KR100628629B1 - Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte - Google Patents

Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte Download PDF

Info

Publication number
KR100628629B1
KR100628629B1 KR1020030098013A KR20030098013A KR100628629B1 KR 100628629 B1 KR100628629 B1 KR 100628629B1 KR 1020030098013 A KR1020030098013 A KR 1020030098013A KR 20030098013 A KR20030098013 A KR 20030098013A KR 100628629 B1 KR100628629 B1 KR 100628629B1
Authority
KR
South Korea
Prior art keywords
carbonate
lithium
battery
electrolyte
electrolyte solution
Prior art date
Application number
KR1020030098013A
Other languages
Korean (ko)
Other versions
KR20050066680A (en
Inventor
신호식
전종호
김종섭
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020030098013A priority Critical patent/KR100628629B1/en
Publication of KR20050066680A publication Critical patent/KR20050066680A/en
Application granted granted Critical
Publication of KR100628629B1 publication Critical patent/KR100628629B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 탄산염계 혼합 유기용매에 리튬염을 용해시켜 수득한 리튬염-함유 혼합 유기용액에 페닐카바메이트를 첨가하여 제조한 리튬 전지용 비수전해액에 관한 것이고, 아울러, 상기 비수 전해액을 포함한 리튬 2차전지에 관한 것이다. 본 발명에 따른 리튬 전지용 비수 전해액은 통상의 전해액에 비해 고율에서 과충전이 방지되어 보호회로 및 보호소자 없이 안정성을 확보하는 것이 가능하다.The present invention relates to a nonaqueous electrolyte solution for lithium batteries prepared by adding phenyl carbamate to a lithium salt-containing mixed organic solution obtained by dissolving a lithium salt in a carbonate mixed organic solvent. It relates to a battery. The nonaqueous electrolyte solution for lithium batteries according to the present invention can prevent overcharging at a high rate as compared with a conventional electrolyte solution, thereby ensuring stability without a protection circuit and a protection device.

Description

2차 전지용 비수 전해액 및 이를 포함한 2차 전지{Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte}Nonaqueous Electrolyte for Secondary Battery and Secondary Battery Containing It {Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte}

도 1은 본 발명의 실시예에 따른 전해액의 과충전 결과를 나타낸 그래프이고,1 is a graph showing the overcharge result of the electrolyte according to an embodiment of the present invention,

도 2 내지 4는 본 발명의 실시예 및 비교예에 따른 전해액의 전기 화학적 특성을 나타낸 그래프이다.2 to 4 are graphs showing the electrochemical characteristics of the electrolyte according to the Examples and Comparative Examples of the present invention.

본 발명은 탄산염계 혼합 유기용매에 리튬염을 용해시켜 수득한 리튬염-함유 혼합 유기용액에 페닐카바메이트 화합물을 첨가하여 제조한 리튬 전지용 비수 전해액에 관한 것이고, 아울러, 상기 비수 전해액을 포함한 리튬 2차전지에 관한 것이다. 보다 상세하게, 본 발명은 환형 탄산염계 유기용매와 선형 탄산염계 유기용매로 이루어진 혼합 용매에 리튬염 화합물이 0.8 내지 2M로 용해된 리튬염-함유 혼합유기용액 100 중량부에, 페닐카바메이트 화합물을 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액과, 이를 포함한 2차 전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte solution for lithium batteries prepared by adding a phenyl carbamate compound to a lithium salt-containing mixed organic solution obtained by dissolving a lithium salt in a carbonate mixed organic solvent. It relates to a battery cell. More specifically, the present invention provides a phenylcarbamate compound in 100 parts by weight of a lithium salt-containing mixed organic solution in which a lithium salt compound is dissolved at 0.8 to 2 M in a mixed solvent consisting of a cyclic carbonate organic solvent and a linear carbonate organic solvent. It relates to a non-aqueous electrolyte for lithium batteries prepared by adding 0.1 to 10 parts by weight, and a secondary battery including the same.

휴대전화, 포터블 전자기기나 휴대 정보 단말의 급속한 소형 경량화, 다 양화에 따라, 그 전원인 전지가 소형 및 경량이면서 고에너지 (High energy) 밀도로, 장기간 충방전이 가능하며, 고율 특성이 우수할 것이 요구되고 있는 바, 이러한 요구 따라, 이차전지로서 리튬이차 전지 등에 대해 많은 연구가 있어왔다. 리튬 전지용의 전해액은, 리튬음극에 대하여 안정한 것이 필요하지만, 리튬에 대하여 열역학적으로 완전히 안정한 용매는 존재하지 않는 것으로 알려져 있다. 리튬 전지의 경우, 실제로는 초기 충전시 음극에 대해 전해액이 분해하여 상기 반응 생성물이 리튬 표면에 이온 전도성의 보호막, 즉, SEI (Solid Electrolyte Interface)를 형성하고, 전극과 전해액과의 반응을 억제시키기 때문에 안정화되는 것이라고 생각되고 있다.With the rapid miniaturization and diversification of mobile phones, portable electronic devices, and portable information terminals, the battery, which is a power source, is compact and lightweight, has high energy density, and can be charged and discharged for a long time, and has high rate characteristics. According to such a demand, there have been many studies on lithium secondary batteries and the like as secondary batteries. Although the electrolyte solution for lithium batteries needs to be stable with respect to a lithium cathode, it is known that there is no solvent which is completely thermodynamically stable with respect to lithium. In the case of a lithium battery, the electrolyte is actually decomposed to the cathode during initial charging so that the reaction product forms an ion conductive protective film, ie, a solid electrolyte interface (SEI), on the surface of the lithium, and suppresses the reaction between the electrode and the electrolyte. It is thought that it is stabilized.

그러나, 이와 같은 비수 전해질의 2차 전지는 전자기기의 전원회로나 충전장치가 고장나 과충전되면 전지 내 이상 발열이 생기고, 극단적인 경우 전지가 파손 되거나 발화되는 경우도 있어 과충전을 방지하여 전지의 안정성을 확보하는 방법의 개발이 요구되고 있다. 과충전에 의한 전지 파열 또는 발화를 막기 위한 대책으로, 충전기의 충전 전압을 제어하는 방법이 주류를 이루고 있고, 그 외, 보호 회로 또는 보호 소자를 추가적으로 설치하는 방법이 있을 수 있으나, 보호 회로 등의 추가설치는 전지팩의 소형화 및 저비용화에 부담이 되기 때문에 좋은 해결책이 될 수 없다.However, the secondary battery of the nonaqueous electrolyte has abnormal heat generation in the battery when the power circuit or the charging device of the electronic device is broken or overcharged, and in extreme cases, the battery may be damaged or ignited. The development of a method to secure the system is required. As a countermeasure to prevent the battery from rupturing or ignition due to overcharging, a method of controlling the charging voltage of the charger is the mainstream, and there may be a method of additionally installing a protection circuit or a protection element. Installation is not a good solution because the burden on the miniaturization and low cost of the battery pack.

이러한 문제점을 해결하기 위해, 리튬 전지의 전해액에 첨가제를 첨가하여 과충전을 방지하고자 하는 시도가 있어 왔다 (참조: 일본특개평 7-302614호, 평9-50822호, 평9-106835호, 대한민국 특허 제2939496호). 예를 들어, 일본 특개평 7- 302614호 및 평 9-50822호는 전해액 중 첨가제로서, 분자량 500 이하이고 파이 전자궤도를 가지며 이차전지의 만충전시 정극 전위 이상의 가역성 산화환원전위를 가지는 아니솔(anisole) 화합물을 첨가하는 것을 제안하고 있으며, 이 경우, 첨가제가 레독스 셔틀(redox shuttle)이라 불리는 작용을 하여 과충전시 과충전 전류를 소비하는 보호기구가 성립된다고 개시하고 있다. 한편, 일본 특개평 9-106835호는 첨가제가 과충전 상태의 전압에서 중합반응을 시작하여 저항체로 작용함으로써 과충전시 전지를 보호하는 기술을 개시하고 있다. 그러나, 본 발명자들의 연구에 따르면, 상기 종래기술들의 경우, 일반 전지사용 전압범위에서 셔틀작용 또는 중합반응이 진행하여 방전 용량의 사이클 특성에 좋지 않은 영향을 미친다.In order to solve this problem, there have been attempts to prevent overcharge by adding an additive to an electrolyte of a lithium battery (see Japanese Patent Application Laid-Open No. 7-302614, Hei 9-50822, Hei 9-106835, and Korean Patent No. 2939496). For example, Japanese Patent Laid-Open Nos. 7-302614 and 9-50822 are additives in an electrolyte, having an molecular weight of 500 or less, pi electron orbits, and anisoles having a reversible redox potential greater than or equal to the positive electrode potential during full charge of a secondary battery. It is proposed to add a compound, in which case, the additive acts as a redox shuttle to establish a protective mechanism that consumes the overcharge current during overcharge. On the other hand, Japanese Patent Laid-Open No. 9-106835 discloses a technique in which an additive protects a battery during overcharge by starting a polymerization reaction at a voltage in an overcharge state and acting as a resistor. However, according to the researches of the present inventors, in the case of the prior art, the shuttle action or the polymerization reaction proceeds in the general battery use voltage range adversely affects the cycle characteristics of the discharge capacity.

한편, 종래 기술 상 리튬 2차 전지의 경우, 양극 활물질로서 중량당 용량이 큰 층상의 리튬 코발트산화물(LiCoO2), 리튬니켈산화물(LiNiO2) 또는 리튬망간산화물(LiMn2O4) 등을 사용하고 있지만, 이들 산화물의 경우 과충전 상태에서 리튬이온 대부분이 탈리 상태로 있으므로 매우 불안정하며, 전해액과 반응하여 급격한 분해 발열반응을 일으키거나 음극 상에 리튬 금속을 석출시켜 최악의 경우 전지의 파열 또는 발화를 일으킬 수 있다는 문제점이 있다.On the other hand, in the case of a lithium secondary battery according to the prior art, a layered lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) or lithium manganese oxide (LiMn 2 O 4 ) or the like as a positive electrode active material is used. However, these oxides are very unstable because most of the lithium ions are in a desorption state in an overcharged state, and they react with the electrolyte to cause a rapid decomposition exothermic reaction or to deposit lithium metal on the negative electrode, causing the battery to rupture or ignite in the worst case. There is a problem that can cause.

따라서, 당해 기술분야에는 전지의 다른 특성에 좋지 않은 영향을 주지 않으면서, 과충전에 대한 안정성을 확보할 수 있는 기술의 개발이 절실히 요구되고 있다. Therefore, there is an urgent need in the art for the development of a technology capable of securing stability against overcharging without adversely affecting other characteristics of the battery.

본 발명자들은 상기 문제를 해결하기 위해 예의 연구한 결과, 전지용 비수전해액에 페닐 카바메이트 (phenyl carbamate)를 비수 전해액에 첨가할 경우, 전해액의 전기 화학적 안정성이 높아져 과충전시 전지 안정성이 크게 향상될 수 있는 동시에, 전지의 다른 특성에는 악영향을 미치지 않음을 확인하고 본 발명에 이르게 되었다.The present inventors have diligently researched to solve the above problems, and when phenyl carbamate is added to the nonaqueous electrolyte for the battery, the electrochemical stability of the electrolyte may be increased, thereby greatly improving the battery stability during overcharging. At the same time, it was confirmed that the battery had no adverse effect on other characteristics of the battery and led to the present invention.

결국, 본 발명은 다른 전지 성능을 유지한 채, 과충전시 안정성이 향상된 신규한 리튬 전지용 비수 전해액을 제공하기 위한 것이다.
As a result, the present invention is to provide a novel nonaqueous electrolyte solution for lithium batteries with improved stability upon overcharging while maintaining other battery performance.

따라서, 본 발명의 한 바람직한 구현예에 따르면, 에틸렌카아보네이트 및 프로필렌카아보네이트 중 하나 이상의 환형 탄산염계 유기용매(A)와 디메틸카아보네이트, 디에틸카아보네이트, 에틸메틸카아보네이트 및 메틸프로필카아보네이트 중 하나 이상의 선형 탄산염계 유기용매(B)로 이루어진 혼합 용매에 리튬염 화합물을 0.8 내지 2M로 용해시킨 혼합 유기 전해액 100 중량부에 대하여, 하기 화학식 1로 표시되는 페닐 카바메이트를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액이 제공된다:Therefore, according to one preferred embodiment of the present invention, at least one cyclic carbonate organic solvent (A) and dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and ethylene carbonate and propylene carbonate Phenyl carbamate represented by the following formula (1) to 100 parts by weight of the mixed organic electrolyte solution in which the lithium salt compound is dissolved at 0.8 to 2 M in a mixed solvent consisting of at least one linear carbonate organic solvent (B) in methylpropyl carbonate A non-aqueous electrolyte for lithium batteries prepared by adding 0.1 to 10 parts by weight is provided:

Figure 112003049974213-pat00001
Figure 112003049974213-pat00001

본 발명의 다른 한 바람직한 구현예에 따르면, 상기 비수전해액을 포함한 리튬 이차전지가 제공된다.According to another preferred embodiment of the present invention, a lithium secondary battery including the nonaqueous electrolyte is provided.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 비수 전해액은 리튬염 함유 혼합 유기용액 100 중량부에 상기 화학식 1의 페닐카바메이트를 0.1 내지 10중량부, 바람직하게는 0.1 내지 0.5 중량부로 첨가하여 제조된다.The nonaqueous electrolyte according to the present invention is prepared by adding 0.1 to 10 parts by weight, preferably 0.1 to 0.5 parts by weight of phenyl carbamate of Formula 1 to 100 parts by weight of a lithium salt-containing mixed organic solution.

본 발명에 따른 비수 전해액에서, 기본 전해액인 리튬염 함유 혼합유기용액은 탄산염계 유기용매의 혼합물에 리튬염 화합물을 용해시켜 수득한 용액이다.In the nonaqueous electrolyte according to the present invention, the lithium salt-containing mixed organic solution, which is a basic electrolyte, is a solution obtained by dissolving a lithium salt compound in a mixture of carbonate organic solvents.

보다 상세히, 상기 탄산염계 혼합 유기용매는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매로 이루어진다. 바람직하게, 상기 환형의 탄산염계 유기용매로는 에틸렌카아보네이트(EC), 프로필렌카아보네이트(PC) 또는 이들의 혼합물이 사용되고, 상기 선형의 탄산염계 유기용매로는 디메틸카아보네이트(DMC), 디에틸카아보네이트(DEC), 에틸메틸카아보네이트(EMC) 및 메틸프로필카아보네이트(MPC)로 이루어지는 군으로부터 선택된 1 이상의 화합물이 사용된다. 예를 들어, 에틸렌카아보네이트와 디메틸카아보네이트의 조합 또는 에틸렌카아보네이트, 디메틸카아보네이트 및 에틸메틸카아보네이트의 조합을 사용할 수 있다. 상기 혼합유기용매는, 필요에 따라, 프로필아세테이트(PA), 메틸아세테이트(MA), 에틸아세테이트(EA), 부틸아세테이트(BA), 메틸프로피오네이트(MP), 에틸프로피오네이트(EP) 및 플루오르벤젠(FB)으로 구성되는 군으로부터 선택되는 1 또는 2 이상의 화합물을, 상기 혼합유기용매100 중량부를 기준으로 1.0 내지 10중량부의 양으로 추가 포함할 수 있다. 각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한되는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제조 시의 혼합비를 따른다.In more detail, the carbonate mixed organic solvent is composed of a cyclic carbonate organic solvent and a linear carbonate organic solvent. Preferably, the cyclic carbonate organic solvent is ethylene carbonate (EC), propylene carbonate (PC) or a mixture thereof. The linear carbonate organic solvent is dimethyl carbonate (DMC). At least one compound selected from the group consisting of diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and methylpropyl carbonate (MPC) is used. For example, a combination of ethylene carbonate and dimethyl carbonate or a combination of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate can be used. The mixed organic solvent is, if necessary, propyl acetate (PA), methyl acetate (MA), ethyl acetate (EA), butyl acetate (BA), methyl propionate (MP), ethyl propionate (EP) and One or two or more compounds selected from the group consisting of fluorobenzene (FB) may be further included in an amount of 1.0 to 10 parts by weight based on 100 parts by weight of the mixed organic solvent. The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio at the time of preparing a nonaqueous electrolyte solution for a lithium battery is followed.

상기 혼합 유기용매는 리튬염 화합물을 포함하고 있는 바, 상기 리튬염의 예는 리튬전지에 사용되는 공지된 모든 리튬염화합물을 포함하며, 바람직하게는 LiPF6, LiClO4, LiAsF6, LiBF4, LiN(CF3SO2 )2, LiN(C2F5SO3)2, 및 LiN(C2F 5SO2)2로 구성되는 군으로부터 선택되는 1 또는 2 이상의 화합물을 사용한다. 보다 바람직하게는 LiPF6를 사용한다. 상기 리튬염 화합물은 상기 탄산염계 혼합유기용매에 0.8 내지 2M의 범위로 존재한다.The mixed organic solvent contains a lithium salt compound, examples of the lithium salt include all known lithium salt compounds used in lithium batteries, preferably LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiN One or more compounds selected from the group consisting of (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 3 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 are used. More preferably LiPF 6 is used. The lithium salt compound is present in the carbonate mixed organic solvent in the range of 0.8 to 2M.

본 발명에 따른 리튬 전지용 비수 전해액을 사용하여, 통상의 방법에 따라 리튬 전지를 제조할 수 있으며, 이와 같이 제조된 리튬 전지는 전지 화학적 특성이 우수하고, 전지의 과충전을 효과적으로 방지할 수 있다.Using the nonaqueous electrolyte solution for lithium batteries according to the present invention, a lithium battery can be produced according to a conventional method, and the lithium battery thus prepared has excellent battery chemistry and can effectively prevent overcharging of the battery.

[실시예]EXAMPLE

이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the structure and effect of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are not intended to limit the scope of the present invention.

실시예Example

에틸렌카아보네이트(EC) 및 에틸메틸카보네이트(EMC)을 3:7의 비율로 혼합한 탄산염계 혼합유기 용매에 LiPF6을 1.0 M로 용해시킨 용액을 기본 전해액으로 하였다. 상기 기본 전해액 100 중량부를 기준으로 각각 1 중량부의 페닐카바메이트를 첨가하여 실시예 의 비수 전해액을 제조하였다.A solution in which LiPF 6 was dissolved in 1.0 M in a carbonate mixed organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a ratio of 3: 7 was used as a basic electrolyte solution. On the basis of 100 parts by weight of the base electrolyte, 1 part by weight of phenylcarbamate was added to prepare a nonaqueous electrolyte of Example.

제조된 전해액을 파우치 전지에 적용하였다. 이 때, 사용한 음극의 활물질은 흑연이었고, 결착제로 PVDF를 사용하였다. 양극 활물질로는 LiCoO2를 사용하였고 결착제로 PVDF를 사용하였으며 도전제로 아세틸렌블랙을 사용하였다. 제조된 전지를 가지고 12V, 1.0 C-rate의 조건에서 2시간 동안 과충전 실험을 수행하고 그 결과를 표 1에 나타내었다. 한편, 도 1에 본 실시예에 따른 전지의 과충전 결과 그래프를 도시하였다.The prepared electrolyte was applied to the pouch battery. At this time, the active material of the used negative electrode was graphite, and PVDF was used as a binder. LiCoO 2 was used as a cathode active material, PVDF was used as a binder, and acetylene black was used as a conductive agent. With the battery prepared, the overcharge experiment was performed for 2 hours under conditions of 12V and 1.0 C-rate, and the results are shown in Table 1. On the other hand, Figure 1 shows a graph of the result of the overcharge of the battery according to this embodiment.

비교예 1 및 2Comparative Examples 1 and 2

페닐 카바메이트 대신 메틸 카바메이트(비교예 1) 또는 메틸-에틸 카바메이트(비교예 2) 화합물을 첨가한 것을 제외하고는 실시예와 동일한 방식으로 전해액을 제조하고, 이를 이용하여 전지를 제조하였다. 제조된 전지를 실시예와 동일한 조건으로 과충전 실험을 수행하고 그 결과를 표 1에 나타내었다.An electrolyte was prepared in the same manner as in Example, except that a methyl carbamate (Comparative Example 1) or a methyl-ethyl carbamate (Comparative Example 2) compound was added instead of phenyl carbamate, thereby preparing a battery. The prepared battery was subjected to an overcharge experiment under the same conditions as in Example, and the results are shown in Table 1.

Figure 112003049974213-pat00002
Figure 112003049974213-pat00002

표 1 및 도 1로부터 명백하듯이, 본 발명에 따른 전해액을 사용한 경우, 과충전시 전지 안정성이 크게 향상되어 2시간의 과충전 시험을 통과하였으나, 비교예 에 따른 전해액을 사용한 전지는 과충전 시험에서 기체가 발생하여 결국 폭발하는 결과를 나타내었다.As is apparent from Table 1 and FIG. 1, when the electrolyte solution according to the present invention was used, the battery stability during overcharge was greatly improved, and the overcharge test was passed for 2 hours. However, the battery using the electrolyte solution according to the comparative example had no gas in the overcharge test. Occurred and eventually exploded.

나아가, 본 발명의 실시예에 따른 전해액과 비교예에 따른 전해액을 가지고, 하기 조건하에 사이클릭 볼타메트리(Cyclic Voltametry)를 측정하고, 그 결과는 도 2(실시예), 도 3(비교예 1) 및 도 4 (비교예 2)에 나타내었다:Furthermore, with the electrolyte solution according to the embodiment of the present invention and the electrolyte solution according to the comparative example, the cyclic voltametry (Cyclic Voltametry) is measured under the following conditions, the results are shown in Figure 2 (Example), Figure 3 (Comparative Example) 1) and 4 (Comparative Example 2):

1) working 전극 : 에노드 물질(MCF)1) working electrode: anode material (MCF)

2) refernece 전극 : Li-metal2) refernece electrode: Li-metal

3) counter 전극 : Li-metal3) Counter electrode: Li-metal

4) 전압 범위 : 3.5V ~ 0V4) Voltage range: 3.5V ~ 0V

5) 스캔 속도 : 0.1mV/s, 3 사이클5) Scan Speed: 0.1mV / s, 3 Cycles

도 2 내지 4의 비교로부터, 본 발명에 따른 전해액은 종래 기술의 전해액에 비해 보다 우수한 전기화학적 특성을 가지는 것을 알 수 있다.From the comparison of Figures 2 to 4, it can be seen that the electrolyte according to the present invention has better electrochemical properties than the electrolyte of the prior art.

본 발명과 같이, 페닐 카바메이트를 첨가한 리튬 전지용 비수 전해액은, 이차 전지용 비수전해액을 사용한 전지에서 다른 전지특성에 좋지 않은 영향을 주는 일 없이, 과충전시 안정성이 향상되므로, 과충전에 의한 발열, 파열 또는 발화 등의 위험이 없는 2차 전지제조에 유용하게 사용될 수 있다.As in the present invention, the nonaqueous electrolyte solution for lithium batteries to which phenyl carbamate is added has improved stability during overcharge without adversely affecting other battery characteristics in a battery using a nonaqueous electrolyte solution for secondary batteries, so that overheating and rupture occur due to overcharge. Or it can be usefully used in the manufacture of secondary batteries without the risk of fire.

Claims (5)

에틸렌카아보네이트 및 프로필렌카아보네이트 중 하나 이상의 환형 탄산염계 유기용매(A)와 디메틸카아보네이트, 디에틸카아보네이트, 에틸메틸카아보네이트 및 메틸프로필카아보네이트 중 하나 이상의 선형 탄산염계 유기용매(B)로 이루어진 혼합 용매에 리튬염 화합물을 0.8 내지 2M로 용해시킨 혼합 유기 전해액 100 중량부에 대하여, 하기 화학식 1로 표시되는 페닐 카바메이트를 0.1 내지 10 중량부 첨가하여 제조된 리튬 전지용 비수전해액:One or more cyclic carbonate organic solvents (A) of ethylene carbonate and propylene carbonate and linear carbonate organic of one or more of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methylpropyl carbonate Non-aqueous lithium battery prepared by adding 0.1 to 10 parts by weight of phenyl carbamate represented by the following formula (1) with respect to 100 parts by weight of the mixed organic electrolyte solution in which a lithium salt compound was dissolved at 0.8 to 2 M in a mixed solvent consisting of a solvent (B). Electrolyte: [화학식 1][Formula 1]
Figure 112006040040187-pat00003
.
Figure 112006040040187-pat00003
.
삭제delete 제 1항에 있어서, 상기 혼합용매는 프로필아세테이트, 메틸아세테이트, 에틸 아세테이트, 부틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트 및 플루오르벤젠으로 이루어진 군으로부터 선택된 1 이상의 화합물을 추가로 포함하는 것을 특징으로 하는 리튬 전지용 비수 전해액.The method of claim 1, wherein the mixed solvent further comprises at least one compound selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate and fluorobenzene. A nonaqueous electrolyte solution for lithium batteries. 제 1항에 있어서, 상기 리튬염 화합물은 LiPF6, LiBF4, LiClO4, LiAsF 6, LiN(C2F5SO3)2, LiN(C2F5SO2) 2 및 LiN(CF3SO2)2 로 구성되는 군으로부터 선택되는 1 이상의 화합물인 것을 특징으로 하는 리튬 전지용 비수 전해액.The method of claim 1, wherein the lithium salt compound is LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) A non-aqueous electrolyte solution for lithium batteries, characterized in that it is at least one compound selected from the group consisting of 2 . 제 1항에 따른 비수 전해액을 포함하는 리튬전지. Lithium battery comprising the nonaqueous electrolyte according to claim 1.
KR1020030098013A 2003-12-27 2003-12-27 Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte KR100628629B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030098013A KR100628629B1 (en) 2003-12-27 2003-12-27 Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030098013A KR100628629B1 (en) 2003-12-27 2003-12-27 Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte

Publications (2)

Publication Number Publication Date
KR20050066680A KR20050066680A (en) 2005-06-30
KR100628629B1 true KR100628629B1 (en) 2006-09-26

Family

ID=37257722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030098013A KR100628629B1 (en) 2003-12-27 2003-12-27 Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte

Country Status (1)

Country Link
KR (1) KR100628629B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843032B2 (en) 2011-04-27 2017-12-12 Sk Innovation Co., Ltd. Battery module
US11081729B2 (en) 2017-07-14 2021-08-03 Lg Chem, Ltd. Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9843032B2 (en) 2011-04-27 2017-12-12 Sk Innovation Co., Ltd. Battery module
US11081729B2 (en) 2017-07-14 2021-08-03 Lg Chem, Ltd. Non-aqueous electrolyte solution additive, and non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery which include the same

Also Published As

Publication number Publication date
KR20050066680A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
KR100533095B1 (en) The cathode active material comprising the overdischarge retardant and the lithium secondary battery using the same
JP5673917B2 (en) Electrolyte containing eutectic mixture and secondary battery using the same
US20040229128A1 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
CN113711415A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20070077469A (en) Non-aqueous-electrolyte and lithium secondary battery using the same
US20040157133A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US20040058250A1 (en) Lithium secondary battery
US7422827B2 (en) Nonaqueous electrolyte
KR20080095352A (en) Secondary battery with high capacity and longevity comprising silazane-based compound
KR100511517B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR20050063915A (en) Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte
KR100574328B1 (en) Nonqueous Electrolyte for Battery
KR100628629B1 (en) Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte
KR100789718B1 (en) Nonaqueous electrolyte for secondary battery
KR100534011B1 (en) Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte
KR20130073926A (en) Secondary battery with high capacity and longevity comprising silazane-based compound
KR100510868B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
EP4325622A1 (en) Secondary battery electrolyte solution and secondary battery
KR100616205B1 (en) Non-aqueous electrolyte for Lithium battery
KR100524550B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100572283B1 (en) Non-aqueous electrolyte for lithium battery
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery
KR100591580B1 (en) Non-aqueous electrolyte for Lithium battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100534010B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120801

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130725

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140829

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160802

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170831

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180828

Year of fee payment: 13