JP6871008B2 - Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries - Google Patents

Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries Download PDF

Info

Publication number
JP6871008B2
JP6871008B2 JP2017024295A JP2017024295A JP6871008B2 JP 6871008 B2 JP6871008 B2 JP 6871008B2 JP 2017024295 A JP2017024295 A JP 2017024295A JP 2017024295 A JP2017024295 A JP 2017024295A JP 6871008 B2 JP6871008 B2 JP 6871008B2
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
ion secondary
general formula
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024295A
Other languages
Japanese (ja)
Other versions
JP2018133146A (en
Inventor
博道 加茂
博道 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2017024295A priority Critical patent/JP6871008B2/en
Publication of JP2018133146A publication Critical patent/JP2018133146A/en
Application granted granted Critical
Publication of JP6871008B2 publication Critical patent/JP6871008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水二次電池用電解質及びそれを用いた電解液並びに電池に関する。 The present invention relates to an electrolyte for a non-aqueous secondary battery, an electrolyte solution using the same, and a battery.

リチウムイオン二次電池は、鉛蓄電池、ニッケル水素電池に比べて、エネルギー密度及び起電力が高いという特徴を有するため、小型、軽量化が要求される携帯電話やノートパソコン等の電源として広く使用されている。これらリチウムイオン二次電池では、電解質としてリチウム塩を有機溶媒に溶解させた非水系電解液を使用したものが主流となっている。 Lithium-ion secondary batteries are characterized by higher energy density and electromotive force than lead-acid batteries and nickel-metal hydride batteries, and are therefore widely used as power sources for mobile phones and laptop computers that require smaller size and lighter weight. ing. Most of these lithium ion secondary batteries use a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent as an electrolyte.

このようなリチウム塩を電解質とする様々な化合物について多くの検討がなされているが、リチウム電池用電解質として実用化されている六フッ化リン酸リチウム(LiPF)は、耐熱性や耐加水分解性に劣るといった問題を有する。そこで、特許文献1では、下記一般式(X)で表される化学構造式よりなる電気化学デバイス用電解質が提案されている。 Although many studies have been conducted on various compounds using such a lithium salt as an electrolyte, lithium hexafluorophosphate (LiPF 6 ), which has been put into practical use as an electrolyte for lithium batteries, has heat resistance and hydrolysis resistance. It has a problem of being inferior in sex. Therefore, Patent Document 1 proposes an electrolyte for an electrochemical device having a chemical structural formula represented by the following general formula (X).

Figure 0006871008
Figure 0006871008

一般式(X)中、Mは、B、またはP、Aa+は、Liイオン、aは1、bは1、pは1、mは1〜2、nは1〜4、qは0または1をそれぞれ表し、Rは、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン、またはC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を持ってもよく、またm個存在するRはそれぞれが結合してもよい。)、Rは、ハロゲン、X、Xは、Oをそれぞれ示す。 In the general formula (X), M is B or P, A a + is Li ion, a is 1, b is 1, p is 1, m is 1-2, n is 1-4, q is 0 or represents 1 respectively, R 1 is, C 1 -C alkylene 10, C 1 -C halogenated 10 alkylene, C 6 -C 20 arylene or C 6 -C 20 arylene halide (and their alkylene, arylene substituent group in its structure, may have a hetero atom, and R 1 to m number present may be linked respectively.), R 2 is halogen, X 1, X 2 is a O Each is shown.

特許第3722685号公報Japanese Patent No. 3722685

特許文献1の電解質では、従来の電解質と比べて、耐熱性、耐加水分解性が向上しており、電解質を用いた電池を可能としている。
しかしながら、リチウムイオン二次電池においては、充放電を繰り返して行うことができるサイクル数(サイクル特性)を向上させることが求められている。
The electrolyte of Patent Document 1 has improved heat resistance and hydrolysis resistance as compared with the conventional electrolyte, and enables a battery using the electrolyte.
However, in a lithium ion secondary battery, it is required to improve the number of cycles (cycle characteristics) that can be repeatedly charged and discharged.

本発明は上記事情に鑑みてなされたものであり、従来の電解質と比べて、サイクル特性に優れた、非水二次電池用電解質及びそれを用いた電解液並びに電池を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is an electrolyte for a non-aqueous secondary battery, an electrolyte solution using the same, and a battery, which are superior in cycle characteristics to conventional electrolytes.

上記課題を解決するために、本発明は以下の態様を有する。
[1]一般式(I)で表される非水二次電池用電解質。
In order to solve the above problems, the present invention has the following aspects.
[1] An electrolyte for a non-aqueous secondary battery represented by the general formula (I).

Figure 0006871008
Figure 0006871008

一般式(I)において、Mは、B、Al、Ga、P、As又はSbを表し、rは、0<r<1の数を表し、mは1〜2、nは1〜4、qは0又は1の整数を表し、Rは、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン又はC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンは、その構造中に置換基、ヘテロ原子を持っていてもよい。)を表し、Rは、ハロゲンを表し、X、Xは、O、S、Se又はNをそれぞれ表す。 In the general formula (I), M represents B, Al, Ga, P, As or Sb, r represents the number 0 <r <1, m is 1-2, n is 1-4, q. represents an integer of 0 or 1, R 1 is, C 1 -C alkylene 10, C 1 -C halogenated 10 alkylene, C 6 -C 20 arylene or C 6 -C 20 arylene halide (such The alkylene and arylene of the above may have a substituent or a heteroatom in the structure), R 2 represents a halogen, and X 1 , X 2 represents O, S, Se or N, respectively. Represent.

[2]前記qが0であることを特徴とする、[1]に記載の非水二次電池用電解質。
[3]前記X及び前記XがOであることを特徴とする、[1]または[2]に記載の非水二次電池用電解質。
[4]前記rが、下記式(1)を満たすことを特徴とする、[1]〜[3]のいずれかに記載の非水二次電池用電解質。
2.0×10−6≦r≦1.0×10−2・・・(1)
[5][1]〜[4]のいずれかに記載の非水二次電池用電解質と、非水溶媒とを含有する電解液。
[6]前記非水二次電池用電解質の濃度が0.005〜1.5mol/Lであることを特徴とする、[5]に記載の電解液。
[7]さらに、LiPFを含むことを特徴とする、[5]または[6]に記載の電解液。
[8]正極、負極及び[5]〜[7]のいずれかに記載の電解液を有することを特徴とする電池。
[2] The electrolyte for a non-aqueous secondary battery according to [1], wherein q is 0.
[3] The electrolyte for a non-aqueous secondary battery according to [1] or [2], wherein X 1 and X 2 are O.
[4] The electrolyte for a non-aqueous secondary battery according to any one of [1] to [3], wherein r satisfies the following formula (1).
2.0 × 10-6 ≦ r ≦ 1.0 × 10 -2 ... (1)
[5] An electrolytic solution containing the electrolyte for a non-aqueous secondary battery according to any one of [1] to [4] and a non-aqueous solvent.
[6] The electrolytic solution according to [5], wherein the concentration of the electrolyte for a non-aqueous secondary battery is 0.005 to 1.5 mol / L.
[7] The electrolytic solution according to [5] or [6], further comprising LiPF 6.
[8] A battery having a positive electrode, a negative electrode, and the electrolytic solution according to any one of [5] to [7].

本発明によれば、従来の電解質と比べて、サイクル特性に優れた、非水二次電池用電解質及びそれを用いた電解液並びに電池を提供できる。 According to the present invention, it is possible to provide an electrolyte for a non-aqueous secondary battery, an electrolyte solution using the same, and a battery, which are superior in cycle characteristics to conventional electrolytes.

本実施形態の非水二次電池用電解質(以下、「一般式(I)の電解質」ともいう。)は、イオン性金属錯体構造を採っており、その中心となるMは、遷移金属、周期律表の第13族又は第15族元素から選ばれる。好ましくは、Al、B、Ga、P、As又はSbのいずれかであり、さらに好ましくは、B(ホウ素)又はP(リン)である。種々の元素を中心のMとして利用することは可能であるが、Al、B、Ga、P、As、またはSbの場合、比較的合成も容易であり、さらに、B、またはPの場合、合成の容易性のほか、低毒性、安定性、コストとあらゆる面で優れた特性を有する。 The electrolyte for a non-aqueous secondary battery of the present embodiment (hereinafter, also referred to as “electrolyte of the general formula (I)”) has an ionic metal complex structure, and M at the center thereof is a transition metal and a period. It is selected from the 13th or 15th group elements of the periodic table. It is preferably any of Al, B, Ga, P, As or Sb, and more preferably B (boron) or P (phosphorus). It is possible to use various elements as the central M, but in the case of Al, B, Ga, P, As, or Sb, synthesis is relatively easy, and in the case of B or P, synthesis is possible. In addition to its ease of use, it has excellent properties in all aspects such as low toxicity, stability, and cost.

次に、一般式(I)の電解質におけるイオン性金属錯体の特徴となる配位子の部分について説明する。以下、本明細書では、Mに結合している有機または無機の部分を配位子という。 Next, the portion of the ligand that is characteristic of the ionic metal complex in the electrolyte of the general formula (I) will be described. Hereinafter, in the present specification, the organic or inorganic portion bound to M is referred to as a ligand.

一般式(I)中のRは、炭素数1〜10(以下、C〜C10のように略記する)のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン及びC〜C20のハロゲン化アリーレンから選ばれるものよりなるが、これらのアルキレン及びアリーレンは、その構造中に置換基、ヘテロ原子を持ってもよい。具体的には、アルキレン及びアリーレン上の水素の代わりにハロゲン、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基、また、アルキレン及びアリーレン上の炭素の代わりに、窒素、イオウ、酸素が導入された構造等を挙げることができる。
に付してある定数qは0又は1の整数を表す。qが1の場合、一般式(I)中のRは、上述した構造等を有するが、qが0の場合は、2つのカルボニル炭素が直接結合した構造を有する(例えば、化学式(II)の化合物)。qが0の場合は、Mを含む環状構造が五員環になるため、後述するキレート効果が最も強く発揮され、化学的安定性が増すため好ましい。
R 1 in the general formula (I) is an alkylene having 1 to 10 carbon atoms (hereinafter abbreviated as C 1 to C 10 ), a halogenated alkylene having C 1 to C 10 , and an arylene having C 6 to C 20. And selected from C 6 to C 20 halogenated arylene, these alkylene and arylene may have substituents, heteroatoms in their structure. Specifically, instead of hydrogen on alkylene and arylene, halogen, chain or cyclic alkyl group, aryl group, alkenyl group, alkoxy group, aryloxy group, sulfonyl group, amino group, cyano group, carbonyl group, acyl group. , Ami groups, hydroxyl groups, and structures in which nitrogen, sulfur, and oxygen are introduced instead of carbon on alkylene and arylene can be mentioned.
The constant q attached to R 1 represents an integer of 0 or 1. When q is 1, R 1 in the general formula (I) has the above-mentioned structure and the like, but when q is 0, it has a structure in which two carbonyl carbons are directly bonded (for example, chemical formula (II)). Compound). When q is 0, the cyclic structure containing M becomes a five-membered ring, so that the chelating effect described later is most strongly exerted and the chemical stability is increased, which is preferable.

Figure 0006871008
Figure 0006871008

一般式(I)中のRは、ハロゲンを表し、特にフッ素が好ましい。Rがフッ素の場合、その強い電子吸引性による電解質の解離度の向上とサイズが小さくなることによる移動度の向上の効果により、イオン伝導性が非常に高くなる。 R 2 in the general formula (I) represents a halogen, and fluorine is particularly preferable. When R 2 is fluorine, the ionic conductivity becomes very high due to the effect of improving the dissociation degree of the electrolyte due to its strong electron attraction and improving the mobility due to the decrease in size.

一般式(I)中のX、Xは、それぞれ独立に、O、S、Se又はNであり、これらのヘテロ原子を介して配位子がMに結合する。X、Xは、合成が容易であることから、Oが好ましい。この化合物の特徴として同一の配位子内にXとXによるMとの結合があるため、これらの配位子がMとキレート構造を構成している。このキレート構造を構成する効果(キレート効果)により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。 X 1 , X 2 in the general formula (I) are independently O, S, Se or N, respectively, and the ligand is bonded to M via these heteroatoms. X 1 and X 2 are preferably O because they are easy to synthesize. Since the characteristic of this compound is the bond of M by X 1 and X 2 in the same ligand, these ligands form a chelate structure with M. Due to the effect of forming this chelate structure (chelate effect), the heat resistance, chemical stability, and hydrolysis resistance of this compound are improved.

ここまでに説明した配位子の数に関係する整数m及びnは、中心のMの種類によって決まってくるものであるが、mは、1から2、nは、1から4が好ましい。 The integers m and n related to the number of ligands described so far are determined by the type of M at the center, but m is preferably 1 to 2, and n is preferably 1 to 4.

一般式(I)の電解質は、カチオン種としてリチウム、ナトリウムの双方を含有する。一般式(I)の電解質のカチオン種にリチウムに加えてナトリウムを含むことで、電池としたときのサイクル特性の向上を図ることができる。 The electrolyte of the general formula (I) contains both lithium and sodium as cation species. By containing sodium in addition to lithium in the cation species of the electrolyte of the general formula (I), it is possible to improve the cycle characteristics when the battery is used.

rは、リチウムとナトリウムのモル基準の存在比率の合計を1とした場合のナトリウムの存在比率(固体の電解質におけるNa/Li比)である。一般式(I)の電解質は、カチオン種としてリチウムとナトリウムの双方を含有するため、rは、0より大きく1より小さい値となる(0<r<1)。通常、一般式(I)の電解質を有機溶媒に溶解した電解液中には、リチウムイオンの方がはるかに多く存在するため、(1−r)>>rとなる。 r is the sodium abundance ratio (Na / Li ratio in the solid electrolyte) when the sum of the molar abundance ratios of lithium and sodium is 1. Since the electrolyte of the general formula (I) contains both lithium and sodium as cation species, r is greater than 0 and less than 1 (0 <r <1). Usually, lithium ions are much more abundant in the electrolytic solution obtained by dissolving the electrolyte of the general formula (I) in an organic solvent, so that (1-r) >> r.

rは、下記式(1)を満たすことが好ましい。
2.0×10−6≦r≦1.0×10−2・・・(1)
rが前記下限値以上であれば、高い容量維持率、高い容量発現率、あるいはその両方を可能とすることができるという利点があり、前記上限値以下であると、高い容量発現率を可能とするという利点がある。
r preferably satisfies the following formula (1).
2.0 × 10-6 ≦ r ≦ 1.0 × 10 -2 ... (1)
When r is at least the lower limit value, there is an advantage that a high capacity retention rate, a high capacity expression rate, or both can be enabled, and when r is below the upper limit value, a high volume expression rate is possible. There is an advantage to do.

本発明の一般式(I)で表される化合物は、強力な電子吸引性のカルボニル基(C=O基)を有することにより、アニオンが安定化され、アニオンとカチオンの電荷の分離が容易になる。すなわち、アニオンとカチオンが解離しやすい状態となる。
電解質と呼ばれる塩類は、無数に存在するが、大部分は水には溶解、解離してイオン伝導をする。しかし、水以外の有機溶媒等には溶解すらしない場合が多い。このような水溶液も電解液に使用することは可能であるが、溶媒である水の分解電位が低く、酸化還元に弱いため、制約が多い。例えば、リチウム電池などでは、そのデバイスの電極間の電位差が3V以上になるため、水は水素と酸素に電気分解されてしまう。一方、有機溶媒や高分子はその構造により、水よりも酸化還元に強いものも多いため、リチウム電池や電気二重層キャパシタといった高電圧を必要とするデバイスに用いられる。
The compound represented by the general formula (I) of the present invention has a strong electron-withdrawing carbonyl group (C = O group), so that the anion is stabilized and the charge of the anion and the cation can be easily separated. Become. That is, the anion and the cation are easily dissociated.
There are innumerable salts called electrolytes, but most of them dissolve and dissociate in water to conduct ionic conduction. However, in many cases, it does not even dissolve in an organic solvent other than water. Although such an aqueous solution can be used as an electrolytic solution, there are many restrictions because the decomposition potential of water as a solvent is low and it is vulnerable to redox. For example, in a lithium battery or the like, since the potential difference between the electrodes of the device is 3 V or more, water is electrolyzed into hydrogen and oxygen. On the other hand, many organic solvents and polymers are more resistant to redox than water due to their structure, and are therefore used in devices that require high voltage, such as lithium batteries and electric double layer capacitors.

一般式(I)の電解質は、上記のようにC=O基の効果と従来の電解質に比べ、アニオンサイズを大きくした効果により、有機溶媒に非常に溶解しやすく、しかも、解離しやすい。このため、これらの有機溶媒との溶液は、リチウム電池等のデバイスの優秀なイオン伝導体として使用できる。一般に有機物と金属の錯体は加水分解を受けやすく、化学的にも不安定なものが多い。一方、一般式(I)の電解質は、キレート構造を有するため、非常に安定であり、加水分解などを受けにくく、耐加水分解性に優れる。また、一般式(I)で表される化学構造中にフッ素を有するものは、その強い電子吸引効果により、イオン伝導度が向上し、耐酸化性等の化学的安定性もさらに増加し、より好ましい。 As described above, the electrolyte of the general formula (I) is very easily dissolved in an organic solvent and easily dissociated due to the effect of the C = O group and the effect of increasing the anion size as compared with the conventional electrolyte. Therefore, the solution with these organic solvents can be used as an excellent ionic conductor for devices such as lithium batteries. In general, organic and metal complexes are susceptible to hydrolysis and are often chemically unstable. On the other hand, since the electrolyte of the general formula (I) has a chelate structure, it is very stable, is not easily hydrolyzed, and has excellent hydrolysis resistance. In addition, those having fluorine in the chemical structure represented by the general formula (I) have improved ionic conductivity due to their strong electron attraction effect, and further increased chemical stability such as oxidation resistance. preferable.

一般式(I)の電解質は、上述したようにリチウムイオン電池、電気二重層キャパシタといった電気化学デバイスの電解質として用いることができる。 As described above, the electrolyte of the general formula (I) can be used as an electrolyte for an electrochemical device such as a lithium ion battery or an electric double layer capacitor.

一般式(I)の電解質の合成法は、特に限定されるものではないが、例えば、次に示した化学式(II)の化合物の場合、非水溶媒中でLiBFと微量のNaBF、2倍モルのリチウムアルコキシドを反応させた後、シュウ酸を添加して、ホウ素に結合しているアルコキシドをシュウ酸で置換することにより合成できる。
電解質中のナトリウムの存在比率rは、例えば、一般式(I)の電解質を上述した方法で合成する際に、添加するNaBFの添加量によって調整される。
ナトリウム源としては、ナトリウム源となるナトリウムを含む電解質を用いることができる。例えば、上記のNaBFの他、(COO)Na、NaClO等が挙げられる。
The method for synthesizing the electrolyte of the general formula (I) is not particularly limited, but for example, in the case of the compound of the chemical formula (II) shown below, LiBF 4 and a trace amount of NaBF 4 , 2 in a non-aqueous solvent It can be synthesized by reacting a double molar lithium alkoxide and then adding oxalic acid to replace the alkoxide bonded to boron with oxalic acid.
The abundance ratio r of sodium in the electrolyte is adjusted by, for example, the amount of NaBF 4 added when the electrolyte of the general formula (I) is synthesized by the method described above.
As the sodium source, an electrolyte containing sodium as a sodium source can be used. For example, in addition to the above NaBF 4 , (COO) 2 Na 2 , NaClO 4 and the like can be mentioned.

Figure 0006871008
Figure 0006871008

本実施形態の電池は、正極、負極及び電解液を有する電池である。
本実施形態の電解液は、一般式(I)の電解質と、非水溶媒とを含有する。
本実施形態の電池は、一般式(I)の電解質を用いること以外は、従来のリチウムイオン二次電池と同様の構成とすることができ、例えば、イオン伝導体、正極、負極、セパレータ及び容器等を備えて構成される。
The battery of this embodiment is a battery having a positive electrode, a negative electrode, and an electrolytic solution.
The electrolytic solution of the present embodiment contains the electrolyte of the general formula (I) and a non-aqueous solvent.
The battery of the present embodiment can have the same configuration as the conventional lithium ion secondary battery except that the electrolyte of the general formula (I) is used. For example, an ion conductor, a positive electrode, a negative electrode, a separator and a container. Etc. are provided.

イオン伝導体としては、電解質と非水溶媒又はポリマーの混合物が用いられる。非水溶媒を用いれば、一般にこのイオン伝導体は電解液と呼ばれ、ポリマーを用いれば、ポリマー固体電解質と呼ばれるものになる。ポリマー固体電解質には可塑剤として非水溶媒を含有するものも含まれる。ここに挙げられた電解質としては、一般式(I)の電解質を一種類、又は二種類以上の混合物で用いる。電解質を二種類以上混合する場合は、一般式(I)に該当しない電解質(その他の電解質)を含んでもよい。この場合、一種類は、必ず一般式(I)の電解質を含有する。その他の電解質としては、一般的なリチウム塩類、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO)およびLiSbF等を使用することもできる。電池を高電圧、高エネルギー密度にできる観点から、LiPFが好ましい。 As the ionic conductor, a mixture of an electrolyte and a non-aqueous solvent or a polymer is used. If a non-aqueous solvent is used, this ionic conductor is generally called an electrolytic solution, and if a polymer is used, it becomes a polymer solid electrolyte. Polymer solid electrolytes also include those containing a non-aqueous solvent as a plasticizer. As the electrolytes listed here, the electrolyte of the general formula (I) is used in one kind or a mixture of two or more kinds. When two or more kinds of electrolytes are mixed, an electrolyte (other electrolyte) that does not correspond to the general formula (I) may be contained. In this case, one kind always contains the electrolyte of the general formula (I). As other electrolytes, general lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiSbF 6 can also be used. LiPF 6 is preferable from the viewpoint that the battery can have a high voltage and a high energy density.

本実施形態の電解液は、一般式(I)の電解質と、非水溶媒とを含有する。本実施形態の電解液の製造方法は特に限定されず、例えば、一般式(I)の電解質を所定の量計り取り、エチレンカーボネート等の非水溶媒に混合し、任意の温度で任意の時間攪拌することにより電解液が得られる。
この方法によれば、電解液中に別途ナトリウムイオンを添加する必要がなく、容易に、適切なナトリウムイオン濃度の電解液を調製することができる。
電解液中のナトリウムイオン濃度としては、0.01〜15000μMが好ましく、0.02〜15000μMがより好ましく、0.2〜10000μMがさらに好ましい。電解液中のナトリウムイオン濃度が、前記範囲内であると、電池のサイクル特性をより向上しやすい。
The electrolytic solution of the present embodiment contains the electrolyte of the general formula (I) and a non-aqueous solvent. The method for producing the electrolytic solution of the present embodiment is not particularly limited. For example, the electrolyte of the general formula (I) is weighed in a predetermined amount, mixed with a non-aqueous solvent such as ethylene carbonate, and stirred at an arbitrary temperature for an arbitrary time. By doing so, an electrolytic solution can be obtained.
According to this method, it is not necessary to separately add sodium ions to the electrolytic solution, and an electrolytic solution having an appropriate sodium ion concentration can be easily prepared.
The sodium ion concentration in the electrolytic solution is preferably 0.01 to 15000 μM, more preferably 0.02 to 15000 μM, and even more preferably 0.2 to 10000 μM. When the sodium ion concentration in the electrolytic solution is within the above range, the cycle characteristics of the battery can be more easily improved.

イオン伝導体が電解液の場合、一般式(I)の電解質の濃度は、0.005〜1.5mol/L(以下、Mと略記することもある。)が好ましく、0.01〜1.5Mがより好ましく、0.1〜1Mがさらに好ましい。一般式(I)の電解質の濃度が、前記下限値以上であれば、電池のサイクル特性及び電解液の保存安定性を向上しやすい。前記上限値以下であれば、電極表面上での電解質の分解等の副反応によるガスの発生等を抑制しやすい。 When the ionic conductor is an electrolytic solution, the concentration of the electrolyte of the general formula (I) is preferably 0.005 to 1.5 mol / L (hereinafter, may be abbreviated as M), and 0.01 to 1. 5M is more preferable, and 0.1 to 1M is even more preferable. When the concentration of the electrolyte of the general formula (I) is at least the above lower limit value, it is easy to improve the cycle characteristics of the battery and the storage stability of the electrolytic solution. When it is not more than the upper limit value, it is easy to suppress the generation of gas due to a side reaction such as decomposition of the electrolyte on the electrode surface.

電解液中に電解質を二種類以上含有する場合は、その他の電解質の濃度は、0.01〜2Mが好ましく、0.05〜1.5Mがより好ましく、0.1〜1Mがさらに好ましい。その他の電界質の濃度が、前記下限値以上であれば、電池のエネルギー密度を向上しやすい。その他の電解質の濃度が、前記上限値以下であれば、電極表面上での電解質の分解等の副反応によるガスの発生等を抑制しやすい。 When two or more kinds of electrolytes are contained in the electrolytic solution, the concentration of the other electrolyte is preferably 0.01 to 2M, more preferably 0.05 to 1.5M, still more preferably 0.1 to 1M. When the concentration of other electric field qualities is at least the above lower limit value, the energy density of the battery can be easily improved. When the concentration of the other electrolyte is not more than the upper limit value, it is easy to suppress the generation of gas due to a side reaction such as decomposition of the electrolyte on the electrode surface.

電解液中に電解質を二種類以上含有する場合の一般式(I)の電解質の濃度及びその他の電解質の濃度の合計は、0.015〜3.5Mが好ましく、0.06〜3Mがより好ましく、0.2〜2.5Mがさらに好ましい。一般式(I)の電解質の濃度及びその他の電解質の濃度の合計が、前記下限値以上であれば、電池のサイクル特性、電解液の保存安定性及び電池のエネルギー密度を向上しやすい。一般式(I)の電解質の濃度及びその他の電解質の濃度の合計が、前記上限値以下であれば、電極表面上での電解質の分解等の副反応によるガスの発生等を抑制しやすい。 When two or more kinds of electrolytes are contained in the electrolytic solution, the total concentration of the electrolyte of the general formula (I) and the concentration of other electrolytes is preferably 0.015 to 3.5M, more preferably 0.06 to 3M. , 0.2-2.5M is more preferable. When the sum of the concentration of the electrolyte of the general formula (I) and the concentration of other electrolytes is at least the above lower limit value, it is easy to improve the cycle characteristics of the battery, the storage stability of the electrolytic solution, and the energy density of the battery. When the total concentration of the electrolyte of the general formula (I) and the concentration of other electrolytes is not more than the upper limit value, it is easy to suppress the generation of gas due to a side reaction such as decomposition of the electrolyte on the electrode surface.

非水溶媒としては、一般式(I)の電解質を溶解できる非プロトン性の溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、アミド類、スルホン類等が使用できる。また、単一の溶媒だけでなく、二種類以上の混合溶媒でもよい。具体例としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、およびγ−ブチロラクトン等が挙げられる。 The non-aqueous solvent is not particularly limited as long as it is an aprotonic solvent capable of dissolving the electrolyte of the general formula (I), and for example, carbonates, esters, ethers, lactones, nitriles, and amides. Classes, sulfones, etc. can be used. Moreover, not only a single solvent but also two or more kinds of mixed solvents may be used. Specific examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, nitromethane, N, N-dimethylformamide, and dimethyl sulfoxide. , Sulfolane, γ-butyrolactone and the like.

また、電解質に混合するポリマーとしては、一般式(I)の電解質が分散される非プロトン性のポリマーであれば特に限定されるものではない。例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー、ポリビニリデンフロライドのホモポリマーまたはコポリマー、メタクリル酸エステルポリマー、ポリアクリロニトリルなどが挙げられる。これらのポリマーに可塑剤を加える場合は、上記の非プロトン性非水溶媒が使用可能である。これらのイオン伝導体中における一般式(I)の電解質濃度は、0.1M以上飽和濃度以下が好ましく、0.5M以上1.5M以下がより好ましい。一般式(I)の電解質濃度が、前記下限値以上であると、イオン伝導性を向上しやすく、前記上限値以下であるとイオン伝導体の安定性が増加しやすい。 The polymer to be mixed with the electrolyte is not particularly limited as long as it is an aprotic polymer in which the electrolyte of the general formula (I) is dispersed. For example, polymers having a polyethylene oxide in the main chain or side chains, homopolymers or copolymers of polyvinylidene fluoride, methacrylic acid ester polymers, polyacrylonitrile and the like can be mentioned. When adding a plasticizer to these polymers, the above-mentioned aprotic non-aqueous solvent can be used. The electrolyte concentration of the general formula (I) in these ionic conductors is preferably 0.1 M or more and a saturated concentration or less, and more preferably 0.5 M or more and 1.5 M or less. When the electrolyte concentration of the general formula (I) is at least the lower limit value, the ionic conductivity is likely to be improved, and when it is at least the upper limit value, the stability of the ionic conductor is likely to increase.

本実施形態の電池において、正極の材質は特に限定されないが、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、オリビン型リン酸鉄リチウム等の遷移金属酸化物が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。 In the battery of the present embodiment, the material of the positive electrode is not particularly limited, but transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganate, and olivine-type lithium iron phosphate can be exemplified, and the group consisting of these materials can be exemplified. It is preferably one or more selected.

本実施形態の電池において、負極の材質は特に限定されないが、金属リチウム、リチウム合金、リチウムを吸蔵及び放出し得る炭素系材料、金属酸化物等が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。 In the battery of the present embodiment, the material of the negative electrode is not particularly limited, but metallic lithium, a lithium alloy, a carbon-based material capable of occluding and releasing lithium, a metal oxide, and the like can be exemplified and selected from the group consisting of these materials. It is preferably one or more.

本実施形態の電池において、セパレータの材質は、特に限定されないが、微多孔性の高分子膜、不織布、ガラスファイバー等が例示でき、これら材質からなる群から選択される一種以上であることが好ましい。 In the battery of the present embodiment, the material of the separator is not particularly limited, but a microporous polymer film, a non-woven fabric, a glass fiber and the like can be exemplified, and it is preferable that the material is one or more selected from the group consisting of these materials. ..

本実施形態の電池の形状は、特に限定されず、円筒型、角型、コイン型、シート型等、種々のものに調節できる。 The shape of the battery of the present embodiment is not particularly limited, and can be adjusted to various shapes such as a cylindrical type, a square type, a coin type, and a sheet type.

本実施形態の電池は、公知の方法に従って、例えば、グローブボックス内又は乾燥空気雰囲気下で、一般式(I)の電解質、前記電解液及び電極を使用して製造すればよい。 The battery of the present embodiment may be manufactured according to a known method, for example, in a glove box or in a dry air atmosphere using the electrolyte of the general formula (I), the electrolytic solution and the electrodes.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

[製造例1]
テトラフルオロホウ酸リチウム(LiBF)27.4g、テトラフルオロホウ酸ナトリウム(NaBF)0.013mgをアセトニトリルに室温で溶解して200gとした溶液を溶液Yとした。溶液Yを調整する際、NaBF13mgを200gのアセトニトリルに溶解した溶液を100μL量り取り、アセトニトリルを加え100mLとしたNaBF1000倍希釈溶液を用いた。以下、NaBFを用いた製造例においても同様とした。溶液Y10gにリチウムヘキサフルオロイソプロポキシド(LiOCH(CF)5.09gをゆっくりと添加した。その後、60℃で3時間撹拌して反応させた。このとき、フッ化リチウムが析出した。こうして得られた反応液にシュウ酸1.31gを添加して、60℃で1時間撹拌して反応させた。次にこの反応液をろ過して、フッ化リチウム、フッ化ナトリウムを分離し、得られたろ液の溶媒を60℃、10−1Paの減圧条件で除去し、白色の固体が1.90g得られた。この固体を100℃、10−1Paの減圧条件で24時間乾燥することにより、化学式(II)で表されるジフルオロ(オキサラト)ホウ酸リチウムナトリウム(以下、Li・NaDFOBと略記する。Li・Naの符号は、分子中にリチウムとナトリウムが併存していることを表す。)1.90g(収率:91%)を得た。本製造例で得られた電解質をA−1とする。得られた電解質A−1のナトリウムの存在比率rをカチオンクロマトグラフィー(ダイオネクス社製、商品名:ICS−1500)で測定したところ、2ppmであった。なお、本明細書におけるppmは、リチウムとナトリウムのモル基準の存在比率の合計を1とした場合のナトリウムの存在比率(固体の電解質におけるNa/Li比)を表す。
[Manufacturing Example 1]
Solution Y was prepared by dissolving 27.4 g of lithium tetrafluoroborate (LiBF 4 ) and 0.013 mg of sodium tetrafluoroborate (NaBF 4 ) in acetonitrile at room temperature to make 200 g. When adjusting the solution Y, NaBF 4 100μL weighed the solution was dissolved in acetonitrile 200 g 13 mg, with NaBF 4 1000-fold diluted solution was 100mL acetonitrile was added. Hereinafter, the same applies to the production example using NaBF 4. 5.09 g of lithium hexafluoroisopropoxide (LiOCH (CF 3 ) 2 ) was slowly added to 10 g of the solution Y. Then, the reaction was carried out by stirring at 60 ° C. for 3 hours. At this time, lithium fluoride was precipitated. To the reaction solution thus obtained, 1.31 g of oxalic acid was added, and the mixture was stirred at 60 ° C. for 1 hour for reaction. Next, this reaction solution was filtered to separate lithium fluoride and sodium fluoride, and the solvent of the obtained filtrate was removed under reduced pressure conditions of 60 ° C. and 10 -1 Pa to obtain 1.90 g of a white solid. Was done. By drying this solid at 100 ° C. under a reduced pressure condition of 10 -1 Pa for 24 hours, lithium sodium difluoro (oxalate) borate represented by the chemical formula (II) (hereinafter, abbreviated as Li · NaDFOB). The symbol of 1 indicates that lithium and sodium coexist in the molecule.) 1.90 g (yield: 91%) was obtained. The electrolyte obtained in this production example is designated as A-1. The sodium abundance ratio r of the obtained electrolyte A-1 was measured by cation chromatography (manufactured by Dionex, trade name: ICS-1500) and found to be 2 ppm. In addition, ppm in this specification represents the abundance ratio of sodium (Na / Li ratio in a solid electrolyte) when the sum of the abundance ratios of lithium and sodium on a molar basis is 1.

Figure 0006871008
Figure 0006871008

[製造例2]
非水溶媒としてエチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒(EC/DEC=3/7(体積比))をサンプル瓶に量り取り、製造例1で得られた電解質A−1を加えて、Li・NaDFOBの濃度が0.1M、LiPFの濃度が1Mとなるようにし、23℃で混合し、攪拌することで、電解液E−1を得た。
[Manufacturing Example 2]
A mixed solvent (EC / DEC = 3/7 (volume ratio)) of ethylene carbonate (EC) and diethyl carbonate (DEC) as a non-aqueous solvent was weighed into a sample bottle, and the electrolyte A-1 obtained in Production Example 1 was obtained. In addition, the concentration of Li / NaDFOB was 0.1 M, the concentration of LiPF 6 was 1 M, and the mixture was mixed at 23 ° C. and stirred to obtain an electrolytic solution E-1.

[製造例3]
添加するNaBFの量を0.13mgとして、製造例1と同様にして電解質A−2を得た。得られた電解質A−2のナトリウムの存在比率rを測定したところ、20ppmであった。添加する電解質を電解質A−2に変更した以外は、製造例2と同様にして電解液E−2を得た。
[Manufacturing Example 3]
The amount of NaBF 4 to be added was 0.13 mg, and an electrolyte A-2 was obtained in the same manner as in Production Example 1. The sodium abundance ratio r of the obtained electrolyte A-2 was measured and found to be 20 ppm. An electrolytic solution E-2 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to the electrolyte A-2.

[製造例4]
ヘキサフルオロリン酸リチウム200.0g、ヘキサフルオロリン酸ナトリウム4.4mgをエチルメチルカーボネートに溶解して800gとした溶液Zを作成し、溶液Z80gに、シュウ酸を12.1g仕込み、攪拌した。次に四塩化ケイ素10.9gを1時間かけて導入した。導入終了後、1時間攪拌を継続したのち、反応器を減圧にし、溶媒を15g留去し、溶存する塩化水素、四フッ化ケイ素を除去した。得られた固体をエチルメチルカーボネート/ヘキサンで精製し、テトラフルオロ(オキサラト)リン酸リチウムナトリウム(以下、Li・NaTFOPと略記する。化学式(III)。)を得た。得られた電解質をB−1とする。得られた電解質B−1のナトリウムの存在比率rを測定したところ、20ppmであった。添加する電解質を電解質B−1に変更した以外は、製造例2と同様にして電解液F−1を得た。
[Manufacturing Example 4]
200.0 g of lithium hexafluorophosphate and 4.4 mg of sodium hexafluorophosphate were dissolved in ethyl methyl carbonate to prepare a solution Z of 800 g, and 12.1 g of oxalic acid was added to 80 g of the solution Z and stirred. Next, 10.9 g of silicon tetrachloride was introduced over 1 hour. After completion of the introduction, stirring was continued for 1 hour, the pressure was reduced, 15 g of the solvent was distilled off, and dissolved hydrogen chloride and silicon tetrafluoride were removed. The obtained solid was purified with ethyl methyl carbonate / hexane to obtain lithium sodium tetrafluoro (oxalate) phosphate (hereinafter abbreviated as Li · NaTFOP. Chemical formula (III)). The obtained electrolyte is designated as B-1. The sodium abundance ratio r of the obtained electrolyte B-1 was measured and found to be 20 ppm. An electrolytic solution F-1 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to the electrolyte B-1.

Figure 0006871008
[製造例5]
ヘキサフルオロリン酸リチウム200.0g、ヘキサフルオロリン酸ナトリウム4.4mgをエチルメチルカーボネートに溶解して800gとした溶液Zを作成し、溶液Z80gに、シュウ酸を24.3g仕込み、攪拌した。次に四塩化ケイ素22.4gを1時間かけて導入した。導入終了後、1時間攪拌を継続したのち、反応器を減圧にし、溶媒を15g留去し、溶存する塩化水素、四フッ化ケイ素を除去した。得られた固体をエチルメチルカーボネート/ヘキサンで精製し、ジフルオロビス(オキサラト)リン酸リチウムナトリウム(以下、Li・NaDFOPと略記する。化学式(IV)。)を得た。得られた電解質をC−1とする。得られた電解質C−1のナトリウムの存在比率rを測定したところ、20ppmであった。添加する電解質を電解質C−1に変更した以外は、製造例2と同様にして電解液G−1を得た。
Figure 0006871008
[Manufacturing Example 5]
200.0 g of lithium hexafluorophosphate and 4.4 mg of sodium hexafluorophosphate were dissolved in ethyl methyl carbonate to prepare a solution Z of 800 g, and 24.3 g of oxalic acid was added to 80 g of the solution Z and stirred. Next, 22.4 g of silicon tetrachloride was introduced over 1 hour. After completion of the introduction, stirring was continued for 1 hour, the pressure was reduced, 15 g of the solvent was distilled off, and dissolved hydrogen chloride and silicon tetrafluoride were removed. The obtained solid was purified with ethyl methyl carbonate / hexane to obtain lithium sodium difluorobis (oxalate) phosphate (hereinafter abbreviated as Li · NaDFOP; chemical formula (IV)). The obtained electrolyte is designated as C-1. The sodium abundance ratio r of the obtained electrolyte C-1 was measured and found to be 20 ppm. An electrolytic solution G-1 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to the electrolyte C-1.

Figure 0006871008
Figure 0006871008

[製造例6]
添加するヘキサフルオロリン酸ナトリウムの量を22mgとして、製造例5と同様にして電解質C−2を得た。得られた電解質C−2のナトリウムイオンの存在比率(r)を測定したところ、100ppmであった。添加する電解質を電解質C−2に変更した以外は、製造例2と同様にして電解液G−2を得た。
[Manufacturing Example 6]
The amount of sodium hexafluorophosphate to be added was 22 mg, and the electrolyte C-2 was obtained in the same manner as in Production Example 5. The sodium ion abundance ratio (r) of the obtained electrolyte C-2 was measured and found to be 100 ppm. An electrolytic solution G-2 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to the electrolyte C-2.

[製造例7]
Li・NaDFOBの濃度が1Mとなるようにした以外は、製造例3と同様にして電解液E−3を得た。
[Manufacturing Example 7]
An electrolytic solution E-3 was obtained in the same manner as in Production Example 3 except that the concentration of Li / NaDFOB was adjusted to 1 M.

[製造例8]
製造例3で得られた電解質A−2を加えて、Li・NaDFOBの濃度が2M、LiPFの濃度が1Mとなるようにし、製造例2と同様に、23℃で混合し、攪拌したが、未溶解分が残り、均一な電解液とならなかった。
[Manufacturing Example 8]
The electrolyte A-2 obtained in Production Example 3 was added so that the concentration of Li / NaDFOB was 2M and the concentration of LiPF 6 was 1M. , Undissolved component remained, and the electrolytic solution was not uniform.

[製造例9]
6.0gのシュウ酸を水で希釈して200mlの溶液とし、10.44gのホウ酸を水で希釈して130mlの溶液として、それぞれの溶液を混合した。そこへ2.8M水酸化ナトリウム水溶液60mlをゆっくりと添加した。その後、55℃で12時間攪拌して反応させた。こうして得られた反応液を冷却し、析出した固体をろ過して、ビス(オキサラト)ホウ酸ナトリウムを得た。得られたビス(オキサラト)ホウ酸ナトリウムをアセトニトリルで再結晶し、精製されたビス(オキサラト)ホウ酸ナトリウムを得た。これに、市販のビス(オキサラト)ホウ酸リチウムを加え、ビス(オキサラト)ホウ酸リチウムナトリウム(以下、Li・NaBOBと略記する。化学式(V)。)を得た。得られた電解質をD−1とする。得られた電解質D−1のナトリウムの存在比率rを測定したところ、20ppmであった。添加する電解質を電解質D−1に変更し、Li・NaBOBの濃度が0.05Mとなるようにした以外は、製造例2と同様にして電解液H−1を得た。
[Manufacturing Example 9]
6.0 g of oxalic acid was diluted with water to make a 200 ml solution, and 10.44 g of boric acid was diluted with water to make a 130 ml solution, and the respective solutions were mixed. 60 ml of a 2.8 M aqueous sodium hydroxide solution was slowly added thereto. Then, the reaction was carried out by stirring at 55 ° C. for 12 hours. The reaction solution thus obtained was cooled, and the precipitated solid was filtered to obtain sodium bis (oxalate) borate. The obtained sodium bis (oxalate) borate was recrystallized from acetonitrile to obtain purified sodium bis (oxalate) borate. Commercially available lithium bis (oxalate) oxalate was added thereto to obtain sodium bis (oxalate) oxalate (hereinafter abbreviated as Li · NaBOB. Chemical formula (V)). The obtained electrolyte is designated as D-1. The sodium abundance ratio r of the obtained electrolyte D-1 was measured and found to be 20 ppm. An electrolyte solution H-1 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to the electrolyte D-1 so that the concentration of Li / NaBOB was 0.05 M.

Figure 0006871008
Figure 0006871008

[製造例10]
添加するNaBFの量を0.0007mgとして、製造例1と同様にして電解質A−3を得た。得られた電解質A−3のナトリウムの存在比率rを測定したところ、0.1ppmであった。添加する電解質を電解質A−3に変更した以外は、製造例2と同様にして電解液E−4を得た。
[Manufacturing Example 10]
The amount of NaBF 4 to be added was 0.0007 mg, and the electrolyte A-3 was obtained in the same manner as in Production Example 1. The sodium abundance ratio r of the obtained electrolyte A-3 was measured and found to be 0.1 ppm. An electrolyte solution E-4 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to the electrolyte A-3.

[製造例11]
添加するNaBFの量を0.007mgとして、製造例1と同様にして電解質A−4を得た。得られた電解質A−4のナトリウムの存在比率rを測定したところ、1ppmであった。添加する電解質を電解質A−4に変更した以外は、製造例2と同様にして電解液E−5を得た。
[Manufacturing Example 11]
The amount of NaBF 4 to be added was 0.007 mg, and an electrolyte A-4 was obtained in the same manner as in Production Example 1. The sodium abundance ratio r of the obtained electrolyte A-4 was measured and found to be 1 ppm. Electrolyte E-5 was obtained in the same manner as in Production Example 2 except that the electrolyte to be added was changed to electrolyte A-4.

以下に示す実施例及び比較例におけるリチウムイオン二次電池(シート型のラミネート電池)の作製は、すべてドライボックス内又は真空デシケータ内で行った。 The lithium ion secondary batteries (sheet-type laminated batteries) in the examples and comparative examples shown below were all manufactured in a dry box or a vacuum desiccator.

[実施例1]
正極活物質を含む固形成分100質量部と、導電助剤としてカーボンブラックを5質量部と、結着材としてポリフッ化ビニリデンを5質量部と、溶媒としてNMPからなるスラリーを混合し、固形分45%に調整後、アルミニウム箔に塗布し、予備乾燥後、120℃で真空乾燥した。電極を4kNで加圧プレスし、さらに電極寸法の40mm角に打ち抜き、正極を作製した。
負極活物質を含む固形成分100質量部と、結着材としてスチレンブタジエンゴム1.5質量部と、増粘剤としてカルボキシメチルセルロースナトリウムを1.5質量部と、水溶媒からなるスラリーを混合し、固形分50%に調整後、スラリーを銅箔に塗布し、100℃で乾燥した。電極を2kNで加圧プレスし、さらに電極寸法の42mm角に打ち抜き、負極を作製した。
正極、負極、セパレータを積層し、製造例2で得られた電解液E−1を注入し、封止してシート型のラミネート電池を作製した。電池評価を実施したところ、初期放電容量は50mAhであった。
[Example 1]
A slurry consisting of 100 parts by mass of a solid component containing a positive electrode active material, 5 parts by mass of carbon black as a conductive auxiliary agent, 5 parts by mass of polyvinylidene fluoride as a binder, and NMP as a solvent are mixed to form a solid content of 45. After adjusting to%, it was applied to an aluminum foil, pre-dried, and then vacuum dried at 120 ° C. The electrode was pressure-pressed at 4 kN and further punched to a 40 mm square of the electrode size to prepare a positive electrode.
A slurry consisting of 100 parts by mass of a solid component containing a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of sodium carboxymethyl cellulose as a thickener, and an aqueous solvent was mixed. After adjusting to a solid content of 50%, the slurry was applied to a copper foil and dried at 100 ° C. The electrode was pressure-pressed at 2 kN and further punched to a 42 mm square electrode size to prepare a negative electrode.
A positive electrode, a negative electrode, and a separator were laminated, and the electrolytic solution E-1 obtained in Production Example 2 was injected and sealed to prepare a sheet-type laminated battery. When the battery was evaluated, the initial discharge capacity was 50 mAh.

[実施例2〜6、比較例1〜4]
表1〜2に記載の各電解液を用いて、実施例1と同様にしてラミネート電池を作製した。比較例1では、電解液を得ることができなかったため、ラミネート電池を作製することができなかった。
[Examples 2 to 6, Comparative Examples 1 to 4]
A laminated battery was produced in the same manner as in Example 1 using each of the electrolytic solutions shown in Tables 1 and 2. In Comparative Example 1, a laminated battery could not be produced because an electrolytic solution could not be obtained.

上記各実施例及び比較例のラミネート電池を、25℃において電流値1Cで4.2Vまで充電した後、電流値1Cで2.7Vまで放電した。この充放電サイクルを繰り返し行い、1000サイクル繰り返した後の容量維持率(%)と、レート2Cでの容量発現率(%)を測定し、サイクル特性とレート特性を評価した。結果を表1〜2に示す。表中、DFOB等の符号は、一般式(I)の電解質におけるアニオン種の略号を表す。 The laminated batteries of the above Examples and Comparative Examples were charged to 4.2 V at a current value of 1 C at 25 ° C., and then discharged to 2.7 V at a current value of 1 C. This charge / discharge cycle was repeated, and the capacity retention rate (%) after repeating 1000 cycles and the capacity expression rate (%) at rate 2C were measured, and the cycle characteristics and rate characteristics were evaluated. The results are shown in Tables 1-2. In the table, reference numerals such as DFOB represent abbreviations for anion species in the electrolyte of the general formula (I).

Figure 0006871008
Figure 0006871008

Figure 0006871008
Figure 0006871008

表1〜2に示すように、本発明を適用した実施例1〜6は、サイクル特性がいずれも75%以上であった。また、実施例1〜6は、レート特性がいずれも85%以上であった。
一方、一般式(I)のアニオンにハロゲンを含有しない電解質を用いた比較例2では、サイクル特性が66%、レート特性が70%と低い値だった。
ナトリウムの存在比率rが2ppm未満の比較例3〜4では、サイクル特性が71%以下だった。
As shown in Tables 1 and 2, the cycle characteristics of Examples 1 to 6 to which the present invention was applied were 75% or more. Further, in Examples 1 to 6, the rate characteristics were all 85% or more.
On the other hand, in Comparative Example 2 in which an electrolyte containing no halogen as the anion of the general formula (I) was used, the cycle characteristics were as low as 66% and the rate characteristics were as low as 70%.
In Comparative Examples 3 to 4 in which the sodium abundance ratio r was less than 2 ppm, the cycle characteristics were 71% or less.

本発明によれば、従来の電解質と比べて、サイクル特性に優れた、非水二次電池用電解質及びそれを用いた電解液並びに電池を提供できることがわかった。 According to the present invention, it has been found that it is possible to provide an electrolyte for a non-aqueous secondary battery, an electrolyte solution using the same, and a battery, which are superior in cycle characteristics to conventional electrolytes.

本発明は、リチウムイオン二次電池の分野で利用可能である。 The present invention can be used in the field of lithium ion secondary batteries.

Claims (6)

一般式(I)で表され、下記rが下記式(1)を満たすことを特徴とする、リチウムイオン二次電池用電解質。
Figure 0006871008
[一般式(I)において、Mは、B、Al、Ga、P、As又はSbを表し、rは、0<r<1の数を表し、mは1〜2、nは1〜4、qは0又は1の整数を表し、Rは、C〜C10のアルキレン、C〜C10のハロゲン化アルキレン、C〜C20のアリーレン又はC〜C20のハロゲン化アリーレン(これらのアルキレン及びアリーレンは、その構造中に置換基、ヘテロ原子を持っていてもよい。)を表し、Rは、ハロゲンを表し、X、Xは、O、S、Se又はNをそれぞれ表す。]
2.0×10−6≦r≦1.0×10−2・・・(1)
An electrolyte for a lithium ion secondary battery represented by the general formula (I), wherein the following r satisfies the following formula (1).
Figure 0006871008
[In the general formula (I), M represents B, Al, Ga, P, As or Sb, r represents a number of 0 <r <1, m represents 1-2, n represents 1-4, q represents an integer of 0 or 1, R 1 is, C 1 -C alkylene 10, C 1 -C halogenated 10 alkylene, arylene halide arylene or C 6 -C 20 in C 6 -C 20 ( These alkylene and arylene may have a substituent or a heteroatom in the structure), R 2 represents halogen, and X 1 , X 2 represents O, S, Se or N. Represent each. ]
2.0 × 10-6 ≦ r ≦ 1.0 × 10 -2 ... (1)
前記qが0であることを特徴とする、請求項1に記載のリチウムイオン二次電池用電解質。 The electrolyte for a lithium ion secondary battery according to claim 1, wherein q is 0. 前記X及び前記XがOであることを特徴とする、請求項1または2に記載のリチウムイオン二次電池用電解質。 The electrolyte for a lithium ion secondary battery according to claim 1 or 2, wherein X 1 and X 2 are O. 請求項1〜のいずれか一項に記載のリチウムイオン二次電池用電解質と、非水溶媒とを含有し、
前記リチウムイオン二次電池用電解質の濃度が0.005〜1.5mol/Lであることを特徴とする、リチウムイオン二次電池用電解液。
The electrolyte for a lithium ion secondary battery according to any one of claims 1 to 3 and a non-aqueous solvent are contained.
An electrolytic solution for a lithium ion secondary battery, characterized in that the concentration of the electrolyte for the lithium ion secondary battery is 0.005 to 1.5 mol / L.
さらに、LiPFを含むことを特徴とする、請求項に記載のリチウムイオン二次電池用電解液。 The electrolytic solution for a lithium ion secondary battery according to claim 4 , further comprising LiPF 6. 正極、負極及び請求項4または5に記載のリチウムイオン二次電池用電解液を有することを特徴とするリチウムイオン二次電池。 The positive electrode, the lithium ion secondary battery characterized by having a negative electrode and claim 4 or a lithium ion secondary battery electrolyte according to 5.
JP2017024295A 2017-02-13 2017-02-13 Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries Active JP6871008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024295A JP6871008B2 (en) 2017-02-13 2017-02-13 Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024295A JP6871008B2 (en) 2017-02-13 2017-02-13 Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2018133146A JP2018133146A (en) 2018-08-23
JP6871008B2 true JP6871008B2 (en) 2021-05-12

Family

ID=63249077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024295A Active JP6871008B2 (en) 2017-02-13 2017-02-13 Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries

Country Status (1)

Country Link
JP (1) JP6871008B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200220220A1 (en) * 2019-01-08 2020-07-09 Tesla Motors Canada ULC Electrolytes with lithium difluoro(oxalato)borate and lithium tetrafluoroborate salts for lithium metal and anode-free cells
JPWO2021039241A1 (en) * 2019-08-30 2021-03-04
JP7314188B2 (en) * 2021-02-15 2023-07-25 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972922B2 (en) * 2005-12-14 2012-07-11 セントラル硝子株式会社 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
JP5124170B2 (en) * 2007-05-09 2013-01-23 株式会社豊田中央研究所 Lithium ion secondary battery
JP5854279B2 (en) * 2012-09-07 2016-02-09 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
JP6193184B2 (en) * 2013-07-08 2017-09-06 株式会社東芝 Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack and vehicle
JP6394242B2 (en) * 2014-09-30 2018-09-26 セントラル硝子株式会社 Method for producing difluoroionic complex
JP6520064B2 (en) * 2014-11-19 2019-05-29 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and lithium non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2018133146A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
KR100714135B1 (en) Material for electrolytic solutions and use thereof
JP4679819B2 (en) Non-aqueous electrolytes for lithium electrochemical cells
US11050087B2 (en) Silane functionalized ionic liquids
JP3722685B2 (en) Electrolyte for electrochemical device and battery using the same
JP5544748B2 (en) Electrolytes for electrochemical devices, electrolytes using the same, and nonaqueous electrolyte batteries
JP5242973B2 (en) Electrolyte composition for electricity storage device and electricity storage device using the same
JP6842557B2 (en) Lithium sulphate compound, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
JP4955951B2 (en) Lithium ion secondary battery
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
JP6871008B2 (en) Electrolytes for lithium-ion secondary batteries, electrolytes for lithium-ion secondary batteries using them, and lithium-ion secondary batteries
WO2013031776A1 (en) Battery electrolyte and method for producing same, and battery comprising electrolyte
KR20060085919A (en) Electrolyte solution and nonaqueous electrolyte lithium secondary battery
JPWO2020121850A1 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6955876B2 (en) Electrolyte for non-water secondary battery and non-water secondary battery
JP4811070B2 (en) Non-aqueous electrolyte battery electrolyte, electrolyte and non-aqueous electrolyte battery
JP3730855B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2004043407A (en) Ionic liquid
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP7120507B2 (en) Lithium borate composition, additive for lithium secondary battery, method for producing lithium borate composition, non-aqueous electrolyte for lithium secondary battery, lithium secondary battery
KR20050063915A (en) Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte
JP2013053105A (en) Mesoionic compound, electrolytic solution comprising the same for use in cell, and cell comprising the electrolytic solution
JP3428147B2 (en) Non-aqueous electrolyte secondary battery
JP3730860B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JP2017004638A (en) Electrolyte salt, non-aqueous electrolytic solution containing electrolyte salt, and power storage device using non-aqueous electrolytic solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R151 Written notification of patent or utility model registration

Ref document number: 6871008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250