KR20040061562A - Nonaqueous Electrolyte for Use in Lithium Battery - Google Patents
Nonaqueous Electrolyte for Use in Lithium Battery Download PDFInfo
- Publication number
- KR20040061562A KR20040061562A KR1020020087833A KR20020087833A KR20040061562A KR 20040061562 A KR20040061562 A KR 20040061562A KR 1020020087833 A KR1020020087833 A KR 1020020087833A KR 20020087833 A KR20020087833 A KR 20020087833A KR 20040061562 A KR20040061562 A KR 20040061562A
- Authority
- KR
- South Korea
- Prior art keywords
- carbonate
- organic solvent
- group
- formula
- electrolyte solution
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 리튬전지용 비수전해액에 관한 것으로, 보다 상세하게는 전지특성에 영향을 미치지 않으면서 리튬전지의 전기화학적 분해특성과 과충전 시의 안전성을 향상시킬 수 있는 성분이 첨가된 신규한 비수전해액에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to a new non-aqueous electrolyte containing components which can improve the electrochemical decomposition characteristics of lithium batteries and the safety during overcharging without affecting battery characteristics. will be.
민생용의 휴대전화, 포터블 전자기기나 휴대 정보 단말기의 급속한 소형·경량화 및 다양화에 따라, 그 전원인 전지에 대하여 소형이고 경량이면서 고에너지 밀도로 장기간 충방전이 가능한 이차전지의 개발이 강력하게 요구되고 있다. 이러한 요구를 충족시킬 수 있는 이차전지로서는 리튬이차전지 등의 비수전해질 이차전지가 가장 유망하고, 따라서 그에 대한 연구가 활발히 진행되어 왔다.With the rapid miniaturization, light weight, and diversification of public-use mobile phones, portable electronic devices, and portable information terminals, development of secondary batteries that can be charged and discharged for a long period of time with small energy, light weight, high energy density, and the like has been strongly developed. It is required. Non-aqueous electrolyte secondary batteries, such as lithium secondary batteries, are the most promising secondary batteries that can satisfy these demands, and thus researches on them have been actively conducted.
리튬전지용 전해액은 리튬 음극에 대하여 안정할 필요가 있지만, 열역학적으로 리튬에 대하여 안정한 용매는 존재하지 않는 것으로 알려져 있으며, 실제로는 전지의 초기 충전시 전해액이 분해되어, 이로부터 결과된 반응생성물이 리튬 음극 표면에 이온전도성의 보호막, 즉 SEI(Solid Electrolyte Interface)를 형성함으로써 전극과 전해액 간의 더 이상의 반응을 억제시키기 때문에 안정화되는 것으로 여겨지고 있다.Although the electrolyte for lithium batteries needs to be stable with respect to the lithium anode, there is no known thermodynamically stable solvent for lithium. Actually, the electrolyte is decomposed during initial charging of the battery, and the resulting reaction product is a lithium anode. It is believed that the formation of an ion conductive protective film, ie, a solid electrolyte interface (SEI), on the surface prevents further reaction between the electrode and the electrolyte, thereby stabilizing.
그러나, 이와 같은 비수전해질 이차전지에 있어서 전자기기의 전원회로나 충전장치가 고장나거나 과충전 상태가 된 경우, 전지 내부에서 비정상적인 발열이 발생하게 되고, 극단적인 경우에는 전지의 파손이나 발화에 이를 것으로 예상되기 때문에, 전지가 열 폭주를 일으키지 않도록 효과적으로 발열을 억제하고 전지의 안전성을 확보하는 것이 중요한 과제가 되어 왔다.However, in such a nonaqueous electrolyte secondary battery, when the power circuit or the charging device of the electronic device is broken or overcharged, abnormal heat generation occurs in the battery, and in extreme cases, the battery may be damaged or ignite. Therefore, it has become an important issue to effectively suppress heat generation and ensure battery safety so that the battery does not cause thermal runaway.
현재 과충전 시 전지의 파열, 발화 방지 대책으로는, 전지 내부에 보호회로 및 보호소자를 구비함으로써 충전기에 의한 충전전압을 제어하는 방법이 가장 보편화되어 있다. 그러나, 현재의 기술 수준으로는, 보호회로 및 보호소자의 이용은 전지팩의 소형화 및 저비용화에 큰 제약을 주기 때문에, 보호회로 및 보호소자 없이 전지의 안전성을 확보하는 것이 바람직하다.Currently, as a countermeasure against rupture and ignition of a battery during overcharging, a method of controlling a charging voltage by a charger is most common by providing a protection circuit and a protection device inside the battery. However, at the current state of the art, since the use of the protection circuit and the protection element places great restrictions on the miniaturization and cost reduction of the battery pack, it is desirable to secure the safety of the battery without the protection circuit and the protection element.
그간 이와 같은 문제를 해결하기 위한 노력이 계속되어, 일본 특허공개 평7-302614호, 일본 특허공개 평9-50822호, 일본 특허공개 평9-106835호, 일본 특허 제2939469호 등에서는 리튬이차전지의 전해액에 소량의 방향족 화합물을 첨가하여 전지의 과충전에 대한 안전성을 확보하는 방안을 제안하였다. 이들 특허의 내용과 문제점들을 좀더 상세히 살펴보면 다음과 같다.In the meantime, efforts have been made to solve such problems, and Japanese Patent Laid-Open No. 7-302614, Japanese Patent Laid-Open No. 9-50822, Japanese Patent Laid-Open No. 9-106835, Japanese Patent No. 2939469, etc. A small amount of aromatics was added to the electrolyte solution to secure the battery against overcharging. Looking at the content and problems of these patents in more detail as follows.
일본 특허공개 평7-302614호 및 일본 특허공개 평9-50822호에서는 전해액에 첨가제로서 분자량이 500이하이고, 이차전지의 만충전시의 정극전위 이상에서 가역성 산화환원 전위를 가지며,π전자궤도를 갖는 아니졸(Anisole) 등의 유기 저분자 화합물의 사용을 제안하고 있으며, 그러한 첨가제가 리독스 셔틀(redox shuttle)이라고 불리우는 작용에 의해 이차전지의 과충전시에 과충전 전류를 소비할 수 있는 보호기구를 구성한다고 기술하고 있다. 그러나, 이들 특허에 사용된 아니졸과 같은 유기 저분자 화합물이 과충전 시에 리독스 셔틀로서 기능하는 것은 확실하지만, 이러한 반응은 일반적인 전지 사용전압 범위에서 일어나기 때문에 불가피하게 전지의 충방전 사이클 특성에 악영향을 미치는 것으로 밝혀졌다.Japanese Patent Application Laid-Open No. 7-302614 and Japanese Patent Application Laid-open No. Hei 9-50822 have an molecular weight of 500 or less as an additive in an electrolyte solution, a reversible redox potential at a positive electrode potential or higher at the time of full charge of a secondary battery, and a π electron orbit. It is proposed to use organic low molecular weight compounds such as anisole, and such additives constitute a protective mechanism capable of consuming overcharge current during overcharging of a secondary battery by an action called redox shuttle. It is describing. However, although it is certain that organic low molecular weight compounds such as anisole used in these patents function as redox shuttles during overcharging, these reactions inevitably have an adverse effect on the charge / discharge cycle characteristics of the battery since they occur in the general battery operating voltage range. It turns out mad.
한편, 일본 특허공개 평9-106835호에서는 과충전 상태의 전압에서 중합반응을 일으켜 저항체로 작용함으로써 과충전시 전지를 보호할 수 있는 첨가제의 사용을 제안하고 있다. 그러나, 이 특허에서 사용된 첨가제는 극성이 낮고 또한 전해액에 대한 용해성이 낮기 때문에, 저온 작동시에 첨가제의 일부가 석출되고, 4.1V를 넘는 전압 상한까지 충방전이 반복되거나 40℃ 이상의 고온에서 장기간 방치된 충방전 상태에서는 첨가제가 분해되어 전지 특성의 저하가 발생하는 경향이 있고,나아가서는 300사이클 후의 과충전 시험을 행할시 안전을 충분히 확보할 수 없다.On the other hand, Japanese Patent Application Laid-open No. Hei 9-106835 proposes the use of an additive which can protect a battery during overcharge by causing a polymerization reaction at a voltage in an overcharge state and acting as a resistor. However, since the additive used in this patent has a low polarity and low solubility in the electrolyte, part of the additive precipitates during low temperature operation, and charge and discharge are repeated up to a voltage upper limit of 4.1 V or long term at a high temperature of 40 ° C. or higher. In the neglected charge-discharge state, the additives tend to decompose to deteriorate the battery characteristics. Further, safety cannot be sufficiently secured when the overcharge test is performed after 300 cycles.
이에 본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 종래의 리튬전지용 비수전해액에 헤테로고리형 질소 화합물(heterocyclic nitrogen compound)을 첨가함으로써 전기화학적 분해특성 및 과충전 시의 안전성이 향상된 신규한 리튬전지용 비수전해액을 제공함을 목적으로 한다.Therefore, the present invention is to solve the problems of the prior art as described above, by adding a heterocyclic nitrogen compound (heterocyclic nitrogen compound) to the conventional non-aqueous electrolyte for lithium batteries is a novel electrochemical degradation characteristics and improved safety when overcharged An object of the present invention is to provide a nonaqueous electrolyte for lithium batteries.
즉, 본 발명은 0.8 내지 2 M의 리튬염을 포함하는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식 1 내지 3의 구조를 가지는 헤테로고리형 질소 화합물들 중 어느 1종을 0.1 내지 10.0 중량부의 비율로 첨가하여 제조된 리튬전지용 비수전해액을 제공한다:That is, the present invention is a heterocyclic nitrogen compound having the structure of Formulas 1 to 3 to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent containing a lithium salt of 0.8 to 2 M To provide a non-aqueous electrolyte for lithium batteries prepared by adding any one of 0.1 to 10.0 parts by weight of ratio:
[화학식 1][Formula 1]
; ;
[화학식 2][Formula 2]
; ;
[화학식 3][Formula 3]
(단, 상기 화학식 1 내지 3에서 R은 C0~C12의 알킬 또는 알콕시기임).(Wherein R is a C 0 -C 12 alkyl or alkoxy group).
도 1은 실시예 1에 의한 전해액의 전기화학적 분해특성을 보여주는 그래프;1 is a graph showing the electrochemical decomposition characteristics of the electrolyte solution according to Example 1;
도 2는 실시예 2에 의한 전해액의 전기화학적 분해특성을 보여주는 그래프;2 is a graph showing the electrochemical decomposition characteristics of the electrolyte solution according to Example 2;
도 3은 실시예 3에 의한 전해액의 전기화학적 분해특성을 보여주는 그래프; 및3 is a graph showing the electrochemical decomposition characteristics of the electrolyte solution according to Example 3; And
도 4는 비교예 1에 의한 전해액의 전기화학적 분해특성을 보여주는 그래프이다.4 is a graph showing the electrochemical decomposition characteristics of the electrolyte solution according to Comparative Example 1.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
종래의 리튬이차전지의 양극활물질로는, 단위중량당 용량이 큰 물질로서 주로 층상 리튬코발트산화물(LiCoO2), 리튬니켈산화물(LiNiO2) 혹은 리튬망간산화물(LiMn2O4) 등이 사용되고 있지만, 이들은 과충전 상태에서 리튬이온이 대부분 탈리상태에 있어 상당히 불안정하게 되고, 전해액과 급격한 분해 발열반응을 일으키거나 음극상에 리튬금속을 석출시켜, 최악의 경우 전지의 파열 내지는 발화를 일으킬 수 있으므로, 과충전을 방지할 수 있는 첨가제를 전해액에 첨가하여 전지의 과충전에 대한 안전성을 확보하여야 한다. 본 발명에서는 이러한 목적을 달성하기 위한 첨가제로서 하기 화학식 1의 구조를 갖는 피리딘 유도체, 하기 화학식 2의 구조를 갖는 피리미딘 유도체 및 하기 화학식 3의 구조를 갖는 트리아진 유도체로 구성된 군에서 선택되는 어느 1종의 헤테로고리형 질소 화합물을 사용한다:As a cathode active material of a conventional lithium secondary battery, a layered lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or lithium manganese oxide (LiMn 2 O 4 ) is mainly used as a material having a large capacity per unit weight. They are quite unstable because most of lithium ions are in a desorption state in an overcharged state, causing rapid decomposition exothermic reaction with electrolyte or depositing lithium metal on a negative electrode, and in the worst case, may cause battery rupture or ignition. Additives to prevent the need to add to the electrolyte to ensure the safety of the battery overcharge. In the present invention, any one selected from the group consisting of a pyridine derivative having a structure of formula (1), a pyrimidine derivative having a structure of formula (2) and a triazine derivative having a structure of formula (3) as an additive for achieving the above object Species heterocyclic nitrogen compounds are used:
(단, 상기 화학식 1 내지 3에서 R은 C0~C12의 알킬 또는 알콕시기임).(Wherein R is a C 0 -C 12 alkyl or alkoxy group).
본 발명의 리튬전지용 비수전해액의 제조에 사용되는 용매로는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매를 혼합하여 사용하는데, 바람직하게는 탄산에틸렌(EC) 및 탄산프로필렌(PC)으로 구성되는 군으로부터 선택되는 1종 이상의 환형 탄산염계 유기용매와 탄산디메틸(DMC), 탄산디에틸(DEC), 탄산에틸메틸(EMC), 탄산메틸프로필(MPC) 및 탄산에틸프로필(EPC)로 구성되는 군으로부터 선택되는 1종 이상의 선형 탄산염계 유기용매를 혼합하여 사용하고, 보다 바람직하게는 탄산에틸렌과 탄산디메틸을 혼합하여 사용하거나, 또는 탄산에틸렌과 탄산에틸메틸 그리고 탄산디에틸을 혼합하여 사용한다. 이외에도, 필요에 따라, 아세트산프로필(PA), 아세트산메틸(MA), 아세트산에틸(EA), 아세트산부틸(BA), 프로피온산메틸(MP), 프로피온산에틸(EP) 및 플루오로벤젠(FB)으로 구성되는 군으로부터 선택되는 1종 이상의 유기용매를 추가로 혼합하여 사용할 수도 있다. 상기 각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한받지 아니하며, 통상의 리튬전지용 비수전해액 제조시의 혼합비를 따른다.The solvent used in the preparation of the nonaqueous electrolyte solution for lithium batteries of the present invention is used by mixing a cyclic carbonate organic solvent and a linear carbonate organic solvent, preferably a group consisting of ethylene carbonate (EC) and propylene carbonate (PC). From at least one cyclic carbonate organic solvent selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC) One or more selected linear carbonate organic solvents are mixed and used, more preferably, ethylene carbonate and dimethyl carbonate are mixed, or ethylene carbonate, ethyl methyl carbonate and diethyl carbonate are mixed and used. In addition, it consists of propyl acetate (PA), methyl acetate (MA), ethyl acetate (EA), butyl acetate (BA), methyl propionate (MP), ethyl propionate (EP), and fluorobenzene (FB) as needed. One or more organic solvents selected from the group to be added may be further mixed and used. The mixing ratio of the organic solvent selected from the above groups is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio of the non-aqueous electrolyte for lithium batteries is generally used.
한편, 본 발명의 비수전해액에 포함된 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, BETI 및 HQ115으로 구성되는 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하며, 보다 바람직하게는 LiPF6를 사용한다.On the other hand, as the lithium salt contained in the non-aqueous electrolyte of the present invention, it is preferable to use one or more selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , BETI, and HQ115, and more preferably. LiPF 6 is used.
본 발명의 비수전해액은 상기 혼합 유기용매에 상기 리튬염을 0.8 내지 2 M로 용해시켜 얻어진 기본 전해액 100 중량부 당 상기 피리딘-, 피리미딘- 또는 트리아진-유도체를 0.1 내지 10.0 중량부, 바람직하게는 0.1 내지 0.5 중량부의 비율로 첨가하여 제조된다.The non-aqueous electrolyte of the present invention is 0.1 to 10.0 parts by weight of the pyridine-, pyrimidine- or triazine-derivative, preferably 100 parts by weight of the basic electrolyte obtained by dissolving the lithium salt in the mixed organic solvent at 0.8 to 2 M. Is prepared by adding in a proportion of 0.1 to 0.5 parts by weight.
본 발명의 비수전해액을 사용하여 통상의 방법에 따라 리튬전지를 제조할 수 있으며, 이와 같이 제조된 리튬전지는 기존의 비수전해액을 사용한 전지보다 전기화학적 안정성이 높기 때문에, 과충전 시의 안전성이 뛰어나다.The lithium battery can be manufactured according to a conventional method using the nonaqueous electrolyte of the present invention, and the lithium battery thus prepared has higher electrochemical stability than a battery using a conventional nonaqueous electrolyte, and thus has excellent safety during overcharging.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예 1Example 1
탄산에틸렌(EC):탄산디메틸(DMC) = 1:1(v/v)의 혼합용매에 1 M의 LiPF6이 용해되어 있는 기본 전해액 100 중량부에 피리딘을 1.0 중량부 첨가하여 본 발명의 비수전해액을 완성하였다.1.0 parts by weight of pyridine was added to 100 parts by weight of a basic electrolyte solution in which 1 M of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC) = 1: 1 (v / v). The electrolyte solution was completed.
이어서, 상기 비수전해액을 사용하여 2016형 버튼 전지를 제조하였다. 이때 음극에는 활물질로는 흑연을 사용하였고 결착제로는 PVDF[poly(vinylidene fluoride)]를 사용하였으며, 양극에는 활물질로는 LiCoO2를 사용하였고 결착제로는 PVDF를 사용하였으며, 도전제로는 아세틸렌블랙을 사용하였다.Subsequently, the 2016 type button battery was manufactured using the nonaqueous electrolyte. At this time, graphite was used as the active material for the anode, PVDF [poly (vinylidene fluoride)] was used as the binder, LiCoO 2 was used as the active material for the cathode, PVDF was used as the binder, and acetylene black was used as the conductive agent. It was.
이와 같이 제조된 전지에 대해 1.0C-rate 과충전 실험으로 과충전 특성을 평가하고(참조: 표 1), LSV(Linear Sweep Voltametry)법으로 전기화학적 분해특성을 평가하였다(Working electrode: Pt; Reference electrode: Li-metal; Counter electrode: Li-metal; Voltage range: 3~0 V; Scan rate: 0.1 mV/s)(참조: 도 1).The battery thus prepared was evaluated for overcharge characteristics by a 1.0C-rate overcharge experiment (see Table 1), and electrochemical decomposition characteristics were evaluated by LSV (Linear Sweep Voltametry) method (Working electrode: Pt; Reference electrode: Li-metal; Counter electrode: Li-metal; Voltage range: 3 to 0 V; Scan rate: 0.1 mV / s) (see FIG. 1).
실시예 2Example 2
피리딘 대신에 피리미딘을 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방식으로 비수전해액 및 2016형 버튼 전지를 제조하였다. 이와 같이 제조된 전지에 대해 1.0C-rate 과충전 실험으로 과충전 특성을 평가하고(참조: 표 1), LSV법으로 전기화학적 분해특성을 평가하였다(참조: 도 2).A nonaqueous electrolyte and a 2016-type button cell were prepared in the same manner as in Example 1, except that pyrimidine was used instead of pyridine. The battery thus prepared was evaluated for overcharging characteristics by a 1.0C-rate overcharging experiment (see Table 1), and the electrochemical decomposition characteristics were evaluated by LSV method (see FIG. 2).
실시예 3Example 3
피리딘 대신에 트리아진을 사용한 것을 제외하고는, 상기 실시예 1에서와 동일한 방식으로 비수전해액 및 2016형 버튼 전지를 제조하였다. 이와 같이 제조된 전지에 대해 1.0C-rate 과충전 실험으로 과충전 특성을 평가하고(참조: 표 1), LSV법으로 전기화학적 분해특성을 평가하였다(참조: 도 3).A nonaqueous electrolyte and a 2016-type button cell were prepared in the same manner as in Example 1, except that triazine was used instead of pyridine. The battery thus prepared was evaluated for overcharging characteristics by a 1.0C-rate overcharging experiment (see Table 1), and electrochemical decomposition characteristics were evaluated by LSV method (see FIG. 3).
비교예 1Comparative Example 1
기본 전해액을 사용하여 상기 실시예 1에서와 동일한 방식으로 2016형 버튼 전지를 제조하였다. 이와 같이 제조된 전지에 대해 1.0C-rate 과충전 실험으로 과충전 특성을 평가하고(참조: 표 1), LSV법으로 전기화학적 분해특성을 평가하였다(참조: 도 4).A 2016 type button battery was manufactured in the same manner as in Example 1, using the basic electrolyte solution. The battery thus prepared was evaluated for overcharging characteristics by a 1.0 C-rate overcharging experiment (see Table 1), and the electrochemical decomposition characteristics were evaluated by LSV method (see FIG. 4).
상기 표 1에서 볼 수 있는 바와 같이, 본 발명의 비수전해액을 사용하여 제조된 전지들은 모두 1.0C-rate 과충전시 전압이 12.0(V)에서 15시간 이상 유지되었으며, 이러한 결과는 본 발명에 사용된 헤테로고리형 질소 화합물이 리튬전지의 과충전 방지에 매우 효과적임을 제시하는 것이다.As can be seen in Table 1, the batteries prepared using the non-aqueous electrolyte of the present invention were all maintained at 1.0 C-rate overcharge at 12.0 (V) for more than 15 hours, these results were used in the present invention It is suggested that the heterocyclic nitrogen compound is very effective in preventing overcharging of lithium batteries.
이상에서 상세히 설명한 바와 같이, 본 발명의 비수전해액은 전기화학적 분해특성 및 과충전에 대한 안전성이 우수하므로, 과충전을 방지하기 위한 별도의 보호회로 및 보호소자가 필요 없어 전지팩의 소형화 및 저비용화가 가능하다.As described in detail above, the non-aqueous electrolyte of the present invention has excellent electrochemical decomposition characteristics and safety against overcharging, and thus, it is possible to miniaturize and reduce the cost of the battery pack without requiring a separate protective circuit and a protective device for preventing overcharging.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0087833A KR100511517B1 (en) | 2002-12-31 | 2002-12-31 | Nonaqueous Electrolyte for Use in Lithium Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0087833A KR100511517B1 (en) | 2002-12-31 | 2002-12-31 | Nonaqueous Electrolyte for Use in Lithium Battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040061562A true KR20040061562A (en) | 2004-07-07 |
KR100511517B1 KR100511517B1 (en) | 2005-08-31 |
Family
ID=37353095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0087833A KR100511517B1 (en) | 2002-12-31 | 2002-12-31 | Nonaqueous Electrolyte for Use in Lithium Battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100511517B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009091138A2 (en) | 2008-01-18 | 2009-07-23 | Lg Chem, Ltd. | Electrolyte having eutectic mixture and electrochemical device containing the same |
US20130244120A1 (en) * | 2011-07-18 | 2013-09-19 | Lg Chem, Ltd. | Non-Aqueous Electrolyte And Lithium Secondary Battery Using The Same |
US8785056B2 (en) | 2011-01-27 | 2014-07-22 | Samsung Sdi Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same |
KR20160133983A (en) * | 2015-05-14 | 2016-11-23 | 주식회사 엘지화학 | Non-aqueous electrolyte solution and secondary battery comprising the same |
US9825334B2 (en) | 2014-05-09 | 2017-11-21 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US9871269B2 (en) | 2014-02-24 | 2018-01-16 | Samsung Sdi Co., Ltd. | Electrolyte and rechargeable lithium battery including same |
WO2019105768A1 (en) * | 2017-11-29 | 2019-06-06 | Gs Yuasa International Ltd. | Non-aqueous electrolyte, non-aqueous electrolyte energy storage device and method for producing the same |
WO2021133125A1 (en) * | 2019-12-25 | 2021-07-01 | 주식회사 엘지에너지솔루션 | Nonaqueous electrolytic solution and lithium secondary battery comprising same |
CN114024027A (en) * | 2021-10-29 | 2022-02-08 | 湖南法恩莱特新能源科技有限公司 | High-concentration electrolyte and preparation method and application thereof |
-
2002
- 2002-12-31 KR KR10-2002-0087833A patent/KR100511517B1/en active IP Right Grant
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2245694A2 (en) * | 2008-01-18 | 2010-11-03 | LG Chem, Ltd. | Electrolyte having eutectic mixture and electrochemical device containing the same |
EP2245694A4 (en) * | 2008-01-18 | 2013-03-27 | Lg Chemical Ltd | Electrolyte having eutectic mixture and electrochemical device containing the same |
US8715866B2 (en) | 2008-01-18 | 2014-05-06 | Lg Chem, Ltd. | Electrolyte having eutectic mixture of hetero cyclic compound and lithium salt and electrochemical device containing the same |
US9711823B2 (en) | 2008-01-18 | 2017-07-18 | Lg Chem, Ltd. | Electrolyte having eutectic mixture of hetero cyclic compound and lithium salt and electrochemical device containing the same |
WO2009091138A2 (en) | 2008-01-18 | 2009-07-23 | Lg Chem, Ltd. | Electrolyte having eutectic mixture and electrochemical device containing the same |
US8785056B2 (en) | 2011-01-27 | 2014-07-22 | Samsung Sdi Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same |
US9831523B2 (en) * | 2011-07-18 | 2017-11-28 | Lg Chem, Ltd. | Non-aqueous electrolyte and lithium secondary battery using the same |
US20130244120A1 (en) * | 2011-07-18 | 2013-09-19 | Lg Chem, Ltd. | Non-Aqueous Electrolyte And Lithium Secondary Battery Using The Same |
US9871269B2 (en) | 2014-02-24 | 2018-01-16 | Samsung Sdi Co., Ltd. | Electrolyte and rechargeable lithium battery including same |
US9825334B2 (en) | 2014-05-09 | 2017-11-21 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
KR20160133983A (en) * | 2015-05-14 | 2016-11-23 | 주식회사 엘지화학 | Non-aqueous electrolyte solution and secondary battery comprising the same |
WO2019105768A1 (en) * | 2017-11-29 | 2019-06-06 | Gs Yuasa International Ltd. | Non-aqueous electrolyte, non-aqueous electrolyte energy storage device and method for producing the same |
JP2019102188A (en) * | 2017-11-29 | 2019-06-24 | 株式会社Gsユアサ | Nonaqueous electrolyte, nonaqueous electrolyte power storage element, and method for manufacturing the same |
US20210384555A1 (en) * | 2017-11-29 | 2021-12-09 | Gs Yuasa International Ltd. | Nonaqueous electrolyte, nonaqueous electrolyte energy storage device, and method for producing nonaqueous electrolyte energy storage device |
US11710853B2 (en) | 2017-11-29 | 2023-07-25 | Gs Yuasa International Ltd. | Nonaqueous electrolyte, nonaqueous electrolyte energy storage device, and method for producing nonaqueous electrolyte energy storage device |
WO2021133125A1 (en) * | 2019-12-25 | 2021-07-01 | 주식회사 엘지에너지솔루션 | Nonaqueous electrolytic solution and lithium secondary battery comprising same |
CN114024027A (en) * | 2021-10-29 | 2022-02-08 | 湖南法恩莱特新能源科技有限公司 | High-concentration electrolyte and preparation method and application thereof |
CN114024027B (en) * | 2021-10-29 | 2024-04-19 | 湖南法恩莱特新能源科技有限公司 | High-concentration electrolyte and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100511517B1 (en) | 2005-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100812056B1 (en) | Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same | |
US7172834B1 (en) | Additive for enhancing the performance of electrochemical cells | |
US20040229128A1 (en) | Non-aqueous electrolyte and a lithium secondary battery comprising the same | |
US7022145B2 (en) | Lithium secondary battery | |
KR100511517B1 (en) | Nonaqueous Electrolyte for Use in Lithium Battery | |
KR20050063915A (en) | Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte | |
KR100574328B1 (en) | Nonqueous Electrolyte for Battery | |
KR100510868B1 (en) | Nonaqueous Electrolyte for Use in Lithium Battery | |
KR100524550B1 (en) | Nonaqueous Electrolyte for Use in Lithium Battery | |
KR100628629B1 (en) | Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte | |
KR100370384B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100534011B1 (en) | Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte | |
KR100370385B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100417084B1 (en) | New additives for electrolyte and lithium ion battery using the same | |
KR20040061572A (en) | Nonaqueous Electrolyte Battery and secondary battery comprising the electrolyte | |
KR100572283B1 (en) | Non-aqueous electrolyte for lithium battery | |
KR100616205B1 (en) | Non-aqueous electrolyte for Lithium battery | |
KR100572284B1 (en) | Non-aqueous electrolyte for lithium battery | |
KR20050068665A (en) | Nonaqueous electrolyte for battery | |
KR100591580B1 (en) | Non-aqueous electrolyte for Lithium battery | |
KR20050034118A (en) | Nonaqueous electrolyte for battery | |
KR20040061566A (en) | Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120614 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130605 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140728 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150625 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160607 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180801 Year of fee payment: 14 |