KR20050063915A - Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte - Google Patents

Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte Download PDF

Info

Publication number
KR20050063915A
KR20050063915A KR1020030095160A KR20030095160A KR20050063915A KR 20050063915 A KR20050063915 A KR 20050063915A KR 1020030095160 A KR1020030095160 A KR 1020030095160A KR 20030095160 A KR20030095160 A KR 20030095160A KR 20050063915 A KR20050063915 A KR 20050063915A
Authority
KR
South Korea
Prior art keywords
lithium
carbonate
electrolyte solution
organic solvent
battery
Prior art date
Application number
KR1020030095160A
Other languages
Korean (ko)
Inventor
전종호
김학수
김종섭
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020030095160A priority Critical patent/KR20050063915A/en
Publication of KR20050063915A publication Critical patent/KR20050063915A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 탄산염계 혼합 유기용매에 리튬염을 용해시켜 수득한 리튬염-함유 혼합 유기용액에 트리알킬실릴 보레이트(trialkylsilylbenzene borate)를 첨가하여 제조한 리튬 전지용 비수전해액에 관한 것이고, 아울러, 상기 비수 전해액을 포함한 리튬 2차전지에 관한 것이다. 본 발명에 따른 리튬 전지용 비수 전해액은 통상의 전해액에 비해 고율에서의 방전 용량과 방전 전압이 향상된 결과를 보여, 전지성능 확보가 가능하고, 충방전 사이클 특성이 우수하다.The present invention relates to a nonaqueous electrolyte solution for lithium batteries prepared by adding trialkylsilylbenzene borate to a lithium salt-containing mixed organic solution obtained by dissolving a lithium salt in a carbonate mixed organic solvent. It relates to a lithium secondary battery comprising a. The nonaqueous electrolyte solution for lithium batteries according to the present invention shows improved discharge capacity and discharge voltage at a higher rate than the conventional electrolyte solution, thereby ensuring battery performance and excellent charge / discharge cycle characteristics.

Description

2차 전지용 비수 전해액 및 이를 포함한 2차 전지{Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte}Nonaqueous Electrolyte for Secondary Battery and Secondary Battery Containing It {Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte}

본 발명은 탄산염계 혼합 유기용매에 리튬염을 용해시켜 수득한 리튬염-함유 혼합 유기용액에 트리알킬실릴 보레이트(trialkylsilylbenzene borate)를 첨가하여 제조한 리튬 전지용 비수 전해액에 관한 것이고, 아울러, 상기 비수 전해액을 포함한 리튬 2차전지에 관한 것이다. 보다 상세하게, 본 발명은 환형 탄산염계 유기용매와 선형 탄산염계 유기용매로 이루어진 혼합 용매에 리튬염 화합물이 0.8 내지 2.0 M로 용해된 리튬염-함유 혼합유기용액 100 중량부에, 트리알킬실릴 보레이트를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액과, 이를 포함한 2차 전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte solution for lithium batteries prepared by adding trialkylsilylbenzene borate to a lithium salt-containing mixed organic solution obtained by dissolving a lithium salt in a carbonate mixed organic solvent. It relates to a lithium secondary battery comprising a. More specifically, the present invention provides trialkylsilyl borate in 100 parts by weight of a lithium salt-containing mixed organic solution in which a lithium salt compound is dissolved at 0.8 to 2.0 M in a mixed solvent consisting of a cyclic carbonate organic solvent and a linear carbonate organic solvent. It relates to a non-aqueous electrolyte for lithium batteries prepared by adding 0.1 to 10 parts by weight of a secondary battery including the same.

휴대전화, 포터블 전자기기나 휴대 정보 단말의 급속한 소형 경량화, 다 양화에 따라, 그 전원인 전지가 소형 및 경량이면서 고에너지 (High energy) 밀도로, 장기간 충방전이 가능하며, 고율 특성이 우수할 것이 요구되고 있는 바, 이러한 요구에 따라, 이차전지로서 리튬이차 전지 등에 대한 연구가 있어왔다. 리튬 전지용의 전해액은, 리튬 음극에 대하여 안정할 것이 요구되지만, 리튬에 대하여 열역학적으로 완전히 안정한 용매는 존재하지 않는 것으로 알려져 있다. 실제로, 리튬 전지에서, 초기 충전시 음극에 대해 전해액이 분해하여, 이 반응 생성물이 리튬 표면에 이온 전도성의 보호막, 즉, SEI(Solid Electrolyte Interface)를 형성하고, 전극과 전해액과의 반응을 억제시키기 때문에 안정화된 것이라 생각되고 있다. 한편, 고율 특성의 경우, 휴대폰 및 포터블 전자기기에 리튬 전지를 사용시 고전류가 흐름에 따라서 전지의 종류에 따라 성능변화 차이가 크게 나타난다. 이에, 전지의 고율 특성을 향상시킬 수 있는 전해액 Recipe를 개발하여 고 전류의 사용시에도 전지의 특성 저하 현상이 발생되지 않는 것이 중요한 과제가 되어왔다. 그러나, 비수 전해액 용매의 대부분은 내 전압이 낮은 것이 많으며, 내전압이 낮은 용매들을 이용한 전해액을 2차전지에 사용할 경우, 충방전을 되풀이하게 되면, 용매가 분해되어, 이로 인한 gas 발생으로, 전지의 내압이 상승하거나, 생성물이 중합반응을 일으키거나, 전극표면에 부착하는 등의 현상이 발생된다. 이 때문에, 전지 충방전 효율이 저하되고, 전지 에너지밀도의 저하에 의하여, 전지의 수명이 짧아지는 등의 문제가 발생되고 있다. 현재, 고율 특성 향상을 위해서 우선적으로 시도되고 있는 부분은, 전극 표면에의 안정된 SEI (solid electrolyte interface)의 형성이 매우 중요하며, 이렇게 형성되어진 SEI가 보다 높은 도전성을 가져, Li+ ion 의 Mobility 및 충방전특성을 향상시켜 수명특성과 고율특성 향상을 가져 오게 하는 것이다. 이를 위하여, 리튬이차 전지의 전해액 중에 첨가제로서 소량의 화합물을 첨가하여, 전지의 고율특성을 확보하려는 시도들이 있어왔다. 예를 들어, 일본 특개평 8-22839호에서는, 전해액 중에 첨가제로서, 인산트리메틸 및 인산트리에틸을 사용하여, 내전압성을 향상시키고 전해액 용매가 산화에 의하여 분해하는 것을 억제하는 것을 개시하고 있는 바, 전해질의 용해도를 높일 수 있고, 상온 및 저온으로의 전기전도성에 우수한 전해액을 제조할 수 있다. 또한, 일본 특개평 2-10666호에서는, 기존의 내전압이 낮은 용매 대신, 내전압이 높은 탄산 에스테르류의 용매를 사용하여, 충방전 반복후의 전지 에너지밀도 저하를 억제하여, 수명 및 고율특성향상을 도모한 전해액을 개시하고 있다. 그러나, 본 발명자들의 연구에 따르면, 상기 기술들은 충분한 고율특성 및 수명특성향상을 동시에 이루지 못하고 있으며, 전지의 다른 특성 (충방전 효율 등)에 좋지 않은 영향을 주는 것으로 나타났다. 한편, 종래의 리튬이차 전지는 양극 활물질로서, 중량당의 용량이 큰 층상 리튬코발트산화물 (LiCoO2), 리튬니켈산화물(LiNiO2) 또는 리튬망간산화물(LiMn2O4 ) 등을 사용하고 있지만, 이들 산화물의 경우 고율 상태에서 리튬이온 대부분이 탈리 상태로 있으므로 매우 불안정하며, 전해액과 반응하여 급격한 분해 발열반응을 일으키거나 음극 상에 리튬 금속을 석출시켜 최악의 경우 전지의 파열 또는 발화를 일으킬 수 있다는 문제점이 있다.With the rapid miniaturization and diversification of mobile phones, portable electronic devices, and portable information terminals, the battery, which is a power source, is compact and lightweight, has high energy density, and can be charged and discharged for a long time, and has high rate characteristics. In order to meet these demands, researches on lithium secondary batteries and the like have been made as secondary batteries. Although the electrolyte solution for lithium batteries is required to be stable with respect to a lithium negative electrode, it is known that there is no solvent which is completely thermodynamically stable with respect to lithium. Indeed, in lithium batteries, the electrolyte decomposes on the negative electrode during initial charging, so that the reaction product forms an ion conductive protective film on the surface of the lithium, that is, a solid electrolyte interface (SEI), and suppresses the reaction between the electrode and the electrolyte It is thought to be stabilized. On the other hand, in the case of high rate characteristics, when a lithium battery is used in a mobile phone and a portable electronic device, a difference in performance varies greatly according to the type of battery as a high current flows. Therefore, it has been an important task to develop an electrolyte solution capable of improving the high rate characteristic of a battery so that the phenomenon of deterioration of the battery does not occur even when a high current is used. However, most of the nonaqueous electrolyte solvents have a low withstand voltage, and when an electrolyte solution using a low withstand voltage solvent is used in a secondary battery, when the charge and discharge are repeated, the solvent is decomposed, resulting in gas generation. The internal pressure rises, the product causes a polymerization reaction, or adheres to the electrode surface. For this reason, there arises a problem that the battery charge and discharge efficiency is lowered and the battery life is shortened due to the decrease in battery energy density. Currently, the first attempt to improve the high rate characteristics is the formation of a stable solid electrolyte interface (SEI) on the surface of the electrode is very important, the SEI thus formed has a higher conductivity, the mobility of Li + ion and It is to improve the charge and discharge characteristics to bring the improvement of life characteristics and high rate characteristics. To this end, attempts have been made to secure high rate characteristics of batteries by adding small amounts of compounds as additives in the electrolyte of lithium secondary batteries. For example, Japanese Patent Application Laid-Open No. 8-22839 discloses using trimethyl phosphate and triethyl phosphate as additives in an electrolyte solution to improve the withstand voltage resistance and to suppress decomposition of the electrolyte solvent by oxidation. The solubility of the electrolyte can be increased, and an electrolyte solution excellent in the electrical conductivity at room temperature and low temperature can be produced. In addition, Japanese Patent Application Laid-open No. Hei 2-10666 uses a solvent of carbonate ester having a high withstand voltage instead of a solvent having a low withstand voltage, thereby suppressing a decrease in battery energy density after repeated charge and discharge, thereby improving life and high rate characteristics. One electrolyte is disclosed. However, according to the researches of the present inventors, the above techniques do not achieve sufficient high rate characteristics and improvement of life characteristics at the same time, and have been shown to adversely affect other characteristics (such as charge and discharge efficiency) of the battery. On the other hand, conventional lithium secondary batteries use a layered lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) or lithium manganese oxide (LiMn 2 O 4 ), etc., having a large capacity per weight as a positive electrode active material. In case of oxides, most of lithium ions are in a desorption state at a high rate, and thus, they are very unstable, and may cause rapid decomposition exothermic reaction by reacting with an electrolyte or lithium metal on a negative electrode, which may cause battery rupture or ignition in the worst case. There is this.

따라서, 당해 기술분야에서는 리튬이차 전지에서, 전지의 다른 특성에 영향을 주지 않으면서 전지의 고율 방전 특성 및 수명특성을 향상시킬 수 있는 전해액의 개발에 대한 요구가 있어 왔다. Therefore, there is a need in the art for the development of an electrolyte solution capable of improving high rate discharge characteristics and life characteristics of a battery without affecting other characteristics of the battery in a lithium secondary battery.

본 발명자들은 상기 문제를 해결하기 위해 예의 연구한 결과, 전지용 비수전해액에 트리메틸실릴보레이트(trimethylsilyl borate) 등 트리알킬실릴 보레이트를 비수 전해액에 첨가할 경우, 고율 상태에서도, 불안정한 리튬이온에 의한 전해액의 분해 발열반응이 억제되어 고율 방전특성, 수명특성 등이 동시에 향상되고, 충방전 사이클 특성이 뛰어난 동시에, 그 외에 전지 충방전 효율 등 전지의 다른 특성에는 악영향을 미치지 않는 것을 확인하고 본 발명에 이르게 되었다.The present inventors have diligently studied to solve the above problems, and when trialkylsilyl borate such as trimethylsilyl borate is added to the nonaqueous electrolyte for batteries, the electrolyte is decomposed by unstable lithium ions even at high rate. The exothermic reaction was suppressed to improve the high rate discharge characteristics, the lifetime characteristics, and the like, and was excellent in the charge and discharge cycle characteristics, and in addition, the present invention was confirmed that it did not adversely affect other characteristics of the battery such as battery charge and discharge efficiency.

결국, 본 발명은 고율에서의 전지 기능(performance) 저하가 없는 향상된 신규한 리튬 전지용 비수 전해액을 제공하기 위한 것이다. As a result, the present invention is directed to providing an improved novel nonaqueous electrolyte for lithium batteries without deteriorating battery performance at high rates.

따라서, 본 발명의 한 측면은 탄산염계 유기혼합 용매에 리튬염을 용해시킨 리튬염 함유 유기혼합용액 내에 하기 화학식 1로 나타내어지는 트리알킬실릴보레이트(trialkylsilyl borate)를 포함하는 리튬전지용 비수전해액에 관한 것이다:Accordingly, one aspect of the present invention relates to a non-aqueous electrolyte solution for a lithium battery comprising trialkylsilyl borate represented by the following Chemical Formula 1 in a lithium salt-containing organic mixed solution in which lithium salt is dissolved in a carbonate-based organic mixed solvent. :

[상기 식에서, R은 탄소수 1 내지 4의 알킬기이다][Wherein R is an alkyl group having 1 to 4 carbon atoms]

본 발명의 또 다른 측면은 상기 비수전해액을 포함한 리튬 이차전지에 관한 것이다.Another aspect of the present invention relates to a lithium secondary battery including the nonaqueous electrolyte.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 비수 전해액은 리튬염 함유 혼합 유기용액 100 중량부에 상기 화학식 1의 트리알킬실릴보레이트를 0.1 내지 10중량부, 바람직하게는 1 내지 5 중량부, 보다 바람직하게는 0.1 내지 1중량부, 가장 바람직하게는 0.1 내지 0.5 중량부로 첨가하여 제조된다. 본 발명에 따른 트리알킬 실릴 보레이트로서, 바람직하게는 하기 화학식 2의 트리메틸실릴보레이트를 사용한다:Non-aqueous electrolyte according to the present invention is 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight, more preferably 0.1 to 1 part by weight of the trialkylsilyl borate of the formula (1) to 100 parts by weight of the lithium salt-containing mixed organic solution Most preferably, 0.1 to 0.5 parts by weight. As the trialkyl silyl borate according to the invention, preferably trimethylsilylborate of the formula (II) is used:

본 발명에 따른 비수 전해액에서, 기본 전해액인 리튬염 함유 혼합유기용액은 탄산염계 유기용매의 혼합물에 리튬염 화합물을 용해시켜 수득한 용액이다.In the nonaqueous electrolyte according to the present invention, the lithium salt-containing mixed organic solution, which is a basic electrolyte, is a solution obtained by dissolving a lithium salt compound in a mixture of carbonate organic solvents.

보다 상세히, 상기 탄산염계 혼합 유기용매는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매로 이루어진다. 바람직하게, 상기 환형의 탄산염계 유기용매로는 에틸렌카아보네이트(EC), 프로필렌카아보네이트(PC) 또는 이들의 혼합물이 사용되고, 상기 선형의 탄산염계 유기용매로는 디메틸카아보네이트(DMC), 디에틸카아보네이트(DEC), 에틸메틸카아보네이트(EMC) 및 메틸프로필카아보네이트(MPC)로 이루어지는 군으로부터 선택된1 이상의 화합물이 사용된다. 예를 들어, 에틸렌카아보네이트와 디메틸카아보네이트의 조합 또는 에틸렌카아보네이트, 디메틸카아보네이트 및 에틸메틸카아보네이트의 조합을 사용할 수 있다. 상기 혼합유기용매는, 필요에 따라, 프로필아세테이트(PA), 메틸아세테이트(MA), 에틸아세테이트(EA), 부틸아세테이트(BA), 메틸프로피오네이트(MP), 에틸프로피오네이트(EP) 및 플루오르벤젠 (FB)으로 구성되는 군으로부터 선택되는 1 또는 2 이상의 화합물을, 상기 혼합유기용매 100 중량부를 기준으로 1.0 내지 10중량부의 양으로 추가 포함할 수 있다. 각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한되는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제조 시의 혼합비를 따른다.In more detail, the carbonate mixed organic solvent is composed of a cyclic carbonate organic solvent and a linear carbonate organic solvent. Preferably, the cyclic carbonate organic solvent is ethylene carbonate (EC), propylene carbonate (PC) or a mixture thereof. The linear carbonate organic solvent is dimethyl carbonate (DMC). At least one compound selected from the group consisting of diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and methylpropyl carbonate (MPC) is used. For example, a combination of ethylene carbonate and dimethyl carbonate or a combination of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate can be used. The mixed organic solvent is, if necessary, propyl acetate (PA), methyl acetate (MA), ethyl acetate (EA), butyl acetate (BA), methyl propionate (MP), ethyl propionate (EP) and One or two or more compounds selected from the group consisting of fluorobenzene (FB) may be further included in an amount of 1.0 to 10 parts by weight based on 100 parts by weight of the mixed organic solvent. The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio at the time of preparing a nonaqueous electrolyte solution for a lithium battery is followed.

상기 혼합 유기용매는 리튬염 화합물을 포함하고 있는 바, 상기 리튬염의 예는 리튬전지에 사용되는 공지된 모든 리튬염화합물을 포함하며, 바람직하게는 LiPF6, LiBF4, LiClO4, LiN(C2F5SO3) 2, LiN(C2F5SO2)2 및 LiN(CF3SO2 )2 로 구성되는 군으로부터 선택되는 1 또는 2 이상의 화합물을 사용한다. 보다 바람직하게는 LiPF6를 사용한다. 상기 리튬염 화합물은 상기 탄산염계 혼합유기용매에 0.8 내지 2.0M의 범위로 존재한다.The mixed organic solvent includes a lithium salt compound, examples of the lithium salt include all known lithium salt compounds used in lithium batteries, preferably LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 One or two or more compounds selected from the group consisting of F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2, and LiN (CF 3 SO 2 ) 2 are used. More preferably LiPF 6 is used. The lithium salt compound is present in the carbonate-based mixed organic solvent in the range of 0.8 to 2.0M.

본 발명에 따른 리튬 전지용 비수 전해액을 사용하여, 통상의 방법에 따라 리튬 전지를 제조할 수 있으며, 이와 같이 제조된 리튬 전지는 전지 화학적 특성이 우수하고, 고율방전시에도 전기 화학적 안정성이 향상되고, 고율(high C-rate)시 수명특성이 우수하다.By using the nonaqueous electrolyte solution for lithium batteries according to the present invention, a lithium battery can be manufactured according to a conventional method. The lithium battery thus prepared has excellent battery chemistry and improved electrochemical stability even at high rate discharge, Excellent lifespan characteristics at high C-rate

[실시예]EXAMPLE

이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the structure and effect of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are not intended to limit the scope of the present invention.

실시예 1 내지 3Examples 1 to 3

에틸렌카아보네이트(EC), 에틸메틸카보네이트(EMC) 및 디에틸카보네이트 (DEC)을 1:1:1 비율로 혼합한 탄산염계 혼합유기 용매에 LiPF6을 1.0 M로 용해시킨 용액을 기본 전해액으로 하였다. 상기 기본 전해액 100 중량부을 기준으로 각각 1 중량부(실시예 1), 3 중량부(실시예 2), 5 중량부(실시예 3)의 하기 식의 트리메틸실릴보레이트를 첨가하여 실시예 1 내지 3의 비수 전해액을 제조하였다:Ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) in a carbonate-based organic solvent mixed in a 1: 1: 1 ratio of a solution of LiPF 6 dissolved in 1.0 M as a basic electrolyte solution It was. Examples 1 to 3 by adding 1 part by weight (Example 1), 3 parts by weight (Example 2), 5 parts by weight (Example 3) of trimethylsilyl borate, based on 100 parts by weight of the basic electrolyte solution A nonaqueous electrolyte of was prepared:

제조된 전해액을 각형 423048 전지에 적용하였다. 이 때, 사용한 음극의 활물질은 흑연이었고, 결착제로 PVDF를 사용하였다. 양극은 활물질로 LiCoO2를 사용하였고 결착제로 PVDF를 사용하였으며 도전제로 아세틸렌블랙을 사용하였다. 제조된 전지를 가지고 다른 C-rate에서의 방전특성을 평가하고 그 결과를 표 1에 나타내었다. 아울러, 상기 제조된 전지에 대하여 각각 화성 충방전 특성을 평가하고 그 결과를 표 2에 나타내었다.The prepared electrolyte was applied to a square 423048 cell. At this time, the active material of the used negative electrode was graphite, and PVDF was used as a binder. LiCoO 2 was used as an active material, PVDF was used as a binder, and acetylene black was used as a conductive material. With the manufactured battery, the discharge characteristics of the different C-rates were evaluated and the results are shown in Table 1. In addition, each of the batteries prepared above was evaluated for the charge-discharge characteristics and the results are shown in Table 2.

비교예 1Comparative Example 1

트리메틸실릴보레이트를 사용하지 않고, 실시예 1과 동일한 기본 전해액만을 사용하여, 전지를 제조하였다. 제조된 전지를 가지고 다른 C-rate에서의 방전특성을 평가하고 그 결과를 표 1에 나타내었다. 아울러, 상기 제조된 전지에 대하여 각각 화성 충방전 특성을 평가하고 그 결과를 표 2에 나타내었다. A battery was manufactured using only the same basic electrolyte solution as Example 1 without using trimethylsilyl borate. With the manufactured battery, the discharge characteristics of the different C-rates were evaluated and the results are shown in Table 1. In addition, each of the batteries prepared above was evaluated for the charge-discharge characteristics and the results are shown in Table 2.

*DOD : Depth of DischargeDOD: Depth of Discharge

표 1로부터, 본 발명에 따른 전해액을 사용한 경우, 고율 방전 특성이 우수함을 알 수 있으며, 나아가, 표 2로부터 본 발명에 따른 전해액의 경우, 첨가제를 넣지 않은 비교예에 비해, 화성 충방전 특성 (즉, 전지의 다른 특성)의 저하는 거의 없음을 알 수 있다.From Table 1, it can be seen that the use of the electrolyte according to the present invention is excellent in high rate discharge characteristics, and furthermore, from Table 2, in the case of the electrolyte according to the present invention, compared with the comparative example without the additive, That is, it is understood that there is almost no degradation of other characteristics of the battery).

한편, 실시예 1 및 비교예 1에 따른 전해액을 사용한 전지를 가지고, 1.0C-rate의 고율 충방전을 대략 170 사이클(cycle) 및 대략 150사이클 실시하여 전해액의 수명특성을 평가하고, 이를 도 1에 나타내었다. 도 1로부터, 본 발명에 따른 전해액을 사용한 전지가 고율에서 월등히 우수한 수명 특성을 나타냄을 알 수 있다. On the other hand, with a battery using the electrolyte solution according to Example 1 and Comparative Example 1, by performing a high rate charge and discharge of 1.0 C-rate about 170 cycles (cycle) and about 150 cycles to evaluate the life characteristics of the electrolyte solution, Figure 1 Shown in From Figure 1, it can be seen that the battery using the electrolyte according to the present invention exhibits excellent life characteristics at high rates.

본 발명과 같이, 트리알킬실릴 보레이트를 첨가한 리튬 전지용 비수 전해액은, 이차 전지용 비수전해액을 사용한 전지에서 다른 전지특성에 좋지 않은 영향을 주는 일 없이, 통상의 전해액에 비해 고율에서 방전용량과 방전 전압이 향상되며, 충방전 사이클 특성이 우수한 특성이 있다. 따라서, 고율 특성 및 수명특성이 향상된 2차 전지제조에 유용하게 사용될 수 있다.As in the present invention, the nonaqueous electrolyte solution for lithium batteries to which trialkylsilyl borate is added has a high discharge capacity and discharge voltage at a higher rate than a conventional electrolyte solution without adversely affecting other battery characteristics in a battery using a nonaqueous electrolyte solution for secondary batteries. This improves, and has excellent characteristics of charge and discharge cycle characteristics. Therefore, it can be usefully used for the production of secondary batteries having improved high rate characteristics and lifetime characteristics.

도 1은 본 발명의 실시예 1 및 비교예에 따른 전해액을 사용한 2차 전지의 0.1C-rate에서의 수명특성을 비교한 결과를 나타낸 도이다.1 is a view showing the results of comparing the life characteristics at 0.1 C-rate of the secondary battery using the electrolyte according to Example 1 and Comparative Example of the present invention.

Claims (5)

환형 탄산염계 유기용매와 선형 탄산염계 유기용매로 이루어진 혼합 용매에 리튬염 화합물이 0.8 내지 2.0 M로 용해된 리튬염-함유 혼합유기용액 100 중량부에, 하기 화학식 1로 나타내어지는 트리알킬실릴 보레이트를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액:To 100 parts by weight of a lithium salt-containing mixed organic solution in which a lithium salt compound is dissolved at 0.8 to 2.0 M in a mixed solvent consisting of a cyclic carbonate organic solvent and a linear carbonate organic solvent, trialkylsilyl borate represented by the following formula (1) Non-aqueous electrolyte for lithium batteries prepared by adding 0.1 to 10 parts by weight of: [화학식 1][Formula 1] [상기 식에서, R은 탄소원자 1 내지 4의 알킬이다].[Wherein R is alkyl of 1 to 4 carbon atoms]. 제 1항에 있어서, 상기 환형 탄산염계 유기용매는 에틸렌카아보네이트, 프로필렌카아보네이트 및 양자의 혼합물로 이루어진 군으로부터 선택되고, 상기 선형의 탄산염계 유기용매는 디메틸카아보네이트, 디에틸카아보네이트, 에틸메틸카아보네이트, 메틸프로필카아보네이트 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 리튬 전지용 비수 전해액.The cyclic carbonate organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate and a mixture of both. The linear carbonate organic solvent is dimethyl carbonate, diethyl carbobo. Non-aqueous electrolyte solution for lithium batteries, characterized in that it is selected from the group consisting of nate, ethyl methyl carbonate, methyl propyl carbonate and mixtures thereof. 제 1항에 있어서, 상기 혼합용매는 프로필아세테이트, 메틸아세테이트, 에틸아세테이트, 부틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트 및 플루오르벤젠으로 이루어진 군으로부터 선택된 1 이상의 화합물을 추가로 포함하는 것을 특징으로 하는 리튬 전지용 비수 전해액.The method of claim 1, wherein the mixed solvent further comprises at least one compound selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and fluorobenzene. A nonaqueous electrolyte solution for lithium batteries. 제 1항에 있어서, 상기 리튬염 화합물은 LiPF6, LiBF4, LiClO4, LiN(C2F5SO3)2, LiN(C2F5SO2) 2 및 LiN(CF3SO2)2 로 구성되는 군으로부터 선택되는 1 이상의 화합물인 것을 특징으로 하는 리튬 전지용 비수 전해액.The method of claim 1, wherein the lithium salt compound is LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 A non-aqueous electrolyte solution for lithium batteries, characterized in that at least one compound selected from the group consisting of. 제 1항에 따른 비수 전해액을 포함하는 리튬전지.Lithium battery comprising the nonaqueous electrolyte according to claim 1.
KR1020030095160A 2003-12-23 2003-12-23 Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte KR20050063915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030095160A KR20050063915A (en) 2003-12-23 2003-12-23 Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095160A KR20050063915A (en) 2003-12-23 2003-12-23 Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte

Publications (1)

Publication Number Publication Date
KR20050063915A true KR20050063915A (en) 2005-06-29

Family

ID=37255578

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030095160A KR20050063915A (en) 2003-12-23 2003-12-23 Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte

Country Status (1)

Country Link
KR (1) KR20050063915A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801592B1 (en) * 2006-01-05 2008-02-11 제일모직주식회사 Nonaqueous electrolyte including succinic acid and tri-methylsillyl borate and lithium secondary battery using thereof
KR100804696B1 (en) * 2006-11-20 2008-02-18 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
KR101135503B1 (en) * 2009-11-26 2012-04-13 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR101309395B1 (en) * 2010-03-17 2013-09-17 가부시키가이샤 히타치세이사쿠쇼 Lithium ion secondary battery
KR101340031B1 (en) * 2007-03-23 2013-12-10 삼성에스디아이 주식회사 Electrolyte for lithium rechargeable battery and a lithium rechargeable battery comprising it
EP2704244A1 (en) * 2012-08-29 2014-03-05 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
US9419305B2 (en) 2012-04-30 2016-08-16 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN114430066A (en) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 Electrolyte and lithium ion battery containing same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801592B1 (en) * 2006-01-05 2008-02-11 제일모직주식회사 Nonaqueous electrolyte including succinic acid and tri-methylsillyl borate and lithium secondary battery using thereof
KR100804696B1 (en) * 2006-11-20 2008-02-18 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
US7494746B2 (en) 2006-11-20 2009-02-24 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same
KR101340031B1 (en) * 2007-03-23 2013-12-10 삼성에스디아이 주식회사 Electrolyte for lithium rechargeable battery and a lithium rechargeable battery comprising it
KR101135503B1 (en) * 2009-11-26 2012-04-13 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
US8349499B2 (en) 2009-11-26 2013-01-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR101309395B1 (en) * 2010-03-17 2013-09-17 가부시키가이샤 히타치세이사쿠쇼 Lithium ion secondary battery
US9419305B2 (en) 2012-04-30 2016-08-16 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
EP2704244A1 (en) * 2012-08-29 2014-03-05 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2014049443A (en) * 2012-08-29 2014-03-17 Samsung Sdi Co Ltd Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
US9590267B2 (en) 2012-08-29 2017-03-07 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN114430066A (en) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 Electrolyte and lithium ion battery containing same
CN114430066B (en) * 2020-10-13 2023-10-31 中国石油化工股份有限公司 Electrolyte and lithium ion battery containing same

Similar Documents

Publication Publication Date Title
EP3509152B1 (en) Lithium secondary battery
CN113540561A (en) Electrolyte additive, secondary battery electrolyte, secondary battery and terminal
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
US11145902B2 (en) Electrolyte for lithium secondary battery, lithium secondary battery containing the same
CN113571769A (en) Electrolyte additive, secondary battery electrolyte, secondary battery and terminal
KR20050063915A (en) Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte
JP4901089B2 (en) Nonaqueous electrolyte secondary battery
KR100585947B1 (en) Nonaqueous Electrolyte for Batteries
KR100789718B1 (en) Nonaqueous electrolyte for secondary battery
KR20040061562A (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100574328B1 (en) Nonqueous Electrolyte for Battery
KR100534011B1 (en) Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte
KR20150024226A (en) Electrolyte and lithium secondary battery comprising the same
KR100628629B1 (en) Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte
KR100616205B1 (en) Non-aqueous electrolyte for Lithium battery
KR100309776B1 (en) A non-aqueous electrolyte and a lithium secondary battery made thereof
CN111433963B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR100572283B1 (en) Non-aqueous electrolyte for lithium battery
KR20020041645A (en) Non-aqueous electrolyte solution for lithium battery
KR100591580B1 (en) Non-aqueous electrolyte for Lithium battery
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery
US20220077498A1 (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060503

Effective date: 20070529