JP2008064691A - Apparatus for measuring optical anisotropy parameter - Google Patents

Apparatus for measuring optical anisotropy parameter Download PDF

Info

Publication number
JP2008064691A
JP2008064691A JP2006244667A JP2006244667A JP2008064691A JP 2008064691 A JP2008064691 A JP 2008064691A JP 2006244667 A JP2006244667 A JP 2006244667A JP 2006244667 A JP2006244667 A JP 2006244667A JP 2008064691 A JP2008064691 A JP 2008064691A
Authority
JP
Japan
Prior art keywords
light
reflected
sample
incident
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006244667A
Other languages
Japanese (ja)
Inventor
Daisuke Tanooka
大 輔 田ノ岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2006244667A priority Critical patent/JP2008064691A/en
Publication of JP2008064691A publication Critical patent/JP2008064691A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent measuring accuracy from being lowered even if light having a large irradiation diameter is used when optical parameters such as film thickness, refractive index, and refractive index anisotropy are measured through the use of polarization. <P>SOLUTION: In the optical anisotropy parameter measuring apparatus (wherein a surface to be measured of a sample 2 is an XY surface; the direction of the axis of incident light is α; and the direction of the axis of reflected light is β), an irradiation optical system 3 for irradiating the sample 2 with incident light flux B<SB>L</SB>of linear polarization is provided with both a light source device 5 for irradiating spot-shaped parallel light flux according to a region to be measured and a reflecting type polarizer 6 for extracting incident light flux of linear polarization by reflecting the parallel light flux at a prescribed angle, and a measuring optical system 4 for measuring the intensity of reflected light of P-polarization or S-polarization contained in reflected light flux B<SB>R</SB>is provided with both a reflecting type optical analyzer 8 for extracting P-polarization or S-polarization by reflecting the reflected light flux B<SB>R</SB>at a prescribed angle at a reflecting surface intersecting with a Yβ surface or an Xβ surface at right angles and a one-dimensional or two-dimensional optical sensor 10 for detecting the optical intensity of the polarization. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、偏光を用いて物質の膜厚、屈折率、屈折率異方性などの光学的パラメータを測定する際に用いる光学異方性パラメータ測定装置に関する。   The present invention relates to an optical anisotropy parameter measuring apparatus used when measuring optical parameters such as film thickness, refractive index, and refractive index anisotropy of a substance using polarized light.

電子デバイスの表面に形成される薄膜の膜厚、屈折率、屈折率異方性等の光学的パラメータは、そのデバイスの電気特性及び光学特性に影響を及ぼし、その均一性は電子デバイスの品質の良否を決定する。
したがって、品質向上には、これらパラメータの分布特性を測定し検査することが不可欠である。
Optical parameters such as the film thickness, refractive index, refractive index anisotropy, etc. of the thin film formed on the surface of the electronic device affect the electrical and optical characteristics of the device, and the uniformity is the quality of the electronic device. Determine pass or fail.
Therefore, it is essential to measure and inspect the distribution characteristics of these parameters for quality improvement.

これらの光学的パラメータを薄膜の膜厚や屈折率を非接触/非破壊に測定し検査する方法として、試料の測定点に照射した光が、試料で反射しあるいは試料を透過したときに、その偏光状態が変化する現象を利用して測定を行う光学異方性パラメータ測定装置が知られている。
特許第3425923号公報
As a method for inspecting these optical parameters by measuring the film thickness and refractive index of the thin film in a non-contact / non-destructive manner, when the light irradiated to the measurement point of the sample is reflected by the sample or transmitted through the sample, There is known an optical anisotropy parameter measuring apparatus that performs measurement using a phenomenon in which a polarization state changes.
Japanese Patent No. 3425923

しかし、この場合は、一度の測定で試料上の1点における反射光強度しか測定できないため、試料の測定しようとする領域全体の反射光強度を高効率で測定することのできる光学異方性パラメータ測定装置が提案されている。
特開平7−72013号公報
However, in this case, since only the reflected light intensity at one point on the sample can be measured at a time, the optical anisotropy parameter that can measure the reflected light intensity of the entire region of the sample to be measured with high efficiency. A measuring device has been proposed.
Japanese Patent Laid-Open No. 7-72013

図10はこのような従来の光学異方性パラメータ測定装置51を示し、薄膜試料52にP偏光又はS偏光の入射光束を照射させる照射光学系53と、薄膜試料52から反射される反射光束に含まれる偏光成分のうち、前記入射光束の偏光方向に直交するS偏光又はP偏光の反射光強度分布を検出する測定光学系54とを備えている。
そして、照射光学系53は、入射光束の光軸Lに沿ってレーザ光源55、偏光子56、薄膜試料52の測定領域52aの形状に応じて入射光束を拡径又は拡幅して平行光束とするビームエキスパンダ57が配されている。
そして、測定光学系54には、反射光束の光軸Aに沿って、検光子58と二次元受光素子から成る光センサ59が配されている。
FIG. 10 shows such a conventional optical anisotropy parameter measuring device 51. The irradiation optical system 53 irradiates the thin film sample 52 with an incident light beam of P-polarized light or S-polarized light, and the reflected light beam reflected from the thin film sample 52. A measurement optical system 54 that detects a reflected light intensity distribution of S-polarized light or P-polarized light orthogonal to the polarization direction of the incident light beam among the included polarization components is provided.
Then, the irradiation optical system 53 expands or widens the incident light beam according to the shape of the measurement region 52a of the laser light source 55, the polarizer 56, and the thin film sample 52 along the optical axis L of the incident light beam to obtain a parallel light beam. A beam expander 57 is arranged.
Then, the measurement optical system 54, along the optical axis A R of the reflected light beam, the light sensor 59 composed analyzer 58 and from the two-dimensional light receiving element is arranged.

これによれば、照射光学系53のレーザ光源55から照射されたレーザ光が偏光子56でP偏光又はS偏光に偏光化された後、ビームエキスパンダ57によって所定の照射径の光束に拡径されて薄膜試料52の測定領域52a全域に一度に照射される。
そして、測定領域52a全域から反射された反射光束が検光子58を通り、その偏光成分のうち、入射光束の偏光方向に直交するS偏光又はP偏光が透過されて、その反射光強度分布が光センサ59の各受光素子により測定されることとなる。
したがって、受光素子数に応じた数の測定点からの反射光強度を一度に測定することができるというメリットがある。
According to this, after the laser light emitted from the laser light source 55 of the irradiation optical system 53 is polarized into P-polarized light or S-polarized light by the polarizer 56, the beam expander 57 expands the light beam to a predetermined irradiation diameter. Then, the entire measurement area 52a of the thin film sample 52 is irradiated at once.
Then, the reflected light beam reflected from the entire measurement region 52a passes through the analyzer 58, and among the polarized components, S-polarized light or P-polarized light orthogonal to the polarization direction of the incident light beam is transmitted, and the reflected light intensity distribution is light. It is measured by each light receiving element of the sensor 59.
Therefore, there is an advantage that the reflected light intensity from a number of measurement points corresponding to the number of light receiving elements can be measured at a time.

しかしながら、この場合、光を偏光化した後に、ビームエキスパンダ57となるレンズにより光を屈折させてその光束を大きく拡径しているため、レンズで入射光束の偏光状態が変化してしまい測定精度が低下するという問題があった。
また、ビームエキスパンダ57と偏光子56の順序を逆にして、拡径された光束を偏光化しようとしても、このような光学測定に用いる偏光子56は、測定精度向上のため、一般には、天然の方解石を材料とするグラントムソンプリズムのように消光比の高いものが用いられるが、1辺が20mm以上の大きさのグラントムソンプリズムを作製するための材料を入手することは困難であり、したがって照射径が20mm以上の光束で測定を行うことは実質的に不可能であった。
同様に、大径の反射光束の偏光状態を検光子59で検出しようとすると、消光比の高い大径の検光子が必要になることから、測定が実質的に不可能であり、レンズで光束を縮径させた後に検光子59を透過させようとすると、検光子59を透過する前にレンズを透過した時点で偏光状態が変化するので、やはり測定精度が低下するという問題があった。
However, in this case, after the light is polarized, the light is refracted by the lens serving as the beam expander 57 and the light beam is greatly expanded, so that the polarization state of the incident light beam is changed by the lens and the measurement accuracy is increased. There was a problem that decreased.
Further, even if the order of the beam expander 57 and the polarizer 56 is reversed to polarize the expanded light beam, the polarizer 56 used for such optical measurement generally has the following advantages in order to improve measurement accuracy. A material having a high extinction ratio is used, such as a Gran Thompson prism made of natural calcite, but it is difficult to obtain a material for producing a Glan Thompson prism having a side of 20 mm or more in size. Therefore, it was practically impossible to measure with a light beam having an irradiation diameter of 20 mm or more.
Similarly, if the analyzer 59 tries to detect the polarization state of the reflected light beam with a large diameter, a large-diameter analyzer with a high extinction ratio is required. If the analyzer 59 is made to pass through after being reduced in diameter, the polarization state changes at the point of transmission through the lens before passing through the analyzer 59, so that there is still a problem that the measurement accuracy is lowered.

そこで本発明は、偏光を利用して膜厚、屈折率及び屈折率異方性などの光学的パラメータを測定する際に、照射径の大きな光を用いて測定精度を低下させることなく測定できるようにすることを技術的課題としている。   Therefore, the present invention can measure light parameters with a large irradiation diameter without reducing measurement accuracy when measuring optical parameters such as film thickness, refractive index and refractive index anisotropy using polarized light. To make it a technical issue.

この課題を解決するために、本発明は、前記試料の測定対象面をXY面とし、入射光軸とXY面の交点を原点とするXYZ座標上で、入射光軸及び反射光軸が通る面をXZ面とし、原点に向かう入射光軸の方向をα、原点から反射された反射光軸の方向をβとしたときに、
照射光学系は、試料の測定領域の形状に応じたスポット形状の平行光束を照射する光源装置と、その平行光束を所定角度で反射させることによりα方向に沿って試料へ向かう直線偏光の入射光束を抽出する反射型偏光子を備え、
測定光学系は、試料からβ方向に進行する反射光束をYβ面又はXβ面と直交する反射面により所定角度で反射させることによって試料で反射されたP偏光又はS偏光を抽出する反射型検光子と、その偏光成分の光強度を検出する1次元又は2次元の光センサを備えたことを特徴としている。
In order to solve this problem, the present invention provides a surface through which an incident optical axis and a reflected optical axis pass on an XYZ coordinate whose origin is the intersection of the incident optical axis and the XY plane, and the measurement target surface of the sample is the XY plane. Is the XZ plane, the direction of the incident optical axis toward the origin is α, and the direction of the reflected optical axis reflected from the origin is β,
The irradiation optical system includes a light source device that irradiates a spot-shaped parallel beam according to the shape of the measurement region of the sample, and a linearly polarized incident beam that travels toward the sample along the α direction by reflecting the parallel beam at a predetermined angle. With a reflective polarizer to extract
The measurement optical system reflects a reflected light beam traveling in the β direction from a sample at a predetermined angle by a reflecting surface orthogonal to the Yβ surface or the Xβ surface, thereby extracting a P-polarized light or S-polarized light reflected by the sample. And a one-dimensional or two-dimensional optical sensor for detecting the light intensity of the polarization component.

本発明において、反射型偏光子を及び反射型検光子として平面リフレクタを使用し、夫々の反射面がXα面及びYβ面と直交するように配し、光源装置からXα面内に沿って平行光束を照射すると、Xα面と直交する平面リフレクタに対しブリュースター角で入射され、その反射光がα方向に沿って試料に向う入射光束となる。
このとき、入射光束は、平面リフレクタの反射面に対してS偏光成分のみを含む光となり、その偏光の振動方向はXα面に直交するYα面方向となっているから、試料に対してもS偏光のまま入射される。
In the present invention, a planar reflector is used as the reflective polarizer and the reflective analyzer, and the respective reflective surfaces are arranged so as to be orthogonal to the Xα plane and the Yβ plane. Is incident on a planar reflector perpendicular to the Xα plane at a Brewster angle, and the reflected light becomes an incident light beam directed toward the sample along the α direction.
At this time, the incident light beam becomes light including only the S-polarized component with respect to the reflecting surface of the planar reflector, and the vibration direction of the polarized light is in the Yα plane direction orthogonal to the Xα plane. Incident light is incident as polarized light.

次いで、試料から反射された反射光束はβ方向に進行し、Yβ面と直交する平面リフレクタに対しブリュースター角で入射され、その反射光がYβ面に沿って進行する。
このとき、試料に対してS偏光となる反射光束の偏光成分はYβ面方向に振動するので平面リフレクタに対してはP偏光として入射され、試料に対してP偏光となる反射光束の偏光成分はXβ面方向に振動するので平面リフレクタに対してはS偏光として入射される。
そして、反射光束は平面リフレクタに対してブリュースター角で入射されるので、その反射面に対してS偏光の光、即ち、試料に対してP偏光となる光のみが反射されて光センサに達する。
したがって、試料にS偏光が入射され、その反射光から入射光の偏光方向と直交するP偏光のみを検出することができる。
Next, the reflected light beam reflected from the sample travels in the β direction, is incident at a Brewster angle on a flat reflector perpendicular to the Yβ plane, and the reflected light travels along the Yβ plane.
At this time, the polarization component of the reflected light beam that becomes S-polarized light with respect to the sample vibrates in the Yβ plane direction, so that it enters the plane reflector as P-polarized light, and the polarization component of the reflected light beam that becomes P-polarized light with respect to the sample is Since it vibrates in the Xβ plane direction, it is incident on the planar reflector as S-polarized light.
Since the reflected light beam is incident on the flat reflector at the Brewster angle, only the S-polarized light, that is, the P-polarized light is reflected on the reflecting surface and reaches the optical sensor. .
Therefore, S-polarized light is incident on the sample, and only P-polarized light orthogonal to the polarization direction of the incident light can be detected from the reflected light.

このように、偏光子及び検光子として、透過型偏光板ではなく、反射型偏光子及び反射型検光子が用いられているので、入射光束及び反射光束がどんなに大径でも試料にS偏光を照射させることができ、試料からの反射光束がどんなに大径でもこれに直交するP偏光を確実に取り出すことができる。   As described above, since the reflective polarizer and the reflective analyzer are used as the polarizer and the analyzer, not the transmission type polarizing plate, the sample is irradiated with the S-polarized light regardless of the diameter of the incident light beam and the reflected light beam. Even if the reflected light beam from the sample has a large diameter, it is possible to reliably extract P-polarized light that is orthogonal thereto.

また、各平面リフレクタの反射面がYα面及びXβ面と直交するように配し、光源装置からYα面内に沿って平行光束を照射すれば、Yα面と直交する平面リフレクタに対しブリュースター角で入射されて、その反射光がα方向に沿って試料に向う入射光束となる。
このとき、平面リフレクタの反射光は、その反射面に対してS偏光成分のみを含む光となり、そのS偏光はYα面に直交するXα面に振動するので、試料に対してP偏光となって入射される。
Further, if the reflecting surface of each planar reflector is arranged so as to be orthogonal to the Yα plane and the Xβ plane, and a parallel light beam is irradiated along the Yα plane from the light source device, the Brewster angle with respect to the planar reflector orthogonal to the Yα plane. And the reflected light becomes an incident light beam directed toward the sample along the α direction.
At this time, the reflected light of the planar reflector becomes light containing only the S-polarized component with respect to the reflecting surface, and the S-polarized light vibrates in the Xα plane orthogonal to the Yα plane, so that it becomes P-polarized light with respect to the sample. Incident.

次いで、試料から反射された反射光束はβ方向に進行し、Xβ面と直交する平面リフレクタに対してブリュースター角で入射され、その反射光がXβ面に沿って進行する。
このとき、試料に対してS偏光となる反射光束の偏光成分はYβ面方向に振動するので平面リフレクタに対してもS偏光として入射され、試料に対してP偏光となる反射光束の偏光成分はXβ面方向に振動するので平面リフレクタに対してもP偏光として入射される。
そして、反射光束は平面リフレクタに対してブリュースター角で入射されるので、その偏光成分のうち反射面に対してS偏光の光、即ち、試料に対してS偏光の光のみが反射されて光センサに達する。
したがって、試料にP偏光が入射され、その反射光から入射光の偏光方向と直交するS偏光のみを検出することができる。
Next, the reflected light beam reflected from the sample travels in the β direction, is incident at a Brewster angle on a planar reflector orthogonal to the Xβ plane, and the reflected light travels along the Xβ plane.
At this time, the polarization component of the reflected light beam that becomes S-polarized light with respect to the sample vibrates in the Yβ plane direction, so that it also enters the planar reflector as S-polarized light, and the polarization component of the reflected light beam that becomes P-polarized light with respect to the sample is Since it vibrates in the Xβ plane direction, it is also incident on the flat reflector as P-polarized light.
Then, since the reflected light beam is incident on the flat reflector at the Brewster angle, only the S-polarized light, that is, the S-polarized light is reflected on the reflecting surface of the polarized light component. Reach the sensor.
Therefore, P-polarized light is incident on the sample, and only S-polarized light orthogonal to the polarization direction of the incident light can be detected from the reflected light.

本発明に係る光学異方性パラメータ測定装置は、試料に直線偏光の入射光束を照射させる照射光学系と、試料から反射される反射光束に含まれる偏光成分のうちP偏光又はS偏光の反射光強度を測定する測定光学系とを備え、
前記試料の測定対象面をXY面とし、入射光軸とXY面の交点を原点とするXYZ座標上で、入射光軸及び反射光軸が通る面をXZ面とし、原点に向かう入射光軸の方向をα、原点から反射された反射光軸の方向をβとしたときに、
照射光学系は、試料の測定領域の形状に応じたスポット形状の平行光束を照射する光源装置と、その平行光束を所定角度で反射させることによりα方向に沿って試料へ向かう直線偏光の入射光束を抽出する反射型偏光子を備え、
測定光学系は、試料からβ方向に進行する反射光束をYβ面又はXβ面と直交する反射面により所定角度で反射させることによって試料で反射されたP偏光又はS偏光を抽出する反射型検光子と、その偏光成分の光強度を検出する1次元又は2次元の光センサを備えた。
An optical anisotropy parameter measuring apparatus according to the present invention includes an irradiation optical system that irradiates a sample with a linearly polarized incident light beam, and reflected light of P-polarized light or S-polarized light among polarized components included in a reflected light beam reflected from the sample. A measuring optical system for measuring the intensity,
The surface to be measured of the sample is the XY plane, and on the XYZ coordinates with the origin of the intersection of the incident optical axis and the XY plane, the plane through which the incident optical axis and the reflected optical axis pass is the XZ plane. When the direction is α and the direction of the reflected optical axis reflected from the origin is β,
The irradiation optical system includes a light source device that irradiates a spot-shaped parallel beam according to the shape of the measurement region of the sample, and a linearly polarized incident beam that travels toward the sample along the α direction by reflecting the parallel beam at a predetermined angle. With a reflective polarizer to extract
The measurement optical system reflects a reflected light beam traveling in the β direction from a sample at a predetermined angle by a reflecting surface orthogonal to the Yβ surface or the Xβ surface, thereby extracting a P-polarized light or S-polarized light reflected by the sample. And a one-dimensional or two-dimensional optical sensor for detecting the light intensity of the polarization component.

図1は本発明の光学異方性パラメータ測定装置の一例を示す説明図、図2は測定方法を示す説明図、図3は原点上の測定点における光強度変化を示すグラフ、図4は光強度の測定結果を示すグラフ、図5及び図6は他の実施形態を示す説明図、図7はその測定方法を示す説明図、図8は他の実施形態を示す説明図、図9はその測定結果を示す説明図、
図10は従来装置を示す説明図である。
1 is an explanatory view showing an example of an optical anisotropy parameter measuring apparatus according to the present invention, FIG. 2 is an explanatory view showing a measuring method, FIG. 3 is a graph showing a change in light intensity at a measuring point on the origin, and FIG. FIG. 5 and FIG. 6 are explanatory diagrams showing other embodiments, FIG. 7 is an explanatory diagram showing the measuring method, FIG. 8 is an explanatory diagram showing another embodiment, and FIG. Explanatory drawing showing the measurement results,
FIG. 10 is an explanatory view showing a conventional apparatus.

図1に示す光学異方性パラメータ測定装置1は、ステージ11に配された薄膜試料2にS偏光の入射光束Bを照射させる照射光学系3と、その試料2から反射される反射光束Bに含まれるP偏光の反射光強度分布を検出する測定光学系4とを備えている。
ここで、位置関係を定義するために、試料2の測定対象面をXY面とし、入射光軸AとXY面の交点を原点PとするXYZ座標上で、入射光軸A及び反射光軸Aが通る面をXZ面とし、原点Pに向かう入射光軸の方向をα、原点Pから反射された反射光軸Aの方向をβとする。
An optical anisotropy parameter measuring apparatus 1 shown in FIG. 1 includes an irradiation optical system 3 that irradiates a thin film sample 2 disposed on a stage 11 with an incident light beam BL of S-polarized light, and a reflected light beam B reflected from the sample 2. And a measurement optical system 4 that detects a reflected light intensity distribution of P-polarized light included in R.
In order to define the positional relationship, the measurement target surface of the sample 2 and XY plane, the intersection of the incident optical axis A L and the XY plane on the XYZ coordinate of the origin P 0, the incident optical axis A L and the reflection a surface through which the optical axis a R and the XZ plane, the direction of the incident optical axis toward the origin P 0 alpha, the direction of the origin P 0 the reflected optical axis a R reflected from the beta.

照射光学系3は、試料2の測定領域の形状に応じたスポット形状の平行光束を照射光束BとしてXα面内を進行する光軸Aに沿って照射する光源装置5と、その照射光束BをXα面と直交する反射面によりブリュースター角θで反射させることによって、α方向に沿って試料2へ向かうS偏光を入射光束Bとして抽出する入射側平面リフレクタ(反射型偏光子)6とを備えている。 Irradiation optical system 3 includes a light source device 5 for irradiating along the optical axis A S traveling through Xα plane parallel light beam spot shape corresponding to the shape of the measurement region of the sample 2 as the irradiation light beam B S, the irradiation light beam By reflecting B S with a Brewster angle θ B by a reflecting surface orthogonal to the Xα plane, the incident side plane reflector (reflective polarizer) extracts S-polarized light toward the sample 2 along the α direction as an incident light beam BL. 6).

光源装置5は、光軸がXα面内に沿って進行する照射光を照射するレーザ光源5aと、その照射光を試料2の測定領域の形状に応じて拡径又は拡幅して平行光束とするビームエキスパンダレンズ5bを備えている。   The light source device 5 includes a laser light source 5a that emits irradiation light whose optical axis travels along the Xα plane, and expands or widens the irradiation light according to the shape of the measurement region of the sample 2 to obtain a parallel light beam. A beam expander lens 5b is provided.

平面リフレクタ6はその反射面がXα面と直交して配されると共に、Xα面上においてブリュースター角θの2倍の角度で交差された照射光軸A及び入射光軸Aの交差角の二等分線に直交する向きに配されている。 With the planar reflector 6 is the reflecting surface is disposed perpendicular to the Xα surface, the intersection of two times the irradiation optical axis intersected at an angle of A S and the incident optical axis A L of the Brewster angle theta B on Xα surface It is arranged in a direction orthogonal to the angle bisector.

また、照射光束Bは平面リフレクタ6に対しブリュースター角θで入射されるので、その反射面に対してP偏光となる光(Xα面方向に振動する光)は反射されず、S偏光となる光(Yα面方向に振動する光)のみが反射され、これがα方向に沿って試料2に向かう入射光束Bとなり、したがって、試料2の測定対象面に対してS偏光となって入射される。 Further, since the irradiation light beam B S is incident on the flat reflector 6 at the Brewster angle θ B , the light that becomes P-polarized light (light that vibrates in the Xα-plane direction) is not reflected on the reflection surface, and the S-polarized light. Only the light (light oscillating in the Yα plane direction) is reflected, and this becomes an incident light beam BL directed toward the sample 2 along the α direction, so that it enters the measurement target surface of the sample 2 as S-polarized light. Is done.

入射光束Bは試料2の測定対象面で反射されてβ方向に進行する反射光束Bとなる。反射光束Bには、試料2の物性により反射光束Bは一般にP偏光成分(Xβ面方向に振動する光)とS偏光成分(Yβ面方向に振動する光)が含まれるので、測定光学系4により、反射光束Bに含まれるP偏光成分を抽出し、その光強度を検出する。 The incident light beam B L is the reflected light beam B R traveling in the β direction is reflected by the measurement target surface of the sample 2. The reflected light beam B R, because it contains reflected light beams B R is generally (light vibrating in Xβ plane direction) P-polarized component and S-polarized light component (light vibrating in Yβ surface direction) by the physical properties of the sample 2, the measurement optical the system 4, to extract the P-polarized light component included in the reflected light beams B R, detects the light intensity.

測定光学系4は、その反射光束BをYβ面と直交する反射面によりブリュースター角θで反射させることによって、入射光束Bの偏光方向(本例ではS偏光)に直交するP偏光を測定光束Bとして抽出する反射側平面リフレクタ(反射型検光子)8と、その測定光束Bを結像させる結像レンズ9と、その偏光成分の強度分布を検出する光センサ10とを備えている。
このとき、平面リフレクタ8はその反射面がYβ面と直交して配されると共に、Yβ面上においてブリュースター角θの2倍の角度で交差された反射光軸A及び測定光軸Aの交差角の二等分線に直交する向きに配されている。
Measuring optical system 4, by reflecting at the Brewster angle theta B by the reflecting surface which is perpendicular to the reflected light beams B R and Yβ surface, P-polarized light orthogonal to the (S-polarized light in the present embodiment) the polarization direction of the incident beam B L a reflection side flat reflector (reflective analyzer) 8 to extract a measurement beam B M, and an image forming lens 9 for focusing the measuring beam B M, and a light sensor 10 for detecting the intensity distribution of the polarization components I have.
At this time, the planar reflector 8 is the reflecting surface is disposed perpendicular to the Yβ surface, the reflected optical axis intersected at twice the angle of the Brewster angle theta B on Yβ surface A R and the measurement light axis A It is arranged in a direction perpendicular to the bisector of the crossing angle of M.

ここで、試料2から反射された反射光束Bは平面リフレクタ8に対してブリュースター角θで入射されるので、その反射面に対してP偏光となる光(Yβ面方向に振動する光)は反射されず、S偏光となる光(Xβ面方向に振動する光)のみが反射され、これが光センサ10に向かう測定光束Bとなる。
このとき、反射光束BのS偏光はYβ面方向に振動するので平面リフレクタ8に対してP偏光として入射され、反射光束BのP偏光はXβ面方向に振動するので平面リフレクタ8に対してS偏光として入射される。
したがって、平面リフレクタ8では、その反射面に対してS偏光となる光、即ち、試料2の測定対象面に対してP偏光となる光のみが反射されて測定光束Bとなり、その測定光束Bが光センサ10に達する。
Here, the reflected light beam B R reflected from the sample 2 because it is incident at the Brewster angle theta B to the plane reflector 8, vibrates in the light (Ybeta plane direction is P-polarized with respect to the reflecting surface light ) Is not reflected, and only the light that becomes S-polarized light (light that vibrates in the Xβ plane direction) is reflected, and this becomes the measurement light beam B M toward the optical sensor 10.
At this time, with respect to a plane reflector 8 because S polarized light of the reflected light beam B R is incident as P-polarized light to the plane reflector 8 because vibrates in Yβ plane direction, P-polarized light of the reflected light beam B R vibrates in Xβ plane direction Is incident as S-polarized light.
Therefore, in the planar reflector 8, only the light that becomes S-polarized light with respect to the reflection surface thereof, that is, the light that becomes P-polarized light with respect to the measurement target surface of the sample 2 is reflected to become the measurement light beam B M. M reaches the optical sensor 10.

これにより、試料2に入射光束BとしてS偏光(Yα面方向に振動する光)のみを入射させ、その反射光束Bから入射光束Bの偏光成分に直交するP偏光(Xβ面方向に振動する光)のみを抽出し、その光強度を光センサ10で検出することができる。
また、照射光学系3の偏光子及び測定光学系4の検光子として、透過型ではなく反射型偏光子及び反射型検光子が用いられているので、入射光束B及び反射光束Bがどんなに大径でも試料2にS偏光を照射させることができ、試料2からの反射光束がどんなに大径でもこれに直交するP偏光を確実に取り出すことができる。
Thus, S-polarized light as the incident light beam B L to the sample 2 is incident only (light vibrating in Yα plane direction), P-polarized light orthogonal to the polarization component of the incident light beam B L from the reflected light beam B R (in Xβ plane direction Only the vibrating light) can be extracted, and the light intensity can be detected by the optical sensor 10.
Further, as a polarizer and an analyzer of the measuring optical system 4 of the illumination optical system 3, since the reflective polarizer and the reflective analyzer rather than a transmission type is used, the incident light beam B L and the reflected light beams B R, no matter how Even with a large diameter, the sample 2 can be irradiated with S-polarized light, and P-polarized light perpendicular to the sample 2 can be reliably taken out regardless of how large the reflected light beam from the sample 2 is.

光センサ10としては、画素に相当する受光素子を一次元又は二次元にCCD撮像素子やCMOS撮像素子が用いられる。
なお、ステージ11は、XYZ方向に夫々位置調整可能に配されると共に、X軸及びY軸回りにあおり調整可能に配され、さらにZ軸回りにステップモータ(図示せず)で所定角度ずつ回転可能に配されている。
As the optical sensor 10, a CCD image sensor or a CMOS image sensor is used in which a light receiving element corresponding to a pixel is one-dimensionally or two-dimensionally used.
The stage 11 is arranged so that its position can be adjusted in the XYZ directions, and is arranged so as to be adjustable around the X and Y axes, and further rotated by a step motor (not shown) by a predetermined angle around the Z axis. It is arranged as possible.

以上が本発明の一例であって次にその作用について説明する。
光源装置5は、レーザ光源5aとして、半導体励起YAG−SHGレーザ(波長532nm、出力150mW)を用い、レーザ光源5からの光をシリンドリカルレンズで構成された一次元ビームエキスパンダレンズ5bにより、Y軸と平行な長さ30mmのライン状のビームスポットを有する光束を形成した。
入射側平面リフレクタ6及び反射側平面リフレクタ8として、縦×横=40×50(mm)で、表面に対して裏面が傾斜された楔形ガラス体を用い、その表面を反射面に形成した。
The above is an example of the present invention, and its operation will be described next.
The light source device 5 uses a semiconductor-pumped YAG-SHG laser (wavelength 532 nm, output 150 mW) as the laser light source 5a, and the light from the laser light source 5 is converted into a Y-axis by a one-dimensional beam expander lens 5b composed of a cylindrical lens. A light beam having a linear beam spot with a length of 30 mm parallel to the surface was formed.
As the incident side plane reflector 6 and the reflection side plane reflector 8, a wedge-shaped glass body having a length × width = 40 × 50 (mm) and a back surface inclined with respect to the surface was used, and the surfaces thereof were formed on the reflection surface.

α軸及びβ軸は、試料2への入射角度及び反射角度(Z軸となす角)が50°となるように、照射光学系3及び測定光学系4を配し、光センサ10として一次元CCD撮像素子を用い、照射光学系3から照射されたライン状のビームを受光できる向きに配した。
試料2としては、長手方向L×幅方向W×厚さ方向T=50×30×2(mm)のLiNbOの片面をその一辺に沿って長手方向に沿って光学研磨し、面内の光学軸方向と長手方向Lを一致させ、その長手方向をY軸方向に向けてステージ11上に固定した(図2(a)参照)。
The α-axis and β-axis are arranged one-dimensionally as the optical sensor 10 by arranging the irradiation optical system 3 and the measurement optical system 4 so that the incident angle and reflection angle to the sample 2 and the reflection angle (angle formed with the Z-axis) are 50 °. A CCD imaging device was used and arranged in such a direction that a linear beam irradiated from the irradiation optical system 3 could be received.
As sample 2, one side of LiNbO 3 having a longitudinal direction L × width direction W × thickness direction T = 50 × 30 × 2 (mm) was optically polished along the longitudinal direction along one side thereof, and in-plane optical The axial direction and the longitudinal direction L were matched, and the longitudinal direction was fixed on the stage 11 with the Y-axis direction (see FIG. 2A).

試料2のあおりを調整した後、S偏光の入射光束Bを照射して試料2を回転させながら、P偏光の反射光束Bの光強度を測定する。
このとき、試料2を回転させても原点P上の測定点の位置は変化せず、その光強度は、光センサ10を構成するCCD撮像素子の画素のうち、測定光束Bの光軸A上に位置する検出部で検出される。
After adjusting the tilt of the sample 2, while rotating the sample 2 is irradiated with incident light beam B L of the S-polarized light to measure the intensity of the reflected light beams B R of the P-polarized light.
At this time, the position of the measurement point on the origin P 0 be rotated sample 2 is not changed, the light intensity of the pixels of the CCD image sensor constituting the light sensor 10, the optical axis of the measuring beam B M It is detected by a detector located on A M.

図3は、そのときのステージ11の回転角と測定光束Bの光強度の測定値を示すグラフである。
グラフでは、二つの最大ピークΛ及びΛと、二つの中間ピークΛ及びΛが存在し、各ピークΛ〜Λの間に光強度が0となる極小ポイントV〜V値角度が存在する。
二つの最大ピークΛ及びΛの間の極小ポイントVと、二つの中間ピークΛ及びΛの間の極小ポイントVは原点Pに位置する試料2上の測定点の光学軸方向を示し、したがってその差は180°となる。
本例では、面内の光学軸方向が長手方向Lに一致するため、ステージが90°回転して長手方向がX軸と平行に成ったところで、極小ポイントV、Vは90°と270°の位置に観察されている。
これより、試料2の光学軸の方向が長手方向に一致していることがわかる。
Figure 3 is a graph showing the measurement value of the light intensity of the measurement beam B M and the rotation angle of the stage 11 at that time.
In the graph, the two largest peaks lambda 1 and lambda 2, two intermediate peaks lambda 3 and lambda 4 are present, the minimum point V 1 ~V 4 the light intensity between the peaks lambda 1 to [lambda] 4 is 0 There is a value angle.
The minimum point V 1 between the two maximum peaks Λ 1 and Λ 2 and the minimum point V 3 between the two intermediate peaks Λ 3 and Λ 4 are the optical axes of the measurement points on the sample 2 located at the origin P 0. Indicating the direction, thus the difference is 180 °.
In this example, since the in-plane optical axis direction coincides with the longitudinal direction L, the minimum points V 1 and V 3 are 90 ° and 270 when the stage rotates 90 ° and the longitudinal direction becomes parallel to the X axis. Observed at the position of °.
From this, it can be seen that the direction of the optical axis of the sample 2 coincides with the longitudinal direction.

次いで、試料2の長手方向LをX軸と平行になるようにステージ11を回動させて位置決めし、照射光学系3から照射されたライン状のビームを試料2の幅方向Wと平行に入射させて、ステージ11をX軸方向に移動させることにより、試料2上の長手方向一端側から他端側に光ビームを掃引し、光センサ10の各画素で光強度を検出する(図2(b)参照)。   Next, the stage 11 is rotated and positioned so that the longitudinal direction L of the sample 2 is parallel to the X axis, and the linear beam irradiated from the irradiation optical system 3 is incident in parallel to the width direction W of the sample 2. By moving the stage 11 in the X-axis direction, the light beam is swept from one end side in the longitudinal direction on the sample 2 to the other end side, and the light intensity is detected by each pixel of the photosensor 10 (FIG. 2 ( b)).

このとき、試料2上の各点における光学軸が全て長手方向Lを向いていれば、光強度は0に維持されるので、光強度が0でないところが、光学軸がずれている部分であると推測できる。
したがって、図4に示すように、光強度を高さ方向に示す3次元グラフを描けば、全体の分布より、光学軸の方向が均一であるか否かを極めて短時間で評価することができる。
例えば、図4(a)に示すように長手方向Lに長手方向Lに沿って光強度の高い部分が観察される場合と、図4(b)に示すように幅方向Wと平行に光強度の高い部分が観察される場合によって、結晶成長の引き上げ方向に依存した欠陥、すなわち結晶成長の際に生じた欠陥と、研磨などの加工に起因した欠陥の判別に利用することができる。
At this time, if the optical axes at the respective points on the sample 2 are all directed in the longitudinal direction L, the light intensity is maintained at 0, so that the portion where the optical axis is shifted is where the light intensity is not 0. I can guess.
Therefore, as shown in FIG. 4, if a three-dimensional graph showing the light intensity in the height direction is drawn, it can be evaluated in a very short time whether or not the direction of the optical axis is uniform from the overall distribution. .
For example, when a portion with high light intensity is observed along the longitudinal direction L in the longitudinal direction L as shown in FIG. 4A, and when the light intensity is parallel to the width direction W as shown in FIG. Depending on the case where a high portion is observed, it can be used for discriminating a defect depending on the pulling direction of crystal growth, that is, a defect generated during crystal growth and a defect caused by processing such as polishing.

図5は本発明の他の実施形態を示す。実施例1では薄膜試料2に対して入射光束BとしてS偏光を入射させ、反射光束BのP偏光の光強度を測定したが、本例では、入射光束BとしてP偏光を入射させ、反射光束BのS偏光の光強度を測定するようにした。なお、図1と共通する部分については同一符号を付し詳細説明を省略する。 FIG. 5 shows another embodiment of the present invention. Is incident S polarized light as the incident light beam B L with respect to Example 1 in the thin film sample 2, was measured the light intensity of P-polarized light of the reflected light beams B R, in this example, is incident P polarized light as the incident light beam B L was to measure the light intensity of S-polarized light of the reflected light beams B R. In addition, the same code | symbol is attached | subjected about the part which is common in FIG. 1, and detailed description is abbreviate | omitted.

本例の光学異方性パラメータ測定装置21の照射光学系3は、試料2の測定領域の形状に応じたスポット形状の平行光束を照射光束BとしてYα面内を進行する光軸Aに沿って照射する光源装置5と、その照射光束BをYα面と直交する反射面によりブリュースター角θで反射させることによって、α方向に沿って試料2へ向かうS偏光を入射光束Bとして抽出する入射側平面リフレクタ(反射型偏光子)6とを備えている。 This example optically anisotropic parameter measurement device 21 irradiation optical system of 3, the optical axis A S traveling through Yα plane parallel light beam spot shape corresponding to the shape of the measurement region of the sample 2 as the irradiation light beam B S The light source device 5 that irradiates along the light beam B and the irradiation light beam B S is reflected at the Brewster angle θ B by a reflecting surface orthogonal to the Yα plane, so that the S-polarized light toward the sample 2 along the α direction is incident on the light beam B L. The incident side plane reflector (reflection type polarizer) 6 is extracted.

平面リフレクタ6はその反射面がYα面と直交しているので、光源装置5から照射され、平面リフレクタ6で反射されて試料2に至る光の光軸は、すべてYα面上を通ることとなる。
そして、光源装置5からの照射光軸Aと入射光軸Aは、Yα面上においてブリュースター角θの2倍の角度で交差し、その二等分線に直交するように平面リフレクタ6が配されている。
Since the reflecting surface of the flat reflector 6 is orthogonal to the Yα plane, the optical axes of light irradiated from the light source device 5 and reflected by the flat reflector 6 to reach the sample 2 all pass on the Yα plane. .
Then, the irradiation optical axis A S and the incident optical axis A L from the light source device 5 is a plan reflector as cross at twice the angle of the Brewster angle theta B on Yα plane, perpendicular to the bisector 6 is arranged.

また、照射光束Bは平面リフレクタ6に対しブリュースター角θで入射されるので、その反射面に対してP偏光となる光(Yα面方向に振動する光)は反射されず、S偏光となる光(Xα面方向に振動する光)のみが反射され、これがα方向に沿って試料2に向かう入射光束Bとなり、したがって、試料2の測定対象面に対してP偏光となって入射される。 Further, since the irradiation light beam B S is incident on the flat reflector 6 at the Brewster angle θ B , the light that becomes P-polarized light (light that vibrates in the Yα-plane direction) is not reflected on the reflection surface, and the S-polarized light. Only the light (light oscillating in the Xα plane direction) is reflected, and this becomes the incident light beam BL toward the sample 2 along the α direction, and therefore enters the measurement target surface of the sample 2 as P-polarized light. Is done.

測定光学系4は、その反射光束BをXβ面と直交する反射面によりブリュースター角θで反射させることによって、入射光束Bの偏光方向(本例ではP偏光)に直交するS偏光を測定光束Bとして抽出する反射側平面リフレクタ(反射型検光子)8と、結像レンズ9と、光センサ10とを備えている。 Measuring optical system 4, by reflecting at the Brewster angle theta B by the reflecting surface which is perpendicular to the reflected light beams B R and Xβ plane, S-polarized light orthogonal to the (P-polarized light in this example) the polarization direction of the incident beam B L Is provided as a measurement light beam B M , a reflection-side planar reflector (reflection analyzer) 8, an imaging lens 9, and an optical sensor 10.

このとき、平面リフレクタ8はXβ面と直交しているので、試料2から平面リフレクタ8及び結像レンズ9を通り、光センサ10に至る光の光軸は、すべてXβ面上を通ることとなる。
そして、試料2で反射された反射光軸Aと、平面リフレクタ8から光センサ10に至る測定光軸Aは、Xβ面上においてブリュースター角θの2倍の角度で交差し、その二等分線に直交するように平面リフレクタ8が配されている。
At this time, since the planar reflector 8 is orthogonal to the Xβ plane, all the optical axes of light from the sample 2 passing through the planar reflector 8 and the imaging lens 9 to the optical sensor 10 pass on the Xβ plane. .
Then, the reflection optical axis A R reflected by the sample 2, the measurement optical axis A M extending from the plane reflector 8 on the light sensor 10, intersect at twice the angle of the Brewster angle theta B on Xβ plane, the A planar reflector 8 is arranged so as to be orthogonal to the bisector.

ここで、試料2から反射された反射光束Bは平面リフレクタ8に対してブリュースター角θで入射されるので、その反射面に対してP偏光となる光(Xβ面方向に振動する光)は反射されず、S偏光となる光(Yβ面方向に振動する光)のみが反射され、これが光センサ10に向かう測定光束Bとなる。
このとき、反射光束BのS偏光はYβ面方向に振動するので平面リフレクタ8に対してもS偏光として入射され、反射光束BのP偏光はXβ面方向に振動するので平面リフレクタ8に対してもP偏光として入射される。
したがって、平面リフレクタ8では、その反射面に対してS偏光となる光、即ち、試料2の測定対象面に対してS偏光となる光のみが反射されて測定光束Bとなり、その測定光束Bが光センサ10に達する。
Here, the reflected light beam B R reflected from the sample 2 because it is incident at the Brewster angle theta B to the plane reflector 8, it vibrates in the light (X? Plane direction is P-polarized with respect to the reflecting surface light ) Is not reflected, and only the light that becomes S-polarized light (light that vibrates in the Yβ plane direction) is reflected, and this becomes the measurement light beam B M toward the optical sensor 10.
At this time, S polarized light of the reflected light beam B R is also incident as S-polarized light to the plane reflector 8 because vibrates in Yβ plane direction, P-polarized light of the reflected light beam B R is the plane reflector 8 because vibrates in Xβ plane direction In contrast, it is incident as P-polarized light.
Therefore, in the planar reflector 8, only the light that becomes S-polarized light with respect to the reflection surface, that is, the light that becomes S-polarized light with respect to the measurement target surface of the sample 2 is reflected to become the measurement light beam B M. M reaches the optical sensor 10.

これにより、試料2に入射光束BとしてP偏光(Xα面方向に振動する光)のみを入射させ、その反射光束Bから入射光束Bの偏光成分に直交するS偏光(Yβ面方向に振動する光)のみを抽出し、その光強度を光センサ10で検出することができる。 Thus, P-polarized light as the incident light beam B L to the sample 2 is incident only (light vibrating in Xα plane direction), S-polarized light orthogonal to the polarization component of the incident light beam B L from the reflected light beam B R (in Yβ plane direction Only the vibrating light) can be extracted, and the light intensity can be detected by the optical sensor 10.

図6は本発明に係る光学異方性パラメータ測定装置の他の実施形態を示す。なお、図1と共通する部分については同一符号を付し詳細説明を省略する。
本例の光学異方性パラメータ測定装置31の照射光学系33は、試料2の測定領域の形状に応じたスポット形状の平行光束を照射光束BとしてXα面内を進行する光軸Aに沿って照射する光源装置35と、その照射光束BをXα面と直交する反射面により共鳴角θで反射させることによって、α方向に沿って試料2へ向かうS偏光を入射光束Bとして抽出する入射側プリズム(反射型偏光子)36とを備えている。
FIG. 6 shows another embodiment of the optical anisotropy parameter measuring apparatus according to the present invention. In addition, the same code | symbol is attached | subjected about the part which is common in FIG. 1, and detailed description is abbreviate | omitted.
Irradiation optical system 33 of the optical anisotropy parameter measurement device 31 of the present embodiment, the optical axis A S traveling through Xα plane parallel light beam spot shape corresponding to the shape of the measurement region of the sample 2 as the irradiation light beam B S The light source device 35 that irradiates along and the irradiation light beam B S are reflected at a resonance angle θ R by a reflection surface orthogonal to the Xα plane, so that the S-polarized light toward the sample 2 along the α direction is set as the incident light beam BL. An extraction-side prism (reflection type polarizer) 36 for extraction is provided.

光源装置35は、照射光束Bをキセノンランプ35aからプリズム36に至る光軸B上に、干渉フィルタ(透過波長632.8nm)35bと、照射光束Bを平行光とするコリメータ35cが配されている。
プリズム36は、断面が半円形又は三角形に形成され、反射面36aとなる底面に金を厚さ50nmに蒸着させた金属薄膜が形成されている。
そして、照射光軸A及び入射光軸Aが、Xα面上において共鳴角θの2倍の角度で交差され、プリズム36は、照射光軸Aがプリズム36内を通過して反射面36aに至る向きで、且つ、照射光軸A及び入射光軸Aの交差角の二等分線に対して直交するように配されている。
Light source device 35 on the optical axis B S that leads to the prism 36 to irradiate light beam B L from the xenon lamp 35a, an interference filter (transmission wavelength 632.8 nm) 35b, collimator 35c to parallel light irradiation light beam B L is distribution Has been.
The prism 36 is formed in a semicircular or triangular cross section, and a metal thin film in which gold is evaporated to a thickness of 50 nm is formed on the bottom surface serving as the reflective surface 36a.
Then, the irradiation optical axis A S and the incident optical axis A L is intersected at twice the angle of the resonance angle theta R on Xα plane, the prism 36, the irradiation optical axis A S passes through the prism 36 reflecting in a direction leading to the surface 36a, and are arranged so as to be orthogonal to the bisector of the intersection angle of the irradiation optical axis a S and the incident optical axis a L.

これにより、照射光束Bは、プリズム36内を通って反射面36aに対し共鳴角θで入射されるので、その反射面36aに対してP偏光となる光(Xα面方向に振動する光)は反射されず、S偏光となる光(Yα面方向に振動する光)のみが反射され、これが再びプリズム36内を通ってα方向に沿って試料2に向かう入射光束Bとなり、したがって、入射光束Bは試料2の測定対象面に対してS偏光となって入射される。 Light Accordingly, the irradiation light beam B S Since enters in resonance angle theta R to the reflection surface 36a passes through the prism 36, which vibrates the light (X [alpha plane direction is P-polarized with respect to the reflecting surface 36a ) Is not reflected, and only the light that becomes S-polarized light (light that vibrates in the Yα plane direction) is reflected, which again becomes an incident light beam BL that passes through the prism 36 and travels toward the sample 2 along the α direction. The incident light beam BL is incident on the measurement target surface of the sample 2 as S-polarized light.

入射光束Bは試料2の測定対象面で反射されてβ方向に進行する反射光束Bとなる。反射光束Bには、試料2の物性により反射光束Bは一般にP偏光成分(Xβ面方向に振動する光)とS偏光成分(Yβ面方向に振動する光)が含まれるので、測定光学系34により、反射光束Bに含まれるP偏光成分を抽出し、その光強度を検出する。 The incident light beam B L is the reflected light beam B R traveling in the β direction is reflected by the measurement target surface of the sample 2. The reflected light beam B R, because it contains reflected light beams B R is generally (light vibrating in Xβ plane direction) P-polarized component and S-polarized light component (light vibrating in Yβ surface direction) by the physical properties of the sample 2, the measurement optical the system 34 extracts P polarized light components included in the reflected light beams B R, detects the light intensity.

測定光学系34は、その反射光束BをYβ面と直交する反射面により共鳴角θで反射させることによって、入射光束Bの偏光方向(本例ではS偏光)に直交するP偏光を測定光束Bとして抽出する反射側プリズム(反射型検光子)38と、結像レンズ9と、その強度分布を検出する光センサ10とを備えている。
反射側プリズム38は、入射側プリズム36と同様、断面が半円形又は三角形に形成され、反射面38aとなる底面には金を厚さ50nmに蒸着させた金属薄膜が形成されている。
そして、反射光軸A及び測定光軸Aが、Yβ面上において共鳴角θの2倍の角度で交差され、プリズム38は、反射光軸Aがプリズム38内を通過して反射面38aに至る向きで、反射光軸A及び測定光軸Aの交差角の二等分線に対して直交するように配されている。
Measurement optical system 34, by reflecting in the resonance angle theta R by the reflection surface orthogonal to the reflected light beams B R and Yβ surface, the P-polarized light orthogonal to the (S-polarized light in the present embodiment) the polarization direction of the incident beam B L A reflection-side prism (reflection analyzer) 38 that extracts the measurement light beam B M , an imaging lens 9, and an optical sensor 10 that detects the intensity distribution thereof are provided.
Similar to the incident side prism 36, the reflecting side prism 38 has a semicircular or triangular cross section, and a metal thin film on which gold is deposited to a thickness of 50 nm is formed on the bottom surface which becomes the reflecting surface 38a.
The reflected optical axis A R and the measurement light axis A M can be crossed at twice the angle of the resonance angle theta R on Yβ surface, the prism 38 is reflected optical axis A R passes through the prism 38 reflecting in a direction leading to surface 38a, it is arranged so as to be orthogonal to the bisector of the intersection angle of the reflected optical axis a R and the measurement light axis a M.

これにより、反射光束Bは、反射面38aに対し共鳴角θで入射されるので、その反射面38aに対してP偏光となる光(Xα面方向に振動する光)は反射されず、S偏光となる光(Yα面方向に振動する光)のみが反射され、これがプリズム38内を通って光センサ10に向かう測定光束Bとなる。
このとき、反射光束BのS偏光はYβ面方向に振動するので反射面38aに対してP偏光として入射され、反射光束BのP偏光はXβ面方向に振動するので反射面38aに対してS偏光として入射される。
Thus, the reflected light beam B R, so is incident at the resonance angle theta R to the reflection surface 38a, the light becomes a P-polarized light with respect to the reflecting surface 38a (light vibrating in Xα plane direction) is not reflected, Only light that becomes S-polarized light (light that vibrates in the direction of the Yα plane) is reflected, and this becomes the measurement light beam B M that passes through the prism 38 and travels toward the optical sensor 10.
At this time, S polarized light of the reflected light beam B R is incident as P-polarized light to the reflecting surface 38a so that the vibration in the Yβ plane direction, P-polarized light of the reflected light beam B R whereas the reflection surface 38a so that the vibration in the Xβ plane direction Is incident as S-polarized light.

したがって、プリズム38では、その反射面38aに対してS偏光(Xβ面方向に振動する光)、即ち、試料2の測定対象面に対してP偏光となる光のみが反射されて測定光束Bとなり、その測定光束Bが光センサ10に達する。
このように本例によれば、試料2に入射光束BとしてS偏光(Yα面方向に振動する光)のみを入射させ、その反射光束Bから入射光束Bの偏光成分に直交するP偏光(Xβ面方向に振動する光)のみを抽出し、その光強度を光センサ10で検出することができる。
Therefore, in the prism 38, only the S-polarized light (light oscillating in the Xβ plane direction) with respect to the reflecting surface 38a, that is, the light that becomes P-polarized with respect to the measurement target surface of the sample 2 is reflected, and the measurement light beam B M The measurement light beam B M reaches the optical sensor 10.
According to this embodiment, as an incident light beam B L to the sample 2 is incident only S-polarized light (light vibrating in Yα plane direction) perpendicular to the polarized component of the incident light beam B L from the reflected light beam B R P Only polarized light (light vibrating in the Xβ plane direction) can be extracted, and the light intensity can be detected by the optical sensor 10.

本例の光学異方性パラメータ測定装置31を用いて、光源装置35により直径約30mmの照射光束Bを形成し、共鳴角θ=45°となるように、照射光学形33及び測定光学系34を調整した。
これにより、配向膜3に照射された10mmの測定エリアAに含まれる複数の測定点Mijからの反射光強度を同時に測定することができる。
Using optical anisotropy parameter measurement device 31 of the present embodiment, the light source device 35 to form a radiation beam B S having a diameter of about 30 mm, so that the resonance angle θ R = 45 °, the irradiation optical type 33 and measuring optical System 34 was adjusted.
Thereby, the reflected light intensity from the plurality of measurement points Mij included in the measurement area A of 10 mm 2 irradiated on the alignment film 3 can be measured simultaneously.

実施例1と同様、薄膜試料2の光学軸の方向をY軸に一致させてステージ11にセットした。
試料2のあおりを調整した後、S偏光の入射光束Bを照射して試料2を回転させながら、反射光束Bに含まれるP偏光の光強度を測定する。
このとき、試料2を回転させても原点P上の測定点の位置は変化せず、その光強度は、光センサ10を構成するCCD撮像素子の画素のうち、測定光束Bの光軸A上に位置する検出部で検出される。
In the same manner as in Example 1, the optical axis direction of the thin film sample 2 was set on the stage 11 so as to coincide with the Y axis.
After adjusting the tilt of the sample 2, while rotating the sample 2 is irradiated with incident light beam B L of the S-polarized light, to measure the light intensity of P-polarized light included in the reflected beam B R.
At this time, the position of the measurement point on the origin P 0 be rotated sample 2 is not changed, the light intensity of the pixels of the CCD image sensor constituting the light sensor 10, the optical axis of the measurement beam B M It is detected by a detector located on A M.

図7(a)は回転前の測定エリアA内の測定点Mij(i,j=1〜10)を示す。
図7(b)はステージ11の回転に伴い回転した画像を示すもので,各測定点Mijを極座標Mij=(r,φ)で表わせば、回転テーブル6が角度γだけ回転したときのMijの位置はMij=(r,φ+γ)で表わされる。
したがって、Mij=(r,φ+γ)に対応するCCDカメラ39の画素領域で反射光強度を測定すれば、ステージ11を一回転させるだけで、個々の測定点について、図5に示すような回転角−光強度線図が同時に測定できる。
FIG. 7A shows measurement points Mij (i, j = 1 to 10) in the measurement area A before rotation.
FIG. 7 (b) shows an image rotated with the rotation of the stage 11. If each measurement point Mij is represented by polar coordinates Mij = (r n , φ m ), the rotation table 6 is rotated by an angle γ. The position of Mij is represented by Mij = (r n , φ m + γ).
Therefore, if the reflected light intensity is measured in the pixel region of the CCD camera 39 corresponding to Mij = (r n , φ m + γ), the individual measurement points are shown in FIG. A simple rotation angle-light intensity diagram can be measured simultaneously.

このグラフより、合計100ポイントの各測定点Mijごとに、従来公知の計算手法により正確な光学軸方向と、極角方向の分布を求めることができる。
さらに、この結果に基づき、光学軸の方向と、それに直交する方向の2方向で、従来のエリプソメータを用いて、常光誘電率ε、異常光誘電率ε、異方層の膜厚tを測定すれば、これらの値を極めて簡単に算出することができる。
From this graph, it is possible to obtain an accurate optical axis direction and polar angle direction distribution by a conventionally known calculation method for each measurement point Mij in total of 100 points.
Further, based on this result, the ordinary optical dielectric constant ε 0 , the extraordinary optical dielectric constant ε e , and the anisotropic layer thickness t are determined using a conventional ellipsometer in two directions, the direction of the optical axis and the direction orthogonal thereto. If measured, these values can be calculated very easily.

図8は本発明に係る光学異方性パラメータ測定装置をエリプソメータとして使用する場合の実施形態を示す。なお、図1と共通する部分については同一符号を付し詳細説明を省略する。   FIG. 8 shows an embodiment in which the optical anisotropy parameter measuring apparatus according to the present invention is used as an ellipsometer. In addition, the same code | symbol is attached | subjected about the part which is common in FIG. 1, and detailed description is abbreviate | omitted.

本例の光学異方性パラメータ測定装置41の照射光学系43は、試料2の測定領域の形状に応じたスポット形状の平行光束を照射光束BとしてXα面内を進行する光軸Aに沿って照射する光源装置35と、その照射光束Bを共鳴角θで反射させることによってS偏光のみを取り出し、α方向に沿って試料2に対してP偏光及びS偏光以外の直線偏光(本例では約45°の直線偏光)を入射光束Bとして抽出する入射側プリズム(反射型偏光子)36とを備えている。 Irradiation optical system 43 of the optical anisotropy parameter measurement device 41 of the present embodiment, the optical axis A S traveling through Xα plane parallel light beam spot shape corresponding to the shape of the measurement region of the sample 2 as the irradiation light beam B S The light source device 35 that irradiates along and the irradiated light beam B S is reflected at the resonance angle θ R to extract only S-polarized light, and linearly polarized light (other than P-polarized light and S-polarized light) is applied to the sample 2 along the α direction. In this example, an incident side prism (reflective polarizer) 36 that extracts approximately 45 ° linearly polarized light) as an incident light beam BL is provided.

この照射光学系43は、実施例3の照射光学系33をα軸を中心としてに反時計回りに45°回転させた位置関係とした以外、個々の構成は照射光学系33と同様である。
これにより、照射光束Bは、プリズム36内を通って反射面36aに対し共鳴角θで入射されるので、その反射面36aに対してP偏光となる光(Xα面方向に振動する光)は反射されず、S偏光となる光(Yα面方向に振動する光)のみが反射される。
そして、その反射光が再びプリズム36内を通り、α方向に沿って試料2に向かう入射光束Bとなり、Xα面に対して約45°の振動方向を有する直線偏光となって入射される。
これにより、試料2には所定の強度のP偏光及びS偏光が照射されることになる。
The irradiation optical system 43 has the same configuration as the irradiation optical system 33 except that the irradiation optical system 33 according to the third embodiment is rotated 45 ° counterclockwise about the α axis.
Light Accordingly, the irradiation light beam B S Since enters in resonance angle theta R to the reflection surface 36a passes through the prism 36, which vibrates the light (X [alpha plane direction is P-polarized with respect to the reflecting surface 36a ) Is not reflected, and only light that becomes S-polarized light (light that vibrates in the Yα plane direction) is reflected.
Then, the reflected light again passes through the prism 36, becomes an incident light beam BL toward the sample 2 along the α direction, and is incident as linearly polarized light having a vibration direction of about 45 ° with respect to the Xα plane.
As a result, the sample 2 is irradiated with P-polarized light and S-polarized light having a predetermined intensity.

測定光学系44は、反射光束Bに含まれるP偏光とS偏光の位相を90°シフトする1/4波長板47が光軸A回りに回転可能に配されると共に、反射光束BをYβ面と直交する反射面により共鳴角θで反射させることによって、反射光束Bに含まれるS偏光を測定光束Bとして抽出する反射側プリズム(反射型検光子)38と、その測定光束Bを結像させる結像レンズ9と、その偏光成分の強度分布を検出する光センサ10とを備えている。 Measurement optical system 44, together with the P-polarized light and S-polarized light quarter-wave plate 47 to 90 ° shifted phase are rotatably arranged on the optical axis A R around included in the reflected light beams B R, the reflected light beam B R the by reflecting in the resonance angle theta R by the reflecting surface perpendicular to the Yβ surface, and the reflection side prism (reflective analyzer) 38 to extract the S-polarized light included in the reflected light beam B R as measurement beam B M, the measurement An imaging lens 9 that forms an image of the light beam B M and an optical sensor 10 that detects the intensity distribution of the polarization component thereof are provided.

ここで、試料2から反射された反射光束Bは、プリズム38の反射面38aに対して共鳴角θで入射されるので、その底面38aに対してP偏光となる光(Xβ面方向に振動する光)は反射されず、S偏光となる光(Yβ面方向に振動する光)のみが反射され、これが光センサ10に向かう測定光束Bとなる
このとき、反射光束BのS偏光はYβ面方向に振動するのでプリズム38の底面38aに対してS偏光として入射され、反射光束BのP偏光はXβ面方向に振動するので底面38aに対してP偏光として入射される。
したがって、プリズム38では、その反射面38aに対してS偏光となる光、即ち、試料2の測定対象面に対してP偏光となる光のみが反射されて測定光束Bとなり、その測定光束Bが光センサ10に達する。
Here, the reflected light beams B R reflected from the sample 2, since it is incident at the resonance angle theta R the reflecting surface 38a of the prism 38, the light (X? Plane direction is P-polarized with respect to the bottom surface 38a light vibrating) is not reflected, only light becomes S polarized light (light vibrating in Yβ plane direction) is reflected, which is at this time that the measuring beam B M toward the optical sensor 10, S-polarized light of the reflected light beams B R is incident as S-polarized light with respect to the bottom surface 38a of the prism 38 so vibrates in Yβ plane direction, P-polarized light of the reflected light beam B R is incident as P-polarized light with respect to the bottom surface 38a so that the vibration in the Xβ plane direction.
Therefore, in the prism 38, only the light that becomes S-polarized light with respect to the reflection surface 38a, that is, the light that becomes P-polarized light with respect to the measurement target surface of the sample 2 is reflected to become the measurement light beam B M. M reaches the optical sensor 10.

これにより、試料2に入射光束Bとして45°の直線偏光(Xα面方向に振動する光)を入射させ、その反射光束Bを1/4波長板47を回転させたときの入射光束Bの偏光成分に直交するS偏光(Yβ面方向に振動する光)のみを抽出し、その光強度を光センサ10で検出することができる。 Accordingly, the linearly polarized light of 45 ° as the incident light beam B L to the sample 2 is incident (light vibrating in Xα plane direction), the incident light beam B when the reflected light beam B R rotating the quarter-wave plate 47 Only S-polarized light (light oscillating in the Yβ plane direction) orthogonal to the L polarization component can be extracted, and its light intensity can be detected by the optical sensor 10.

光源装置35により直径約30mmの照射光束Bを形成し、共鳴角θ=45°、試料2への入射角度=50°となるように、照射光学形43及び測定光学系44を調整した。
試料2は、Siウエハーを熱酸化処理してSiO膜を形成し、HF−NH水溶液によりエッチングを行った。
市販のエリプソメータで測定したところ、平均膜厚=50.2nm、屈折率=1.46であった。
The light source device 35 to form a radiation beam B S having a diameter of about 30 mm, the resonance angle θ R = 45 °, so that the incident angle = 50 ° to the sample 2 was adjusted illumination optical type 43 and the measurement optical system 44 .
In Sample 2, a Si wafer was thermally oxidized to form a SiO 2 film and etched with an HF—NH 3 aqueous solution.
When measured with a commercially available ellipsometer, the average film thickness was 50.2 nm and the refractive index was 1.46.

図9は、光学異方性パラメータ測定装置41により測定された回転角θ−光強度分布Iを示すグラフである。
回転位相子法によれば、式(1)の定数A、B、Cの値を−1〜+1の範囲で変化させてフィッティングを行い、最適な定数A、B、Cの値を式(2)〜(4)に代入してψ,δを求める。
I=I[2+A−2Bsin(2θ)+Acos(4θ)+Csin(4θ)]………(1)
A=cos(2ψ)…………………………………………………………………(2)
B=sin(2ψ)sinδ…………………………………………………………(3)
C=sin(2ψ)cosδ…………………………………………………………(4)
FIG. 9 is a graph showing the rotation angle θ-light intensity distribution I measured by the optical anisotropy parameter measuring device 41.
According to the rotational phaser method, fitting is performed by changing the values of constants A, B, and C in Formula (1) in the range of −1 to +1, and optimum values of constants A, B, and C are calculated using Formula (2). ) To (4) to obtain ψ and δ.
I = I 0 [2 + A−2Bsin (2θ) + Acos (4θ) + Csin (4θ)] (1)
A = cos (2ψ) ………………………………………………………………… (2)
B = sin (2ψ) sinδ ………………………………………………………… (3)
C = sin (2ψ) cosδ ………………………………………………………… (4)

なお、反射率比は、式(5)で示すように、屈折率n及び膜厚の関数であらわされると同時に、振幅反射率比tanΨ及び位相差Δの関数で表される。
(n,d)/R(n,d)=(E out/E out)/(E in/E in
=tanΨexp(iΔ)……………………………(5)
また、本例では45°の直線偏光を照射しているので、E in/E in=1であり、式(1)〜(4)で求めたψ、δを用いて(6)式が成り立つ。
(n,d)/R(n,d)=tanψexp(iδ)……………………………(6)
The reflectance ratio is expressed by a function of the refractive index n and the film thickness, and at the same time by a function of the amplitude reflectance ratio tan Ψ and the phase difference Δ, as shown in the equation (5).
R p (n, d) / R s (n, d) = (E p out / E s out) / (E p in / E s in)
= TanΨexp (iΔ) ……………………… (5)
In this example, since 45 ° linearly polarized light is irradiated, E p in / E s in = 1, and ψ and δ obtained by equations (1) to (4) are used to obtain equation (6). Holds.
R p (n, d) / R s (n, d) = tan ψ exp (iδ) (6)

一方、式(1)〜(4)で求めたψ、δの値を、膜厚d、屈折率nを変数とする従来公知の関係式に代入して、屈折率nを適当な値に設定し、膜厚dを算出する。
得られた膜厚dと屈折率nに基づいて、式(6)によりψ及びδを算出した値をψ及びδとしたときに、これらの値と式(1)〜(4)で求めたψ及びδが一致するまで、コンピュータで屈折率nを順次変えて最適値を探すことにより、膜厚dと屈折率nを求めることができる。
On the other hand, the values of ψ and δ obtained by the equations (1) to (4) are substituted into a conventionally known relational expression using the film thickness d and the refractive index n as variables, and the refractive index n is set to an appropriate value. Then, the film thickness d is calculated.
Based on the obtained film thickness d and refractive index n, when ψ and δ are calculated as ψ c and δ c by Equation (6), these values and Equations (1) to (4) The film thickness d and the refractive index n can be obtained by sequentially changing the refractive index n with a computer and searching for the optimum value until the obtained ψ and δ match.

一の測定点Mijについて説明すると、図9のグラフに基づき、式(1)のA、B、Cを設定してフィッティングをかけてψ、δを算出したところ、(ψ、δ)=(32.7度、152.9度)であり、入射角度50°での膜厚d=50.0nm、屈折率n=1.45であった。
従来のエリプソメータによる測定結果が、膜厚d=50.2nm、屈折率n=1.46であったので、これらと比較しても十分精度良く測定できることが確認できた。
本例によれば、多数の測定点Mijについて、図9に示すような回転角θ−光強度分布Iを同時に測定することができるので、他の測定点Mijについても同様にして、光学異方性パラメータとなる膜厚d及び屈折率nを迅速に測定することができ、したがって広範囲にわたる膜厚分布及び屈折率分布を短時間で測定することができる。
The one measurement point Mij will be described. When ψ and δ are calculated by setting A, B, and C in Equation (1) based on the graph of FIG. 9 and performing fitting, (ψ, δ) = (32 The film thickness d was 50.0 nm and the refractive index n was 1.45 at an incident angle of 50 °.
Since the measurement results using a conventional ellipsometer were a film thickness d = 50.2 nm and a refractive index n = 1.46, it was confirmed that the measurement could be performed with sufficient accuracy even when compared with these.
According to this example, since the rotation angle θ-light intensity distribution I as shown in FIG. 9 can be measured at the same time for a large number of measurement points Mij, the optical anisotropy is similarly performed for the other measurement points Mij. The film thickness d and the refractive index n, which are characteristic parameters, can be measured quickly, and therefore the film thickness distribution and refractive index distribution over a wide range can be measured in a short time.

本発明は、光学異方性を有する製品、特に、液晶配向膜の品質検査などに適用することができる。   The present invention can be applied to products having optical anisotropy, in particular, quality inspection of liquid crystal alignment films.

本発明に係る光学的異方性パラメータ測定装置の一例を示す説明図。Explanatory drawing which shows an example of the optical anisotropy parameter measuring apparatus which concerns on this invention. その測定方法を示す説明図。Explanatory drawing which shows the measuring method. 回転角−光強度の測定結果を示すグラフ。The graph which shows the measurement result of rotation angle-light intensity. 光学軸の方向の均一性の測定結果を示すグラフ。The graph which shows the measurement result of the uniformity of the direction of an optical axis. 本発明の他の実施形態を示す説明図。Explanatory drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す説明図。Explanatory drawing which shows other embodiment of this invention. その測定方法を示す説明図。Explanatory drawing which shows the measuring method. 本発明の他の実施形態を示す説明図。Explanatory drawing which shows other embodiment of this invention. その測定結果を示す説明図。Explanatory drawing which shows the measurement result. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus.

符号の説明Explanation of symbols

1、21、31、41 光学異方性パラメータ測定装置
2 試料
3、33、43 照射光学系
4、34、44 測定光学系
5、35 光源装置
入射光束
反射光束
θ ブリュースター角
6 入射側平面リフレクタ(反射型偏光子)
8 反射側平面リフレクタ(反射型検光子)
9 結像レンズ
10 光センサ


1, 21, 31, 41 Optical anisotropy parameter measuring device 2 Sample 3, 33, 43 Irradiation optical system 4, 34, 44 Measurement optical system 5, 35 Light source device B L incident light beam
BR reflected light flux
θ B Brewster's angle 6 Incident side planar reflector (reflective polarizer)
8 Reflective plane reflector (reflection analyzer)
9 Imaging lens 10 Optical sensor


Claims (10)

試料に直線偏光の入射光束を照射させる照射光学系と、試料から反射される反射光束に含まれる偏光成分のうちP偏光又はS偏光の反射光強度を測定する測定光学系とを備えた光学異方性パラメータ測定装置であって、
前記試料の測定対象面をXY面とし、入射光軸とXY面の交点を原点とするXYZ座標上で、入射光軸及び反射光軸が通る面をXZ面とし、原点に向かう入射光軸の方向をα、原点から反射された反射光軸の方向をβとしたときに、
照射光学系は、試料の測定領域の形状に応じたスポット形状の平行光束を照射する光源装置と、その平行光束を所定角度で反射させることによりα方向に沿って試料へ向かう直線偏光の入射光束を抽出する反射型偏光子を備え、
測定光学系は、試料からβ方向に進行する反射光束をYβ面又はXβ面と直交する反射面により所定角度で反射させることによって試料で反射されたP偏光又はS偏光を抽出する反射型検光子と、その偏光成分の光強度を検出する1次元又は2次元の光センサを備えたことを特徴とする光学異方性パラメータ測定装置。
An optical optical system comprising an irradiation optical system for irradiating a sample with a linearly polarized incident light beam and a measurement optical system for measuring the reflected light intensity of P-polarized light or S-polarized light among the polarized light components contained in the reflected light beam reflected from the sample. An isotropic parameter measuring device comprising:
The surface to be measured of the sample is the XY plane, and on the XYZ coordinates with the origin of the intersection of the incident optical axis and the XY plane, the plane through which the incident optical axis and the reflected optical axis pass is the XZ plane. When the direction is α and the direction of the reflected optical axis reflected from the origin is β,
The irradiation optical system includes a light source device that irradiates a spot-shaped parallel beam according to the shape of the measurement region of the sample, and a linearly polarized incident beam that travels toward the sample along the α direction by reflecting the parallel beam at a predetermined angle. With a reflective polarizer to extract
The measurement optical system reflects a reflected light beam traveling in the β direction from a sample at a predetermined angle by a reflecting surface orthogonal to the Yβ surface or the Xβ surface, thereby extracting a P-polarized light or S-polarized light reflected by the sample. And an optical anisotropy parameter measuring apparatus comprising a one-dimensional or two-dimensional optical sensor for detecting the light intensity of the polarization component.
前記照射光学系の反射型偏光子は、光源装置から照射された平行光束をXα面又はYα面と直交する反射面により所定角度で反射させることによって、前記試料へ向かうP偏光又はS偏光の入射光束を抽出する向きに配され、
前記測定光学系の反射型検光子は、試料からβ方向に進行する反射光束をYβ面又はXβ面と直交する反射面により所定角度で反射させることによって入射光束の偏光方向に直交するS偏光又はP偏光を抽出する向きに配された請求項1記載の光学異方性パラメータ測定装置。
The reflection type polarizer of the irradiation optical system reflects P-polarized light or S-polarized light toward the sample by reflecting the parallel light beam emitted from the light source device at a predetermined angle by a reflective surface orthogonal to the Xα plane or the Yα plane. Arranged in the direction to extract the luminous flux,
The reflective analyzer of the measurement optical system reflects the reflected light beam traveling in the β direction from the sample at a predetermined angle by the reflection surface orthogonal to the Yβ surface or the Xβ surface, thereby allowing the S-polarized light orthogonal to the polarization direction of the incident light beam or The optical anisotropy parameter measuring device according to claim 1, wherein the optical anisotropy parameter measuring device is arranged in a direction for extracting P-polarized light.
前記照射光学系の反射型偏光子は、光源装置から照射された平行光束を所定角度で反射させることによって得られたS偏光を、前記試料に対してP偏光及びS偏光以外の直線偏光として入射させる向きに配され、
前記測定光学系は、反射検光子が、試料からβ方向に進行する反射光束をYβ面又はXβ面と直交する反射面により所定角度で反射させることによって入射光束の偏光方向に直交するS偏光又はP偏光を抽出する向きに配され、試料と反射検光子の間に波長板が回転可能に配された請求項1記載の光学異方性パラメータ測定装置。
The reflection type polarizer of the irradiation optical system receives S-polarized light obtained by reflecting a parallel light beam emitted from a light source device at a predetermined angle as linearly polarized light other than P-polarized light and S-polarized light. Arranged in the direction
In the measurement optical system, the reflected analyzer reflects the reflected light beam traveling in the β direction from the sample at a predetermined angle by a reflection surface orthogonal to the Yβ surface or the Xβ surface, so that S-polarized light orthogonal to the polarization direction of the incident light beam or The optical anisotropy parameter measuring device according to claim 1, wherein the optical anisotropy parameter measuring device is arranged in a direction in which P-polarized light is extracted and a wave plate is rotatably arranged between the sample and the reflection analyzer.
前記反射型偏光子が、試料の測定対象となる部分全体に入射光束となる平行光を照射し得る大きさに形成され、前記反射型検光子が、その反射光束全体を光センサに向って反射し得る大きさに形成された請求項1記載の光学異方性パラメータ測定装置。   The reflective polarizer is formed to a size capable of irradiating the entire portion to be measured of the sample with parallel light as an incident light beam, and the reflective analyzer reflects the entire reflected light beam toward the optical sensor. 2. The optical anisotropy parameter measuring device according to claim 1, wherein the optical anisotropy parameter measuring device is formed in a size that can be obtained. 前記光センサが、多数の受光素子を1次元又は二次元のマトリクス状に配列して成る請求項1記載の光学異方性パラメータ測定装置。   2. The optical anisotropy parameter measuring apparatus according to claim 1, wherein the optical sensor comprises a large number of light receiving elements arranged in a one-dimensional or two-dimensional matrix. 前記測定光学系の反射型検光子と光センサとの間に、検光子で反射された反射光束を光センサの大きさに応じて縮径又は縮幅する結像レンズが配されて成る請求項1記載の光学異方性パラメータ測定装置。   An imaging lens for reducing the diameter or width of the reflected light beam reflected by the analyzer according to the size of the optical sensor is disposed between the reflective analyzer and the optical sensor of the measurement optical system. The optical anisotropy parameter measuring apparatus according to 1. 前記反射型偏光子及び反射型検光子の一方又は双方が平面リフレクタで形成され、該平面リフレクタに対してS偏光となる光のみが反射されるように、前記平面リフレクタへの入射角度がブリュースター角に選定されて成る請求項1記載の光学異方性パラメータ測定装置。   One or both of the reflective polarizer and the reflective analyzer are formed by a planar reflector, and the incident angle on the planar reflector is Brewster so that only light that is S-polarized light is reflected by the planar reflector. 2. The optical anisotropy parameter measuring apparatus according to claim 1, wherein the optical anisotropy parameter measuring apparatus is selected at a corner. 前記平面リフレクタとして、表面に対して裏面が傾斜された楔形透明体を用い、その表面を反射面とした請求項7記載の光学異方性パラメータ測定装置。   8. The optical anisotropy parameter measuring apparatus according to claim 7, wherein a wedge-shaped transparent body whose back surface is inclined with respect to the front surface is used as the planar reflector, and the front surface is a reflective surface. 前記反射型偏光子及び反射型検光子の一方又は双方が、底面に金属薄膜を形成したプリズムで成り、前記入射光束又は反射光束がプリズム内を通り前記底面で反射する位置に配されると共に、該プリズム底面に対してS偏光となる光のみが反射されるように、プリズム底面に入射する光の入射角度が共鳴角に選定されて成る請求項1記載の光学異方性パラメータ測定装置。   One or both of the reflective polarizer and the reflective analyzer is a prism having a metal thin film formed on the bottom surface, and the incident light beam or the reflected light beam is disposed at a position where it passes through the prism and is reflected on the bottom surface. 2. The optical anisotropy parameter measuring apparatus according to claim 1, wherein an incident angle of light incident on the prism bottom surface is selected as a resonance angle so that only light that becomes S-polarized light is reflected on the prism bottom surface. 前記プリズムが、半円形プリズム又は三角プリズムでなる請求項9記載の光学異方性パラメータ測定装置。



The optical anisotropy parameter measuring apparatus according to claim 9, wherein the prism is a semicircular prism or a triangular prism.



JP2006244667A 2006-09-08 2006-09-08 Apparatus for measuring optical anisotropy parameter Pending JP2008064691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244667A JP2008064691A (en) 2006-09-08 2006-09-08 Apparatus for measuring optical anisotropy parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244667A JP2008064691A (en) 2006-09-08 2006-09-08 Apparatus for measuring optical anisotropy parameter

Publications (1)

Publication Number Publication Date
JP2008064691A true JP2008064691A (en) 2008-03-21

Family

ID=39287523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244667A Pending JP2008064691A (en) 2006-09-08 2006-09-08 Apparatus for measuring optical anisotropy parameter

Country Status (1)

Country Link
JP (1) JP2008064691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253707A (en) * 2018-10-19 2019-01-22 成都太科光电技术有限责任公司 Hundred microns of range transmission-type interference testing devices
WO2019070042A1 (en) * 2017-10-05 2019-04-11 マクセル株式会社 Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system
KR20230142911A (en) 2022-04-04 2023-10-11 충남대학교산학협력단 The refractive index measuring device of anisotropic material and measuring method of using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019070042A1 (en) * 2017-10-05 2019-04-11 マクセル株式会社 Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system
US11430581B2 (en) 2017-10-05 2022-08-30 Maxell, Ltd. Contactless infernal measurement device, contactless internal measurement method, and internal measurement result display system
US11721452B2 (en) 2017-10-05 2023-08-08 Maxell, Ltd. Contactless internal measurement device, contactless internal measurement method, and internal measurement result display system
CN109253707A (en) * 2018-10-19 2019-01-22 成都太科光电技术有限责任公司 Hundred microns of range transmission-type interference testing devices
CN109253707B (en) * 2018-10-19 2024-02-27 成都太科光电技术有限责任公司 Hundred-micrometer range transmission type interference testing device
KR20230142911A (en) 2022-04-04 2023-10-11 충남대학교산학협력단 The refractive index measuring device of anisotropic material and measuring method of using the same

Similar Documents

Publication Publication Date Title
JP2847458B2 (en) Defect evaluation device
Jin et al. Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates
JP4805674B2 (en) Method and system for optical inspection of patterned and non-patterned objects
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP4455024B2 (en) Birefringence measuring device
JP3447654B2 (en) Anisotropic thin film evaluation method and evaluation device
JPH05142141A (en) Thin film measuring instrument
US20010026365A1 (en) Evaluation of optically anisotropic structure
JP2008064691A (en) Apparatus for measuring optical anisotropy parameter
JP2008082811A (en) Optical characteristic measuring method and optical characteristic measuring instrument for thin film
JP3365474B2 (en) Polarizing imaging device
CN209400421U (en) A kind of device measuring Fano resonance sensor detectable limit
JPH08152307A (en) Method and apparatus for measuring optical constants
TWI542864B (en) A system for measuring anisotropy, a method for measuring anisotropy and a calibration method thereof
US6236056B1 (en) Defect evaluation apparatus for evaluating defects and shape information thereof in an object or on the surface of an object
JPH0530761U (en) Defect observation device
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
Sassella et al. Generalized anisotropic ellipsometry applied to an organic single crystal: Potassium acid phthalate
KR102045442B1 (en) Ellipsometer
KR102220731B1 (en) Method for measuring fine change of thin film surface
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JP2001083042A (en) Apparatus and method for measurement of optical anisotropy as well as recording medium with recorded measuring method
RU2694167C1 (en) Device for measuring thickness and dielectric permeability of thin films
TWI482958B (en) Detecting apparatus and detecting method
JPH10206317A (en) Optical anisotropy measuring device and optical anisotropy measuring method