例を示す説明図である。
<Usage example of non-contact gas measurement system>
FIG. 6 is an explanatory diagram showing an example when the non-contact gas measurement system 500 of FIG. 5 is used.
 非接触ガス計測システム500を用いて使用者の皮膚を測定する場合には、図6に示すように使用者は図5のケース501の出射口504を皮膚に向けながら入力部421を指などによって押下する。 When measuring the user's skin using the non-contact gas measurement system 500, as shown in FIG. 6, the user directs the input unit 421 with a finger or the like while pointing the exit 504 of the case 501 in FIG. Press.
 〈情報補正部の構成例〉
 図7は、図4の非接触ガス計測システム500が有する受信発振部101および情報補正部200における構成の一例を示す説明図である。
<Configuration example of information correction unit>
FIG. 7 is an explanatory diagram illustrating an example of a configuration of the reception oscillation unit 101 and the information correction unit 200 included in the non-contact gas measurement system 500 of FIG.
 情報補正部200は、受信発振部101が計測対象ガス601以外による影響を除去する補正波を取得するためのものである。この情報補正部200は、例えばミラーによって構成されている。 The information correction unit 200 is for the reception oscillation unit 101 to acquire a correction wave that eliminates the influence other than the measurement target gas 601. The information correction unit 200 is configured by a mirror, for example.
 なお、情報補正部200は、ミラーに限定されるものではなく、電磁波を反射させる反射物や光学素子などであればよい。 In addition, the information correction | amendment part 200 is not limited to a mirror, What is necessary is just a reflector, an optical element, etc. which reflect electromagnetic waves.
 情報補正部200は、ケース501に設けられた出射口504の近傍に設けられており、受信発振部101における電磁波の出射面と対向するように設けられている。この場合、受信発振部101から出射された一部の電磁波は、情報補正部200の表面にあたり反射される。受信発振部101は、情報補正部200の反射波を補正波として取得する。 The information correction unit 200 is provided in the vicinity of the emission port 504 provided in the case 501, and is provided so as to face the emission surface of the electromagnetic wave in the reception oscillation unit 101. In this case, some of the electromagnetic waves emitted from the reception oscillation unit 101 are reflected by the surface of the information correction unit 200. The reception oscillation unit 101 acquires the reflected wave from the information correction unit 200 as a correction wave.
 この補正波の取得の際には、非接触ガス計測システム500の計測可能な距離よりも対象物600が十分に離れていていることが前提となる。すなわち計測対象ガスを計測していない状況が前提となる。 When acquiring this correction wave, it is assumed that the object 600 is sufficiently far away from the measurable distance of the non-contact gas measurement system 500. That is, it is assumed that the measurement target gas is not measured.
 対象物600が十分に離れていているか否かは、例えば図4のシステム制御部400が判定する。図4の距離測定部300は、補正波の取得の際に対象物600までの距離を測定する。その測定結果は、図4のシステム制御部400に出力される。 Whether or not the object 600 is sufficiently separated is determined by, for example, the system control unit 400 of FIG. The distance measuring unit 300 in FIG. 4 measures the distance to the object 600 when acquiring the correction wave. The measurement result is output to the system control unit 400 in FIG.
 システム制御部400は、距離測定部300が測定した距離が予め設定された第1の測定判定距離よりも長い場合に、対象物600が十分に離れていていると判定する。また、第1の測定判定距離は、例えばメモリ430に格納される。 The system control unit 400 determines that the object 600 is sufficiently separated when the distance measured by the distance measurement unit 300 is longer than a preset first measurement determination distance. Further, the first measurement determination distance is stored in the memory 430, for example.
 補正波を取得した後、受信発振部101が電磁波を出射する。電磁波は、計測対象ガス601を通過して対象物600にあたり、その反射波を計測する。このとき、受信発振部101と対象物600との距離が計測可能な距離内であり、計測対象ガス601を計測可能である状況が前提となる。 After obtaining the correction wave, the reception oscillation unit 101 emits an electromagnetic wave. The electromagnetic wave passes through the measurement target gas 601 and hits the target object 600, and the reflected wave is measured. At this time, it is assumed that the distance between the reception oscillation unit 101 and the object 600 is within a measurable distance and the measurement target gas 601 can be measured.
 ここでも、システム制御部400は、距離測定部300が測定した距離結果から計測可能な距離内であるか否かを判定する。システム制御部400は、距離測定部300が測定した距離が予め設定された第2の測定判定距離よりも短い場合に、対象物600が十分に近づいていると判定する。第2の測定判定距離は、例えばメモリ430に格納される。 Also here, the system control unit 400 determines whether or not the distance is measurable from the distance result measured by the distance measurement unit 300. The system control unit 400 determines that the object 600 is sufficiently approached when the distance measured by the distance measurement unit 300 is shorter than the preset second measurement determination distance. The second measurement determination distance is stored in the memory 430, for example.
 なお、計測対象ガス601の測定波には、補正波も含まれている。これは、計測対象ガス601を測定する際に情報補正部200に反射する反射波が含まれるためである。しかし、計測対象ガス601の測定波に補正波が含まれていても、計測対象ガス601を計測する前に取得した補正波を用いて補正することにより、計測対象ガス601を高精度に計測することができる。 The measurement wave of the measurement target gas 601 includes a correction wave. This is because a reflected wave reflected on the information correction unit 200 when the measurement target gas 601 is measured is included. However, even if a correction wave is included in the measurement wave of the measurement target gas 601, the measurement target gas 601 is measured with high accuracy by performing correction using the correction wave acquired before the measurement target gas 601 is measured. be able to.
 受信発振部101が出射する電磁波は、図1に示したようにレンズ103を用いて平行光とされるが、平行光とはせずに発散光としてもよい。その場合、レンズ103は、不要となる。 The electromagnetic wave emitted from the reception oscillating unit 101 is converted into parallel light using the lens 103 as shown in FIG. 1, but it may be divergent light without being converted into parallel light. In that case, the lens 103 becomes unnecessary.
 平行光の場合は、計測時の計測位置による誤差の影響を抑えることができる。発散光の場合、計測可能距離が短くなるため、計測対象ガス601の情報を含まない補正波を取得しやすくなる。 In the case of parallel light, the influence of errors due to the measurement position during measurement can be suppressed. In the case of diverging light, since the measurable distance is shortened, a correction wave that does not include information on the measurement target gas 601 can be easily obtained.
 〈情報補正部の他の構成例〉
 図8は、図4の非接触ガス計測システム500が有する受信発振部101および情報補正部200における他の構成例を示す説明図である。図9は、図8に続く説明図である。
<Other configuration examples of the information correction unit>
FIG. 8 is an explanatory diagram illustrating another configuration example of the reception oscillation unit 101 and the information correction unit 200 included in the non-contact gas measurement system 500 of FIG. FIG. 9 is an explanatory diagram following FIG.
 図8に示す情報補正部200は、ミラー201およびモータ202を有する。図7の情報補正部200は、ミラーのみであり、該ミラーが固定された構成であったが、図8の情報補正部200は、ミラー201およびモータ202から構成されている。 8 has a mirror 201 and a motor 202. The information correction unit 200 shown in FIG. The information correction unit 200 in FIG. 7 is only a mirror and the mirror is fixed. However, the information correction unit 200 in FIG. 8 includes a mirror 201 and a motor 202.
 ミラー201は、図5のケース501に設けられた出射口504の近傍に設けられている。このミラー201は、図8において、ミラー201の上方の2つのコーナ部を回転軸として回転可能に取り付けられている。 The mirror 201 is provided in the vicinity of the emission port 504 provided in the case 501 of FIG. In FIG. 8, the mirror 201 is attached so as to be rotatable about two corners above the mirror 201 as a rotation axis.
 モータ202は、例えば図4のシステム制御部400から出力されるモード信号に基づいてミラー201を回転させる。システム制御部400が出力するモード信号としては、例えば情報補正モード信号および計測モード信号がある。情報補正モード信号は、補正波を取得する際に出力される信号であり、計測モード信号は、計測対象ガス601を計測する際に出力される信号である。 The motor 202 rotates the mirror 201 based on a mode signal output from, for example, the system control unit 400 of FIG. Examples of the mode signal output by the system control unit 400 include an information correction mode signal and a measurement mode signal. The information correction mode signal is a signal output when acquiring a correction wave, and the measurement mode signal is a signal output when measuring the measurement target gas 601.
 情報補正モード信号が出力されると、モータ202は、図8に示すようにミラー201を回転させて該ミラー201が出射口504を遮蔽する位置まで移動させる。これにより、受信発振部101から出射された電磁波は、ミラー201によって反射され、該受信発振部101に戻ることによって補正波を取得できる。 When the information correction mode signal is output, the motor 202 rotates the mirror 201 as shown in FIG. 8 and moves the mirror 201 to a position where the output port 504 is shielded. As a result, the electromagnetic wave emitted from the reception oscillation unit 101 is reflected by the mirror 201, and a correction wave can be acquired by returning to the reception oscillation unit 101.
 また、計測モード信号が出力されると、モータ202は、図9に示すようにミラー201を90°程度回転させて、該ミラー201が出射口504を遮らない位置まで移動させる。すなわち、受信発振部101と対象物600との間からミラー201が除かれた状態になる。これにより、受信発振部101から出射された電磁波は、計測対象ガス601を通過して対象物600にあたり反射されるので、受信発振部101は、計測対象ガス601の計測波を取得することができる。 When the measurement mode signal is output, the motor 202 rotates the mirror 201 by about 90 ° as shown in FIG. 9 and moves the mirror 201 to a position where the mirror 201 does not block the emission port 504. That is, the mirror 201 is removed from between the reception oscillation unit 101 and the object 600. As a result, the electromagnetic wave emitted from the reception oscillation unit 101 passes through the measurement target gas 601 and is reflected by the target 600, so that the reception oscillation unit 101 can acquire the measurement wave of the measurement target gas 601. .
 〈制御情報管理テーブルの構成例〉
 続いて、制御情報管理テーブル800について説明する。
<Configuration example of control information management table>
Next, the control information management table 800 will be described.
 図10は、図4の非接触ガス計測システム500が有するシステム制御部400が参照する制御情報管理テーブル800における構成の一例を示した説明図である。 FIG. 10 is an explanatory diagram showing an example of a configuration in the control information management table 800 referred to by the system control unit 400 included in the non-contact gas measurement system 500 of FIG.
 制御情報管理テーブル800には、計測制御情報を格納したテーブルである。計測制御情報は、非接触ガス計測装置100が計測対象ガス601を計測する際に発振する電磁波の周波数や、補正波の取得に関する情報などの計測対象ガス601を計測する情報である。 The control information management table 800 is a table storing measurement control information. The measurement control information is information for measuring the measurement target gas 601 such as the frequency of an electromagnetic wave oscillated when the non-contact gas measurement apparatus 100 measures the measurement target gas 601 and information regarding acquisition of a correction wave.
 制御情報管理テーブル800は、図10に示すように、左から右にかけて、計測対象ガス名801、周波数802、および情報補正制御803の項目を有する。計測対象ガス名801は、計測対象ガス601を識別する情報である。周波数802は、計測対象ガス601を計測する周波数を示す。情報補正制御803は、計測時に情報補正部200を制御する必要があるか否かを示す情報である。 As shown in FIG. 10, the control information management table 800 includes items of a measurement target gas name 801, a frequency 802, and an information correction control 803 from left to right. The measurement target gas name 801 is information for identifying the measurement target gas 601. A frequency 802 indicates a frequency for measuring the measurement target gas 601. The information correction control 803 is information indicating whether or not the information correction unit 200 needs to be controlled at the time of measurement.
 ただし、制御情報管理テーブル800の項目は、図10に限定されるものではなく、非接触ガス計測装置100や情報補正部200を制御する情報が格納されていればよい。例えば、非接触ガス計測装置100を制御する電圧値や電流値などであってもよい。 However, the items in the control information management table 800 are not limited to those in FIG. 10, and information that controls the non-contact gas measuring device 100 and the information correction unit 200 may be stored. For example, a voltage value or a current value for controlling the non-contact gas measuring device 100 may be used.
 制御情報管理テーブル800に格納される情報は、予めメモリ430などに格納してもよいし、あるいはネットワーク経由などによって取得してもよい。また、使用者などが制御情報管理テーブル800に格納される情報を編集してもよい。 The information stored in the control information management table 800 may be stored in advance in the memory 430 or may be acquired via a network or the like. In addition, information stored in the control information management table 800 may be edited by a user or the like.
 なお、非接触ガス計測装置100および情報補正部200の制御が不要な場合、制御情報管理テーブル800は不要である。計測制御情報は、データ構造に依存せず、どのようなデータ構造であってもよい。図10の制御情報管理テーブル800以外にも、例えばリストあるいはデータベースなどから適切に選択したデータ構造体などによって該計測制御情報を格納することができる。 If control of the non-contact gas measuring device 100 and the information correction unit 200 is not required, the control information management table 800 is not required. The measurement control information does not depend on the data structure and may have any data structure. In addition to the control information management table 800 of FIG. 10, the measurement control information can be stored by a data structure appropriately selected from a list or a database, for example.
 この制御情報管理テーブル800は、上述したように例えばメモリ430ではなく、例えばシステム制御部400が有する図示しないメモリなどに格納するようにしてもよい。その他に、例えばネットワークを経由して接続された外部の記憶デバイスなどに格納するようにしてもよい。 As described above, the control information management table 800 may be stored in, for example, a memory (not shown) included in the system control unit 400 instead of the memory 430, for example. In addition, for example, it may be stored in an external storage device connected via a network.
 〈計測結果テーブルの構成例〉
 図11は、図4の非接触ガス計測システム500が有するメモリ430に格納される計測結果テーブル900の一例を示す説明図である。
<Configuration example of measurement result table>
FIG. 11 is an explanatory diagram showing an example of a measurement result table 900 stored in the memory 430 included in the non-contact gas measurement system 500 of FIG.
 計測結果テーブル900は、非接触ガス計測システム500が計測対象ガス601を計測および計測結果を用いて解析した結果が格納される。 The measurement result table 900 stores the result of the non-contact gas measurement system 500 measuring the measurement target gas 601 and analyzing it using the measurement result.
 計測結果テーブル900は、図11に示すように左から右にかけて、日時901、計測対象ガス名902、周波数903、対象物有無904、および値905の項目を有している。 The measurement result table 900 has items of date and time 901, measurement target gas name 902, frequency 903, object presence / absence 904, and value 905 from left to right as shown in FIG.
 日時901は、計測または解析した日時を示す。計測対象ガス名902は、計測対象ガス601を識別する情報を示す。周波数903は、計測対象ガス601の計測に用いた周波数を示す。対象物有無904は、計測時に計測対象ガス601を計測したか否かを示す。値905は、計測または解析した結果の値を示す。 * Date 901 indicates the date of measurement or analysis. The measurement target gas name 902 indicates information for identifying the measurement target gas 601. A frequency 903 indicates a frequency used for measurement of the measurement target gas 601. The presence / absence of object 904 indicates whether or not the measurement target gas 601 was measured at the time of measurement. A value 905 indicates a value obtained as a result of measurement or analysis.
 ただし、計測結果テーブル900の項目は、図11に限定されるものではなく、非接触ガス計測システム500が取得、あるいは生成した他の情報を格納するようにしてもよい。 However, the items in the measurement result table 900 are not limited to those in FIG. 11, and other information acquired or generated by the non-contact gas measurement system 500 may be stored.
 〈非接触ガス計測システムの動作例〉
 続いて、非接触ガス計測システム500による計測動作について説明する。
<Operation example of non-contact gas measurement system>
Subsequently, a measurement operation by the non-contact gas measurement system 500 will be described.
 図12は、図4の非接触ガス計測システム500による計測対象ガス601の計測処理の一例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of measurement processing of the measurement target gas 601 by the non-contact gas measurement system 500 of FIG.
 図12のフローチャートにおいて、特に指定がない場合には、図4のシステム制御部400が主体となって制御するものとする。 In the flowchart of FIG. 12, unless otherwise specified, the system control unit 400 of FIG.
 まず、使用者が入出力部420を操作することによって入力情報を取得する(ステップS201)。入力情報は、例えば図6に示したように、使用者が入力部421のボタンを押下したことによる計測開始指示のことである。使用者が入力した入力情報は、システム制御部400が受け取る。 First, the user acquires input information by operating the input / output unit 420 (step S201). The input information is, for example, a measurement start instruction when the user presses a button on the input unit 421 as shown in FIG. The system control unit 400 receives input information input by the user.
 システム制御部400が入力情報を受け付けると、図4の距離測定部300による距離計測が行われ、計測対象ガス601が計測範囲内か否かの判定を開始する(ステップS202)。 When the system control unit 400 receives the input information, the distance measurement unit 300 in FIG. 4 performs distance measurement, and starts determining whether the measurement target gas 601 is within the measurement range (step S202).
 具体的には、まずシステム制御部400が距離測定部300を制御して、受信発振部101と対象物600との距離を計測する。システム制御部400は、距離測定部300が計測した距離とメモリ430に格納されている第1の測定判定距離とを比較し、計測対象ガス601が計測範囲内か範囲外かの判定を行う。 Specifically, first, the system control unit 400 controls the distance measurement unit 300 to measure the distance between the reception oscillation unit 101 and the object 600. The system control unit 400 compares the distance measured by the distance measurement unit 300 with the first measurement determination distance stored in the memory 430, and determines whether the measurement target gas 601 is within or outside the measurement range.
 例えば非接触ガス計測システム500の計測可能距離が約10cmであるとする。この場合、第1の測定判定距離は、約10cmである。測定結果において、受信発振部101と対象物600との距離が約5cmの場合には、第1の測定判定距離の約10cmよりも短いので計測範囲内と判定し、計測した距離が15cmなら10cmよりも長いため計測範囲外と判定する。 For example, assume that the measurable distance of the non-contact gas measurement system 500 is about 10 cm. In this case, the first measurement determination distance is about 10 cm. In the measurement result, when the distance between the reception oscillation unit 101 and the object 600 is about 5 cm, it is shorter than the first measurement determination distance of about 10 cm, so it is determined that it is within the measurement range, and if the measured distance is 15 cm, it is 10 cm. It is determined that it is out of the measurement range because it is longer.
 この判定結果は、図11の計測結果テーブル900における対象物有無904に格納される。図11に示すように、例えば判定結果が測定範囲内なら「有」となり、判定結果が測定範囲外なら「無」と示される。 The determination result is stored in the object presence / absence 904 in the measurement result table 900 of FIG. As shown in FIG. 11, for example, “Yes” is indicated if the determination result is within the measurement range, and “No” is indicated if the determination result is outside the measurement range.
 続いて、制御情報管理テーブル800から計測制御情報を取得する(ステップS203)。具体的には、システム制御部400が、メモリ430に格納された図10の制御情報管理テーブル800から計測対象ガス601の計測に必要な制御情報を取得する。 Subsequently, measurement control information is acquired from the control information management table 800 (step S203). Specifically, the system control unit 400 acquires control information necessary for measuring the measurement target gas 601 from the control information management table 800 of FIG. 10 stored in the memory 430.
 図10を例にすると、計測対象ガス601として経皮水分蒸散量を測定する場合には、計測対象ガス名801の経皮水分蒸散量の行から周波数802の0.558THz、0.600THzおよび情報補正制御803の「有」の情報を取得する。 Taking FIG. 10 as an example, when measuring the transdermal moisture transpiration amount as the measurement target gas 601, the frequency 802 of 0.558 THz, 0.600 THz and information from the row of the transdermal moisture transpiration amount of the measurement target gas name 801 Information of “present” of the correction control 803 is acquired.
 ここでは、説明の便宜上、制御情報管理テーブル800から情報を取得しているが、入力部421を経由して使用者が直接入力した情報に基づいて制御してもよい。 Here, for convenience of explanation, information is acquired from the control information management table 800, but control may be performed based on information directly input by the user via the input unit 421.
 システム制御部400は、ステップS203の処理にて取得した情報に基づいて、情報補正部200を制御するか否かを判定する(ステップS204)。例えば図10において、情報補正制御803が「有」(YES)の場合は、ステップS205の処理に進み、情報補正制御803が「無」(NO)の場合は、ステップS206の処理に進む。 The system control unit 400 determines whether to control the information correction unit 200 based on the information acquired in the process of step S203 (step S204). For example, in FIG. 10, if the information correction control 803 is “Yes” (YES), the process proceeds to step S205. If the information correction control 803 is “No” (NO), the process proceeds to step S206.
 情報補正制御803の有無は、非接触ガス計測システム500の構成および計測対象ガス601による。例えば図7に示した情報補正部200の場合には、情報補正の制御が不要となるため常に「無」となる。一方、図8に示した情報補正部200の場合、補正波が必要な場合は「有」となり、補正波が不要な場合は「無」となる。 The presence / absence of the information correction control 803 depends on the configuration of the non-contact gas measurement system 500 and the measurement target gas 601. For example, in the case of the information correction unit 200 shown in FIG. On the other hand, in the case of the information correction unit 200 shown in FIG. 8, “Yes” is set when a correction wave is required, and “No” is set when no correction wave is required.
 システム制御部400は、情報補正部200を制御する(ステップS205)。このステップS205の処理は、情報補正部200の構成によるが、例えば図8に示す情報補正部200の場合、システム制御部400は、情報補正部200のモータ202を制御することにより、ミラー201を回転させて該ミラー201が出射口504を遮蔽する位置まで移動させる。 The system control unit 400 controls the information correction unit 200 (step S205). The processing in step S205 depends on the configuration of the information correction unit 200. For example, in the case of the information correction unit 200 shown in FIG. 8, the system control unit 400 controls the motor 202 of the information correction unit 200 to move the mirror 201. The mirror 201 is rotated and moved to a position where the exit 201 is shielded.
 システム制御部400は、ステップS203の処理にて取得した制御情報に基づいて、非接触ガス計測装置100が照射する電磁波の周波数を制御するか否かを判定する(ステップS206)。 The system control unit 400 determines whether or not to control the frequency of the electromagnetic wave irradiated by the non-contact gas measuring device 100 based on the control information acquired in the process of step S203 (step S206).
 図10の制御情報管理テーブル800を例にすると、周波数802と非接触ガス計測装置100に設定されている情報とが異なる場合には、制御する必要があるためステップS207の処理に進む。 Taking the control information management table 800 of FIG. 10 as an example, if the frequency 802 and the information set in the non-contact gas measuring device 100 are different, it is necessary to control, and the process proceeds to step S207.
 周波数802と非接触ガス計測装置100に設定されている情報とが同じ場合には、制御が不要であるため、ステップS208の処理に進む。具体的には、周波数802から0.558THzを取得した場合、非接触ガス計測装置100が0.558THzを発振できる状態ならそのままとし、異なる場合は、ステップS207の処理にて非接触ガス計測装置100が0.558THzを発振できるように制御する。なお、非接触ガス計測装置100の周波数が固定されている場合は、この処理は不要となる。 If the frequency 802 and the information set in the non-contact gas measuring device 100 are the same, no control is required, and the process proceeds to step S208. Specifically, when 0.558 THz is acquired from the frequency 802, the non-contact gas measuring device 100 is left as it is if the non-contact gas measuring device 100 can oscillate 0.558 THz. Is controlled to oscillate 0.558 THz. If the frequency of the non-contact gas measuring device 100 is fixed, this process is not necessary.
 そして、ステップS206の処理における周波数制御の情報に基づいて、非接触ガス計測装置100を制御して、電磁波を特定の周波数とする(ステップS207)。例えば、受発信器102の電圧または電流を変化させることによって電磁波の周波数を変更する。 Then, based on the frequency control information in the process of step S206, the non-contact gas measuring device 100 is controlled to set the electromagnetic wave to a specific frequency (step S207). For example, the frequency of the electromagnetic wave is changed by changing the voltage or current of the transmitter / receiver 102.
 これにより、計測対象ガス601の計測が開始され、受信発振部101が電流または電圧の値を取得する(ステップS208)。計測した値は、計測結果テーブル900の値905に格納される。 Thereby, measurement of the measurement target gas 601 is started, and the reception oscillation unit 101 acquires a current or voltage value (step S208). The measured value is stored in the value 905 of the measurement result table 900.
 ステップS203の処理にて取得した制御情報を参照して、計測する周波数をすべて計測したか否かを判定する(ステップS209)。計測する周波数がある場合には、ステップS206の処理に戻る。すべての周波数の計測が完了した場合には、計測が終了となる。 Referring to the control information acquired in step S203, it is determined whether all the frequencies to be measured have been measured (step S209). If there is a frequency to be measured, the process returns to step S206. When measurement of all frequencies is completed, the measurement ends.
 具体的には、図10を例にすると、計測対象ガス601として経皮水分蒸散量を測定したい場合には、周波数802の0.558THzおよび0.600THzの2つの周波数にて計測を完了しているか否かを判断し、計測が終わるまで繰り返す。 Specifically, taking FIG. 10 as an example, when measuring the transdermal moisture transpiration amount as the measurement target gas 601, the measurement is completed at two frequencies of frequency 802 of 0.558 THz and 0.600 THz. It is judged whether or not the measurement is completed.
 計測が終了すると、解析部410は、計測結果テーブル900の値905を用いて解析を行う(ステップS210)。 When the measurement is completed, the analysis unit 410 performs analysis using the value 905 of the measurement result table 900 (step S210).
 具体的には、計測終了を受けたシステム制御部400は、解析部410に計測したデータの解析を指示して、該解析部410がメモリ430上の計測結果テーブル900を参照することにより解析を行う。 Specifically, the system control unit 400 that has received the measurement instructs the analysis unit 410 to analyze the measured data, and the analysis unit 410 refers to the measurement result table 900 on the memory 430 to perform the analysis. Do.
 例えば、経皮水分蒸散量を算出する場合は、次のような計算方法となる。 For example, when calculating the transdermal moisture transpiration, the following calculation method is used.
 経皮水分蒸散量を算出するためには、4パターンの電磁波にて解析を行う。1つ目は、水蒸気に感度が高い周波数、例えば、0.558THz程度の周波数を対象物600に照射した電磁波である。皮膚から反射された電磁波が戻るため、空気中の水蒸気、皮膚から蒸散された水蒸気、皮膚による吸収、および内部反射光の拡散の情報などを含んだ強度が検出される。 In order to calculate the amount of transdermal moisture transpiration, analysis is performed using four patterns of electromagnetic waves. The first is an electromagnetic wave obtained by irradiating the object 600 with a frequency sensitive to water vapor, for example, a frequency of about 0.558 THz. Since the electromagnetic wave reflected from the skin returns, intensity including information on water vapor in the air, water vapor evaporated from the skin, absorption by the skin, and diffusion of internally reflected light is detected.
 2つ目は、水蒸気による感度が高い周波数、例えば、0.558THz程度の周波数を情報補正部200に照射した電磁波である。ミラーにて反射された電磁波のみが戻るため、空気中の水蒸気の情報を含んだ強度が検出される。 The second is an electromagnetic wave obtained by irradiating the information correction unit 200 with a frequency with high sensitivity due to water vapor, for example, a frequency of about 0.558 THz. Since only the electromagnetic wave reflected by the mirror returns, the intensity including information on water vapor in the air is detected.
 3つ目は、水蒸気に感度が低い周波数、例えば、0.600THz程度の周波数を対象物600に照射した電磁波である。皮膚から反射された電磁波が戻るため、皮膚による吸収および内部反射光の拡散の情報を含んだ強度が検出される。 3rd is the electromagnetic wave which irradiated the target object 600 with the frequency with low sensitivity to water vapor | steam, for example, the frequency of about 0.600 THz. Since the electromagnetic wave reflected from the skin returns, intensity including information on absorption by the skin and diffusion of the internally reflected light is detected.
 4つ目は、水蒸気による感度が低い周波数、例えば、0.600THz程度の周波数を情報補正部200に照射した電磁波である。ミラーにて反射された電磁波のみが戻り、参照信号として用いることができる。 4th is the electromagnetic wave which irradiated the information correction | amendment part 200 to the frequency with a low sensitivity by water vapor | steam, for example, the frequency of about 0.600 THz. Only the electromagnetic wave reflected by the mirror returns and can be used as a reference signal.
 1つ目と2つ目の検出結果は、同じ空気中の水蒸気による減衰を含む。このため1つ目と2つ目の差分は、皮膚による吸収および内部反射光の拡散による減衰と、皮膚から蒸散された水蒸気による減衰となる。 The first and second detection results include attenuation due to water vapor in the same air. For this reason, the first and second differences are attenuation by absorption by the skin and diffusion of internally reflected light, and attenuation by water vapor evaporated from the skin.
 3つ目と4つ目の差分は、皮膚による吸収および内部反射光の拡散による減衰となる。そこで、1つ目と2つ目の差分から3つ目と4つ目の差分を引くことにより、皮膚から蒸散された水蒸気による減衰を検出することができる。 The difference between the third and fourth is attenuation due to absorption by the skin and diffusion of internally reflected light. Therefore, by subtracting the third and fourth differences from the first and second differences, it is possible to detect the attenuation due to the water vapor evaporated from the skin.
 続いて、システム制御部400は、ステップS210の処理にて解析した結果をメモリ430に格納する(ステップS211)。例えば、解析結果は、メモリ430が記憶する計測結果テーブル900に格納してもよいし、メモリ430の他の領域に格納するようにしてもよい。このステップS211の処理は、省略してステップS212の処理に進むようにしてもよい。 Subsequently, the system control unit 400 stores the analysis result in the process of step S210 in the memory 430 (step S211). For example, the analysis result may be stored in the measurement result table 900 stored in the memory 430 or may be stored in another area of the memory 430. The process of step S211 may be omitted and the process may proceed to step S212.
 そして、システム制御部400は、出力部422に解析結果を表示する。例えば、図5に示したように出力部422に使用者が解析結果を認識できるように表示を行う(ステップS212)。 The system control unit 400 displays the analysis result on the output unit 422. For example, as shown in FIG. 5, the output unit 422 displays so that the user can recognize the analysis result (step S212).
 ここで、非接触ガス計測システム500に不具合がある場合、システム制御部400は、それらの不具合を検知して出力部422にアラートを出力する。例えば出力部422が液晶ディスプレイの場合には、アラートの内容を表示する。また、出力部422がスピーカなどの場合には、音声やブザーなどの音によってアラートを伝える。出力部422が、LEDの場合には、光などによってアラートを知らせる。 Here, when there is a problem in the non-contact gas measurement system 500, the system control unit 400 detects these problems and outputs an alert to the output unit 422. For example, when the output unit 422 is a liquid crystal display, the contents of the alert are displayed. Further, when the output unit 422 is a speaker or the like, the alert is transmitted by sound such as voice or buzzer. When the output unit 422 is an LED, an alert is notified by light or the like.
 以上、共鳴トンネルダイオードなどを用いることによって、簡易な構成によって電磁波の照射および受信する受信発振部101を一体化することができ、非接触ガス計測装置100を小型化することができる。 As described above, by using a resonant tunneling diode or the like, it is possible to integrate the reception oscillating unit 101 that radiates and receives electromagnetic waves with a simple configuration, and the size of the non-contact gas measuring device 100 can be reduced.
 また、対象物600に電磁波照射して、その反射波の強弱から計測対象ガス601を計測するので、受信発振部101を対象物600から離して、すなわち皮膚表面と非接触にて計測することができる。 In addition, since the object 600 is irradiated with electromagnetic waves and the measurement target gas 601 is measured from the intensity of the reflected wave, the reception oscillation unit 101 can be measured away from the object 600, that is, without contact with the skin surface. it can.
 これにより、利用者の皮膚などに非接触ガス計測装置100を密着させることなく計測できるので、測定箇所が制限されることなく高精度な計測を行うことができる。また、利用者の患部への負担を軽減することができる。 Thereby, measurement can be performed without bringing the non-contact gas measurement device 100 into close contact with the user's skin, etc., and high-precision measurement can be performed without limiting the measurement location. In addition, the burden on the affected area of the user can be reduced.
 さらに、情報補正部200による補正波を用いて、計測対象ガスを計測することにより、非接触ガス計測システム500の計測精度を向上させることができる。 Furthermore, the measurement accuracy of the non-contact gas measurement system 500 can be improved by measuring the measurement target gas using the correction wave generated by the information correction unit 200.
 (実施の形態2)
 〈受信発振部および情報補正部の構成例〉
 本実施の形態2では、受信発振部および情報補正部における他の構成例について説明する。
(Embodiment 2)
<Configuration example of reception oscillation unit and information correction unit>
In the second embodiment, another configuration example in the reception oscillation unit and the information correction unit will be described.
 図13は、本実施の形態2による受信発振部101,101aおよび情報補正部200における構成の一例を示す説明図である。 FIG. 13 is an explanatory diagram illustrating an example of the configuration of the reception oscillation units 101 and 101a and the information correction unit 200 according to the second embodiment.
 前記実施の形態1の図7では、1つの受信発振部101によって測定波と補正波とをそれぞれ取得する構成であったが、図13の場合には、第1の受信発振部である受信発振部101に加えて、第2の受信発振部である受信発振部101aが新たに設けられた構成となっている。 In FIG. 7 of the first embodiment, the measurement wave and the correction wave are respectively acquired by one reception oscillation unit 101. However, in the case of FIG. 13, the reception oscillation which is the first reception oscillation unit. In addition to the unit 101, a reception oscillation unit 101a which is a second reception oscillation unit is newly provided.
 図13において、受信発振部101は、計測対象ガス601を計測する際に用いられ、受信発振部101aは、補正波を計測する際に用いられる。なお、その他の非接触ガス計測システム500における構成については、前記実施の形態1の図4と同様であるので説明は省略する。 In FIG. 13, the reception oscillation unit 101 is used when measuring the measurement target gas 601 and the reception oscillation unit 101a is used when measuring the correction wave. Since the configuration of the other non-contact gas measurement system 500 is the same as that of FIG. 4 of the first embodiment, description thereof is omitted.
 情報補正部200は、例えばミラーなどからなり、受信発振部101aにおける電磁波の出射面と対向するように設けられている。情報補正部200は、受信発振部101aが計測対象ガス601以外のガスによる影響を除去するための補正波を取得する。受信発振部101aは、情報補正部200に電磁波を照射し、その反射波を補正波として取得する。 The information correction unit 200 includes, for example, a mirror and is provided so as to face the emission surface of the electromagnetic wave in the reception oscillation unit 101a. The information correction unit 200 acquires a correction wave for the reception oscillation unit 101a to remove the influence of a gas other than the measurement target gas 601. The reception oscillation unit 101a irradiates the information correction unit 200 with an electromagnetic wave, and acquires the reflected wave as a correction wave.
 受信発振部101は、電磁波を計測対象の対象物600に照射して、該対象物600が照射した反射波を受信し、受信した反射波の強度に応じた電流または電圧の値を取得する。受信発振部101から出射された電磁波は、計測対象ガス601を通過して対象物600にあたり反射されて戻ることにより計測波を計測する。 The reception oscillation unit 101 irradiates the object 600 to be measured with the electromagnetic wave, receives the reflected wave irradiated by the object 600, and acquires a current or voltage value corresponding to the intensity of the received reflected wave. The electromagnetic wave emitted from the reception oscillation unit 101 passes through the measurement target gas 601, is reflected by the target object 600, and returns to measure the measurement wave.
 以上により、受信発振部101aを設けることにより、より正確に補正波を取得することができる。その結果、より高精度に計測対象ガス601を計測することができ、非接触ガス計測システム500の信頼性を向上させることができる。 As described above, the correction wave can be obtained more accurately by providing the reception oscillation unit 101a. As a result, the measurement target gas 601 can be measured with higher accuracy, and the reliability of the non-contact gas measurement system 500 can be improved.
 (実施の形態3)
 本実施の形態3では、非接触ガス計測システム500を携帯端末、例えばスマートフォンやタブレットなどに設けた構成について説明する。
(Embodiment 3)
In the third embodiment, a configuration in which the non-contact gas measurement system 500 is provided in a mobile terminal such as a smartphone or a tablet will be described.
 〈携帯端末の構成例〉
 図14は、本実施の形態3による携帯端末560における構成の一例を示す説明図である。
<Configuration example of mobile terminal>
FIG. 14 is an explanatory diagram showing an example of the configuration of the mobile terminal 560 according to the third embodiment.
 携帯端末560は、非接触ガス計測システム500、撮像部440、および通信部450から構成されている。非接触ガス計測システム500は、前記実施の形態1の図4の非接触ガス計測システム500と同様の構成からなる。 The mobile terminal 560 includes a non-contact gas measurement system 500, an imaging unit 440, and a communication unit 450. The non-contact gas measurement system 500 has the same configuration as the non-contact gas measurement system 500 of FIG. 4 of the first embodiment.
 撮像部440は、画像を取得するカメラである。撮像部440は、後述する測定位置を一致させる技術および計測特定の技術などに用いられる。通信部450は、例えばインターネット回線や電話通信回線などの通信回線と無線接続され、外部との通信を行う。 The imaging unit 440 is a camera that acquires an image. The imaging unit 440 is used for a technique for matching measurement positions, which will be described later, and a measurement specifying technique. The communication unit 450 is wirelessly connected to a communication line such as an Internet line or a telephone communication line, and performs communication with the outside.
 図14では、通信部450によって外部接続されたサーバ460と接続される例を示している。通信部450は、例えば非接触ガス計測装置100、距離測定部300、および撮像部440などが取得した情報をサーバ460に送受信する。 FIG. 14 shows an example in which the communication unit 450 is connected to an externally connected server 460. The communication unit 450 transmits and receives information acquired by the non-contact gas measurement device 100, the distance measurement unit 300, the imaging unit 440, and the like to the server 460, for example.
 撮像部440は、例えば可視光波長に対する感度を持つR(Red)G(Green)B(Blue)カメラ、赤外線に対する感度を持つ赤外光カメラ、または赤外線から可視光の波長に対する感度を持つRGBカメラなどがある。あるいは可視光から紫外線の波長、または赤外線から可視光を経て紫外線の波長に対する感度を持つRGBカメラなどであってもよい。 The imaging unit 440 is, for example, an R (Red) G (Green) B (Blue) camera having sensitivity to visible light wavelengths, an infrared light camera having sensitivity to infrared light, or an RGB camera having sensitivity to infrared to visible light wavelengths. and so on. Alternatively, it may be an RGB camera having sensitivity to the wavelength of ultraviolet light from visible light to ultraviolet light, or from infrared to visible light.
 なお、非接触ガス計測システム500が有する入出力部420は、携帯端末560が有するタッチパネルなどの入出力部を流用してもよい。 Note that the input / output unit 420 included in the non-contact gas measurement system 500 may use an input / output unit such as a touch panel included in the mobile terminal 560.
 図14では、スマートフォンなどの携帯端末560に非接触ガス計測システム500を設けた構成としたが、例えば非接触ガス計測システム500に携帯端末560の機能である撮像部440および通信部450を新たに追加する構成としてもよい。 In FIG. 14, the non-contact gas measurement system 500 is provided in the mobile terminal 560 such as a smartphone. However, for example, the imaging unit 440 and the communication unit 450 that are functions of the mobile terminal 560 are newly added to the non-contact gas measurement system 500. A configuration may be added.
 〈携帯端末の概観例〉
 図15は、図14の携帯端末560の概観の一例を示す説明図である。図15(a)は、携帯端末560の正面を示しており、図15(b)は、携帯端末560の背面を示している。ここでは、入出力部420が設けられている面を携帯端末560の正面とし、それに対向する面を背面とする。
<Example of mobile terminal overview>
FIG. 15 is an explanatory diagram showing an example of an overview of the mobile terminal 560 of FIG. FIG. 15A shows the front surface of the mobile terminal 560, and FIG. 15B shows the back surface of the mobile terminal 560. Here, the surface on which the input / output unit 420 is provided is the front surface of the mobile terminal 560, and the surface facing it is the back surface.
 図15の例では、撮像部440によって図15(a)に示す携帯端末560の正面側および図15(b)に示す携帯端末560の背面側のいずれの面からも画像を撮影することができる構成となっている。 In the example of FIG. 15, the imaging unit 440 can capture an image from either the front side of the mobile terminal 560 shown in FIG. 15A or the back side of the mobile terminal 560 shown in FIG. It has a configuration.
 同様に、図15の例では、受信発振部101においても、図15(a)に示す携帯端末560の正面側および図15(b)に示す背面側のいずれの面からも電磁波の照射および受信を行うことができる構成となっている。 Similarly, in the example of FIG. 15, the reception oscillating unit 101 also emits and receives electromagnetic waves from the front side of the mobile terminal 560 shown in FIG. 15A and the back side shown in FIG. It is the structure which can be performed.
 〈入出力部の表示例〉
 図16は、図15の携帯端末560が有する入出力部420による表示の一例を示す説明図である。
<Example of input / output display>
FIG. 16 is an explanatory diagram illustrating an example of display by the input / output unit 420 included in the mobile terminal 560 of FIG.
 この場合、入出力部420は、例えばタッチパネル式のディスプレイからなるものとする。この入出力部420には、図16(a)に示すように、例えば使用者が計測対象を選択するメニュー画面や、図16(b)に示すように、撮像部440にて撮像した画像や解析した結果などを表示する。 In this case, the input / output unit 420 is composed of, for example, a touch panel display. In the input / output unit 420, as shown in FIG. 16A, for example, a menu screen on which the user selects a measurement target, an image captured by the imaging unit 440 as shown in FIG. Display the analysis results.
 図16(a)に示すメニュー画面では、計測可能な計測対象ガス名を表示し、使用者が選択できるようにする。メニューボタンと前記実施の形態1の図10の制御情報管理テーブル800とを関連付けることにより、例えば図12のステップS201の処理における入力情報に使用者が選択した計測対象ガス601を簡単に付与することができる。 In the menu screen shown in FIG. 16 (a), the measurement target gas name is displayed so that the user can select it. By associating the menu button with the control information management table 800 of FIG. 10 of the first embodiment, for example, the measurement target gas 601 selected by the user can be easily given to the input information in the process of step S201 of FIG. Can do.
 また、計測結果として、図16(b)に示すように、例えば経皮水分蒸散量を時系列に表示したグラフ、撮像部440が取得した前回の測定位置を示す測定位置マーカなどを入出力部420に表示するようにしてもよい。 Also, as a measurement result, as shown in FIG. 16 (b), for example, a graph displaying transdermal moisture transpiration amount in time series, a measurement position marker indicating the previous measurement position acquired by the imaging unit 440, etc. You may make it display on 420. FIG.
 〈携帯端末の動作例〉
 図17は、図14の携帯端末560によるガス計測の動作における一例を示すフローチャートである。
<Operation example of mobile terminal>
FIG. 17 is a flowchart showing an example of the gas measurement operation by the mobile terminal 560 of FIG.
 まず、入力情報を取得する(ステップS301)。このステップS301の処理は、前記実施の形態1の図12におけるステップS201の処理と同じである。続いて、撮像部440が使用者の測定部位の撮影を行い、システム制御部400が撮影された画像を解析する(ステップS302)。 First, input information is acquired (step S301). The processing in step S301 is the same as the processing in step S201 in FIG. 12 of the first embodiment. Subsequently, the imaging unit 440 images the measurement site of the user, and the system control unit 400 analyzes the captured image (step S302).
 これにより、測定位置を前回の場所と一致させることや、受信発振部101による計測を携帯端末560の正面または背面のいずれの面によって計測するかなどを認識することができる。 Thereby, it is possible to recognize whether the measurement position is made coincident with the previous place, and whether the measurement by the reception oscillation unit 101 is measured by the front surface or the back surface of the portable terminal 560.
 測定位置を一致させる技術について説明する。 The technology for matching the measurement position will be explained.
 長期のモニタリングを行う場合には、測定位置を合わせて、略同一部位を計測することが望まれる。そこで、前回あるいはこれまで撮像部440にて撮影した画像結果から測定部位を特定して、その結果を出力部422に表示することによって使用者に知らせる。 When performing long-term monitoring, it is desirable to measure approximately the same part with the same measurement position. Therefore, the measurement site is specified from the image results captured by the imaging unit 440 last time or so far, and the result is displayed on the output unit 422 to notify the user.
 入出力部420に測定位置マーカを表示してもよいし、スピーカなどを使って測定位置マーカと撮像部440にて撮影されている現在位置との差分の情報を音、例えば音程の変化、音量の変化、あるいは音声などによって知らせることも可能である。 A measurement position marker may be displayed on the input / output unit 420, or information on the difference between the measurement position marker and the current position captured by the imaging unit 440 using a speaker or the like is used as sound, for example, a change in pitch, volume It is also possible to notify by a change in sound or voice.
 受信発振部101による計測を携帯端末560の正面または背面のいずれによって計測しているかを特定させる計測特定の技術について説明する。 A measurement specifying technique for specifying whether the measurement by the reception oscillating unit 101 is measured by the front side or the back side of the mobile terminal 560 will be described.
 例えば、対象物600が図15(a)の撮像部440、すなわち携帯端末560の正面側にて撮影されたか、あるいは対象物600が図15(b)の撮像部440、すなわち携帯端末560の背面側にて撮影されたかを判定し、撮影された面側において受信発振部101による計測を行う。 For example, the object 600 is photographed on the imaging unit 440 in FIG. 15A, that is, the front side of the portable terminal 560, or the object 600 is captured on the imaging unit 440 in FIG. It is determined whether the image is captured on the side, and the reception oscillation unit 101 performs measurement on the imaged surface side.
 これにより、計測対象ガス601が携帯端末の正面に有る場合も、背面に有る場合も簡単に撮影できる。具体的には、腕を計測する場合は、図15(b)の背面側の受信発振部101を使用し、顔面などを計測する場合は、図15(a)正面の受信発振部101を使用する。これにより、利用者は、入出力部420であるディスプレイを見ながら計測することができる。 Thereby, it is possible to easily shoot both when the measurement target gas 601 is on the front side of the portable terminal and on the back side. Specifically, when measuring an arm, the reception oscillation unit 101 on the back side of FIG. 15B is used, and when measuring the face or the like, the reception oscillation unit 101 on the front side of FIG. 15A is used. To do. Accordingly, the user can perform measurement while looking at the display that is the input / output unit 420.
 図17において、画像の解析が終了すると、計測対象ガス601の計測を行う(ステップS303)。このステップS303の処理は、図12のステップS202~S209の処理と同様である。 In FIG. 17, when the analysis of the image is completed, the measurement target gas 601 is measured (step S303). The processing in step S303 is the same as the processing in steps S202 to S209 in FIG.
 続いて、計測結果の送信が行われる(ステップS304)。システム制御部400は、通信部450によって外部接続されたサーバ460に計測結果などを転送する。その後、サーバ460は、転送された計測結果を解析する(ステップS305)。 Subsequently, the measurement result is transmitted (step S304). The system control unit 400 transfers the measurement result and the like to the server 460 externally connected by the communication unit 450. Thereafter, the server 460 analyzes the transferred measurement result (step S305).
 具体的には、ステップS304の処理にて取得した計測結果と、ステップS302の処理にて画像解析結果とが通信部450からサーバ460に送信される。サーバ460は、複雑な解析のすべて或いは一部の解析を実行する。具体的な処理は、図12のステップS210の処理と同じである。これにより、非接触ガス計測システム500の処理負荷を低減させることができる。 Specifically, the measurement result acquired in the process of step S304 and the image analysis result in the process of step S302 are transmitted from the communication unit 450 to the server 460. Server 460 performs all or part of the complex analysis. The specific process is the same as the process of step S210 in FIG. Thereby, the processing load of the non-contact gas measurement system 500 can be reduced.
 通信部450は、サーバ460が解析した結果を取得する(ステップS306)。システム制御部400は、サーバ460から取得した結果を入出力部420に表示する(ステップS307)。このとき、システム制御部400は、サーバ460から取得した結果をメモリ430に格納する。 The communication unit 450 acquires the result analyzed by the server 460 (step S306). The system control unit 400 displays the result acquired from the server 460 on the input / output unit 420 (step S307). At this time, the system control unit 400 stores the result acquired from the server 460 in the memory 430.
 これにより、携帯端末560に非接触ガス計測システム500を設けることにより、より利用者の利便性を向上させることができる。また、計測対象ガス601の解析を外部のサーバ460に解析させるので、より短時間で計測対象ガス601を解析することができる。 Thereby, by providing the non-contact gas measurement system 500 in the portable terminal 560, the convenience of the user can be further improved. Further, since the analysis of the measurement target gas 601 is performed by the external server 460, the measurement target gas 601 can be analyzed in a shorter time.
 また、非接触ガス計測システム500に計測対象ガス601を解析する機能が不要となるので、該非接触ガス計測システム500の構成をより簡単化することができ、小型化や低コスト化にも貢献することができる。 In addition, since the non-contact gas measurement system 500 does not need a function of analyzing the measurement target gas 601, the configuration of the non-contact gas measurement system 500 can be simplified, contributing to downsizing and cost reduction. be able to.
 (実施の形態4)
 〈非接触ガス計測装置の構成例〉
 図18は、本実施の形態4による非接触ガス計測装置100における構成の一例を示す説明図である。
(Embodiment 4)
<Configuration example of non-contact gas measuring device>
FIG. 18 is an explanatory diagram showing an example of the configuration of the non-contact gas measuring apparatus 100 according to the fourth embodiment.
 前記実施の形態1の図8では、情報補正部200がミラー201およびモータ202にて構成されているが、本実施の形態4においては、図18に示す情報補正部200を構成する光学素子107と可視光源104とが、ミラー201およびモータ202の役目を担うことによってモータのような駆動部を不要とした例を示している。 In FIG. 8 of the first embodiment, the information correction unit 200 is configured by the mirror 201 and the motor 202. However, in the fourth embodiment, the optical element 107 constituting the information correction unit 200 shown in FIG. In this example, the visible light source 104 serves as the mirror 201 and the motor 202 so that a driving unit such as a motor is unnecessary.
 非接触ガス計測装置100は、図18に示すように、受信発振部101、制御部110および情報補正部200を有する。受信発振部101については、前記実施の形態1の図1と同様であるので説明は省略する。 The non-contact gas measuring apparatus 100 includes a reception oscillation unit 101, a control unit 110, and an information correction unit 200 as shown in FIG. Since the reception oscillation unit 101 is the same as that of the first embodiment shown in FIG.
 情報補正部200は、可視光源104、レンズ105、ITO(Indium Tin Oxide:酸化インジウムスズ)106、および光学素子107を有している。 The information correction unit 200 includes a visible light source 104, a lens 105, an ITO (Indium Tin Oxide) 106, and an optical element 107.
 電磁波照射部である可視光源104は、制御部110の制御に基づいて、可視光線の電磁波、すなわち可視光を出射する。レンズ105は、可視光源104から出射した光を平行光にして光学素子107に照射する。ITO106は、受信発振部101が発する電磁波を反射して、可視光源104から出射する光を透過させる光学特性を有する。 The visible light source 104 that is an electromagnetic wave irradiation unit emits an electromagnetic wave of visible light, that is, visible light based on the control of the control unit 110. The lens 105 irradiates the optical element 107 with the light emitted from the visible light source 104 as parallel light. The ITO 106 has an optical characteristic that reflects the electromagnetic wave emitted from the reception oscillation unit 101 and transmits the light emitted from the visible light source 104.
 光学素子107は、可視光源104により透過率を変える。光学素子107としては、例えばSiあるいはGaAsなどの半導体や半導体の代わりとして光誘起金属・絶縁体転移を示す物質、例えば酸化バナジウムなどとする。 The optical element 107 changes the transmittance by the visible light source 104. As the optical element 107, for example, a semiconductor such as Si or GaAs or a substance exhibiting photoinduced metal-insulator transition, such as vanadium oxide, is used instead of the semiconductor.
 ここで、可視光源104から出射した光が光学素子107に照射されると、半導体の光電効果によるキャリアが生成される。この半導体中のキャリアは、受発信器102が発振する電磁波にとっては金属的な振る舞いをする。 Here, when the light emitted from the visible light source 104 is irradiated onto the optical element 107, carriers due to the photoelectric effect of the semiconductor are generated. The carriers in the semiconductor behave like a metal for the electromagnetic waves generated by the transmitter / receiver 102.
 これによって、キャリアが存在する領域を電磁波が透過することはできない。したがって、可視光源104から出射した光の有無により光学素子107を反射板または透過板として機能するように切り替えることができる。 This prevents electromagnetic waves from passing through the region where the carrier exists. Therefore, the optical element 107 can be switched to function as a reflection plate or a transmission plate depending on the presence or absence of light emitted from the visible light source 104.
 受発信器102が発振した電磁波は、対象物600に対して垂直に照射されることにより、計測対象ガス601を通過してその反射波が受発信器102に戻る。ここで、対象物600は、使用者の皮膚などである。 The electromagnetic wave oscillated by the transmitter / receiver 102 is irradiated perpendicularly to the object 600, thereby passing through the measurement target gas 601 and returning the reflected wave to the receiver / transmitter 102. Here, the object 600 is a user's skin or the like.
 制御部110は、受信発振部101および可視光源104を制御する。受信発振部101が発振する電磁波は、ガスに吸収され易い周波数を用いる。例えば、対象物600が皮膚であって、計測対象ガス601が皮膚から蒸散する水蒸気である場合には、0.56THz程度や0.75THz程度などの周波数が好適である。 The control unit 110 controls the reception oscillation unit 101 and the visible light source 104. The electromagnetic wave oscillated by the reception oscillation unit 101 uses a frequency that is easily absorbed by gas. For example, when the object 600 is skin and the measurement target gas 601 is water vapor evaporating from the skin, a frequency such as about 0.56 THz or about 0.75 THz is suitable.
 図18に示す非接触ガス計測装置100を用いて非接触ガス計測システム500を構成した場合、該非接触ガス計測システム500は、前記実施の形態1の図4と同様の構成からなる。 When the non-contact gas measurement system 500 is configured using the non-contact gas measurement device 100 shown in FIG. 18, the non-contact gas measurement system 500 has the same configuration as that of FIG. 4 of the first embodiment.
 また、図18に示す非接触ガス計測装置100を用いた非接触ガス計測システム500の外観は、同じく前記実施の形態の図5に示すようになる。その場合、光学素子107は、図5に示すケース501に設けられた出射口504の近傍に設けられる。 Further, the external appearance of the non-contact gas measurement system 500 using the non-contact gas measurement device 100 shown in FIG. 18 is as shown in FIG. 5 of the above embodiment. In that case, the optical element 107 is provided in the vicinity of the emission port 504 provided in the case 501 shown in FIG.
 可視光源104による光学素子107の光学特性の切り替えは、例えば前記実施の形態1の図4に示すシステム制御部400から出力されるモード信号に基づいて行われる。 Switching of the optical characteristics of the optical element 107 by the visible light source 104 is performed based on a mode signal output from the system control unit 400 shown in FIG.
 この場合においても、システム制御部400が出力するモード信号としては、例えば情報補正モード信号および計測モード信号がある。情報補正モード信号は、補正波を取得する際に出力される信号であり、計測モード信号は、計測対象ガス601を計測する際に出力される信号である。 Also in this case, examples of the mode signal output by the system control unit 400 include an information correction mode signal and a measurement mode signal. The information correction mode signal is a signal output when acquiring a correction wave, and the measurement mode signal is a signal output when measuring the measurement target gas 601.
 システム制御部400から出力される情報補正モード信号または計測モード信号は、制御部110にそれぞれ入力される。制御部110は、情報補正モード信号が入力されると、可視光源104を点灯させるように制御し、計測モード信号が入力された際には、可視光源104を消灯させるように制御する。 The information correction mode signal or the measurement mode signal output from the system control unit 400 is input to the control unit 110, respectively. The control unit 110 controls to turn on the visible light source 104 when the information correction mode signal is input, and controls to turn off the visible light source 104 when the measurement mode signal is input.
 〈非接触ガス計測装置の各機能部の時間波形〉
 図19は、図18の非接触ガス計測装置100における各機能部の時間波形の一例を示す説明図である。
<Time waveform of each functional part of non-contact gas measuring device>
FIG. 19 is an explanatory diagram illustrating an example of a time waveform of each functional unit in the non-contact gas measuring apparatus 100 of FIG.
 図19においては、上方から下方にかけて、図4のシステム制御部400から出力されるモード信号の時間に対する変化、可視光源104の時間に対する光強度変化、時間に対する受信発振部101が発する電磁波強度の変化、光学素子107の時間に対する透過率の変化、および受信発振部101が受信する受信信号の応答変化をそれぞれ示している。 19, from the top to the bottom, the mode signal output from the system control unit 400 of FIG. 4 with respect to time, the change in light intensity with respect to the time of the visible light source 104, and the change in electromagnetic wave intensity generated by the reception oscillation unit 101 with respect to time. 2 shows a change in transmittance with respect to time of the optical element 107 and a change in response of a received signal received by the reception oscillating unit 101.
 図19において、システム制御部400から情報補正モード信号が出力されると、可視光源104は、可視光を出射する。この可視光が光学素子107に照射されると、該光学素子107は、反射板として機能する。 19, when an information correction mode signal is output from the system control unit 400, the visible light source 104 emits visible light. When the visible light is irradiated to the optical element 107, the optical element 107 functions as a reflecting plate.
 これにより、受信発振部101から出射された電磁波は、光学素子107にて反射されて、該受信発振部101に戻ることによって補正波を取得することができる。この補正波は、電磁波である。 Thereby, the electromagnetic wave emitted from the reception oscillating unit 101 is reflected by the optical element 107 and returned to the reception oscillating unit 101 to obtain a correction wave. This correction wave is an electromagnetic wave.
 例えば、計測対象ガスとして皮膚から蒸散された水蒸気を計測する場合、使用者が存在する環境、すなわち測定環境によって、空気中の水蒸気量が異なるために計測値に影響を及ぼす恐れがある。このため、情報補正部200が取得する補正波を用いて、環境による水蒸気の影響を除く。 For example, when measuring the water vapor evaporated from the skin as the measurement target gas, the amount of water vapor in the air varies depending on the environment in which the user exists, that is, the measurement environment, which may affect the measurement value. For this reason, the influence of water vapor due to the environment is removed using the correction wave acquired by the information correction unit 200.
 システム制御部400から計測モード信号が出力されると、可視光源104は、消灯する。可視光が照射されなくなると、光学素子107は、透過板として機能する。 When the measurement mode signal is output from the system control unit 400, the visible light source 104 is turned off. When no visible light is irradiated, the optical element 107 functions as a transmission plate.
 よって、受信発振部101から出射された電磁波は、計測対象ガス601を通過して対象物600に当たり反射されるので、受信発振部101は、計測対象ガス601の計測波を取得することができる。 Therefore, since the electromagnetic wave emitted from the reception oscillation unit 101 passes through the measurement target gas 601 and is reflected by the target 600, the reception oscillation unit 101 can acquire the measurement wave of the measurement target gas 601.
 また、受発信器102は、光学素子107が透過板として機能していない期間および透過板として機能している期間のいずれの期間においても、電磁波強度Iinの電磁波を連続的に出射している。 Further, the transmitter / receiver 102 continuously emits the electromagnetic wave having the electromagnetic wave intensity Iin in both the period in which the optical element 107 does not function as the transmission plate and the period in which the optical element 107 functions as the transmission plate.
 受信発振部101は、光学素子107が反射板として機能している場合、環境による計測の誤差を減少させる補正波を取得する。また、光学素子107が透過板として動作している場合、受信発振部101は、計測対象ガスを計測した反射波を受発信器102が検出する。 When the optical element 107 functions as a reflector, the reception oscillation unit 101 acquires a correction wave that reduces measurement errors due to the environment. Further, when the optical element 107 is operating as a transmission plate, in the reception oscillation unit 101, the transmitter / receiver 102 detects a reflected wave obtained by measuring the measurement target gas.
 〈計測処理例〉
 図20は、図18の非接触ガス計測装置100を用いて構成した非接触ガス計測システム500による計測対象ガス601の計測処理の一例を示すフローチャートである。図20のフローチャートにおいて、特に指定がない場合には、図4のシステム制御部400が主体となって制御するものとする。
<Example of measurement processing>
FIG. 20 is a flowchart illustrating an example of measurement processing of the measurement target gas 601 by the non-contact gas measurement system 500 configured using the non-contact gas measurement device 100 of FIG. In the flowchart of FIG. 20, unless otherwise specified, the system control unit 400 of FIG.
 また、図20のステップS401~S404の処理については、前記実施の形態1の図12におけるステップS201~S204の処理と同様であるので、説明は省略する。 Also, the processing in steps S401 to S404 in FIG. 20 is the same as the processing in steps S201 to S204 in FIG.
 ステップS404の処理において、情報補正部200を制御すると判定した場合、システム制御部400は、情報補正部200を制御する(ステップS405)。 In the process of step S404, when it is determined that the information correction unit 200 is controlled, the system control unit 400 controls the information correction unit 200 (step S405).
 このステップS405の処理では、情報補正部200が制御部110に対して情報補正モード信号を出力する。制御部110は、情報補正モード信号が入力されると、可視光源104を点灯させるように制御する。これによって、光学素子107は反射板として機能する。 In the process of step S405, the information correction unit 200 outputs an information correction mode signal to the control unit 110. When the information correction mode signal is input, the control unit 110 performs control so that the visible light source 104 is turned on. Thereby, the optical element 107 functions as a reflector.
 続いて、システム制御部400は、受信発振部101を制御して、電磁波の発振および受信を行うことによって、計測対象ガス601の計測が開始され、受信発振部101が電流または電圧の値を取得する(ステップS406)。上述したように、光学素子107が反射板として機能することによって補正波を取得する。 Subsequently, the system control unit 400 controls the reception oscillation unit 101 to oscillate and receive an electromagnetic wave, thereby starting measurement of the measurement target gas 601 and the reception oscillation unit 101 obtains a current or voltage value. (Step S406). As described above, a correction wave is acquired by the optical element 107 functioning as a reflector.
 その後、システム制御部400は、情報補正用に周波数制御するか否かを判定する(ステップS407)。このステップS407の処理における周波数制御の判定技術について、計測対象ガス601として経皮水分蒸散量を測定する場合を例として説明する。 Thereafter, the system control unit 400 determines whether or not to perform frequency control for information correction (step S407). The frequency control determination technique in the process of step S407 will be described by taking as an example the case where the transdermal moisture transpiration amount is measured as the measurement target gas 601.
 システム制御部400は、ステップS403の処理にて、図10の制御情報管理テーブル800から取得した計測制御情報に基づいて、非接触ガス計測装置100が照射する電磁波の周波数を制御するか否かを判定する。 The system control unit 400 determines whether or not to control the frequency of the electromagnetic wave emitted by the non-contact gas measurement device 100 based on the measurement control information acquired from the control information management table 800 of FIG. 10 in the process of step S403. judge.
 図10の制御情報管理テーブル800を例にすると、周波数802と非接触ガス計測装置100に設定されている周波数とが異なる場合には、電磁波の周波数を制御する必要があるため、ステップS403の処理にてYESと判定する。 Taking the control information management table 800 in FIG. 10 as an example, if the frequency 802 and the frequency set in the non-contact gas measuring device 100 are different, it is necessary to control the frequency of the electromagnetic wave. It determines with YES.
 一方、周波数802と非接触ガス計測装置100に設定されている周波数とが一致する場合には、電磁波の周波数を制御する必要がない。よって、ステップS403の処理では、NOと判定してステップS408の処理に進む。 On the other hand, when the frequency 802 matches the frequency set in the non-contact gas measuring device 100, it is not necessary to control the frequency of the electromagnetic wave. Therefore, in the process of step S403, it determines with NO and progresses to the process of step S408.
 ステップS407の処理にて電磁波の周波数を制御する必要がないと判定した際あるいはステップS404の処理にて情報補正部200を制御しないと判定した際、システム制御部400は、制御部110に対して計測モード信号を出力して、情報補正部200の可視光源104を消灯するように制御する。可視光が照射されないことによって、光学素子107には、半導体の光電効果によるキャリアが生成されず、該光学素子107は、透過板として機能する。 When it is determined in step S407 that it is not necessary to control the frequency of the electromagnetic wave, or when it is determined in step S404 that the information correction unit 200 is not to be controlled, the system control unit 400 controls the control unit 110. A measurement mode signal is output, and the visible light source 104 of the information correction unit 200 is controlled to be turned off. Since no visible light is irradiated, carriers due to the photoelectric effect of the semiconductor are not generated in the optical element 107, and the optical element 107 functions as a transmission plate.
 続いて、システム制御部400は、ステップS403の処理にて取得した制御情報に基づいて、非接触ガス計測装置100が照射する電磁波の周波数を制御するか否かを判定する(ステップS408)。 Subsequently, the system control unit 400 determines whether or not to control the frequency of the electromagnetic wave irradiated by the non-contact gas measuring device 100 based on the control information acquired in the process of step S403 (step S408).
 ここで、図10の制御情報管理テーブル800を例にすると、周波数802と非接触ガス計測装置100に設定されている周波数とが異なる場合には、制御する必要があるためステップS409の処理に進む。 Here, taking the control information management table 800 of FIG. 10 as an example, if the frequency 802 and the frequency set in the non-contact gas measuring device 100 are different, it is necessary to control, so the process proceeds to step S409. .
 制御情報管理テーブル800の周波数802と非接触ガス計測装置100に設定されている周波数とが同じ場合には、制御が不要であるため、ステップS410の処理に進む。 If the frequency 802 in the control information management table 800 is the same as the frequency set in the non-contact gas measuring device 100, the control is unnecessary, and the process proceeds to step S410.
 具体的には、周波数802から0.558THzを取得した場合、非接触ガス計測装置100が0.558THzを発振できる状態であるならそのままとし、異なる場合は、ステップS409の処理にて非接触ガス計測装置100が0.558THzを発振できるように制御する。なお、非接触ガス計測装置100の周波数が固定されている場合は、この処理は不要となる。 Specifically, when 0.558 THz is acquired from the frequency 802, the non-contact gas measuring device 100 is left as it is if it can oscillate 0.558 THz, and if different, the non-contact gas measurement is performed in the process of step S409. The device 100 is controlled so as to be able to oscillate 0.558 THz. If the frequency of the non-contact gas measuring device 100 is fixed, this process is not necessary.
 そして、ステップS408の処理における周波数制御の情報に基づいて、システム制御部400は、非接触ガス計測装置100を制御して、電磁波を特定の周波数とする(ステップS409)。例えば、受発信器102の電圧または電流を変化させることによって電磁波の周波数を変更する。 Then, based on the frequency control information in the process of step S408, the system control unit 400 controls the non-contact gas measuring device 100 to set the electromagnetic wave to a specific frequency (step S409). For example, the frequency of the electromagnetic wave is changed by changing the voltage or current of the transmitter / receiver 102.
 これにより、計測対象ガス601の計測が開始されて、受信発振部101が電流または電圧の値を取得する(ステップS410)。計測した値は、図11の計測結果テーブル900の値905に格納される。 Thereby, measurement of the measurement target gas 601 is started, and the reception oscillation unit 101 acquires a current or voltage value (step S410). The measured value is stored in the value 905 of the measurement result table 900 of FIG.
 システム制御部400は、ステップS403の処理にて取得した制御情報を参照して、計測する周波数をすべて計測したか否かを判定する(ステップS411)。計測する周波数がある場合には、ステップS408)の処理に戻る。 The system control unit 400 refers to the control information acquired in step S403, and determines whether or not all the frequencies to be measured have been measured (step S411). If there is a frequency to be measured, the process returns to step S408).
 すべての周波数の計測が完了した場合には、計測は終了となる。具体的には、図10を例にすると、計測対象ガス601として経皮水分蒸散量を測定したい場合、周波数802の0.558THzおよび0.600THzの2つの周波数にて計測を完了しているか否かを判断して、計測が終わるまで繰り返す。 When the measurement of all frequencies is completed, the measurement is finished. Specifically, taking FIG. 10 as an example, if the transcutaneous moisture transpiration is to be measured as the measurement target gas 601, whether or not the measurement has been completed at two frequencies of frequency 802 of 0.558 THz and 0.600 THz. Repeat until the measurement is completed.
 計測が終了すると、解析部410は、図11の計測結果テーブル900の値905を用いて解析を行う(ステップ412)。以下、図20のステップS412~S414の処理については、図12のステップS210~S212の処理と同様であるので説明は省略する。 When the measurement is completed, the analysis unit 410 performs analysis using the value 905 in the measurement result table 900 of FIG. 11 (step 412). Hereinafter, the processing in steps S412 to S414 in FIG. 20 is the same as the processing in steps S210 to S212 in FIG.
 ここで、図18に示した非接触ガス計測装置100による計測結果は、通常、温度や振動などに由来する雑音が含まれる。そのため、より高精度な計測結果を得るには、信号成分から雑音を除去する計測技術が必要となる。 Here, the measurement result by the non-contact gas measuring device 100 shown in FIG. 18 usually includes noise derived from temperature and vibration. Therefore, in order to obtain a more accurate measurement result, a measurement technique for removing noise from the signal component is required.
 この計測技術としては、信号を変調することにより信号成分のスペクトルと雑音のスペクトルとを分離するロックイン計測が用いられる。例えば、この信号の変調に光学式のチョッパを用いる技術がある。 As this measurement technique, lock-in measurement is used in which a signal component spectrum and a noise spectrum are separated by modulating a signal. For example, there is a technique that uses an optical chopper for modulation of this signal.
 このチョッパを用いる技術は、光学式チョッパを回転させて、回転周波数により受発信器102が出射した電磁波をオン/オフすることによって変調を行う。このため、光学式チョッパを回転させるためのモータが必要になる。 The technology using this chopper performs modulation by rotating the optical chopper and turning on / off the electromagnetic wave emitted from the transmitter / receiver 102 at the rotational frequency. For this reason, a motor for rotating the optical chopper is required.
 〈電磁波の変調例〉
 そこで、図18の非接触ガス計測装置100を使ってモータのような機械的な駆動をせずに変調を行う技術について、図21を用いて説明する。
<Example of electromagnetic wave modulation>
Therefore, a technique for performing modulation without using a mechanical drive such as a motor using the non-contact gas measuring device 100 of FIG. 18 will be described with reference to FIG.
 図21は、図18の非接触ガス計測装置100による可視光源を変調した際の電磁波強度および透過率の変化を示す説明図である。 FIG. 21 is an explanatory diagram showing changes in electromagnetic wave intensity and transmittance when the visible light source is modulated by the non-contact gas measuring device 100 of FIG.
 図21においては、上方から下方にかけて、可視光源104の点灯/消灯、受信発振部101から出射される電磁波、および光学素子107の透過率の変化のタイミングをそれぞれ示している。 FIG. 21 shows the timing of turning on / off the visible light source 104, the electromagnetic wave emitted from the reception oscillating unit 101, and the change in the transmittance of the optical element 107 from above to below.
 図21において、可視光源104は、可視光強度Ivinの可視光を消灯および点灯を繰り返して出射する。点灯および消灯は、例えば1kHz程度にて時間的に繰り返すものとする。可視光源104における消灯および点灯の制御は、制御部110が行う。 21, the visible light source 104 emits visible light having a visible light intensity Ivin by repeatedly turning it off and on. The lighting and extinguishing are repeated over time at, for example, about 1 kHz. The control unit 110 controls turning off and turning on the visible light source 104.
 この際、受信発振部101は、電磁波強度Iinの電磁波を連続的に出射している。この受信発振部101の制御は、制御部110が行う。 At this time, the reception oscillating unit 101 continuously emits the electromagnetic wave having the electromagnetic wave intensity Iin. The control of the reception oscillation unit 101 is performed by the control unit 110.
 光学素子107は、可視光源104の点灯および消灯に伴い透過率が変化する。図示するように、可視光源104が点灯している場合、光学素子107は、反射状態2201、すなわち反射板として機能する。可視光源104が消灯している場合、光学素子107は、透過状態2202、すなわち透過板として機能する。 The transmittance of the optical element 107 changes as the visible light source 104 is turned on and off. As shown in the drawing, when the visible light source 104 is turned on, the optical element 107 functions as a reflection state 2201, that is, a reflection plate. When the visible light source 104 is turned off, the optical element 107 functions as a transmission state 2202, that is, a transmission plate.
 このように、制御部110が可視光源104の可視光強度Ivinを時間的に変化させることにより、光学素子107を図21に示すように時間的に制御することができる。 Thus, when the control unit 110 changes the visible light intensity Ivin of the visible light source 104 over time, the optical element 107 can be controlled over time as shown in FIG.
 これにより、受信発振部101から発せられる電磁波強度Iinの電磁波が光学素子107にて約1kHzの周波数によって変調されるので、信号成分のスペクトルと雑音のスペクトルとを良好に分離することができる。その結果、より高精度な計測結果を得ることができる。 Thereby, since the electromagnetic wave having the electromagnetic wave intensity Iin emitted from the reception oscillating unit 101 is modulated by the optical element 107 at a frequency of about 1 kHz, the spectrum of the signal component and the spectrum of the noise can be well separated. As a result, a more accurate measurement result can be obtained.
 〈計測処理の他の例〉
 図22は、図20の計測処理における他の例を示すフローチャートである。
<Other examples of measurement processing>
FIG. 22 is a flowchart showing another example of the measurement process of FIG.
 図22のフローチャートにおいて、特に指定がない場合には、図4のシステム制御部400が主体となって制御するものとする。 In the flowchart of FIG. 22, unless otherwise specified, the system control unit 400 of FIG.
 上述した図20のフローチャートでは、システム制御部400からの情報補正モード信号においてのみ光学素子107の光学特性は変化していた。一方、図22のフローチャートでは、ステップS507の処理とステップS509の処理との間に新たに処理を追加することによって、情報補正モード信号および計測モード信号の2つのモードで光学特性を変える。 In the flowchart of FIG. 20 described above, the optical characteristics of the optical element 107 change only in the information correction mode signal from the system control unit 400. On the other hand, in the flowchart of FIG. 22, by adding a new process between the process of step S507 and the process of step S509, the optical characteristics are changed in the two modes of the information correction mode signal and the measurement mode signal.
 なお、図22のステップS501~S507の処理は、図20のステップS401~S407の処理と同じであり、図22のステップS509~S515の処理は、図20のステップS408~S414の処理と同じである。よって、図20と図22とでは、ステップS508の処理以外は、全て同じである。 Note that the processing in steps S501 to S507 in FIG. 22 is the same as the processing in steps S401 to S407 in FIG. 20, and the processing in steps S509 to S515 in FIG. 22 is the same as the processing in steps S408 to S414 in FIG. is there. Therefore, FIG. 20 and FIG. 22 are all the same except for the processing in step S508.
 図22におけるステップS508の処理は、計測対象ガス601の計測時に、図21にて説明したように、受信発振部101、可視光源104、および光学素子107を時間的にそれぞれ制御することにより、受信発振部101の電磁波の信号変調を行うものである。 The process of step S508 in FIG. 22 is performed by controlling the reception oscillation unit 101, the visible light source 104, and the optical element 107 in terms of time as described with reference to FIG. Signal modulation of the electromagnetic wave of the oscillation unit 101 is performed.
 ここでは、計測モード時にのみ、受信発振部101の電磁波を変調する例を示しているが、例えばステップS508の処理による変調制御をステップS504の処理とステップS505の処理との間に入れることで、補正モードの計測時にも受信発振部101の電磁波を変調することが可能となる。 Here, an example is shown in which the electromagnetic wave of the reception oscillating unit 101 is modulated only in the measurement mode. However, for example, by performing modulation control by the process of step S508 between the process of step S504 and the process of step S505, It is possible to modulate the electromagnetic wave of the reception oscillating unit 101 even during measurement in the correction mode.
 このように、受信発振部101の電磁波の信号変調を行いながら対象物600から発せられる計測対象ガス601を電磁波により計測することにより、変調した周波数付近の電磁波のみを測定対象とすることができる。 Thus, by measuring the measurement target gas 601 emitted from the object 600 with electromagnetic waves while performing signal modulation of the electromagnetic waves of the reception oscillating unit 101, only the electromagnetic waves near the modulated frequency can be measured.
 以上により、より高精度な測定を行うことができる。また、生体の有無を検知するなどの生体認証に用いることができる。 As described above, more accurate measurement can be performed. Further, it can be used for biometric authentication such as detecting the presence or absence of a biometric.
 (実施の形態5)
 〈膜厚測定例〉
 図23は、本実施の形態5における非接触ガス計測装置100による膜厚測定の一例を示す説明図である。
(Embodiment 5)
<Example of film thickness measurement>
FIG. 23 is an explanatory diagram showing an example of film thickness measurement by the non-contact gas measurement device 100 according to the fifth embodiment.
 なお、図23に示す非接触ガス計測装置100は、前記実施の形態4の図18に示す非接触ガス計測装置100と同様であるので、非接触ガス計測装置100の説明は省略する。 Note that the non-contact gas measurement device 100 shown in FIG. 23 is the same as the non-contact gas measurement device 100 shown in FIG. 18 of the fourth embodiment, and thus the description of the non-contact gas measurement device 100 is omitted.
 この図23は、層構造からなる対象物600の膜厚を測定する場合を示しており、対象物600の層構造によって受発信器102が出射した電磁波が膜の表面にて反射した電磁波603と、裏面にて反射した電磁波604との2つの電磁波が生じた例を示している。 FIG. 23 shows a case where the film thickness of the object 600 having a layer structure is measured. The electromagnetic wave 603 emitted from the transmitter / receiver 102 by the layer structure of the object 600 is reflected by the electromagnetic wave 603 reflected on the surface of the film. 2 shows an example in which two electromagnetic waves generated by the electromagnetic wave 604 reflected on the back surface are generated.
 膜厚測定の原理には、例えば光の干渉効果を利用したピークバレー法が用いられる。 For the principle of film thickness measurement, for example, the peak valley method using the light interference effect is used.
 このピークバレー法は、対象物600における表面反射した電磁波603と裏面反射した電磁波604との2つの電磁波が互いに干渉して、2つの電磁波の位相が一致すると干渉の強度が強まり、ずれると干渉波の強度が弱まるという性質を利用した膜厚の測定技術である。このピークバレー法などを用いた膜厚測定は、例えば図4の解析部410などが実行する。 In this peak valley method, the electromagnetic wave 603 reflected from the surface and the electromagnetic wave 604 reflected from the back surface of the object 600 interfere with each other, and the intensity of the interference increases when the phases of the two electromagnetic waves coincide with each other. This is a film thickness measurement technique utilizing the property that the strength of the film is weakened. The film thickness measurement using the peak valley method or the like is executed by, for example, the analysis unit 410 in FIG.
 〈膜厚測定の原理〉
 図24は、図23の対象物600における膜厚測定の原理を説明する説明図である。
<Principle of film thickness measurement>
FIG. 24 is an explanatory diagram for explaining the principle of film thickness measurement on the object 600 in FIG.
 図24は、横軸を周波数として、縦軸に干渉信号の強度を示したグラフである。図24(a)は、ピークバレー法による膜厚測定の原理を示したものであり、図24(b)は、カーブフィット法による膜厚測定の原理を示したものである。 FIG. 24 is a graph in which the horizontal axis represents frequency and the vertical axis represents the intensity of interference signals. FIG. 24 (a) shows the principle of film thickness measurement by the peak valley method, and FIG. 24 (b) shows the principle of film thickness measurement by the curve fit method.
 ピークバレー法では、干渉信号強度が最大となる2つの周波数から以下に示す式(1)を使って膜厚を計算する。 In the peak valley method, the film thickness is calculated from the two frequencies at which the interference signal intensity is maximum using the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 ここで、dは対象物600の膜厚、nは対象物600の屈折率、cは光速、Δfは干渉信号強度が最大となる2つの周波数の差(f2-f1)である。
Figure JPOXMLDOC01-appb-M000001
Here, d is the film thickness of the object 600, n is the refractive index of the object 600, c is the speed of light, and Δf is the difference between two frequencies (f2−f1) at which the interference signal intensity is maximum.
 例えば、人の肌の屈折率を2.0程度、膜厚dを一般的な表皮層である100μm~300μm程度すると、干渉信号強度が最大となる2つの周波数の差は、0.25THz~0.75THz程度となる。 For example, when the refractive index of human skin is about 2.0 and the film thickness d is about 100 μm to 300 μm, which is a general skin layer, the difference between the two frequencies at which the interference signal intensity becomes maximum is 0.25 THz to 0. .75 THz or so.
 ここで、計測したいのは膜厚dであるが、対象物600の屈折率nは必ずしも既知ではない。しかし、対象物600をモニタリングして、その状態あるいは時間の変化を観測するには、対象物600の屈折率は変化しない固定値と見なし、ndをd’と考えてもよい。例えば、異なる対象物600をモニタリングする場合には、対象物600毎に測定値を管理すればよい。 Here, what is desired to be measured is the film thickness d, but the refractive index n of the object 600 is not necessarily known. However, in order to monitor the object 600 and observe changes in its state or time, the refractive index of the object 600 may be regarded as a fixed value that does not change, and nd may be considered as d ′. For example, when monitoring different objects 600, the measurement values may be managed for each object 600.
 このように、肌の表皮厚さなどを計測することによって、利用者の肌荒れなどを判定することができる。例えば肌荒れの場合には、該肌荒れの影響などによって表皮層が薄くなっていると考えられる。これによって、利用者の利便性を向上させることができる。 Thus, by measuring the skin thickness, etc., it is possible to determine the rough skin of the user. For example, in the case of rough skin, it is considered that the epidermis layer is thin due to the influence of the rough skin. As a result, convenience for the user can be improved.
 一方、カーブフィット法は、図24(b)に示すように、干渉信号強度が最大となる2つの周波数の差で膜厚を計測するのではなく、周波数を変えながら周波数f1~f4を測定する。 On the other hand, in the curve fit method, as shown in FIG. 24B, the film thickness is not measured by the difference between the two frequencies at which the interference signal intensity is maximum, but the frequencies f1 to f4 are measured while changing the frequency. .
 そして、測定された周波数に対する干渉信号の強度変化をモデル化した膜構造から得られる周波数に対する干渉信号の強度の推定値との差分が小さくなるようにカーブフィットすることによって膜厚を算出するものである。 Then, the film thickness is calculated by curve fitting so that the difference from the estimated value of the interference signal intensity with respect to the frequency obtained from the film structure modeling the change in the intensity of the interference signal with respect to the measured frequency is reduced. is there.
 なお、本実施の形態5による非接触ガス計測装置100における膜厚測定は、肌の厚みの測定だけではなく、例えば車の塗装膜の厚みの計測などにも有効である。 It should be noted that the film thickness measurement in the non-contact gas measuring apparatus 100 according to the fifth embodiment is effective not only for measuring the thickness of the skin but also for measuring the thickness of the coating film of a car, for example.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、カラー画像と距離画像とを同時に取得可能な単眼カメラを使えば、図14の撮像部440および距離測定部300の機能を実現することができるので、小型化かつ低コストな非接触ガス計測システムを実現することができる。 As described above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above-described embodiment, and includes various modifications. For example, if a monocular camera that can simultaneously acquire a color image and a distance image is used, the functions of the imaging unit 440 and the distance measurement unit 300 in FIG. A system can be realized.
100 非接触ガス計測装置
101 受信発振部
101a 受信発振部
102 受発信器
103 レンズ
104 可視光源
105 レンズ
106 ITO
107 光学素子
110 制御部
200 情報補正部
201 ミラー
202 モータ
300 距離測定部
400 システム制御部
401 システムバス
410 解析部
420 入出力部
421 入力部
422 出力部
430 メモリ
440 撮像部
450 通信部
460 サーバ
500 非接触ガス計測システム
560 携帯端末
600 対象物
601 計測対象ガス
DESCRIPTION OF SYMBOLS 100 Non-contact gas measuring device 101 Reception oscillation part 101a Reception oscillation part 102 Receiver / transmitter 103 Lens 104 Visible light source 105 Lens 106 ITO
107 optical element 110 control unit 200 information correction unit 201 mirror 202 motor 300 distance measurement unit 400 system control unit 401 system bus 410 analysis unit 420 input / output unit 421 input unit 422 output unit 430 memory 440 imaging unit 450 communication unit 460 server 500 Contact gas measurement system 560 Portable terminal 600 Object 601 Measurement target gas

Claims (15)

  1.  電磁波の出射および検出を行う受信発振部と、
     前記受信発振部が出射する電磁波と異なる周波数の電磁波を出射する電磁波照射部と、
     前記電磁波照射部が出射する前記電磁波に基づいて透過率が変化して、前記受信発振部が出射する前記電磁波を透過または反射させる光学素子と、
     前記受信発振部および前記電磁波照射部を制御する制御部と、
     を備え、
     前記制御部は、対象物を測定する際に前記電磁波照射部の前記電磁波を停止させて前記光学素子が透過板として機能するように透過率を変化させ、前記光学素子を透過した前記電磁波を前記対象物に照射させるように制御し、
     前記受信発振部は、前記対象物から反射した前記電磁波の強度に応じて変化する電圧または電流の値を計測値として出力する、非接触ガス計測装置。
    A receiving oscillation unit for emitting and detecting electromagnetic waves;
    An electromagnetic wave irradiation unit that emits an electromagnetic wave having a frequency different from that of the electromagnetic wave emitted by the reception oscillation unit;
    An optical element that changes the transmittance based on the electromagnetic wave emitted from the electromagnetic wave irradiation unit and transmits or reflects the electromagnetic wave emitted from the reception oscillation unit;
    A control unit for controlling the reception oscillation unit and the electromagnetic wave irradiation unit;
    With
    The control unit stops the electromagnetic wave of the electromagnetic wave irradiation unit when measuring an object, changes the transmittance so that the optical element functions as a transmission plate, and transmits the electromagnetic wave transmitted through the optical element. Control to irradiate the object,
    The said receiving oscillation part is a non-contact gas measuring device which outputs the value of the voltage or electric current which changes according to the intensity | strength of the said electromagnetic wave reflected from the said target object as a measured value.
  2.  請求項1記載の非接触ガス計測装置において、
     前記制御部は、前記計測値を補正する補正電磁波を取得する際に前記電磁波照射部から前記電磁波を出射させて前記光学素子が反射板として機能するように透過率を変化させ、前記電磁波を前記光学素子から反射させるように制御し、
     前記受信発振部は、前記光学素子から反射した前記電磁波の強度に応じて変化する電圧または電流の値を補正値として出力する、非接触ガス計測装置。
    In the non-contact gas measuring device according to claim 1,
    The control unit emits the electromagnetic wave from the electromagnetic wave irradiation unit when acquiring a corrected electromagnetic wave for correcting the measurement value, changes the transmittance so that the optical element functions as a reflector, and converts the electromagnetic wave to the electromagnetic wave. Control to reflect from the optical element,
    The non-contact gas measuring device, wherein the reception oscillating unit outputs, as a correction value, a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the optical element.
  3.  請求項1または2記載の非接触ガス計測装置において、
     前記受信発振部は、負性抵抗領域にて電磁波を発振する電子デバイスを含む、非接触ガス計測装置。
    In the non-contact gas measuring device according to claim 1 or 2,
    The reception oscillation unit is a non-contact gas measurement apparatus including an electronic device that oscillates electromagnetic waves in a negative resistance region.
  4.  請求項1~3のいずれか1項に記載の非接触ガス計測装置において、
     前記電磁波照射部が出射する前記電磁波は、可視光線である、非接触ガス計測装置。
    The non-contact gas measuring device according to any one of claims 1 to 3,
    The non-contact gas measuring device, wherein the electromagnetic wave emitted from the electromagnetic wave irradiation unit is visible light.
  5.  対象物から発せられる計測対象ガスを電磁波を用いて計測する非接触ガス計測装置と、
     前記非接触ガス計測装置が計測した計測値から前記計測対象ガスを解析する解析部と、
     前記非接触ガス計測装置および前記解析部の動作を制御するシステム制御部と、
     を有し、
     前記非接触ガス計測装置は、
     電磁波の出射および検出を行う受信発振部と、
     前記受信発振部が出射する電磁波と異なる周波数の電磁波を出射する電磁波照射部と、
     前記電磁波照射部が出射する前記電磁波に基づいて透過率が変化して、前記受信発振部が出射する前記電磁波を透過または反射させる光学素子と、
     前記受信発振部および前記電磁波照射部を制御する制御部と、
     を備え、
     前記制御部は、対象物を測定する際に前記電磁波照射部の前記電磁波を停止させて前記光学素子が透過板として機能するように透過率を変化させ、前記光学素子を透過した前記電磁波を前記対象物に照射させるように制御し、
     前記受信発振部は、前記対象物から反射した前記電磁波の強度に応じて変化する電圧または電流の値を計測値として前記解析部に出力する、非接触ガス計測システム。
    A non-contact gas measuring device for measuring a measurement target gas emitted from an object using electromagnetic waves;
    An analysis unit that analyzes the measurement target gas from a measurement value measured by the non-contact gas measurement device;
    A system control unit for controlling operations of the non-contact gas measuring device and the analysis unit;
    Have
    The non-contact gas measuring device is
    A receiving oscillation unit for emitting and detecting electromagnetic waves;
    An electromagnetic wave irradiation unit that emits an electromagnetic wave having a frequency different from that of the electromagnetic wave emitted by the reception oscillation unit;
    An optical element that transmits or reflects the electromagnetic wave emitted by the reception oscillation unit, the transmittance is changed based on the electromagnetic wave emitted by the electromagnetic wave irradiation unit;
    A control unit for controlling the reception oscillation unit and the electromagnetic wave irradiation unit;
    With
    The control unit stops the electromagnetic wave of the electromagnetic wave irradiation unit when measuring an object, changes the transmittance so that the optical element functions as a transmission plate, and transmits the electromagnetic wave transmitted through the optical element. Control to irradiate the object,
    The said receiving oscillation part is a non-contact gas measurement system which outputs the value of the voltage or electric current which changes according to the intensity | strength of the said electromagnetic wave reflected from the said object to the said analysis part as a measured value.
  6.  請求項5記載の非接触ガス計測システムにおいて、
     前記制御部は、前記計測値を補正する補正電磁波を取得する際に前記電磁波照射部から前記電磁波を出射させて前記光学素子が反射板として機能するように透過率を変化させ、前記電磁波を前記光学素子から反射させるように制御し、
     前記受信発振部は、前記光学素子から反射した前記電磁波の強度に応じて変化する電圧または電流の値を補正値として前記解析部に出力する、非接触ガス計測システム。
    The non-contact gas measurement system according to claim 5,
    The control unit emits the electromagnetic wave from the electromagnetic wave irradiation unit when acquiring a corrected electromagnetic wave for correcting the measurement value, changes the transmittance so that the optical element functions as a reflector, and converts the electromagnetic wave to the electromagnetic wave. Control to reflect from the optical element,
    The non-contact gas measurement system, wherein the reception oscillating unit outputs, as a correction value, a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the optical element, as a correction value.
  7.  請求項5または6記載の非接触ガス計測システムにおいて、
     前記受信発振部は、負性抵抗領域にて電磁波を発振する電子デバイスを含む、非接触ガス計測システム。
    The non-contact gas measurement system according to claim 5 or 6,
    The reception oscillation unit is a non-contact gas measurement system including an electronic device that oscillates electromagnetic waves in a negative resistance region.
  8.  請求項5~7のいずれか1項に記載の非接触ガス計測システムにおいて、
     前記電磁波照射部が出射する前記電磁波は、可視光線である、非接触ガス計測システム。
    The non-contact gas measurement system according to any one of claims 5 to 7,
    The non-contact gas measurement system, wherein the electromagnetic wave emitted from the electromagnetic wave irradiation unit is visible light.
  9.  請求項5記載の非接触ガス計測システムにおいて、
     前記制御部は、対象物の計測値を測定する際に前記電磁波照射部が出射する前記電磁波をオン、オフさせることにより、前記対象物に照射させる前記電磁波を変調させる、非接触ガス計測システム。
    The non-contact gas measurement system according to claim 5,
    The said control part is a non-contact gas measurement system which modulates the said electromagnetic wave irradiated to the said object by turning on and off the said electromagnetic wave which the said electromagnetic wave irradiation part emits, when measuring the measured value of a target object.
  10.  請求項9記載の非接触ガス計測システムにおいて、
     前記制御部は、前記システム制御部の制御に基づいて、前記対象物に照射させる前記電磁波の周波数を設定する、非接触ガス計測システム。
    The non-contact gas measurement system according to claim 9,
    The said control part is a non-contact gas measurement system which sets the frequency of the said electromagnetic wave with which the said target object is irradiated based on control of the said system control part.
  11.  請求項9または10記載の非接触ガス計測システムにおいて、
     前記解析部は、前記受信発振部が出力する計測値から前記対象物の膜厚を計測する、非接触ガス計測システム。
    The non-contact gas measurement system according to claim 9 or 10,
    The said analysis part is a non-contact gas measurement system which measures the film thickness of the said target object from the measured value which the said reception oscillation part outputs.
  12.  電磁波の出射および検出を行う受信発振部、前記受信発振部が出射する電磁波と異なる周波数の電磁波を出射する電磁波照射部、前記電磁波照射部が出射する前記電磁波に基づいて透過率が変化して、前記受信発振部が出射する前記電磁波を透過または反射させる光学素子、および前記受信発振部および前記電磁波照射部を制御する制御部を備える非接触ガス計測装置と、前記非接触ガス計測装置が計測した計測値から計測対象ガスを解析する解析部と、前記非接触ガス計測装置および前記解析部の動作を制御するシステム制御部と、を具備する非接触ガス計測システムによる非接触ガス計測方法であって、
     前記受信発振部が、電磁波を照射するステップと、
     前記制御部が、前記電磁波照射部の前記電磁波を停止させて前記光学素子が透過板として機能するように透過率を変化させ、前記対象物に前記光学素子を透過した前記電磁波を照射させるように制御するステップと、
     前記受信発振部が、前記対象物から反射した前記電磁波の強度に応じて変化する電圧または電流の値を計測値として前記解析部に出力するステップと、
     前記解析部が、前記非接触ガス計測装置が計測した計測値から前記計測対象ガスを解析するステップと、
     を有する、非接触ガス計測方法。
    A reception oscillation unit that performs emission and detection of electromagnetic waves, an electromagnetic wave irradiation unit that emits electromagnetic waves with a frequency different from the electromagnetic waves emitted by the reception oscillation unit, and the transmittance changes based on the electromagnetic waves emitted by the electromagnetic wave irradiation unit, Non-contact gas measurement device comprising an optical element that transmits or reflects the electromagnetic wave emitted by the reception oscillation unit, and a control unit that controls the reception oscillation unit and the electromagnetic wave irradiation unit, and the non-contact gas measurement device measured A non-contact gas measurement method by a non-contact gas measurement system comprising: an analysis unit that analyzes a measurement target gas from a measurement value; and a system control unit that controls the operation of the non-contact gas measurement device and the analysis unit. ,
    The reception oscillating unit irradiating electromagnetic waves;
    The control unit stops the electromagnetic wave of the electromagnetic wave irradiation unit, changes the transmittance so that the optical element functions as a transmission plate, and irradiates the object with the electromagnetic wave transmitted through the optical element. Controlling step;
    The reception oscillation unit outputs a voltage or current value that changes according to the intensity of the electromagnetic wave reflected from the object to the analysis unit as a measurement value;
    The analysis unit analyzing the measurement target gas from the measurement value measured by the non-contact gas measurement device;
    A non-contact gas measuring method.
  13.  請求項12記載の非接触ガス計測方法において、
     前記解析部が、前記非接触ガス計測装置が計測した計測値から前記対象物の膜厚を計測するステップを有する、非接触ガス計測方法。
    The non-contact gas measuring method according to claim 12,
    The non-contact gas measuring method which has a step which the said analysis part measures the film thickness of the said target object from the measured value which the said non-contact gas measuring device measured.
  14.  請求項12記載の非接触ガス計測方法において、
     前記制御部が、前記電磁波照射部から前記電磁波を出射させて前記光学素子が反射板として機能するように透過率を変化させるステップと、
     前記受信発振部が、前記光学素子から反射した前記電磁波の強度に応じて変化する電圧または電流の値を補正値として前記解析部に出力するステップと、
     前記解析部が、前記受信発振部が取得した前記補正値を用いて前記計測値の誤差を補正するステップと、
     を有する、非接触ガス計測方法。
    The non-contact gas measuring method according to claim 12,
    The control unit emits the electromagnetic wave from the electromagnetic wave irradiation unit and changes the transmittance so that the optical element functions as a reflector;
    The reception oscillation unit outputs a voltage or current value that varies according to the intensity of the electromagnetic wave reflected from the optical element as a correction value to the analysis unit;
    The analysis unit correcting the measurement value error using the correction value acquired by the reception oscillation unit;
    A non-contact gas measuring method.
  15.  請求項12記載の非接触ガス計測方法において、
     前記受信発振部が、電磁波を照射するステップと、
     前記電磁波照射部が、前記受信発振部が出射する前記電磁波と異なる周波数の電磁波を出射して前記電磁波照射部が出射する前記電磁波をオン、オフさせることにより、前記対象物に照射させる前記電磁波を変調させて、変調させてた前記電磁波を前記対象物に出射するステップと、
     前記受信発振部が、前記対象物から反射した電磁波を受信して、受信した電磁波の強さに応じて変化する電圧または電流の値を計測値として前記解析部に出力するステップと、
     を有する、非接触ガス計測方法。
    The non-contact gas measuring method according to claim 12,
    The reception oscillating unit irradiating electromagnetic waves;
    The electromagnetic wave irradiation unit emits an electromagnetic wave having a frequency different from that of the electromagnetic wave emitted from the reception oscillation unit, and turns on and off the electromagnetic wave emitted from the electromagnetic wave irradiation unit, thereby irradiating the electromagnetic wave on the object. Modulating and emitting the modulated electromagnetic wave to the object;
    The reception oscillation unit receives an electromagnetic wave reflected from the object, and outputs a voltage or current value that changes according to the intensity of the received electromagnetic wave as a measurement value to the analysis unit;
    A non-contact gas measuring method.
PCT/JP2019/017312 2018-04-27 2019-04-23 Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method WO2019208596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087605A JP2019191125A (en) 2018-04-27 2018-04-27 Non-contact gas measurement device, non-contact gas measurement system, and non-contact gas measurement method
JP2018-087605 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208596A1 true WO2019208596A1 (en) 2019-10-31

Family

ID=68294580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017312 WO2019208596A1 (en) 2018-04-27 2019-04-23 Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method

Country Status (2)

Country Link
JP (1) JP2019191125A (en)
WO (1) WO2019208596A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263072A (en) * 2001-03-08 2002-09-17 Dhc Co Moisture transpiration determining device
JP2010139402A (en) * 2008-12-12 2010-06-24 Aisin Seiki Co Ltd Non-contacting type paint film thickness measuring device and method therefor
JP2010169658A (en) * 2008-12-25 2010-08-05 Canon Inc Analysis apparatus
JP2010172543A (en) * 2009-01-30 2010-08-12 Alcare Co Ltd Method of estimating percutaneous water transpiration quantity and skin barrier function evaluating device
JP2011169645A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
US9518866B2 (en) * 2014-08-22 2016-12-13 Spectrasensors, Inc. Spectrometer with variable beam power and shape
JP2017020837A (en) * 2015-07-08 2017-01-26 パイオニア株式会社 Foreign matter detection device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263072A (en) * 2001-03-08 2002-09-17 Dhc Co Moisture transpiration determining device
JP2010139402A (en) * 2008-12-12 2010-06-24 Aisin Seiki Co Ltd Non-contacting type paint film thickness measuring device and method therefor
JP2010169658A (en) * 2008-12-25 2010-08-05 Canon Inc Analysis apparatus
JP2010172543A (en) * 2009-01-30 2010-08-12 Alcare Co Ltd Method of estimating percutaneous water transpiration quantity and skin barrier function evaluating device
JP2011169645A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
US9518866B2 (en) * 2014-08-22 2016-12-13 Spectrasensors, Inc. Spectrometer with variable beam power and shape
JP2017020837A (en) * 2015-07-08 2017-01-26 パイオニア株式会社 Foreign matter detection device and method

Also Published As

Publication number Publication date
JP2019191125A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US20170231513A1 (en) Vital signs monitoring system
EP1965692A2 (en) System for non-invasive measurement of blood glucose concentration
US11721452B2 (en) Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system
JP2018519889A (en) Photoelectric volume pulse wave recording device
JP2017536147A (en) Detection of blood glucose levels in a non-invasive in situ using electromagnetic radiation
KR20170143351A (en) Method for controlling spectrometric sensor and electronic device implementing the same
US20220354398A1 (en) Device, system and method for non-invasive monitoring of physiological measurements
US20130222788A1 (en) Roughness evaluating apparatus, and object evaluating apparatus and roughness evaluating method using the same
WO2019117032A1 (en) Noncontact gas measurement device, noncontact gas measurement system, portable terminal, and noncontact gas measurement method
EP3913353A1 (en) Method of calibrating optical sensor, optical sensor, and apparatus for estimating bio-information
WO2019208596A1 (en) Non-contact gas measuring device, non-contact gas measuring system, and non-contact gas measuring method
JP5645125B2 (en) Sweat measurement method
JP6152938B2 (en) Electronic mirror device
JP7323682B2 (en) Non-contact gas measuring device, non-contact gas measuring system, portable terminal, and non-contact gas measuring method
JP2007105331A5 (en)
KR20190114775A (en) Electronic apparatus and method for controlling the same for obtaining state information of object
KR20180010672A (en) Electronic device
US20220369963A1 (en) Biological information measuring device and biological information measuring method
JP2019170542A (en) Biometric measurement device and program
US20160192885A1 (en) Apparatus and method for measuring biological signal
CN107703092B (en) Failure detection method for in-vivo filler and mobile terminal
CN107669276B (en) Safety inspection method for in-vivo filler and mobile terminal
JP2021074526A (en) Biological information measuring apparatus and biological information measuring method
KR101728970B1 (en) Method and apparatus for sensing 3 dimensional biometric information using light
JP6356524B2 (en) Measuring apparatus and measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793129

Country of ref document: EP

Kind code of ref document: A1