WO2016121540A1 - Spectrometry device and spectrometry method - Google Patents

Spectrometry device and spectrometry method Download PDF

Info

Publication number
WO2016121540A1
WO2016121540A1 PCT/JP2016/051187 JP2016051187W WO2016121540A1 WO 2016121540 A1 WO2016121540 A1 WO 2016121540A1 JP 2016051187 W JP2016051187 W JP 2016051187W WO 2016121540 A1 WO2016121540 A1 WO 2016121540A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
interference
polarized light
optical system
Prior art date
Application number
PCT/JP2016/051187
Other languages
French (fr)
Japanese (ja)
Inventor
伊知郎 石丸
Original Assignee
国立大学法人香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人香川大学 filed Critical 国立大学法人香川大学
Priority to JP2016571942A priority Critical patent/JP6660634B2/en
Publication of WO2016121540A1 publication Critical patent/WO2016121540A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a spectroscopic measurement apparatus and a spectroscopic measurement method that can non-invasively measure biological components in the body, such as blood sugar and blood cholesterol, and can be used for semiconductor defect evaluation.
  • the concentration of biological components in blood such as blood glucose (blood glucose) and blood cholesterol is used as an indicator of the disease. Therefore, management of the concentrations of these biological components in blood is important for the prevention and treatment of diseases.
  • blood collected from a subject is usually used.
  • it has become possible to measure the concentration of various biological components from a very small amount of blood and the burden on the subject has been reduced, but blood collection is painful.
  • troublesome operations such as disinfection of blood collection sites and processing of consumables are necessary, there is a need for a device that non-invasively measures biological components without collecting blood.
  • a non-invasive measuring device can be easily used at home, and is useful, for example, for patients who need to measure biological component concentrations on a daily basis for the prevention or treatment of diseases.
  • an interferogram of a biological component is obtained by using an interference phenomenon of an object light beam generated from each bright spot that optically constitutes the biological component, and the object light is separated by Fourier transforming the interferogram. Get characteristics (spectrum).
  • light from a light source for example, near-infrared light having high permeability to a biological membrane is irradiated to a fingertip that is a measurement target, and is generated from the transmitted light and biological components in the fingertip.
  • Object light such as diffused light and scattered light is introduced into the phase shifter via the objective lens.
  • the object light beam reflected by the fixed mirror part and the movable mirror part constituting the phase shifter is caused to interfere with the imaging lens, and the interference light is detected by a detection part such as a CCD camera. Therefore, by setting the focal plane of the objective lens at the position of a predetermined vein in the fingertip, it is possible to detect the interference light of the object light generated from the target component in the vein.
  • the movable mirror unit is moved by a piezoelectric element or the like, and a phase difference corresponding to the amount of movement of the movable mirror unit is given to the object light beam reflected from the fixed mirror unit and the movable mirror unit. For this reason, when the movable mirror unit is moved continuously and the phase difference is changed, the intensity of the interference light of each wavelength component continuously distributed in a predetermined wavelength region changes accordingly, and the synthesis of these interference lights An interferogram that is a waveform is obtained. A spectral characteristic (spectrum) of the object light can be acquired by performing a Fourier transform on the interferogram.
  • FIG. 1B shows an interferogram obtained by introducing near-infrared light transmitted through the tip of a human index finger into a phase shifter. From FIG. 1B, it is estimated that the interferogram is superimposed with a change in the luminance value of the interference light due to a biological component other than the target component and a change in the luminance value of the interference light accompanying the pulsation of the artery.
  • a spectroscopic measurement method using internal diffused light when light from a light source is irradiated on a fingertip is considered. Since the internal diffused light is light that has entered a relatively shallow portion near the surface layer of the fingertip and is diffused by the biological component, it is possible to avoid the influence of the biological component existing in the deep part of the fingertip. Therefore, if the spectroscopic measurement can be performed using only the internal diffused light, the spectral characteristics of the biological component existing in the vicinity of the surface of the fingertip can be accurately measured.
  • the fingertip is irradiated with light from the light source, not only internally diffused light but also reflected light from the surface of the fingertip is generated. Since the intensity of the surface reflection light is very large compared to the internal diffusion light, the internal diffusion light is buried in the surface reflection light.
  • the influence of the specularly reflected light component is removed by letting the specularly reflected light component out of the objective lens out of the reflected light on the fingertip surface.
  • the reflected light of the light irradiated on the surface of the fingertip includes not only a regular reflection light component but also a diffuse reflection component.
  • the intensity of the diffuse reflection component is much higher than that of the internal diffused light, so that it is difficult to detect the internal diffused light even if the regular reflective component is removed.
  • a problem to be solved by the present invention is a spectroscopic measurement apparatus and spectroscopic measurement capable of accurately measuring the spectral characteristics of a substance contained in the measurement target by reducing the influence of diffuse reflected light on the surface of the measurement target Is to provide a method.
  • the spectroscopic measurement device which has been made to solve the above problems, a) a movable reflector that is arranged alongside the fixed reflector and is movable along a direction perpendicular to the reflecting surface; b) a light irradiating means for causing P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, to be incident on the surface to be measured at a Brewster angle; c) an introduction optical system that introduces measurement light emitted from the measurement object on which the P-polarized light is incident into the fixed reflection portion and the movable reflection portion; d) an interference optical system that forms interference light of measurement light introduced into the fixed reflection part and reflected by the fixed reflection part and measurement light introduced into the movable reflection part and reflected by the movable reflection part; e) an interference light detector for detecting the intensity of the interference light; f) a processing unit for obtaining an interferogram of the measurement light based on
  • the spectroscopic measurement device is: a) a light irradiating means for causing P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, to be incident on the surface to be measured at a Brewster angle; b) a splitting optical system that splits the measurement light emitted from the measurement object on which the P-polarized light is incident into a first measurement light and a second measurement light; c) an interference optical system that forms interference light between the first measurement light and the second measurement light; d) optical path length difference providing means for providing a continuous optical path length difference between the first measurement light and the second measurement light; e) an interference light detector having a plurality of pixels for detecting an intensity distribution of the interference light corresponding to the continuous optical path length difference; f) a processing unit for obtaining an interferogram of the measurement light from an intensity distribution of the interference light detected by the interference light detection unit; and g) a calculation unit that obtains a
  • Brewster's angle refers to the direction of vibration of an electric field when light is incident on the interface between two substances having different refractive indices from the one substance (incident side medium) side to the other substance (transmission side medium) side.
  • the linearly polarized light component (P-polarized light) parallel to the incident surface (the surface including the incident light and the reflected light beam) is incident on the inside of the material, and only the linearly polarized light component (S-polarized light) whose electric field vibration direction is perpendicular to the incident surface is reflected. The angle to do.
  • FIG. 3 is a graph showing the reflectance for each incident angle of P-polarized light and S-polarized light at the interface of water (refractive index 1.33) and air (refractive index 1.00), which are the main components of the skin.
  • the reflectance of each polarized light was obtained from an equation according to the Fresnel reflection law.
  • FIG. 3 shows that the Brewster angle at the interface between water and air is 53 [deg.].
  • the reflectance of the P-polarized light becomes 0, and much of the measurement light emitted from the measurement object.
  • the measurement light emitted from the measurement target is introduced into the fixed reflection portion and the movable reflection portion by the introduction optical system, and is reflected by the fixed reflection portion and the movable reflection portion. A phase difference is given between the measurement beams reflected by the. Then, interference light of both measurement lights is formed by the interference optical system, and an interferogram is obtained from a change in the intensity of the interference light.
  • the measurement light emitted from the measurement target is divided into the first measurement light and the second measurement light by the splitting optical system, and is continuously provided between the two by the optical path length difference providing unit. Difference in optical path length.
  • interference light of the measurement light divided into two by the interference optical system is formed, and an interferogram is obtained from the intensity distribution of the interference light.
  • the interferogram is subjected to Fourier transform, the spectrum of the measurement light (spectral characteristics), that is, the spectral characteristics of the substance contained in the vicinity of the surface layer to be measured is obtained. Qualitative analysis or quantitative analysis can be performed.
  • the reflectance of P-polarized light incident on the surface at a Brewster angle is zero.
  • the reflectance of P-polarized light incident on the surface at a Brewster angle is zero.
  • not all incident angles of P-polarized light incident on the surface are Brewster angles. Diffusely reflects on the surface.
  • Such surface diffuse reflection light is all P-polarized light.
  • the internally diffused light becomes random polarized light including P-polarized light and S-polarized light.
  • the measurement target surface and the introduction optical system between the measurement target surface and the introduction optical system, or between the measurement target surface and the split optical system, or between the introduction optical system and the fixed reflection unit and the movable reflection unit, or division.
  • a polarizing plate that allows the S-polarized light whose electric field is perpendicular to the electric field of the P-polarized light to pass therethrough and does not pass the P-polarized light.
  • the surface diffuse reflection light included in the measurement light can be removed.
  • the spectroscopic measurement apparatus may further include a plate-like light transmissive member having a placement surface on which the measurement target is placed and a light irradiation surface that is a surface opposite to the placement surface. It is a good configuration.
  • the surface of a measuring object can be closely approached to a flat surface by lightly pressing a measuring object, such as a fingertip, on the mounting surface of the said light transmissive member. For this reason, the surface diffuse reflection light emitted from the measurement object when the P-polarized light is incident on the surface of the measurement object through the light transmissive member can be reduced.
  • the Brewster angle is obtained from the refractive index of the light transmissive member and the refractive index of the measurement target.
  • the spectroscopic measurement method includes: a) P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, is incident on the surface to be measured at a Brewster angle.
  • the spectroscopic measurement method includes: a) P-polarized light, which is linearly polarized light whose vibration direction of the electric field is perpendicular to the incident surface, is incident on the surface to be measured at a Brewster angle.
  • the polarizing plate disposed between the splitting optical system and the optical path length difference providing means the S-polarized light whose electric field is linearly polarized light perpendicular to the electric field of the P-polarized light is passed through the measurement light, and the P-polarized light It is good not to let pass.
  • a plate-like light transmissive member having a placement surface on which the measurement object is placed and a light irradiation surface that is a surface opposite to the placement surface, You may make it irradiate this P polarized light to the light irradiation surface of the said transparent member so that the said P polarized light may inject into the surface of the said measuring object with a Brewster angle.
  • the measurement light emitted from the measurement target when the light from the light source is incident on the surface of the measurement target is divided into two and a phase difference is given between the two.
  • interference light of the measurement light divided into two is formed by the interference optical system, and an interferogram is obtained.
  • the interferogram is Fourier transformed to obtain the spectrum of the measurement light (spectral characteristics), that is, the spectral characteristics of the substance contained in the vicinity of the surface layer to be measured. From this spectral characteristic, qualitative analysis or quantitative analysis of the substance is performed. It can be performed.
  • the reflectance becomes 0, and most of the measurement light emitted from the measurement object is placed in a relatively shallow portion near the surface layer of the measurement object.
  • the diffused light in which the invading P-polarized light is diffused by the substance contained in the shallow portion can be obtained. For this reason, the spectral characteristics of the substance in the vicinity of the surface layer to be measured can be obtained with high accuracy.
  • Schematic showing the main components of the spectroscopic optical system of a conventional biological component measuring device using transmitted light An example of an interferogram obtained when a human index finger is irradiated with light from a light source.
  • the graph which shows the relationship between an incident angle and a reflectance when P polarized light and S polarized light are made incident on the skin from the air.
  • Explanatory drawing which shows the measurement light which goes to a phase shifter when a polarizing plate is not provided in the latter part of an objective lens
  • FIG. 1 is a schematic configuration diagram of a spectrometer according to a first embodiment of the present invention.
  • the schematic block diagram of the spectrometer which concerns on 2nd Embodiment of this invention.
  • the schematic block diagram of the spectrometer which concerns on 3rd Embodiment of this invention.
  • the schematic block diagram of the spectrometer which concerns on 4th Embodiment of this invention.
  • the schematic block diagram of the spectrometer which concerns on 5th Embodiment of this invention.
  • the schematic block diagram of the optical system used for the experiment verified about the polarization characteristic of the light irradiated to a measuring object.
  • FIG. 12B is an interferogram obtained when P-polarized light is irradiated to a region surrounded by a square frame in FIG. 12A with the first polarizing plate and the second polarizing plate installed. Spectrum obtained by Fourier transform of the interferogram in the area surrounded by the square frame in FIG.
  • the spectroscopic measurement apparatus and spectroscopic measurement method In the spectroscopic measurement apparatus and spectroscopic measurement method according to the present invention, light from the light source is incident on the surface of the measurement object at a Brewster angle with P-polarized light, which is linearly polarized light whose vibration direction is parallel to the incident surface.
  • the measurement light emitted from the measurement target is introduced into the fixed reflection portion and the movable reflection portion or the phase shifter by the introduction optical system such as an objective lens.
  • the P-polarized light can be extracted from the light emitted from the light source by disposing the polarizing plate 1 between the light source and the measurement target.
  • the measurement light is divided into two, and interference light of the measurement light divided into these two is formed.
  • a continuous phase difference is provided between the two measurement lights by moving the movable reflection unit or by the optical path length difference providing unit.
  • An interferogram of measurement light is obtained.
  • the spectral characteristic of the substance contained in a measuring object is measured by calculating
  • P-polarized light only the vibration direction of the electric field is incident side and parallel to the linearly polarized light is incident on the surface to be measured at the Brewster angle theta B, the vibration direction of electric field at the incident surface perpendicular linear polarization
  • Some S-polarized light is not incident on the object to be measured. Therefore, the reflectance of P-polarized light on the surface of the measurement object is theoretically 0, and the P-polarized light that has entered the relatively shallow part near the surface layer of the measurement object is included in the shallow part from the measurement object. Only the diffused internal diffused light is emitted.
  • the incident angle at the incident point of each light beam constituting the light from the light source toward the measurement target is The light does not necessarily have a Brewster angle, and some light rays are incident on the surface of the measurement object at an angle other than the Brewster angle. Since the P-polarized light incident on the surface of the measurement object at an angle other than the Brewster angle is reflected on the surface, the light emitted from the measurement object includes both internal diffused light and surface diffuse reflected light. Usually, the intensity of the surface diffuse reflection light is very large compared to the intensity of the internal diffusion light. Therefore, when the internal diffused light and the surface diffuse reflected light are incident on the objective lens, the internal diffused light is buried in the surface diffuse reflected light.
  • the surface diffuse reflection light maintains the polarization characteristics of incident light, but the internal diffuse light is depolarized. That is, the surface diffuse reflected light is the same P-polarized light as the incident light, but the internal diffused light is randomly polarized. Therefore, paying attention to such an optical phenomenon, when the surface of the object to be measured has irregularities, as shown in FIG. 4B, a so-called crossed Nicols condition is applied to the polarizing plate 1 after the objective lens.
  • the polarizing plate 2 was installed.
  • the condition of crossed Nicols means a condition in which an electric field transmitted through one polarizing plate and an electric field transmitted through the other polarizing plate are orthogonal to each other.
  • the surface diffuse reflection light is introduced into the fixed reflection portion and the movable reflection portion or the phase shifter.
  • the P-polarized light contained in the internal diffused light is shielded by the polarizing plate 2 installed at the subsequent stage of the objective lens, but a part of the internal diffused light (S-polarized light) is transmitted, so that the measurement consists of only the internal diffused light. Interference light of light can be detected.
  • FIG. 5 is a schematic configuration diagram of the spectrometer according to the first embodiment of the present invention.
  • the spectroscopic measurement apparatus includes a spectroscopic measurement unit 10 and a control device 20 that processes the measurement results obtained by the spectroscopic measurement unit 10.
  • the spectroscopic measurement unit 10 includes a light source 101, a first polarizing plate 102, an objective lens 103, a second polarizing plate 104, a phase shifter 105, an imaging lens 106, and a detection unit 107.
  • the spectroscopic measurement unit 10 is housed in a casing made of a material that does not transmit light, such as plastic or metal.
  • An opening is formed in the casing, and light from the light source 101 is irradiated to the measurement object through the opening.
  • the objective lens 103 and the imaging lens 106 correspond to an introduction optical system and an interference optical system, respectively.
  • the objective lens 103 is disposed to face the opening of the casing.
  • the imaging lens 106 is disposed in a direction in which the optical axis is orthogonal to the objective lens 103.
  • the light source 101 is a light source that emits light having a wavelength that penetrates the surface of the measurement target and enters the measurement target, and the emitted light is incident on the surface of the measurement target at a predetermined angle. It is arranged in such a direction. For example, when the measurement target is a fingertip, a light source that emits near infrared light having a good skin permeability and a wavelength of about 1 ⁇ m is used.
  • the predetermined angle is an angle corresponding to the Brewster angle ⁇ B on the surface of the measurement target, where the refractive index of the atmosphere that is the surrounding environment of the measurement target is n 1 , and the refractive index of the measurement target is n 2.
  • the detection unit 107 is composed of, for example, a 16 ⁇ 16 pixel two-dimensional CCD (Charge Coupled Device) camera, and is arranged such that the light receiving surface of the detection unit 107 is positioned on the imaging surface of the imaging lens 106.
  • CCD Charge Coupled Device
  • the detection signal of the detection unit 107 is input to the control device 20.
  • the control device 20 obtains an interferogram from the detection signal of the detection unit 107, mathematically Fourier transforms the interferogram, and obtains a spectral characteristic (spectrum) that is a relative intensity for each wavelength of the measurement light.
  • a calculation unit 202, a display for outputting calculation results, and an output device 203 such as a printer are provided.
  • the phase shifter 105 is disposed between the objective lens 103 and the imaging lens 106.
  • the phase shifter 105 includes a fixed mirror unit 51, a movable mirror unit 52 arranged side by side with the fixed mirror unit 51, and a drive mechanism 53 that moves the movable mirror unit 52.
  • the fixed mirror unit 51 and the movable mirror unit 52 correspond to the fixed reflection unit and the movable reflection unit of the present invention, respectively.
  • Both the fixed mirror unit 51 and the movable mirror unit 52 have a rectangular reflecting surface that is inclined at an angle of 45 ° with respect to the optical axis of the objective lens 103 and the optical axis of the imaging lens 106.
  • the reflecting surfaces of both mirror parts are arranged side by side with a very slight gap.
  • the drive mechanism 53 is composed of, for example, a piezoelectric element having a capacitance sensor, receives a signal from the control device 20, and maintains a tilt angle of the reflecting surface with respect to the optical axis at 45 ° with the movable mirror portion. 52 is moved in the direction (arrow A direction) perpendicular to the reflecting surface. With such a configuration, the relative position of the movable mirror unit 52 with respect to the fixed mirror unit 51 changes, and a phase difference is given between the light beam reflected by the fixed mirror unit 51 and the light beam reflected by the movable mirror unit 52. .
  • the movement amount of the objective lens 103 or the imaging lens 106 of the movable mirror unit 52 in the optical axis direction is 1 / ⁇ 2 of the movement amount of the movable mirror unit 52 in the arrow A direction.
  • the optical path length difference that gives a relative phase change between the fixed light beam and the movable light beam is twice the amount of movement of the movable mirror 52 in the optical axis direction.
  • the first polarizing plate 102 transmits only the P-polarized light, which is linearly polarized light in which the vibration direction of the electric field is parallel to the incident surface, out of the light emitted from the light source 101.
  • the incident surface refers to a surface including incident light and reflected light.
  • the second polarizing plate 104 is a polarizing plate that allows only the S-polarized light in which the polarization direction of the electric field and the vibration direction of the electric field are orthogonal to pass through the light transmitted through the objective lens 103 and does not pass the P-polarized light.
  • FIG. 6 is a schematic configuration diagram of a spectrometer according to the second embodiment of the present invention. This embodiment is different from the first embodiment in that light from a light source is irradiated to a measurement object through a window portion. Although not shown, the detection signal of the detection unit 107 is also input to the control device 20 in the spectroscopic measurement apparatus according to the second embodiment.
  • the window part 11 which is a rectangular plate-shaped light transmissive member is inserted in the opening provided in the casing, and the measurement object is on the surface of the window part 11 located outside the casing.
  • the light from the light source 101 is irradiated on the surface that is placed and located inside the casing.
  • the surface on which the measurement target is placed corresponds to the placement surface of the present invention
  • the surface irradiated with light from the light source corresponds to the light irradiation surface of the present invention.
  • the Brewster angle on the surface of the measurement target is the Brewster angle ⁇ B at the interface between the measurement target and the window portion 11. Since the light emitted from the light source 101 is refracted at a predetermined angle when entering the window portion 11, the incident angle from the light source 101 to the window portion 11 is set in consideration of this refraction angle. Since configurations other than those described above are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 7 is a schematic configuration diagram of a spectrometer according to the third embodiment of the present invention. This embodiment is different from the first embodiment in that the second polarizing plate is not provided. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted. Although not shown, the detection signal of the detection unit 107 is also input to the control device 20 in the spectroscopic measurement device according to the third embodiment.
  • the third embodiment is an example of an apparatus suitable for measuring spectral characteristics of a measurement target having a flat surface.
  • a measurement target having a substantially flat surface almost no surface diffuse reflection light is generated. Therefore, even if there is no second polarizing plate, the measurement light does not include surface diffuse reflection light.
  • a window portion as shown in the second embodiment may be provided. By providing the window portion, it is possible to prevent dust and the like from entering the casing.
  • FIG. 8 is a schematic configuration diagram of a spectrometer according to the fourth embodiment of the present invention.
  • the configuration of the phase shifter and the interference optical system are different between the fourth embodiment and the second embodiment. Since the other configuration is the same as that of the second embodiment, the same reference numerals as those of the second embodiment are given and description thereof is omitted.
  • the detection signal of the detection unit 107 is also input to the control device 20 in the spectroscopic measurement device according to the fourth embodiment.
  • a cylindrical lens 30 is used as the interference optical system.
  • the phase shifter 40 includes a first transmission unit 401 in which the light irradiation surface and the light emission surface are parallel, and one of the light irradiation surface and the light emission surface is the light irradiation surface or the emission surface of the first transmission unit 401.
  • the optical member is formed of a wedge-shaped second transmitting portion 402 that is on the same plane and in which the other of the light irradiation surface and the light emission surface is inclined.
  • the second transmission part 402 is configured such that the thickness of the second transmission part 402 at the boundary surface between the first transmission part 401 and the second transmission part 402 gradually decreases from one side to the other side.
  • the light irradiation surface is inclined.
  • the inclination angle of the light irradiation surface of the second transmission unit 402 is determined by the phase shift amount determined by the wave number resolution and the sampling interval for each pixel of the detection unit 107, there is no problem even if they are slightly shifted.
  • the 1st transmission part 401 and the 2nd transmission part 402 may each be comprised from a separate optical member, and it is good also as the 1st transmission part 401 and the 2nd transmission part 402 by processing one surface of one optical member. .
  • the measurement light introduced into the phase shifter 40 enters the first transmission unit 401 and the second transmission unit 402 separately, and passes through the first transmission unit 401 and the second transmission unit 402, and then is cylindrical. Head to the lens 30.
  • the second transmission part 402 since the second transmission part 402 has a wedge shape, the measurement light transmitted through the second transmission part 402 (second measurement light) and the measurement light transmitted through the first transmission part 401 (first measurement light). Is given a continuous optical path length difference. That is, in this embodiment, the phase shifter 40 functions as a splitting optical system and an optical path length difference providing unit.
  • the cylindrical lens 30 is arranged such that the convex surface portion faces the phase shifter 40 side and the flat surface portion faces the light receiving surface side of the detection unit 107.
  • the light receiving surface of the detection unit 107 is located on the imaging surface of the cylindrical lens 30. For this reason, the first and second measurement lights incident on the cylindrical lens 30 are converged by the cylindrical lens 30 and condensed on the same straight line on the light receiving surface of the detection unit 107 to form an interference image.
  • the intensity of the interference image formed on the light receiving surface of the detection unit 107 is the continuous measurement. It changes according to the optical path length difference.
  • an interferogram interference light intensity distribution
  • the spectral characteristics of the internal biological components in the vicinity of the surface layer to be measured can be obtained as in the first and second embodiments.
  • FIG. 9 is a schematic configuration diagram of a spectrometer according to the fifth embodiment of the present invention.
  • the second polarizing plate is not provided, and this point is different from the fourth embodiment. Since other configurations are the same as those of the fourth embodiment, the same reference numerals are given and description thereof is omitted.
  • the P-polarized light component of the near-infrared light passes through the first polarizing plate 102 and enters the fingertip.
  • near-infrared light from the light source 101 is incident on the surface of the fingertip at a Brewster angle, so most of the P-polarized light penetrates the skin of the fingertip and enters the inside of the fingertip.
  • the diffused light (internal diffused light) diffuses again through the skin of the fingertip, reaches the inside of the casing through the opening, and enters the objective lens 103. . Since the light that has entered and diffused into the fingertip has its polarization characteristics canceled, the internally diffused light includes both a P-polarized component and an S-polarized component.
  • the surface of the fingertip is uneven, a part of the P-polarized component of the near infrared light incident on the fingertip surface is incident on the fingertip surface at an angle different from the Brewster angle and diffusely reflected.
  • This diffuse reflected light (surface diffuse reflected light) reaches the inside of the casing from the opening and enters the objective lens 103.
  • the surface diffuse reflection light incident on the objective lens 103 is composed of a P-polarized component.
  • the internal diffused light and the surface diffuse reflected light incident on the objective lens 103 are incident on the second polarizing plate 104 as substantially parallel light beams. Since the second polarizing plate 104 blocks the P-polarized light component and allows only the S-polarized light component to pass therethrough, the P-polarized light component of the internal diffused light incident on the second polarizing plate 104 and the surface diffused reflected light pass through the second polarizing plate 104. The S-polarized component of the internally diffused light does not pass through the second polarizing plate 104 and reaches the entire surfaces of the fixed mirror unit 51 and the movable mirror unit 52 of the phase shifter 105.
  • the light reflected by the fixed mirror unit 51 is also called fixed reflected light
  • the light reflected by the movable mirror unit 52 is also called movable reflected light.
  • the fixed reflected light and the movable reflected light incident on the imaging lens 106 are imaged on the light receiving surface of the detection unit 107 to form an interference image.
  • the movable mirror unit 52 is moved to continuously change the optical path length difference between the movable reflected light and the fixed reflected light.
  • a waveform of an imaging intensity change (interference light intensity change) called an interferogram is obtained.
  • the spectral characteristic of the S-polarized component of the internally diffused light can be obtained by mathematically Fourier transforming this interferogram.
  • FIG. 10 shows an optical system used in the experiment.
  • FIGS. 11A and 11B show images obtained when P-polarized light and S-polarized light are irradiated to the fingertip to be measured at the Brewster angle, respectively. From these images, it can be seen that a brighter image is observed when s-polarized light is irradiated. This is considered to be because the diffusely reflected light on the surface of the fingertip was suppressed in the P-polarized light than in the S-polarized light. Further, FIG.
  • FIG. 11C shows an image obtained when a second polarizing plate that is in a crossed Nicols state with the first polarizing plate is disposed between the measuring target and the introduction optical system, and the P-polarized light is irradiated onto the measuring target.
  • the image in FIG. 11C is much darker than that in FIG. 11A, indicating that the surface diffused light is further suppressed. From the above, it is effective to reduce the surface diffuse reflection light of the measurement target by irradiating the measurement target with P-polarized light at the Brewster angle and disposing a polarizing plate that is crossed Nicol between the measurement target and the introduction optical system. It was proved.
  • FIG. 12A shows an observation image of veins near the skin surface of the fingertip when the first polarizing plate and the second polarizing plate are installed.
  • FIG. 12B shows the result of detecting the intensity of interference light by irradiating P-polarized light in the area surrounded by the square in FIG. 12A under the same optical conditions as the image shown in FIG. 11C (hereinafter referred to as optical condition Pc).
  • optical condition Pc optical condition
  • the obtained interferogram is shown.
  • the interferogram shown in FIG. 12B does not have a change in the luminance value of the interference light accompanying pulsation. From this result, it can be seen that only the spectral characteristics of the biological components contained in the vein near the surface of the fingertip can be measured.
  • FIG. 13A shows a spectrum obtained by Fourier-transforming the interferogram obtained by irradiating the region surrounded by the square in FIG. 12A with P-polarized light in the wavelength band of 600 nm to 900 nm under the optical condition Pc.
  • FIG. 13B shows a spectrum obtained when the blood of a rat is irradiated with light having a wavelength band of 600 nm to 900 nm under the same conditions as in FIG. 13A. From the comparison with FIG. 13B, it was inferred that the spectrum of FIG. 13A represents the spectral characteristics of the biological component contained in the vein inside the fingertip.
  • FIG. 14B shows a spectrum obtained by Fourier-transforming the interferogram obtained by irradiating the region shown in FIG. 14A with P-polarized light in the wavelength band of 900 nm to 1700 nm under the optical condition Pc.
  • FIG. 14C shows a generally known absorption spectrum of water (see Non-Patent Document 1). From the comparison between FIG. 14B and FIG. 14C, it can be seen that the absorption spectrum of water existing near the surface of the fingertip can be obtained satisfactorily.
  • FIGS. 15A to 15D show experimental results for verifying the difference in the observed image and the spectrum depending on the presence or absence of the window portion 11.
  • FIG. 15A shows the wavelength of 600 nm to 900 nm at the fingertip using the spectroscopic measurement apparatus (without window part) according to the first embodiment
  • FIG. 15B shows the spectroscopic measurement apparatus (with window part) according to the second embodiment.
  • band with the optical conditions Pc is shown.
  • FIG. 15C shows a spectrum obtained by Fourier transform of the interferogram obtained at that time.
  • FIG. 15D shows a spectrum obtained by Fourier transforming the interferogram obtained when the blood of the rat is irradiated with light in the wavelength band of 600 nm to 900 nm under the same conditions as in FIG. 15C.
  • FIG. 15A and 15B show that the observation image of the fingertip is brighter when the window is provided. This was presumed to be because the surface of the fingertip was flattened by the window and the surface diffuse reflection light was reduced. Further, FIG. 15C shows that an absorption spectrum of veins existing in the vicinity of the surface of the fingertip can be satisfactorily obtained in any state with a window portion and without a window portion.
  • the phase shifter is configured by the fixed mirror unit and the movable mirror unit.
  • the phase shifter 60 may be configured by the reference mirror unit 601 and the inclined mirror unit 602. good.
  • the reflecting surface of the reference mirror unit 601 is inclined by 45 ° with respect to the optical axis of the objective lens 104, and the reflecting surface of the inclined mirror unit 602 is slightly inclined with respect to the reflecting surface of the reference mirror unit 61.
  • a continuous optical path length difference is given between the measurement light reflected by the reference mirror unit 601 and the measurement light reflected by the inclined mirror unit 602, and then enters the cylindrical lens 30. Therefore, the same effect as the fourth and fifth embodiments can be obtained.

Abstract

A spectrometry device according to the present invention is provided with: a light source 101 that causes p-polarized light, which is linearly polarized light having an electric field vibration direction parallel to the incidence surface, to be incident on the surface of an object of measurement at Brewster's angle; an introduction optical system 103 for introducing measurement light emitted from the object of measurement struck by the p-polarized light into a phase shifter 105 and dividing the same into two measurement light beams; an interference light optical system 106 for forming interference light from the two measurement light beams; an interference light detection unit 107 for detecting the intensity of the interference light; a processing unit 201 for creating an interferogram of the measurement light on the basis of the intensity variation of the interference light obtained through the driving of the phase shifter 105; and a calculation unit 202 for obtaining a measurement light spectrum by applying the Fourier transform to the measurement light interferogram.

Description

分光測定装置および分光測定方法Spectrometer and spectroscopic method
 本発明は、血糖や血中コレステロール等の体内の生体成分を非侵襲で測定したり、半導体の欠陥評価に用いたりすることができる分光測定装置及び分光測定方法に関する。 The present invention relates to a spectroscopic measurement apparatus and a spectroscopic measurement method that can non-invasively measure biological components in the body, such as blood sugar and blood cholesterol, and can be used for semiconductor defect evaluation.
 糖尿病や高脂血症等のさまざまな疾患において、血中グルコース(血糖)や血中コレステロールといった血液中の生体成分の濃度が疾患の指標として用いられている。従って、これら血液中の生体成分の濃度の管理は、疾患の予防や治療のために重要である。血液中の生体成分の濃度の測定は、通常、被検者から採取した血液が用いられる。近年、非常に少量の血液から様々な生体成分の濃度の測定が可能になり、被検者の負担が少なくなってきたものの、血液の採取には苦痛を伴う。また、採血部位の消毒や消耗品の処理などの煩わしい作業が必要であるため、血液を採取せずに生体成分を非侵襲で測定する装置が求められている。非侵襲の測定装置であれば一般家庭でも簡便に使用することができ、例えば疾患の予防や治療のために日常的に生体成分の濃度を測定しなければならない患者にとって有用である。 In various diseases such as diabetes and hyperlipidemia, the concentration of biological components in blood such as blood glucose (blood glucose) and blood cholesterol is used as an indicator of the disease. Therefore, management of the concentrations of these biological components in blood is important for the prevention and treatment of diseases. For the measurement of the concentration of biological components in blood, blood collected from a subject is usually used. In recent years, it has become possible to measure the concentration of various biological components from a very small amount of blood, and the burden on the subject has been reduced, but blood collection is painful. Moreover, since troublesome operations such as disinfection of blood collection sites and processing of consumables are necessary, there is a need for a device that non-invasively measures biological components without collecting blood. A non-invasive measuring device can be easily used at home, and is useful, for example, for patients who need to measure biological component concentrations on a daily basis for the prevention or treatment of diseases.
 血液中の生体成分の濃度を非侵襲で測定する装置の一つに本願発明者により発明された装置がある(特許文献1参照)。この装置では、生体成分を光学的に構成する各輝点から生じる物体光束の干渉現象を利用することにより生体成分のインターフェログラムを求め、このインターフェログラムをフーリエ変換することにより物体光の分光特性(スペクトル)を取得する。 There is a device invented by the inventor of the present application as one of the devices for non-invasively measuring the concentration of biological components in blood (see Patent Document 1). In this device, an interferogram of a biological component is obtained by using an interference phenomenon of an object light beam generated from each bright spot that optically constitutes the biological component, and the object light is separated by Fourier transforming the interferogram. Get characteristics (spectrum).
 具体的には、図1Aに示すように、光源からの光、例えば生体膜に対する透過性が高い近赤外光を測定対象である指先に照射し、その透過光や指先内の生体成分から生じる拡散光・散乱光等の物体光を対物レンズを介して位相シフタに導入する。そして、位相シフタを構成する固定ミラー部と可動ミラー部によって反射された物体光束を結像レンズによって干渉させ、その干渉光をCCDカメラ等の検出部によって検出する。従って、対物レンズの合焦面を指先内の所定の静脈の位置に設定することにより、その静脈内の目的成分から生じる物体光の干渉光を検出することができる。 Specifically, as shown in FIG. 1A, light from a light source, for example, near-infrared light having high permeability to a biological membrane is irradiated to a fingertip that is a measurement target, and is generated from the transmitted light and biological components in the fingertip. Object light such as diffused light and scattered light is introduced into the phase shifter via the objective lens. Then, the object light beam reflected by the fixed mirror part and the movable mirror part constituting the phase shifter is caused to interfere with the imaging lens, and the interference light is detected by a detection part such as a CCD camera. Therefore, by setting the focal plane of the objective lens at the position of a predetermined vein in the fingertip, it is possible to detect the interference light of the object light generated from the target component in the vein.
 可動ミラー部はピエゾ素子などにより移動されるようになっており、該可動ミラー部の移動量に応じた位相差が固定ミラー部と可動ミラー部から反射される物体光束に付与される。このため、可動ミラー部を連続的に移動させ、位相差を変化させると、これに伴い所定の波長域に連続して分布する各波長成分の干渉光の強度が変化し、これら干渉光の合成波形であるインターフェログラムが得られる。このインターフェログラムをフーリエ変換することにより物体光の分光特性(スペクトル)を取得することができる。 The movable mirror unit is moved by a piezoelectric element or the like, and a phase difference corresponding to the amount of movement of the movable mirror unit is given to the object light beam reflected from the fixed mirror unit and the movable mirror unit. For this reason, when the movable mirror unit is moved continuously and the phase difference is changed, the intensity of the interference light of each wavelength component continuously distributed in a predetermined wavelength region changes accordingly, and the synthesis of these interference lights An interferogram that is a waveform is obtained. A spectral characteristic (spectrum) of the object light can be acquired by performing a Fourier transform on the interferogram.
特開2008-309707号公報JP 2008-309707 A WO2013/129519 A1WO2013 / 129519 A1
 指先内には多くの静脈が存在する。また、静脈以外にも様々な生体成分が存在する。このため、指先に照射された近赤外光は、指先内に存在する多くの静脈や生体成分を経た後、透過光や散乱光・拡散光として指先から出射する。従って、近赤外光の合焦面を指先内の特定の静脈の位置に設定したとしても、該特定の静脈の近傍に位置する別の静脈やその他の生体成分から生じる物体光が特定の静脈内の目的成分から生じる物体光とともに干渉光を形成するため、インターフェログラムから特定の静脈に含まれる目的成分以外の生体成分の影響を除去することが難しい。そのようなインターフェログラムからは目的成分の正確なスペクトルを得ることができない。例えば、図1Bは、ヒトの人差し指の先端を透過した近赤外光を位相シフタに導入することにより得られたインターフェログラムを示す。図1Bから、インターフェログラムには、目的成分以外の生体成分による干渉光の輝度値の変化や動脈の脈動に伴う干渉光の輝度値の変化が重畳していることが推測される。 There are many veins in the fingertip. In addition to veins, there are various biological components. For this reason, near-infrared light irradiated to the fingertip passes through many veins and biological components existing in the fingertip, and then exits from the fingertip as transmitted light, scattered light, or diffused light. Therefore, even if the focal plane of near-infrared light is set at the position of a specific vein in the fingertip, object light generated from another vein or other biological component located in the vicinity of the specific vein Since interference light is formed together with object light generated from the target component, it is difficult to remove the influence of biological components other than the target component contained in a specific vein from the interferogram. An accurate spectrum of the target component cannot be obtained from such an interferogram. For example, FIG. 1B shows an interferogram obtained by introducing near-infrared light transmitted through the tip of a human index finger into a phase shifter. From FIG. 1B, it is estimated that the interferogram is superimposed with a change in the luminance value of the interference light due to a biological component other than the target component and a change in the luminance value of the interference light accompanying the pulsation of the artery.
 これに対して、光源からの光を指先に照射したときの内部拡散光を用いた分光測定方法が考えられている。内部拡散光は、指先の表層付近の比較的浅い部分に侵入した光が生体成分によって拡散されたものであるため、指先の深部に存在する生体成分の影響を避けることができる。従って、内部拡散光のみを用いて分光測定を行うことができれば指先の表層付近に存在する生体成分の分光特性を精度良く測定することができる。しかしながら、光源からの光を指先に照射した場合、内部拡散光だけでなく、指先の表面からの反射光も発生する。内部拡散光に比べて表面反射光の強度は非常に大きいため、内部拡散光が表面反射光に埋もれてしまう。 On the other hand, a spectroscopic measurement method using internal diffused light when light from a light source is irradiated on a fingertip is considered. Since the internal diffused light is light that has entered a relatively shallow portion near the surface layer of the fingertip and is diffused by the biological component, it is possible to avoid the influence of the biological component existing in the deep part of the fingertip. Therefore, if the spectroscopic measurement can be performed using only the internal diffused light, the spectral characteristics of the biological component existing in the vicinity of the surface of the fingertip can be accurately measured. However, when the fingertip is irradiated with light from the light source, not only internally diffused light but also reflected light from the surface of the fingertip is generated. Since the intensity of the surface reflection light is very large compared to the internal diffusion light, the internal diffusion light is buried in the surface reflection light.
 表面反射光の影響を小さくするために、図2に示すように斜方照明で指先を照射することが考えられている(特許文献2参照)。この方法では、指先表面における反射光のうち正反射光成分を対物レンズの外に逃がすことにより該正反射光成分の影響を除去している。しかしながら、指先の表面には指紋等の微小な凹凸が多数存在するため、指先表面に照射された光の反射光には正反射光成分だけでなく拡散反射成分が含まれる。正反射成分と同様、拡散反射成分も内部拡散光に比べると強度が非常に大きいため、正反射成分を除去しても内部拡散光の検出が困難であった。 In order to reduce the influence of surface reflected light, it is considered to irradiate the fingertip with oblique illumination as shown in FIG. 2 (see Patent Document 2). In this method, the influence of the specularly reflected light component is removed by letting the specularly reflected light component out of the objective lens out of the reflected light on the fingertip surface. However, since there are many minute irregularities such as fingerprints on the surface of the fingertip, the reflected light of the light irradiated on the surface of the fingertip includes not only a regular reflection light component but also a diffuse reflection component. Like the regular reflection component, the intensity of the diffuse reflection component is much higher than that of the internal diffused light, so that it is difficult to detect the internal diffused light even if the regular reflective component is removed.
 本発明が解決しようとする課題は、測定対象の表面における拡散反射光の影響を小さくして該測定対象の内部に含まれる物質の分光特性を精度良く測定することができる分光測定装置および分光測定方法を提供することである。 A problem to be solved by the present invention is a spectroscopic measurement apparatus and spectroscopic measurement capable of accurately measuring the spectral characteristics of a substance contained in the measurement target by reducing the influence of diffuse reflected light on the surface of the measurement target Is to provide a method.
 上記課題を解決するために成された本発明の第1態様に係る分光測定装置は、
 a)固定反射部及び該固定反射部と並んで配置された、反射面に垂直な方向に移動可能な可動反射部と、
 b)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させる光照射手段と、
 c)前記P偏光が入射された前記測定対象から発せられた測定光を前記固定反射部および前記可動反射部に導入する導入光学系と、
 d)前記固定反射部に導入され該固定反射部によって反射された測定光と前記可動反射部に導入され該可動反射部によって反射された測定光の干渉光を形成する干渉光学系と、
 e)前記干渉光の強度を検出する干渉光検出部と、
 f)前記可動反射部を移動させることにより前記干渉光検出部で検出される干渉光の強度の変化に基づき前記測定光のインターフェログラムを求める処理部と、
 g)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求める演算部と
 を備えることを特徴とする。
The spectroscopic measurement device according to the first aspect of the present invention, which has been made to solve the above problems,
a) a movable reflector that is arranged alongside the fixed reflector and is movable along a direction perpendicular to the reflecting surface;
b) a light irradiating means for causing P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, to be incident on the surface to be measured at a Brewster angle;
c) an introduction optical system that introduces measurement light emitted from the measurement object on which the P-polarized light is incident into the fixed reflection portion and the movable reflection portion;
d) an interference optical system that forms interference light of measurement light introduced into the fixed reflection part and reflected by the fixed reflection part and measurement light introduced into the movable reflection part and reflected by the movable reflection part;
e) an interference light detector for detecting the intensity of the interference light;
f) a processing unit for obtaining an interferogram of the measurement light based on a change in intensity of the interference light detected by the interference light detection unit by moving the movable reflection unit;
and g) a calculation unit that obtains a spectrum of the measurement light by subjecting the interferogram to Fourier transform.
 また、本発明の第2態様に係る分光測定装置は、
 a)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させる光照射手段と、
 b)前記P偏光が入射された前記測定対象から発せられた測定光を第1測定光と第2測定光に分割する分割光学系と、
 c)前記第1測定光と前記第2測定光の干渉光を形成する干渉光学系と、
 d)第1測定光と第2測定光の間に連続的な光路長差を与える光路長差付与手段と、
 e)前記連続的な光路長差に対応する前記干渉光の強度分布を検出するための複数の画素を有する干渉光検出部と、
 f)前記干渉光検出部で検出される前記干渉光の強度分布から前記測定光のインターフェログラムを求める処理部と、
 g)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求める演算部と
 を備えることを特徴とする。
The spectroscopic measurement device according to the second aspect of the present invention is:
a) a light irradiating means for causing P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, to be incident on the surface to be measured at a Brewster angle;
b) a splitting optical system that splits the measurement light emitted from the measurement object on which the P-polarized light is incident into a first measurement light and a second measurement light;
c) an interference optical system that forms interference light between the first measurement light and the second measurement light;
d) optical path length difference providing means for providing a continuous optical path length difference between the first measurement light and the second measurement light;
e) an interference light detector having a plurality of pixels for detecting an intensity distribution of the interference light corresponding to the continuous optical path length difference;
f) a processing unit for obtaining an interferogram of the measurement light from an intensity distribution of the interference light detected by the interference light detection unit;
and g) a calculation unit that obtains a spectrum of the measurement light by subjecting the interferogram to Fourier transform.
 ブリュースター角とは、屈折率が異なる2つの物質の界面に一方の物質(入射側媒質)側から他方の物質(透過側媒質)側に向けて光を入射させたとき、電場の振動方向が入射面(入射光線と反射光線を含む面)に平行な直線偏光成分(P偏光)は物質の内部に入射し、電場の振動方向が入射面に垂直な直線偏光成分(S偏光)だけが反射する角度をいう。ブリュースター角をθ、入射側媒質の屈折率をn、透過側媒質の屈折率をnとすると、角度θは次の式で表される。
 tan θ = n/n
Brewster's angle refers to the direction of vibration of an electric field when light is incident on the interface between two substances having different refractive indices from the one substance (incident side medium) side to the other substance (transmission side medium) side. The linearly polarized light component (P-polarized light) parallel to the incident surface (the surface including the incident light and the reflected light beam) is incident on the inside of the material, and only the linearly polarized light component (S-polarized light) whose electric field vibration direction is perpendicular to the incident surface is reflected. The angle to do. When the Brewster angle is θ B , the refractive index of the incident side medium is n 1 , and the refractive index of the transmission side medium is n 2 , the angle θ B is expressed by the following equation.
tan θ B = n 2 / n 1
 例えば図3は皮膚の主成分である水(屈折率1.33)と空気(屈折率1.00)の界面におけるP偏光とS偏光の入射角度ごとの反射率を示すグラフである。各偏光の反射率はフレネル反射則による式から求めた。図3から、水と空気の界面におけるブリュースター角は53[deg.]であることが分かる。 For example, FIG. 3 is a graph showing the reflectance for each incident angle of P-polarized light and S-polarized light at the interface of water (refractive index 1.33) and air (refractive index 1.00), which are the main components of the skin. The reflectance of each polarized light was obtained from an equation according to the Fresnel reflection law. FIG. 3 shows that the Brewster angle at the interface between water and air is 53 [deg.].
 従って、測定対象とその周りの媒質(通常は空気)の界面である表面にP偏光だけをブリュースター角で入射させるとP偏光の反射率は0となり、測定対象から発せられた測定光の多くは、測定対象の表層付近の比較的浅い部分に侵入したP偏光が該浅い部分に含まれる物質によって拡散された拡散光となる。ここで、空気中から測定対象にP偏光を入射させる場合の入射角は、空気の屈折率(=1)と測定対象の屈折率から求めることができる。 Therefore, when only P-polarized light is incident at the Brewster angle on the surface that is the interface between the measurement object and the surrounding medium (usually air), the reflectance of the P-polarized light becomes 0, and much of the measurement light emitted from the measurement object. Is diffused light in which P-polarized light that has entered a relatively shallow portion near the surface layer to be measured is diffused by a substance contained in the shallow portion. Here, the incident angle when P-polarized light is incident on the measurement object from the air can be obtained from the refractive index of air (= 1) and the refractive index of the measurement object.
 測定対象から発せられた測定光は、第1態様に係る分光測定装置では、導入光学系によって固定反射部と可動反射部に分かれて導入され、固定反射部で反射された測定光と可動反射部で反射された測定光の間に位相差が与えられる。そして、干渉光学系によって両測定光の干渉光が形成され、この干渉光の強度の変化からインターフェログラムが得られる。また、第2態様に係る分光測定装置では、測定対象から発せられた測定光は分割光学系によって第1測定光および第2測定光に分割され、光路長差付与手段によって両者の間に連続的な光路長差が与えられる。そして、干渉光学系によって2つに分割された測定光の干渉光が形成され、この干渉光の強度分布からインターフェログラムが得られる。いずれの態様においても、インターフェログラムをフーリエ変換することにより測定光のスペクトル(分光特性)、すなわち、測定対象の表層付近に含まれる物質の分光特性が求められるため、この分光特性から該物質の定性分析あるいは定量分析を行うことができる。 In the spectroscopic measurement apparatus according to the first aspect, the measurement light emitted from the measurement target is introduced into the fixed reflection portion and the movable reflection portion by the introduction optical system, and is reflected by the fixed reflection portion and the movable reflection portion. A phase difference is given between the measurement beams reflected by the. Then, interference light of both measurement lights is formed by the interference optical system, and an interferogram is obtained from a change in the intensity of the interference light. In the spectroscopic measurement apparatus according to the second aspect, the measurement light emitted from the measurement target is divided into the first measurement light and the second measurement light by the splitting optical system, and is continuously provided between the two by the optical path length difference providing unit. Difference in optical path length. Then, interference light of the measurement light divided into two by the interference optical system is formed, and an interferogram is obtained from the intensity distribution of the interference light. In any embodiment, since the interferogram is subjected to Fourier transform, the spectrum of the measurement light (spectral characteristics), that is, the spectral characteristics of the substance contained in the vicinity of the surface layer to be measured is obtained. Qualitative analysis or quantitative analysis can be performed.
 測定対象の表面が平坦面である場合、該表面にブリュースター角で入射したP偏光の反射率は0になる。しかし、指先のように表面に多数の微小な凹凸がある測定対象の場合、該表面に入射したP偏光の全ての入射角がブリュースター角になるわけではなく、P偏光の一部は測定対象の表面で拡散反射する。このような表面拡散反射光は全てP偏光となる。一方、内部拡散光はP偏光とS偏光を含むランダム偏光となる。 When the surface to be measured is a flat surface, the reflectance of P-polarized light incident on the surface at a Brewster angle is zero. However, in the case of a measurement target having a large number of minute irregularities on the surface like a fingertip, not all incident angles of P-polarized light incident on the surface are Brewster angles. Diffusely reflects on the surface. Such surface diffuse reflection light is all P-polarized light. On the other hand, the internally diffused light becomes random polarized light including P-polarized light and S-polarized light.
 そこで、上記の分光測定装置においては、測定対象の表面と導入光学系の間、あるいは測定対象の表面と分割光学系の間、又は導入光学系と固定反射部および可動反射部の間、あるいは分割光学系と光路長差付与手段の間に、前記測定光のうち電場が前記P偏光の電場と垂直な直線偏光であるS偏光を通過させ、前記P偏光を通過させない偏光板を配置することが好ましい。
 このような構成によれば、測定光に含まれる表面拡散反射光を除去することができる。
Therefore, in the above-described spectroscopic measurement apparatus, between the measurement target surface and the introduction optical system, or between the measurement target surface and the split optical system, or between the introduction optical system and the fixed reflection unit and the movable reflection unit, or division. Between the optical system and the optical path length difference providing means, there is disposed a polarizing plate that allows the S-polarized light whose electric field is perpendicular to the electric field of the P-polarized light to pass therethrough and does not pass the P-polarized light. preferable.
According to such a configuration, the surface diffuse reflection light included in the measurement light can be removed.
 また、上記の分光測定装置においては、前記測定対象が載置される載置面と、該載置面と反対側の面である光照射面を有する板状の光透過性部材を備えることも良い構成である。
 上記構成では、前記光透過性部材の載置面に指先等の測定対象を軽く押し当てることにより測定対象の表面を平坦面に近づけることができる。このため、光透過性部材を通して測定対象の表面にP偏光を入射させたときに該測定対象から発せられる表面拡散反射光を減らすことができる。この構成では、ブリュースター角は、光透過性部材の屈折率と測定対象の屈折率から求められる。
The spectroscopic measurement apparatus may further include a plate-like light transmissive member having a placement surface on which the measurement target is placed and a light irradiation surface that is a surface opposite to the placement surface. It is a good configuration.
In the said structure, the surface of a measuring object can be closely approached to a flat surface by lightly pressing a measuring object, such as a fingertip, on the mounting surface of the said light transmissive member. For this reason, the surface diffuse reflection light emitted from the measurement object when the P-polarized light is incident on the surface of the measurement object through the light transmissive member can be reduced. In this configuration, the Brewster angle is obtained from the refractive index of the light transmissive member and the refractive index of the measurement target.
 また、本発明の第1態様に係る分光測定方法は、
 a)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させ、
 b)前記P偏光が入射された前記測定対象から発せられた測定光を導入光学系によって固定反射部および該固定反射部と並んで配置された、反射面に垂直な方向に移動可能な可動反射部に導入し、
 c)前記固定反射部に導入され該固定反射部によって反射された測定光と前記可動反射部に導入され該可動反射部によって反射された測定光の干渉光を干渉光学系を用いて形成し、
 d)前記干渉光の強度を干渉光検出部により検出し、
 e)前記可動反射部を移動させることにより前記干渉光検出部で検出される干渉光の強度の変化に基づき前記測定光のインターフェログラムを求め、
 f)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求めることを特徴とする。
Moreover, the spectroscopic measurement method according to the first aspect of the present invention includes:
a) P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, is incident on the surface to be measured at a Brewster angle.
b) Movable reflection movable in the direction perpendicular to the reflection surface, which is arranged alongside the fixed reflection portion and the fixed reflection portion by the introducing optical system with the measurement light emitted from the measurement object on which the P-polarized light is incident Introduced to the department,
c) forming interference light of measurement light introduced into the fixed reflection part and reflected by the fixed reflection part and measurement light introduced into the movable reflection part and reflected by the movable reflection part using an interference optical system;
d) detecting the intensity of the interference light by an interference light detector;
e) obtaining an interferogram of the measurement light based on a change in the intensity of the interference light detected by the interference light detection unit by moving the movable reflection unit,
f) The spectrum of the measurement light is obtained by Fourier transforming the interferogram.
 さらに、本発明の第2態様に係る分光測定方法は、
 a)測定対象の表面に、電場の振動方向が入射面と垂直な直線偏光であるP偏光をブリュースター角で入射させ、
 b)前記P偏光が入射された前記測定対象から発せられた測定光を分割光学系によって第1測定光と第2測定光に分割し、
 c)前記第1測定光と前記第2測定光の間に連続的な光路長差を与えた後、これら第1測定光と前記第2測定光の干渉光を干渉光学系により形成し、
 d)前記連続的な光路長差に対応する前記干渉光の強度分布を、複数の画素を有する干渉光検出部により検出し、
 e)前記干渉光検出部で検出される前記干渉光の強度分布から前記測定光のインターフェログラムを求め、
 f)前記測定光のインターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求めることを特徴とする。
Furthermore, the spectroscopic measurement method according to the second aspect of the present invention includes:
a) P-polarized light, which is linearly polarized light whose vibration direction of the electric field is perpendicular to the incident surface, is incident on the surface to be measured at a Brewster angle.
b) Dividing the measurement light emitted from the measurement object on which the P-polarized light is incident into a first measurement light and a second measurement light by a splitting optical system;
c) after giving a continuous optical path length difference between the first measurement light and the second measurement light, forming interference light between the first measurement light and the second measurement light by an interference optical system;
d) detecting the intensity distribution of the interference light corresponding to the continuous optical path length difference by an interference light detection unit having a plurality of pixels;
e) obtaining an interferogram of the measurement light from the intensity distribution of the interference light detected by the interference light detection unit,
f) A spectrum of the measurement light is obtained by performing a Fourier transform on the interferogram of the measurement light.
 上記分光測定方法においては、前記測定対象の表面と前記導入光学系の間、あるいは前記測定対象の表面と分割光学系の間、又は前記導入光学系と前記固定反射部および前記可動反射部の間、あるいは分割光学系と光路長差付与手段の間に配置された偏光板により、前記測定光のうち、電場が前記P偏光の電場と垂直な直線偏光であるS偏光を通過させ、前記P偏光を通過させないようにすると良い。 In the spectroscopic measurement method, between the measurement target surface and the introduction optical system, or between the measurement target surface and the split optical system, or between the introduction optical system and the fixed reflection portion and the movable reflection portion. Alternatively, by the polarizing plate disposed between the splitting optical system and the optical path length difference providing means, the S-polarized light whose electric field is linearly polarized light perpendicular to the electric field of the P-polarized light is passed through the measurement light, and the P-polarized light It is good not to let pass.
 また、前記測定対象が載置される載置面と、該載置面と反対側の面である光照射面を有する板状の光透過性部材を備え、
 前記測定対象の表面に前記P偏光がブリュースター角で入射するように前記光透過性部材の光照射面に該P偏光を照射するようにしても良い。
In addition, a plate-like light transmissive member having a placement surface on which the measurement object is placed and a light irradiation surface that is a surface opposite to the placement surface,
You may make it irradiate this P polarized light to the light irradiation surface of the said transparent member so that the said P polarized light may inject into the surface of the said measuring object with a Brewster angle.
 上記構成の本発明では、光源からの光が測定対象の表面に入射されることにより測定対象から発せられた測定光は、2つに分割されて両者の間に位相差が与えられる。そして、干渉光学系によって、2つに分割された測定光の干渉光が形成され、インターフェログラムが得られる。このインターフェログラムをフーリエ変換することにより測定光のスペクトル(分光特性)、すなわち、測定対象の表層付近に含まれる物質の分光特性が求められるため、この分光特性から該物質の定性分析あるいは定量分析を行うことができる。このとき、測定対象の表面にP偏光だけをブリュースター角で入射させるため、その反射率が0となり、測定対象から発せられた測定光の多くを、測定対象の表層付近の比較的浅い部分に侵入したP偏光が該浅い部分に含まれる物質によって拡散された拡散光にすることができる。このため、測定対象の表層付近にある物質の分光特性を精度良く求めることができる。 In the present invention having the above-described configuration, the measurement light emitted from the measurement target when the light from the light source is incident on the surface of the measurement target is divided into two and a phase difference is given between the two. Then, interference light of the measurement light divided into two is formed by the interference optical system, and an interferogram is obtained. The interferogram is Fourier transformed to obtain the spectrum of the measurement light (spectral characteristics), that is, the spectral characteristics of the substance contained in the vicinity of the surface layer to be measured. From this spectral characteristic, qualitative analysis or quantitative analysis of the substance is performed. It can be performed. At this time, since only the P-polarized light is incident on the surface of the measurement object at the Brewster angle, the reflectance becomes 0, and most of the measurement light emitted from the measurement object is placed in a relatively shallow portion near the surface layer of the measurement object. The diffused light in which the invading P-polarized light is diffused by the substance contained in the shallow portion can be obtained. For this reason, the spectral characteristics of the substance in the vicinity of the surface layer to be measured can be obtained with high accuracy.
透過光を利用した従来の生体成分測定装置の分光光学系の主要な構成要素を示す概略図Schematic showing the main components of the spectroscopic optical system of a conventional biological component measuring device using transmitted light 光源からの光をヒトの人差し指に照射したときに得られたインターフェログラムの例。An example of an interferogram obtained when a human index finger is irradiated with light from a light source. 反射光を利用した従来の生体成分測定装置の分光光学系の主要な構成要素を示す概略図。Schematic which shows the main components of the spectroscopy optical system of the conventional biological component measuring apparatus using reflected light. 空気中から皮膚にP偏光およびS偏光を入射させたときの入射角と反射率の関係を示すグラフ。The graph which shows the relationship between an incident angle and a reflectance when P polarized light and S polarized light are made incident on the skin from the air. 対物レンズの後段に偏光板を設けなかった場合に位相シフタに向かう測定光を示す説明図Explanatory drawing which shows the measurement light which goes to a phase shifter when a polarizing plate is not provided in the latter part of an objective lens 対物レンズの後段に偏光板を設けた場合に位相シフタに向かう測定光を示す説明図。Explanatory drawing which shows the measurement light which goes to a phase shifter, when a polarizing plate is provided in the back | latter stage of an objective lens. 本発明の第1実施形態に係る分光測定装置の概略構成図。1 is a schematic configuration diagram of a spectrometer according to a first embodiment of the present invention. 本発明の第2実施形態に係る分光測定装置の概略構成図。The schematic block diagram of the spectrometer which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る分光測定装置の概略構成図。The schematic block diagram of the spectrometer which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る分光測定装置の概略構成図。The schematic block diagram of the spectrometer which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る分光測定装置の概略構成図。The schematic block diagram of the spectrometer which concerns on 5th Embodiment of this invention. 測定対象に照射する光の偏光特性について検証した実験に用いた光学系の概略構成図。The schematic block diagram of the optical system used for the experiment verified about the polarization characteristic of the light irradiated to a measuring object. P偏光を指先に照射したときに得られる観察画像Observation image obtained when the fingertip is irradiated with P-polarized light S偏光を指先に照射したときに得られる観察画像Observation image obtained when s-polarized light is irradiated on fingertip P偏光を指先に照射し、さらに第2偏光板を設置したときに得られる観察画像。An observation image obtained when P-polarized light is applied to the fingertip and a second polarizing plate is further installed. 第1偏光板及び第2偏光板を設置したときの指先の皮膚表層付近の静脈の観察画像Observation image of vein near skin surface of fingertip when first polarizing plate and second polarizing plate are installed 第1偏光板及び第2偏光板を設置した状態で、図12Aの四角の枠で囲んだ領域にP偏光を照射したときに得られるインターフェログラム。FIG. 12B is an interferogram obtained when P-polarized light is irradiated to a region surrounded by a square frame in FIG. 12A with the first polarizing plate and the second polarizing plate installed. 図12Aの四角の枠で囲んだ領域のインターフェログラムをフーリエ変換して得られたスペクトルSpectrum obtained by Fourier transform of the interferogram in the area surrounded by the square frame in FIG. 12A 図13Aと同じ条件でラットの血液に光を照射したときに得られたスペクトル。The spectrum acquired when light was irradiated to the blood of a rat on the same conditions as FIG. 13A. 反射照明による指先の表面の観察画像Observation image of fingertip surface by reflected illumination 指先の表面の表層付近の静脈に含まれるヘモグロビンのスペクトルSpectra of hemoglobin in veins near the surface of the fingertip surface 一般的な水の吸収スペクトル。General water absorption spectrum. 窓部が無いときの指先の皮膚表層付近に含まれる静脈のスペクトルSpectrum of veins in the vicinity of the skin surface of the fingertip when there is no window 窓部が有るときの指先の観察画像。Observation image of the fingertip when there is a window. 窓部が有るとき、及び無いときの指先の皮膚表層付近に含まれる静脈のスペクトルSpectrum of veins in the vicinity of the skin surface of the fingertip with and without a window ラットの血液のスペクトル。Rat blood spectrum. その他の実施形態に係る分光測定装置の概略構成図。The schematic block diagram of the spectrometer which concerns on other embodiment.
 本発明に係る分光測定装置および分光測定方法では、測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で該光源からの光を測定対象に入射させ、その結果、測定対象から発せられた測定光を対物レンズ等の導入光学系によって固定反射部および可動反射部、又は位相シフタに導入する。P偏光は、例えば図4Aに示すように、光源と測定対象の間に偏光板1を配置することにより光源から出射される光の中から抽出することができる。
 以上により測定光が2つに分割され、これら2つに分割された測定光の干渉光が形成される。可動反射部が移動されることにより、あるいは光路長差付与手段により2つの測定光の間に連続的な位相差が付与されるため、干渉光検出部により検出される干渉光の強度の変化から測定光のインターフェログラムが得られる。そして、このインターフェログラムをフーリエ変換することにより測定光のスペクトルを求めることで、測定対象に含まれる物質の分光特性を測定する。
In the spectroscopic measurement apparatus and spectroscopic measurement method according to the present invention, light from the light source is incident on the surface of the measurement object at a Brewster angle with P-polarized light, which is linearly polarized light whose vibration direction is parallel to the incident surface. As a result, the measurement light emitted from the measurement target is introduced into the fixed reflection portion and the movable reflection portion or the phase shifter by the introduction optical system such as an objective lens. For example, as shown in FIG. 4A, the P-polarized light can be extracted from the light emitted from the light source by disposing the polarizing plate 1 between the light source and the measurement target.
Thus, the measurement light is divided into two, and interference light of the measurement light divided into these two is formed. From the change in the intensity of the interference light detected by the interference light detection unit, a continuous phase difference is provided between the two measurement lights by moving the movable reflection unit or by the optical path length difference providing unit. An interferogram of measurement light is obtained. And the spectral characteristic of the substance contained in a measuring object is measured by calculating | requiring the spectrum of measurement light by Fourier-transforming this interferogram.
 特に本発明では、電場の振動方向が入射面と平行な直線偏光であるP偏光のみがブリュースター角θで測定対象の表面に入射され、電場の振動方向が入射面と垂直な直線偏光であるS偏光は測定対象には入射されない。従って、測定対象の表面におけるP偏光の反射率は理論的には0となり、測定対象からは、該測定対象の表層付近の比較的浅い部分に侵入したP偏光が該浅い部分に含まれる物質によって拡散された内部拡散光のみが発せられることになる。 In particular, according to the present invention, P-polarized light only the vibration direction of the electric field is incident side and parallel to the linearly polarized light is incident on the surface to be measured at the Brewster angle theta B, the vibration direction of electric field at the incident surface perpendicular linear polarization Some S-polarized light is not incident on the object to be measured. Therefore, the reflectance of P-polarized light on the surface of the measurement object is theoretically 0, and the P-polarized light that has entered the relatively shallow part near the surface layer of the measurement object is included in the shallow part from the measurement object. Only the diffused internal diffused light is emitted.
 ただし、図4Aに示すように、測定対象が指先等の生体の場合、皮膚の表面には多数の凹凸があるため、光源から測定対象に向かう光を構成する各光線の入射点における入射角が必ずしもブリュースター角になるわけではなく、一部の光線はブリュースター角以外の角度で測定対象の表面に入射する。ブリュースター角以外の角度で測定対象の表面に入射したP偏光は該表面で反射されるため、測定対象から発せられる光に内部拡散光と表面拡散反射光の両方が含まれることになる。通常、表面拡散反射光の強度は内部拡散光の強度に比べて非常に大きい。従って、内部拡散光と表面拡散反射光が対物レンズに入射すると、内部拡散光が表面拡散反射光に埋もれてしまう。 However, as shown in FIG. 4A, when the measurement target is a living body such as a fingertip, since the surface of the skin has a large number of irregularities, the incident angle at the incident point of each light beam constituting the light from the light source toward the measurement target is The light does not necessarily have a Brewster angle, and some light rays are incident on the surface of the measurement object at an angle other than the Brewster angle. Since the P-polarized light incident on the surface of the measurement object at an angle other than the Brewster angle is reflected on the surface, the light emitted from the measurement object includes both internal diffused light and surface diffuse reflected light. Usually, the intensity of the surface diffuse reflection light is very large compared to the intensity of the internal diffusion light. Therefore, when the internal diffused light and the surface diffuse reflected light are incident on the objective lens, the internal diffused light is buried in the surface diffuse reflected light.
 表面拡散反射光は入射光の偏光特性を維持するが、内部拡散光では偏光が解消されてしまうことが知られている。つまり、表面拡散反射光は入射光と同じP偏光であるが、内部拡散光はランダム偏光になる。そこで、このような光学現象に着目し、測定対象の表面に凹凸がある場合には、図4Bに示すように対物レンズの後段に、偏光板1に対して、いわゆるクロスニコルの条件になるように、偏光板2を設置した。クロスニコルの条件とは、2枚の偏光板のうち一方の偏光板を透過する電場と他方の偏光板を透過する電場が直交するような条件をいう。このような構成により、表面拡散反射光が固定反射部および可動反射部、あるいは位相シフタに導入されることを阻止することができる。この場合、内部拡散光に含まれるP偏光は対物レンズの後段に設置した偏光板2により遮光されるが、内部拡散光の一部(S偏光)は透過するため、内部拡散光のみからなる測定光の干渉光を検出することができる。 It is known that the surface diffuse reflection light maintains the polarization characteristics of incident light, but the internal diffuse light is depolarized. That is, the surface diffuse reflected light is the same P-polarized light as the incident light, but the internal diffused light is randomly polarized. Therefore, paying attention to such an optical phenomenon, when the surface of the object to be measured has irregularities, as shown in FIG. 4B, a so-called crossed Nicols condition is applied to the polarizing plate 1 after the objective lens. The polarizing plate 2 was installed. The condition of crossed Nicols means a condition in which an electric field transmitted through one polarizing plate and an electric field transmitted through the other polarizing plate are orthogonal to each other. With such a configuration, it is possible to prevent the surface diffuse reflection light from being introduced into the fixed reflection portion and the movable reflection portion or the phase shifter. In this case, the P-polarized light contained in the internal diffused light is shielded by the polarizing plate 2 installed at the subsequent stage of the objective lens, but a part of the internal diffused light (S-polarized light) is transmitted, so that the measurement consists of only the internal diffused light. Interference light of light can be detected.
 以下、本発明の具体的な実施形態について図5~図9を参照して説明する。
[第1実施形態]
 図5は本発明の第1実施形態に係る分光測定装置の概略構成図である。分光測定装置は、分光測定部10と、該分光測定部10で得られた測定結果を処理する制御装置20とから構成されている。
Hereinafter, specific embodiments of the present invention will be described with reference to FIGS.
[First Embodiment]
FIG. 5 is a schematic configuration diagram of the spectrometer according to the first embodiment of the present invention. The spectroscopic measurement apparatus includes a spectroscopic measurement unit 10 and a control device 20 that processes the measurement results obtained by the spectroscopic measurement unit 10.
 分光測定部10は、光源101、第1偏光板102、対物レンズ103、第2偏光板104、位相シフタ105、結像レンズ106、検出部107から構成されている。また、図示しないが、分光測定部10はプラスチックや金属などの、光を透過しない材料から作製されたケーシング内に収容されている。ケーシングには開口が形成されており、該開口を通して光源101からの光が測定対象に照射されるようになっている。本実施例では、対物レンズ103及び結像レンズ106がそれぞれ導入光学系及び干渉光学系に相当する。対物レンズ103はケーシングの開口と対向配置されている。一方、結像レンズ106は、対物レンズ103と光軸が直交する向きに配置されている。 The spectroscopic measurement unit 10 includes a light source 101, a first polarizing plate 102, an objective lens 103, a second polarizing plate 104, a phase shifter 105, an imaging lens 106, and a detection unit 107. Although not shown, the spectroscopic measurement unit 10 is housed in a casing made of a material that does not transmit light, such as plastic or metal. An opening is formed in the casing, and light from the light source 101 is irradiated to the measurement object through the opening. In this embodiment, the objective lens 103 and the imaging lens 106 correspond to an introduction optical system and an interference optical system, respectively. The objective lens 103 is disposed to face the opening of the casing. On the other hand, the imaging lens 106 is disposed in a direction in which the optical axis is orthogonal to the objective lens 103.
 光源101は、測定対象の表面を透過して該測定対象の内部に侵入する波長の光を出射する光源が用いられており、その出射光が測定対象の表面に対して所定の角度で入射するような向きに配置されている。測定対象が例えば指先の場合は皮膚の透過性が良い、波長が1μm付近の近赤外光を出射する光源が用いられる。前記所定の角度は、測定対象の表面におけるブリュースター角θに相当する角度であり、測定対象の周辺環境である大気の屈折率をn、測定対象の屈折率をnとすると、角度θは次の式で求められる。
 tan θ = n/n
The light source 101 is a light source that emits light having a wavelength that penetrates the surface of the measurement target and enters the measurement target, and the emitted light is incident on the surface of the measurement target at a predetermined angle. It is arranged in such a direction. For example, when the measurement target is a fingertip, a light source that emits near infrared light having a good skin permeability and a wavelength of about 1 μm is used. The predetermined angle is an angle corresponding to the Brewster angle θ B on the surface of the measurement target, where the refractive index of the atmosphere that is the surrounding environment of the measurement target is n 1 , and the refractive index of the measurement target is n 2. θ B is obtained by the following equation.
tan θ B = n 2 / n 1
 本実施形態では、測定対象の屈折率に応じて角度θを変更可能できるように、光源101からの出射光の方向を調整可能に構成されている。
 検出部107は例えば16×16画素の二次元CCD(Charge Coupled Device)カメラから構成されており、結像レンズ106の結像面に検出部107の受光面が位置するように配置されている。
In the present embodiment, as can be changeable angle theta B in accordance with the refractive index of the measuring object, and is adjustably configured in the direction of light emitted from the light source 101.
The detection unit 107 is composed of, for example, a 16 × 16 pixel two-dimensional CCD (Charge Coupled Device) camera, and is arranged such that the light receiving surface of the detection unit 107 is positioned on the imaging surface of the imaging lens 106.
 また、検出部107の検出信号は制御装置20に入力されるようになっている。制御装置20は、検出部107の検出信号からインターフェログラムを求める処理部201、このインターフェログラムを数学的にフーリエ変換し、測定光の波長毎の相対強度である分光特性(スペクトル)を求める演算部202、演算結果等を出力するディスプレイ、プリンタ等の出力装置203を備える。 Further, the detection signal of the detection unit 107 is input to the control device 20. The control device 20 obtains an interferogram from the detection signal of the detection unit 107, mathematically Fourier transforms the interferogram, and obtains a spectral characteristic (spectrum) that is a relative intensity for each wavelength of the measurement light. A calculation unit 202, a display for outputting calculation results, and an output device 203 such as a printer are provided.
 位相シフタ105は、対物レンズ103と結像レンズ106の間に配置されている。位相シフタ105は固定ミラー部51及び該固定ミラー部51と並んで配置された可動ミラー部52、及び可動ミラー部52を移動させる駆動機構53から構成されている。固定ミラー部51及び可動ミラー部52がそれぞれ本発明の固定反射部及び可動反射部に相当する。固定ミラー部51及び可動ミラー部52は、いずれも対物レンズ103の光軸及び結像レンズ106の光軸に対して45°の角度で傾斜する矩形状の反射面を有している。両ミラー部の反射面は、非常に僅かな隙間をおいて並べて配置されている。 The phase shifter 105 is disposed between the objective lens 103 and the imaging lens 106. The phase shifter 105 includes a fixed mirror unit 51, a movable mirror unit 52 arranged side by side with the fixed mirror unit 51, and a drive mechanism 53 that moves the movable mirror unit 52. The fixed mirror unit 51 and the movable mirror unit 52 correspond to the fixed reflection unit and the movable reflection unit of the present invention, respectively. Both the fixed mirror unit 51 and the movable mirror unit 52 have a rectangular reflecting surface that is inclined at an angle of 45 ° with respect to the optical axis of the objective lens 103 and the optical axis of the imaging lens 106. The reflecting surfaces of both mirror parts are arranged side by side with a very slight gap.
 駆動機構53は、例えば静電容量センサを具備する圧電素子から構成されており、制御装置20からの信号を受けて、光軸に対する反射面の傾斜角度を45°に維持した状態で可動ミラー部52をその反射面と垂直な方向(矢印A方向)に移動させる。このような構成により、固定ミラー部51に対する可動ミラー部52の相対位置が変化し、固定ミラー部51で反射された光束、及び可動ミラー部52で反射された光束の間に位相差が付与される。 The drive mechanism 53 is composed of, for example, a piezoelectric element having a capacitance sensor, receives a signal from the control device 20, and maintains a tilt angle of the reflecting surface with respect to the optical axis at 45 ° with the movable mirror portion. 52 is moved in the direction (arrow A direction) perpendicular to the reflecting surface. With such a configuration, the relative position of the movable mirror unit 52 with respect to the fixed mirror unit 51 changes, and a phase difference is given between the light beam reflected by the fixed mirror unit 51 and the light beam reflected by the movable mirror unit 52. .
 具体的には、可動ミラー部52の対物レンズ103或いは結像レンズ106の光軸方向の移動量は、可動ミラー部52の矢印A方向の移動量の1/√2となる。また、固定光束と可動光束の間に相対的な位相変化を与える光路長差は、可動ミラー部52の光軸方向の移動量の2倍となる。  Specifically, the movement amount of the objective lens 103 or the imaging lens 106 of the movable mirror unit 52 in the optical axis direction is 1 / √2 of the movement amount of the movable mirror unit 52 in the arrow A direction. The optical path length difference that gives a relative phase change between the fixed light beam and the movable light beam is twice the amount of movement of the movable mirror 52 in the optical axis direction. *
 第1偏光板102は光源101から出射される光のうち電場の振動方向が入射面と平行な直線偏光であるP偏光のみを透過させる。ここで、入射面とは、入射光線と反射光線を含む面をいう。一方、第2偏光板104には、対物レンズ103を透過した光のうちP偏光と電場の振動方向が直交するS偏光のみを通過させ、P偏光を通過させない偏光板が用いられる。 The first polarizing plate 102 transmits only the P-polarized light, which is linearly polarized light in which the vibration direction of the electric field is parallel to the incident surface, out of the light emitted from the light source 101. Here, the incident surface refers to a surface including incident light and reflected light. On the other hand, the second polarizing plate 104 is a polarizing plate that allows only the S-polarized light in which the polarization direction of the electric field and the vibration direction of the electric field are orthogonal to pass through the light transmitted through the objective lens 103 and does not pass the P-polarized light.
[第2実施形態]
 図6は本発明の第2実施形態に係る分光測定装置の概略構成図である。本実施形態では窓部を介して光源からの光が測定対象に照射される点が第1実施形態と異なる。なお、図示しないが、第2実施形態に係る分光測定装置においても、検出部107の検出信号は制御装置20に入力される。
[Second Embodiment]
FIG. 6 is a schematic configuration diagram of a spectrometer according to the second embodiment of the present invention. This embodiment is different from the first embodiment in that light from a light source is irradiated to a measurement object through a window portion. Although not shown, the detection signal of the detection unit 107 is also input to the control device 20 in the spectroscopic measurement apparatus according to the second embodiment.
 本実施形態では、ケーシングに設けられた開口に矩形板状の光透過性部材である窓部11が嵌め込まれており、該窓部11の表面のうちケーシングの外側に位置する面に測定対象が載置され、ケーシングの内側に位置する面に光源101からの光が照射される。前記窓部11の両面のうち測定対象が載置される面が本発明の載置面に、光源からの光が照射される面が本発明の光照射面に相当する。窓部11に測定対象を載置するようにしたことにより、例えば指先のような表面が平坦ではない測定対象の場合に、測定対象の表面を平坦面に近づけることができる。 In this embodiment, the window part 11 which is a rectangular plate-shaped light transmissive member is inserted in the opening provided in the casing, and the measurement object is on the surface of the window part 11 located outside the casing. The light from the light source 101 is irradiated on the surface that is placed and located inside the casing. Of the two surfaces of the window portion 11, the surface on which the measurement target is placed corresponds to the placement surface of the present invention, and the surface irradiated with light from the light source corresponds to the light irradiation surface of the present invention. By placing the measurement object on the window 11, the surface of the measurement object can be brought close to a flat surface in the case of a measurement object whose surface is not flat, such as a fingertip.
 光源101からの出射光は、窓部11に入射した後、測定対象の表面に入射する。従って、出射光が窓部11に入射する際、及び窓部11から出射する際に屈折した後、測定対象の表面に入射する。そのため、本実施形態では、測定対象の表面におけるブリュースター角とは、測定対象と窓部11の界面におけるブリュースター角θとなる。光源101からの出射光は窓部11に入射する際に所定の角度で屈折するため、この屈折角を考慮して光源101から窓部11への入射角が設定されている。上記した以外の構成は第1実施形態と同じであるため、同一符号を付して説明を省略する。 Light emitted from the light source 101 enters the window 11 and then enters the surface of the measurement target. Therefore, when the emitted light enters the window portion 11 and is refracted when emitted from the window portion 11, it enters the surface of the measurement object. Therefore, in this embodiment, the Brewster angle on the surface of the measurement target is the Brewster angle θ B at the interface between the measurement target and the window portion 11. Since the light emitted from the light source 101 is refracted at a predetermined angle when entering the window portion 11, the incident angle from the light source 101 to the window portion 11 is set in consideration of this refraction angle. Since configurations other than those described above are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.
[第3実施形態]
 図7は本発明の第3実施形態に係る分光測定装置の概略構成図である。本実施形態では第2偏光板を設けていない点が第1実施形態と異なる。その他の構成は第1実施形態と同じであるため、同一符号を付して説明を省略する。なお、図示しないが、第3実施形態に係る分光測定装置においても、検出部107の検出信号は制御装置20に入力される。
[Third Embodiment]
FIG. 7 is a schematic configuration diagram of a spectrometer according to the third embodiment of the present invention. This embodiment is different from the first embodiment in that the second polarizing plate is not provided. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted. Although not shown, the detection signal of the detection unit 107 is also input to the control device 20 in the spectroscopic measurement device according to the third embodiment.
 第3実施形態は、平坦な表面を有する測定対象の分光特性を測定する場合に好適な装置の例である。ほぼ平坦な表面を有する測定対象の場合は、表面拡散反射光がほとんど発生しないため、第2偏光板が無くても測定光に表面拡散反射光が含まれない。本実施形態においても、第2実施形態に示したような窓部を設けても良い。窓部を設けることによりケーシング内に埃等が侵入することを防止することができる。 The third embodiment is an example of an apparatus suitable for measuring spectral characteristics of a measurement target having a flat surface. In the case of a measurement target having a substantially flat surface, almost no surface diffuse reflection light is generated. Therefore, even if there is no second polarizing plate, the measurement light does not include surface diffuse reflection light. Also in this embodiment, a window portion as shown in the second embodiment may be provided. By providing the window portion, it is possible to prevent dust and the like from entering the casing.
[第4実施形態]
 図8は本発明の第4実施形態に係る分光測定装置の概略構成図である。第4実施形態と第2実施形態とは位相シフタの構成及び干渉光学系が異なる。その他の構成は第2実施形態と同じであるため、第2実施形態と同一符号を付して説明を省略する。なお、図示しないが、第4実施形態に係る分光測定装置においても検出部107の検出信号は制御装置20に入力される。
[Fourth Embodiment]
FIG. 8 is a schematic configuration diagram of a spectrometer according to the fourth embodiment of the present invention. The configuration of the phase shifter and the interference optical system are different between the fourth embodiment and the second embodiment. Since the other configuration is the same as that of the second embodiment, the same reference numerals as those of the second embodiment are given and description thereof is omitted. Although not shown, the detection signal of the detection unit 107 is also input to the control device 20 in the spectroscopic measurement device according to the fourth embodiment.
 この第4実施形態では、干渉光学系としてシリンドリカルレンズ30が用いられている。また、位相シフタ40は、光照射面と光出射面が平行な第1透過部401と、光照射面及び光出射面のいずれか一方が前記第1透過部401の光照射面又は出射面と同一面上にあり、光照射面及び光出射面のうちの一方に対して他方が傾斜するくさび形の第2透過部402から成る光学部材から構成されている。本実施形態では、第2透過部402は、第1透過部401と第2透過部402の境界面における第2透過部402の厚さが一方側から他方側に向かって徐々に小さくなるように光照射面が傾斜している。第2透過部402の光照射面の傾斜角度は、波数分解能により決まる位相シフト量と、検出部107の画素毎のサンプリング間隔により決まるが、多少ずれても問題はない。なお、第1透過部401と第2透過部402はそれぞれ別の光学部材から構成しても良く、一つの光学部材の一面を加工して第1透過部401と第2透過部402としても良い。 In the fourth embodiment, a cylindrical lens 30 is used as the interference optical system. Further, the phase shifter 40 includes a first transmission unit 401 in which the light irradiation surface and the light emission surface are parallel, and one of the light irradiation surface and the light emission surface is the light irradiation surface or the emission surface of the first transmission unit 401. The optical member is formed of a wedge-shaped second transmitting portion 402 that is on the same plane and in which the other of the light irradiation surface and the light emission surface is inclined. In the present embodiment, the second transmission part 402 is configured such that the thickness of the second transmission part 402 at the boundary surface between the first transmission part 401 and the second transmission part 402 gradually decreases from one side to the other side. The light irradiation surface is inclined. Although the inclination angle of the light irradiation surface of the second transmission unit 402 is determined by the phase shift amount determined by the wave number resolution and the sampling interval for each pixel of the detection unit 107, there is no problem even if they are slightly shifted. In addition, the 1st transmission part 401 and the 2nd transmission part 402 may each be comprised from a separate optical member, and it is good also as the 1st transmission part 401 and the 2nd transmission part 402 by processing one surface of one optical member. .
 この実施形態では、位相シフタ40に導入された測定光は、第1透過部401と第2透過部402に分かれて入射し、第1透過部401及び第2透過部402を透過した後、シリンドリカルレンズ30に向かう。このとき、第2透過部402がくさび形であるため、第2透過部402を透過した測定光(第2測定光)と第1透過部401を透過した測定光(第1測定光)の間に連続的な光路長差が付与される。つまり、この実施形態では、位相シフタ40が分割光学系及び光路長差付与手段として機能する。 In this embodiment, the measurement light introduced into the phase shifter 40 enters the first transmission unit 401 and the second transmission unit 402 separately, and passes through the first transmission unit 401 and the second transmission unit 402, and then is cylindrical. Head to the lens 30. At this time, since the second transmission part 402 has a wedge shape, the measurement light transmitted through the second transmission part 402 (second measurement light) and the measurement light transmitted through the first transmission part 401 (first measurement light). Is given a continuous optical path length difference. That is, in this embodiment, the phase shifter 40 functions as a splitting optical system and an optical path length difference providing unit.
 シリンドリカルレンズ30はその凸面部が位相シフタ40側を向き、平面部が検出部107の受光面側を向くように配置されている。検出部107の受光面はシリンドリカルレンズ30の結像面に位置している。このため、シリンドリカルレンズ30に入射した第1及び第2測定光は該シリンドリカルレンズ30によって収束され、検出部107の受光面上の同一直線上に集光することにより干渉像を形成する。上述したように、第1測定光と第2測定光の間に連続的な光路長差が付与されることから、検出部107の受光面に形成される干渉像の強度が、該連続的な光路長差に応じて変化する。従って、検出部107の検出結果から測定光のインターフェログラム(干渉光強度分布)が得られる。このインターフェログラムをフーリエ変換することにより、第1実施形態及び第2実施形態と同様に、測定対象の表層付近の内部の生体成分の分光特性(スペクトル)を得ることができる。 The cylindrical lens 30 is arranged such that the convex surface portion faces the phase shifter 40 side and the flat surface portion faces the light receiving surface side of the detection unit 107. The light receiving surface of the detection unit 107 is located on the imaging surface of the cylindrical lens 30. For this reason, the first and second measurement lights incident on the cylindrical lens 30 are converged by the cylindrical lens 30 and condensed on the same straight line on the light receiving surface of the detection unit 107 to form an interference image. As described above, since a continuous optical path length difference is provided between the first measurement light and the second measurement light, the intensity of the interference image formed on the light receiving surface of the detection unit 107 is the continuous measurement. It changes according to the optical path length difference. Accordingly, an interferogram (interference light intensity distribution) of the measurement light is obtained from the detection result of the detection unit 107. By performing Fourier transform on this interferogram, the spectral characteristics (spectrum) of the internal biological components in the vicinity of the surface layer to be measured can be obtained as in the first and second embodiments.
[第5実施形態]
 図9は本発明の第5実施形態に係る分光測定装置の概略構成図である。第5実施形態では第2偏光板を設けておらず、この点が第4実施形態とは異なる。その他の構成は第4実施形態と同じであるため、同一符号を付して説明を省略する。
[Fifth Embodiment]
FIG. 9 is a schematic configuration diagram of a spectrometer according to the fifth embodiment of the present invention. In the fifth embodiment, the second polarizing plate is not provided, and this point is different from the fourth embodiment. Since other configurations are the same as those of the fourth embodiment, the same reference numerals are given and description thereof is omitted.
[分光測定装置の動作説明]
 次に、本発明に係る分光測定装置の動作説明を第1実施形態に係る分光測定装置(図5参照)を例に挙げて説明する。ここでは、被検者の手の指先の内部の分光特性を測定する動作について説明するが、表面が平坦な測定対象の場合もほぼ同じである。
 まず、指先をケーシングの開口部の位置に合わせ、この状態で光源101からの光(近赤外光)を第1偏光板102を通して指先の表面に照射する。すると、近赤外光のうちP偏光成分のみが第1偏光板102を通過して指先に入射する。このとき、光源101からの近赤外光はブリュースター角で指先の表面に入射するため、ほとんどのP偏光は指先の皮膚を透過して指先の内部に侵入する。そして、指先の表層近傍に含まれる血管内の生体成分等によって拡散され、その拡散光(内部拡散光)は再び指先の皮膚を透過し、開口を経てケーシング内に至り、対物レンズ103に入射する。指先の内部に侵入して拡散された光は偏光特性が解消されるため、内部拡散光はP偏光成分とS偏光成分の両方を含む。
[Explanation of operation of spectrometer]
Next, the operation of the spectrometer according to the present invention will be described by taking the spectrometer (see FIG. 5) according to the first embodiment as an example. Here, the operation of measuring the spectral characteristics inside the fingertip of the subject's hand will be described. However, the same applies to the case of a measurement target having a flat surface.
First, the fingertip is aligned with the position of the opening of the casing, and in this state, light (near infrared light) from the light source 101 is irradiated to the surface of the fingertip through the first polarizing plate 102. Then, only the P-polarized light component of the near-infrared light passes through the first polarizing plate 102 and enters the fingertip. At this time, near-infrared light from the light source 101 is incident on the surface of the fingertip at a Brewster angle, so most of the P-polarized light penetrates the skin of the fingertip and enters the inside of the fingertip. The diffused light (internal diffused light) diffuses again through the skin of the fingertip, reaches the inside of the casing through the opening, and enters the objective lens 103. . Since the light that has entered and diffused into the fingertip has its polarization characteristics canceled, the internally diffused light includes both a P-polarized component and an S-polarized component.
 一方、指先の表面には凹凸があるため、指先の表面に入射した近赤外光のP偏光成分の一部はブリュースター角とは異なる角度で指先の表面に入射して拡散反射される。この拡散反射光(表面拡散反射光)は開口部からケーシング内に至り、対物レンズ103に入射する。表面拡散反射光は偏光特性を維持するため、対物レンズ103に入射した表面拡散反射光はP偏光成分から成る。 On the other hand, since the surface of the fingertip is uneven, a part of the P-polarized component of the near infrared light incident on the fingertip surface is incident on the fingertip surface at an angle different from the Brewster angle and diffusely reflected. This diffuse reflected light (surface diffuse reflected light) reaches the inside of the casing from the opening and enters the objective lens 103. In order to maintain the polarization characteristics of the surface diffuse reflection light, the surface diffuse reflection light incident on the objective lens 103 is composed of a P-polarized component.
 対物レンズ103に入射した内部拡散光及び表面拡散反射光はほぼ平行な光線となって第2偏光板104に入射する。第2偏光板104はP偏光成分を遮断し、S偏光成分のみを通過させるため、第2偏光板104に入射した内部拡散光のP偏光成分及び表面拡散反射光は該第2偏光板104を通過せず、内部拡散光のS偏光成分は第2偏光板104を通過して位相シフタ105の固定ミラー部51及び可動ミラー部52の表面全体に至る。これにより、内部拡散光のS偏光成分の一部は固定ミラー部51の反射面で反射され、残りは可動ミラー部52の反射面で反射され、それぞれ、結像レンズ106に入射する。なお、以下の説明では、固定ミラー部51で反射された光を固定反射光、可動ミラー部52で反射された光を可動反射光とも呼ぶ。 The internal diffused light and the surface diffuse reflected light incident on the objective lens 103 are incident on the second polarizing plate 104 as substantially parallel light beams. Since the second polarizing plate 104 blocks the P-polarized light component and allows only the S-polarized light component to pass therethrough, the P-polarized light component of the internal diffused light incident on the second polarizing plate 104 and the surface diffused reflected light pass through the second polarizing plate 104. The S-polarized component of the internally diffused light does not pass through the second polarizing plate 104 and reaches the entire surfaces of the fixed mirror unit 51 and the movable mirror unit 52 of the phase shifter 105. As a result, a part of the S-polarized component of the internally diffused light is reflected by the reflecting surface of the fixed mirror unit 51, and the rest is reflected by the reflecting surface of the movable mirror unit 52, and enters the imaging lens 106, respectively. In the following description, the light reflected by the fixed mirror unit 51 is also called fixed reflected light, and the light reflected by the movable mirror unit 52 is also called movable reflected light.
 結像レンズ106に入射した固定反射光及び可動反射光は、検出部107の受光面において結像し、干渉像を形成する。このとき、手の指先の内部から発せられる内部拡散光には様々な波長の光が含まれることから、可動ミラー部52を移動させて可動反射光と固定反射光の光路長差を連続的に変化させることにより、インターフェログラムと呼ばれる結像強度変化(干渉光の強度変化)の波形が得られる。このインターフェログラムを数学的にフーリエ変換することにより内部拡散光のS偏光成分の分光特性を取得できる。上記の分光測定装置では、指先内部のうち対物レンズ103の特定深度に位置する合焦面から発せられた内部拡散光のみが検出部107の受光面において結像する。従って、合焦面に深度を限定した指先内部の分光特性を得ることができる。 The fixed reflected light and the movable reflected light incident on the imaging lens 106 are imaged on the light receiving surface of the detection unit 107 to form an interference image. At this time, since the internal diffused light emitted from the fingertip of the hand includes light of various wavelengths, the movable mirror unit 52 is moved to continuously change the optical path length difference between the movable reflected light and the fixed reflected light. By changing, a waveform of an imaging intensity change (interference light intensity change) called an interferogram is obtained. The spectral characteristic of the S-polarized component of the internally diffused light can be obtained by mathematically Fourier transforming this interferogram. In the spectroscopic measurement apparatus described above, only the internal diffused light emitted from the focusing surface located at a specific depth of the objective lens 103 within the fingertip forms an image on the light receiving surface of the detection unit 107. Accordingly, it is possible to obtain the spectral characteristics inside the fingertip with the depth limited to the in-focus surface.
[実験結果]
 続いて、測定対象に照射する光の偏光特性について検証した実験結果を図10~図15を用いて説明する。図10は実験に用いた光学系を示す。図11A、図11Bは、それぞれP偏光、S偏光を測定対象である指先にブリュースター角で照射したときに得られた画像を示す。これらの画像から、S偏光を照射したときの方が明るい画像が観察されることが分かる。これは、P偏光の方がS偏光よりも指先の表面における拡散反射光が抑えられたためであると考えられる。また、図11Cは、測定対象と導入光学系の間に第1偏光板とクロスニコルの状態となる第2偏光板を配置してP偏光を測定対象に照射したときに得られた画像を示す、図11Cの画像は図11Aよりも更に暗いことから、表面拡散光がさらに抑えられたことが分かる。以上より、P偏光をブリュースター角で測定対象に照射するとともに測定対象と導入光学系の間にクロスニコルとなる偏光板を配置することが、測定対象の表面拡散反射光の低減に有効であることが実証された。
[Experimental result]
Next, experimental results for verifying the polarization characteristics of the light irradiated to the measurement object will be described with reference to FIGS. FIG. 10 shows an optical system used in the experiment. FIGS. 11A and 11B show images obtained when P-polarized light and S-polarized light are irradiated to the fingertip to be measured at the Brewster angle, respectively. From these images, it can be seen that a brighter image is observed when s-polarized light is irradiated. This is considered to be because the diffusely reflected light on the surface of the fingertip was suppressed in the P-polarized light than in the S-polarized light. Further, FIG. 11C shows an image obtained when a second polarizing plate that is in a crossed Nicols state with the first polarizing plate is disposed between the measuring target and the introduction optical system, and the P-polarized light is irradiated onto the measuring target. The image in FIG. 11C is much darker than that in FIG. 11A, indicating that the surface diffused light is further suppressed. From the above, it is effective to reduce the surface diffuse reflection light of the measurement target by irradiating the measurement target with P-polarized light at the Brewster angle and disposing a polarizing plate that is crossed Nicol between the measurement target and the introduction optical system. It was proved.
 図12Aは、第1偏光板及び第2偏光板を設置したときの指先の皮膚表層付近の静脈の観察画像を示す。図12Bは、図12Aの四角で囲んだ領域に、図11Cに示す画像を得たときと同じ光学条件(以下、光学条件Pcという)でP偏光を照射して干渉光の強度を検出した結果、得られたインターフェログラムを示している。図1Bに示すインターフェログラムと異なり、図12Bに示すインターフェログラムには、脈動に伴い干渉光の輝度値の変化が重畳していない。この結果からも、指先の表層近傍の静脈に含まれる生体成分の分光特性のみを測定可能であることが分かる。 FIG. 12A shows an observation image of veins near the skin surface of the fingertip when the first polarizing plate and the second polarizing plate are installed. FIG. 12B shows the result of detecting the intensity of interference light by irradiating P-polarized light in the area surrounded by the square in FIG. 12A under the same optical conditions as the image shown in FIG. 11C (hereinafter referred to as optical condition Pc). The obtained interferogram is shown. Unlike the interferogram shown in FIG. 1B, the interferogram shown in FIG. 12B does not have a change in the luminance value of the interference light accompanying pulsation. From this result, it can be seen that only the spectral characteristics of the biological components contained in the vein near the surface of the fingertip can be measured.
 図13Aは、図12Aの四角で囲んだ領域に、600nm~900nmの波長帯域のP偏光を光学条件Pcで照射することにより得られたインターフェログラムをフーリエ変換して求めたスペクトルを示す。図13Bは、図13Aと同様の条件で600nm~900nmの波長帯域の光をラットの血液に照射したときに得られたスペクトルを示している。図13Bとの比較から、図13Aのスペクトルは、指先内部の静脈に含まれる生体成分の分光特性を表していると推測された。 FIG. 13A shows a spectrum obtained by Fourier-transforming the interferogram obtained by irradiating the region surrounded by the square in FIG. 12A with P-polarized light in the wavelength band of 600 nm to 900 nm under the optical condition Pc. FIG. 13B shows a spectrum obtained when the blood of a rat is irradiated with light having a wavelength band of 600 nm to 900 nm under the same conditions as in FIG. 13A. From the comparison with FIG. 13B, it was inferred that the spectrum of FIG. 13A represents the spectral characteristics of the biological component contained in the vein inside the fingertip.
 図14Bは、図14Aに示す領域に、900nm~1700nmの波長帯域のP偏光を光学条件Pcで照射することにより得られたインターフェログラムをフーリエ変換して求めたスペクトルを示す。図14Cは、一般的に知られている水の吸収スペクトルを示す(非特許文献1参照)。図14B及び図14Cの比較から、指先の表層付近に存在する水の吸収スペクトルが良好に得られることが分かる。 FIG. 14B shows a spectrum obtained by Fourier-transforming the interferogram obtained by irradiating the region shown in FIG. 14A with P-polarized light in the wavelength band of 900 nm to 1700 nm under the optical condition Pc. FIG. 14C shows a generally known absorption spectrum of water (see Non-Patent Document 1). From the comparison between FIG. 14B and FIG. 14C, it can be seen that the absorption spectrum of water existing near the surface of the fingertip can be obtained satisfactorily.
 図15A~図15Dは、窓部11の有無による観察画像及びスペクトルの違いを検証した実験結果を示す。図15Aは第1実施形態に係る分光測定装置(窓部無し)を用いて、図15Bは第2実施形態に係る分光測定装置(窓部有り)を用いて、それぞれ指先に600nm~900nmの波長帯域のP偏光を光学条件Pcで照射することにより得られた観察画像を示す。また、図15Cは、そのとき得られたインターフェログラムをフーリエ変換して求めたスペクトルを示す。図15Dは図15Cと同様の条件でラットの血液に600nm~900nmの波長帯域の光を照射したときに得られたインターフェログラムをフーリエ変換して求めたスペクトルを示す。 FIGS. 15A to 15D show experimental results for verifying the difference in the observed image and the spectrum depending on the presence or absence of the window portion 11. FIG. 15A shows the wavelength of 600 nm to 900 nm at the fingertip using the spectroscopic measurement apparatus (without window part) according to the first embodiment, and FIG. 15B shows the spectroscopic measurement apparatus (with window part) according to the second embodiment. The observation image obtained by irradiating P-polarized light of a zone | band with the optical conditions Pc is shown. FIG. 15C shows a spectrum obtained by Fourier transform of the interferogram obtained at that time. FIG. 15D shows a spectrum obtained by Fourier transforming the interferogram obtained when the blood of the rat is irradiated with light in the wavelength band of 600 nm to 900 nm under the same conditions as in FIG. 15C.
 図15Aと図15Bの比較から、窓部を設けた方が指先の観察画像が明るいことが分かる。これは、窓部により指先の表面が平坦化され、表面拡散反射光が低減したためであると推察された。また、図15Cから、窓部有り、窓部無しのいずれの状態においても、指先の表層付近に存在する静脈の吸収スペクトルが良好に得られることが分かる。 15A and 15B show that the observation image of the fingertip is brighter when the window is provided. This was presumed to be because the surface of the fingertip was flattened by the window and the surface diffuse reflection light was reduced. Further, FIG. 15C shows that an absorption spectrum of veins existing in the vicinity of the surface of the fingertip can be satisfactorily obtained in any state with a window portion and without a window portion.
 なお、本発明は上記した実施形態に限定されない。例えば、第1~第3実施形態では固定ミラー部と可動ミラー部から位相シフタを構成したが、図16に示すように、基準ミラー部601と傾斜ミラー部602から位相シフタ60を構成しても良い。基準ミラー部601の反射面は対物レンズ104の光軸に対して45°傾斜しており、傾斜ミラー部602の反射面は基準ミラー部61の反射面に対して若干傾斜している。これにより、基準ミラー部601に反射された測定光と傾斜ミラー部602に反射された測定光の間には連続的な光路長差が付与された後、シリンドリカルレンズ30に入射する。従って、第4及び第5実施形態と同様の作用効果が得られる。 Note that the present invention is not limited to the above-described embodiment. For example, in the first to third embodiments, the phase shifter is configured by the fixed mirror unit and the movable mirror unit. However, as shown in FIG. 16, the phase shifter 60 may be configured by the reference mirror unit 601 and the inclined mirror unit 602. good. The reflecting surface of the reference mirror unit 601 is inclined by 45 ° with respect to the optical axis of the objective lens 104, and the reflecting surface of the inclined mirror unit 602 is slightly inclined with respect to the reflecting surface of the reference mirror unit 61. As a result, a continuous optical path length difference is given between the measurement light reflected by the reference mirror unit 601 and the measurement light reflected by the inclined mirror unit 602, and then enters the cylindrical lens 30. Therefore, the same effect as the fourth and fifth embodiments can be obtained.
10…分光測定部
 101…光源
 102…第1偏光板
 103…対物レンズ
 104…第2偏光板
 105…位相シフタ
 106…結像レンズ
 107…検出部
11…窓部
20…制御装置
 201…処理部
 202…演算部
 203…出力装置
30…シリンドリカルレンズ
40…位相シフタ
 401…第1透過部
 402…第2透過部
51…固定ミラー部
52…可動ミラー部
53…駆動機構
60…位相シフタ
 601…基準ミラー部
 602…傾斜ミラー部
DESCRIPTION OF SYMBOLS 10 ... Spectroscopic measurement part 101 ... Light source 102 ... 1st polarizing plate 103 ... Objective lens 104 ... 2nd polarizing plate 105 ... Phase shifter 106 ... Imaging lens 107 ... Detection part 11 ... Window part 20 ... Control apparatus 201 ... Processing part 202 ... Calculation unit 203 ... Output device 30 ... Cylindrical lens 40 ... Phase shifter 401 ... First transmission unit 402 ... Second transmission unit 51 ... Fixed mirror unit 52 ... Movable mirror unit 53 ... Drive mechanism 60 ... Phase shifter 601 ... Reference mirror unit 602 ... Tilt mirror section

Claims (10)

  1.  a)固定反射部及び該固定反射部と並んで配置された、反射面に垂直な方向に移動可能な可動反射部と、
     b)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させる光照射手段と、
     c)前記P偏光が入射された前記測定対象から発せられた測定光を前記固定反射部及び前記可動反射部に導入する導入光学系と、
     d)前記固定反射部に導入され該固定反射部によって反射された測定光と前記可動反射部に導入され該可動反射部によって反射された測定光の干渉光を形成する干渉光学系と、
     e)前記干渉光の強度を検出する干渉光検出部と、
     f)前記可動反射部を移動させることにより前記干渉光検出部で検出される干渉光の強度の変化に基づき前記測定光のインターフェログラムを求める処理部と、
     g)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求める演算部と
     を備えることを特徴とする分光測定装置。
    a) a movable reflector that is arranged alongside the fixed reflector and is movable along a direction perpendicular to the reflecting surface;
    b) a light irradiating means for causing P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, to be incident on the surface to be measured at a Brewster angle;
    c) an introduction optical system that introduces measurement light emitted from the measurement object on which the P-polarized light is incident into the fixed reflection portion and the movable reflection portion;
    d) an interference optical system that forms interference light of measurement light introduced into the fixed reflection part and reflected by the fixed reflection part and measurement light introduced into the movable reflection part and reflected by the movable reflection part;
    e) an interference light detector for detecting the intensity of the interference light;
    f) a processing unit for obtaining an interferogram of the measurement light based on a change in intensity of the interference light detected by the interference light detection unit by moving the movable reflection unit;
    g) A spectroscopic measurement apparatus comprising: an arithmetic unit that obtains a spectrum of the measurement light by performing Fourier transform on the interferogram.
  2.  a)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させる光照射手段と、
     b)前記P偏光が入射された前記測定対象から発せられた測定光を第1測定光と第2測定光に分割する分割光学系と、
     c)前記第1測定光と前記第2測定光の干渉光を形成する干渉光学系と、
     d)第1測定光と第2測定光の間に連続的な光路長差を与える光路長差付与手段と、
     e)前記連続的な光路長差に対応する前記干渉光の強度分布を検出するための複数のが祖を有する干渉光検出部と、
     f)前記干渉光検出部で検出される前記干渉光の強度分布から前記測定光のインターフェログラムを求める処理部と、
     g)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求める演算部と
     を備えることを特徴とする分光測定装置。
    a) a light irradiating means for causing P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, to be incident on the surface to be measured at a Brewster angle;
    b) a splitting optical system that splits the measurement light emitted from the measurement object on which the P-polarized light is incident into a first measurement light and a second measurement light;
    c) an interference optical system that forms interference light between the first measurement light and the second measurement light;
    d) optical path length difference providing means for providing a continuous optical path length difference between the first measurement light and the second measurement light;
    e) an interference light detection unit having a plurality of ancestors for detecting the intensity distribution of the interference light corresponding to the continuous optical path length difference;
    f) a processing unit for obtaining an interferogram of the measurement light from an intensity distribution of the interference light detected by the interference light detection unit;
    g) A spectroscopic measurement apparatus comprising: an arithmetic unit that obtains a spectrum of the measurement light by performing Fourier transform on the interferogram.
  3.  請求項1に記載の分光測定装置において、さらに、
     前記測定対象の表面と前記導入光学系の間、又は前記導入光学系と前記固定反射部及び前記可動反射部の間に配置された、前記測定光のうち、電場の振動方向が前記P偏光の電場の振動方向と垂直な直線偏光であるS偏光を通過させ、前記P偏光を通過させない偏光板を備えることを特徴とする分光測定装置。
    The spectrometer according to claim 1, further comprising:
    Of the measurement light disposed between the surface of the measurement object and the introduction optical system or between the introduction optical system and the fixed reflection unit and the movable reflection unit, the vibration direction of the electric field is the P-polarized light. A spectroscopic measurement apparatus comprising: a polarizing plate that allows S-polarized light, which is linearly polarized light perpendicular to the vibration direction of an electric field, to pass but does not allow the P-polarized light to pass.
  4.  請求項2に記載の分光測定装置において、さらに、
     前記測定対象の表面と前記分割光学系の間、又は前記分割光学系と前記光路長差付与手段の間に配置された、前記測定光のうち、電場の振動方向が前記P偏光の電場の振動方向と垂直な直線偏光であるS偏光を通過させ、前記P偏光を通過させない偏光板を備えることを特徴とする分光測定装置。
    The spectrometer according to claim 2, further comprising:
    Of the measurement light, disposed between the surface of the measurement object and the splitting optical system, or between the splitting optical system and the optical path length difference providing unit, the vibration direction of the electric field is vibration of the P-polarized electric field. A spectroscopic measurement apparatus comprising: a polarizing plate that passes S-polarized light that is linearly polarized light perpendicular to a direction but does not pass the P-polarized light.
  5.  請求項1~4のいずれかに記載の分光測定装置において、さらに、
     前記測定対象が載置される載置面と、該載置面と反対側の面である光照射面を有する板状の光透過性部材を備えることを特徴とする分光測定装置。
    The spectrometer according to any one of claims 1 to 4, further comprising:
    A spectroscopic measurement apparatus comprising: a plate-like light transmissive member having a placement surface on which the measurement target is placed and a light irradiation surface that is a surface opposite to the placement surface.
  6.  a)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させ、
     b)前記P偏光が入射された前記測定対象から発せられた測定光を導入光学系によって固定反射部及び該固定反射部と並んで配置された、反射面に垂直な方向に移動可能な可動反射部に導入し、
     c)前記固定反射部に導入され該固定反射部によって反射された測定光と前記可動反射部に導入され該可動反射部によって反射された測定光の干渉光を干渉光学系を用いて形成し、
     d)前記干渉光の強度を干渉光検出部により検出し、
     e)前記可動反射部を移動させることにより前記干渉光検出部で検出される干渉光の強度の変化に基づき前記測定光のインターフェログラムを求め、
     f)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求めることを特徴とする分光測定方法。
    a) P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, is incident on the surface to be measured at a Brewster angle.
    b) Movable reflection movable in the direction perpendicular to the reflection surface, which is arranged alongside the fixed reflection portion and the fixed reflection portion by the introducing optical system with the measurement light emitted from the measurement object on which the P-polarized light is incident Introduced to the department,
    c) forming interference light of measurement light introduced into the fixed reflection part and reflected by the fixed reflection part and measurement light introduced into the movable reflection part and reflected by the movable reflection part using an interference optical system;
    d) detecting the intensity of the interference light by an interference light detector;
    e) obtaining an interferogram of the measurement light based on a change in the intensity of the interference light detected by the interference light detection unit by moving the movable reflection unit,
    f) A spectroscopic measurement method characterized by obtaining a spectrum of the measurement light by Fourier transforming the interferogram.
  7.  a)測定対象の表面に、電場の振動方向が入射面と平行な直線偏光であるP偏光をブリュースター角で入射させ、
     b)前記P偏光が入射された前記測定対象から発せられた測定光を分割光学系によって第1測定光と第2測定光に分割し、
     c)前記第1測定光と前記第2測定光の間に連続的な光路長差を与えた後、これら第1測定光と前記第2測定光の干渉光を干渉光学系により形成し、
     d)前記連続的な光路長差に対応する前記干渉光の強度分布を、複数の画素を有する干渉光検出部により検出し、
     e)前記干渉光検出部で検出される前記干渉光の強度分布から前記測定光のインターフェログラムを求め、
     f)前記インターフェログラムをフーリエ変換することにより前記測定光のスペクトルを求めることを特徴とする分光測定方法。
    a) P-polarized light, which is linearly polarized light whose vibration direction of the electric field is parallel to the incident surface, is incident on the surface to be measured at a Brewster angle.
    b) Dividing the measurement light emitted from the measurement object on which the P-polarized light is incident into a first measurement light and a second measurement light by a splitting optical system;
    c) after giving a continuous optical path length difference between the first measurement light and the second measurement light, forming interference light between the first measurement light and the second measurement light by an interference optical system;
    d) detecting the intensity distribution of the interference light corresponding to the continuous optical path length difference by an interference light detection unit having a plurality of pixels;
    e) obtaining an interferogram of the measurement light from the intensity distribution of the interference light detected by the interference light detection unit,
    f) A spectroscopic measurement method characterized by obtaining a spectrum of the measurement light by Fourier transforming the interferogram.
  8.  請求項6に記載の分光測定方法において、
     前記測定対象の表面と前記導入光学系の間、又は前記導入光学系と前記固定反射部及び前記可動反射部の間に配置された偏光板により、前記測定光のうち、電場の振動方向が前記P偏光の電場の振動方向と垂直な直線偏光であるS偏光を通過させ、前記P偏光を通過させないことを特徴とする分光測定方法。
    The spectroscopic measurement method according to claim 6,
    The polarization direction of the electric field of the measurement light is changed between the surface of the measurement object and the introduction optical system, or between the introduction optical system and the fixed reflection unit and the movable reflection unit. A spectroscopic measurement method characterized by passing S-polarized light that is linearly polarized light perpendicular to the vibration direction of the electric field of P-polarized light and not allowing the P-polarized light to pass therethrough.
  9.  請求項7に記載の分光測定方法において、
     前記測定対象の表面と前記分割光学系の間、又は前記分割光学系と前記光路長差付与手段の間に配置された偏光板により、前記測定光のうち、電場が前記P偏光の電場と直交する直線偏光であるS偏光を通過させ、前記P偏光を通過させないことを特徴とする分光測定方法。
    The spectroscopic measurement method according to claim 7,
    The electric field of the measurement light is orthogonal to the electric field of the P-polarized light by the polarizing plate disposed between the surface of the measurement object and the divided optical system, or between the divided optical system and the optical path length difference providing unit. A spectroscopic measurement method characterized by allowing S-polarized light that is linearly polarized light to pass through and not allowing the P-polarized light to pass.
  10.  請求項6~9のいずれかに記載の分光測定方法において、
     前記測定対象が載置される載置面と、該載置面と反対側の面である光照射面を有する板状の光透過性部材を備え、
     前記測定対象の表面に前記P偏光がブリュースター角で入射するように前記光透過性部材の光照射面に該P偏光を照射することを特徴とする分光測定方法。
    The spectroscopic measurement method according to any one of claims 6 to 9,
    A plate-shaped light-transmitting member having a mounting surface on which the measurement object is mounted and a light irradiation surface that is a surface opposite to the mounting surface;
    A spectroscopic measurement method comprising irradiating a light irradiation surface of the light transmissive member with the P-polarized light so that the P-polarized light is incident on the surface of the measurement object at a Brewster angle.
PCT/JP2016/051187 2015-01-29 2016-01-15 Spectrometry device and spectrometry method WO2016121540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571942A JP6660634B2 (en) 2015-01-29 2016-01-15 Spectrometer and spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015734 2015-01-29
JP2015-015734 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121540A1 true WO2016121540A1 (en) 2016-08-04

Family

ID=56543159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051187 WO2016121540A1 (en) 2015-01-29 2016-01-15 Spectrometry device and spectrometry method

Country Status (2)

Country Link
JP (1) JP6660634B2 (en)
WO (1) WO2016121540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070042A1 (en) * 2017-10-05 2019-04-11 マクセル株式会社 Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200050A (en) * 2000-12-28 2002-07-16 Kao Corp Skin color meter, skin color diagnostic machine, and face image processor
US20060092418A1 (en) * 2002-09-29 2006-05-04 Kexin Xu Optical detection method for separating surface and deepness
JP2007010576A (en) * 2005-07-01 2007-01-18 Toyota Motor Corp Colorimetric device and colorimetric method
JP2013527469A (en) * 2010-06-03 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for measuring a tissue sample such as bilirubin using Brewster's angle
WO2014054488A1 (en) * 2012-10-01 2014-04-10 国立大学法人香川大学 Spectral characteristic measurement device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844629B2 (en) * 1998-11-20 2006-11-15 富士写真フイルム株式会社 Blood vessel imaging device
JP5317298B2 (en) * 2010-09-08 2013-10-16 国立大学法人 香川大学 Spectroscopic measurement apparatus and spectral measurement method
CN104833634B (en) * 2012-10-05 2018-06-15 国立大学法人香川大学 Spectral measurement apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200050A (en) * 2000-12-28 2002-07-16 Kao Corp Skin color meter, skin color diagnostic machine, and face image processor
US20060092418A1 (en) * 2002-09-29 2006-05-04 Kexin Xu Optical detection method for separating surface and deepness
JP2007010576A (en) * 2005-07-01 2007-01-18 Toyota Motor Corp Colorimetric device and colorimetric method
JP2013527469A (en) * 2010-06-03 2013-06-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for measuring a tissue sample such as bilirubin using Brewster's angle
WO2014054488A1 (en) * 2012-10-01 2014-04-10 国立大学法人香川大学 Spectral characteristic measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAHAR E: "Total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral interface", J. OPT. SOC. AM. A, vol. 27, no. 9, 18 August 2010 (2010-08-18), pages 2055 - 2060 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070042A1 (en) * 2017-10-05 2019-04-11 マクセル株式会社 Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system
US11430581B2 (en) 2017-10-05 2022-08-30 Maxell, Ltd. Contactless infernal measurement device, contactless internal measurement method, and internal measurement result display system
US11721452B2 (en) 2017-10-05 2023-08-08 Maxell, Ltd. Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system

Also Published As

Publication number Publication date
JP6660634B2 (en) 2020-03-11
JPWO2016121540A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
AU2012249441B2 (en) Method and apparatus for evaluating a sample through variable angle Raman spectroscopy
KR101683407B1 (en) Spectroscopic measurement device
KR101627444B1 (en) Spectral characteristics measurement device and method for measuring spectral characteristics
JP6323867B2 (en) Scattering spectrometer
JP5765693B2 (en) Spectral characteristic measuring device
JP6744005B2 (en) Spectrometer
WO2016171042A1 (en) Spectrometry device
CA2826737C (en) Apparatus and method for optical coherence tomography
Chen et al. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions
US20160235345A1 (en) Probe, system, and method for non-invasive measurement of blood analytes
JP6660634B2 (en) Spectrometer and spectrometer
WO2017007024A1 (en) Spectroscope
JP4925278B2 (en) Optical biological information measuring method and apparatus
US11452469B1 (en) Optical device for non-invasive continuous monitoring of blood glucose level and HbA1c concentration
TWI804509B (en) Interference imaging device
JP2023015889A (en) measuring device
Fujiwara et al. Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement
US20140132957A1 (en) Optical measurement of an analyte
KR102498594B1 (en) Method for measuring multi-spectral properties of tissue and system therefor
US20200232915A1 (en) Speckle based sensing of acoustic excitation in solutions
JP2016170054A (en) Imaging apparatus and imaging system
KR101849606B1 (en) Spatially-resolved spectral imaging apparatus based on single-shot
RU2712034C2 (en) Non-invasive method of measuring physiological parameter using confocal spectroscopic measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743144

Country of ref document: EP

Kind code of ref document: A1