KR20020041645A - Non-aqueous electrolyte solution for lithium battery - Google Patents
Non-aqueous electrolyte solution for lithium battery Download PDFInfo
- Publication number
- KR20020041645A KR20020041645A KR1020000071316A KR20000071316A KR20020041645A KR 20020041645 A KR20020041645 A KR 20020041645A KR 1020000071316 A KR1020000071316 A KR 1020000071316A KR 20000071316 A KR20000071316 A KR 20000071316A KR 20020041645 A KR20020041645 A KR 20020041645A
- Authority
- KR
- South Korea
- Prior art keywords
- carbonate
- organic solvent
- lithium
- battery
- dimethyl
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 리튬 전지용 비수 전해액에 관한 것으로, 보다 상세하게는 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 3,6-디메틸-1,4-디옥산-2,5-디온(3,6-dimethyl-1,4-dioxane-2,5-dione)을 0.1 내지 10.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which lithium salt is dissolved at 0.8 to 2.0 M. Lithium prepared by adding 0.1 to 10.0 parts by weight of 3,6-dimethyl-1,4-dioxane-2,5-dione (3,6-dimethyl-1,4-dioxane-2,5-dione) A nonaqueous electrolyte solution for batteries.
[화학식 1][Formula 1]
노트북 컴퓨터, 켐코더, 휴대폰 등에 사용되는 소형화 및 슬림화된 리튬 2차 전지는 리튬이온의 탈리 및 삽입(intercalation)이 가능한 리튬 금속 혼합 산화물로 된 양극 활물질, 탄소 재료 또는 금속 리튬 등으로 된 음극, 및 혼합 유기용매에 리튬염이 적당량 용해된 전해액으로 구성되어 있다. 이러한 리튬 전지의 형태로는 코인형, 18650 원통형, 및 063048 각형 등이 일반적으로 사용되고 있다.The miniaturized and slimmed lithium secondary battery used in notebook computers, camcorders, mobile phones, etc. is a positive electrode active material made of lithium metal mixed oxide capable of detaching and intercalating lithium ions, a negative electrode made of carbon material or metal lithium, and mixed It consists of electrolyte solution in which lithium salt was melt | dissolved in the organic solvent. Coins, 18650 cylinders, 063048 squares, and the like are generally used as the lithium battery.
리튬 전지의 3.6 내지 3.7V 정도의 평균 방전전압은 다른 알칼리 전지나 Ni-MH 또는 Ni-Cd 전지에 비하여 높은 전력을 얻을 수 있는 가장 큰 장점 중의 하나이다. 이러한 높은 구동전압을 내기 위해서는 충방전 전압영역인 0 내지 4.2V에서 전기 화학적으로 안정한 전해액 조성이 필요하며, 따라서 탄산에틸렌(ethylene carbonate, 이하 "EC"라 함), 탄산디메틸(dimethylcarbonate, 이하 "DMC"라 함), 탄산디에틸(diethylcarbonate, 이하 "DEC"라 함) 등의 탄산염계 유기용매를 적절히 혼합하여 전해액의 용매로 사용한다. 전해액의 용질로는 통상 LiPF6, LiBF4, LiClO4등의 리튬염을 사용하며, 이들은 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 전지의 기본적인 작동을 가능하게 한다. 그러나 이와 같이 제조된 비수(比水) 전해액은 Ni-MH 또는 Ni-Cd 전지에 사용되는 수계(水系) 전해액에 비하여 이온 전도도가 현저히 낮기 때문에 고율 충방전 등에서는 불리한 점으로 작용하기도 한다.The average discharge voltage of about 3.6 to 3.7 V of the lithium battery is one of the biggest advantages of obtaining high power compared to other alkaline batteries or Ni-MH or Ni-Cd batteries. In order to achieve such a high driving voltage, an electrochemically stable electrolyte composition is required in the charge / discharge voltage range of 0 to 4.2 V. Therefore, ethylene carbonate (hereinafter referred to as "EC") and dimethyl carbonate (hereinafter referred to as "DMC") are required. Carbonate organic solvents such as " diethylcarbonate " (hereinafter referred to as " DEC ") are suitably mixed and used as a solvent of the electrolyte solution. As the solute of the electrolyte, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 are usually used, and these act as a source of lithium ions in the battery to enable basic operation of the lithium battery. However, the non-aqueous electrolyte prepared in this way may have disadvantages in high rate charge and discharge because the conductivity of the nonaqueous electrolyte is significantly lower than that of the aqueous electrolyte used in Ni-MH or Ni-Cd batteries.
리튬 전지의 초기 충전시 양극으로 사용되는 리튬 금속 산화물로부터 나온 리튬 이온은 음극으로 사용되는 흑연(결정질 또는 비결정질) 전극으로 이동하여, 흑연 전극의 층간에 삽입(intercalation)된다. 이때 리튬은 반응성이 강하므로 흑연 음극 표면에서 전해액과 음극을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 흑연 음극의 표면에 일종의 부동태피막(passivation layer)을 형성하게 되는데, 이러한 피막을 SEI(solid electrolyte interface) 필름이라고 한다. 상기 SEI 필름은 일단 형성되면 이온 터널의 역할을 수행하여 리튬 이온만을 통과시키게 된다.In the initial charging of a lithium battery, lithium ions from the lithium metal oxide used as the positive electrode move to the graphite (crystalline or amorphous) electrode used as the negative electrode and are intercalated between the layers of the graphite electrode. At this time, since lithium has a high reactivity, the electrolyte and the carbon constituting the cathode react on the surface of the graphite anode to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a kind of passivation layer on the surface of the graphite cathode, which is called a solid electrolyte interface (SEI) film. Once formed, the SEI film functions as an ion tunnel to pass only lithium ions.
SEI 필름은 이러한 이온 터널의 효과로 리튬 이온을 용매화(solvation)시켜, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기용매 분자, 예를 들면 EC, DMC 또는 DEC 등이 흑연 음극에 함께 삽입(cointercalation)되어 흑연 음극의 구조를 붕괴시키는 것을 막아준다. 일단 SEI 필름이 형성되고 나면, 리튬 이온은 다시는 흑연 음극 또는 다른 물질과 부반응을 하지 않게 되고, 상기 SEI 필름 형성에 소모된 전하량은 비가역 용량으로 방전시 가역적으로 반응하지 않는 특성을 갖는다. 따라서, 더 이상의 전해액의 분해가 발생하지 않고 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다(참조:J. Power Sources(1994) 51:79~104).The SEI film solvates lithium ions by the effect of this ion tunnel, and organic solvent molecules having large molecular weight, such as EC, DMC, or DEC, which move together with lithium ions in the electrolyte are inserted together in the graphite anode ( cointercalation) prevents the structure of graphite cathodes from collapsing. Once the SEI film is formed, lithium ions again do not react sideways with the graphite cathode or other material, and the amount of charge consumed to form the SEI film has a property of not reversibly reacting upon discharge with an irreversible capacity. Accordingly, no further decomposition of the electrolyte occurs and the amount of lithium ions in the electrolyte is reversibly maintained to maintain stable charge and discharge (see J. Power Sources (1994) 51:79 to 104).
그러나, 박형의 각형 전지에서는 상술한 SEI 형성 반응 중에 탄산염계 유기 용매의 분해로부터 발생하는 CO, CO2, CH4, C2H6등의 기체 발생으로 인하여 충전시 전지의 두께가 팽창하는 문제가 발생한다(참조:J. Power Sources(1998) 72:66~70). 또한, 만충전 상태에서 고온 저장시(예: 4.2V까지 100% 충전 후 85℃에서 4일 동안 방치) 시간이 경과함에 따라 상기 SEI 필름이 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 노출된 음극 표면과 주위의 전해액이 반응하는 부반응이 지속적으로 일어나게 된다. 이때의 계속적인 기체 발생으로 인하여 전지 내부의 내압이 상승하게 되며, 그 결과 각형 전지와 PLI(polymer lithium ion) 전지의 경우, 전지의 두께가 증가하여 셋트 장착 자체를 어렵게 만드는 문제를 유발한다.However, in the thin rectangular battery, there is a problem that the thickness of the battery is expanded during charging due to the generation of gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated from decomposition of the carbonate-based organic solvent during the above-described SEI formation reaction. (See J. Power Sources (1998) 72: 66-70). In addition, when stored at high temperature in a fully charged state (for example, left at 85 ° C. for 4 days after 100% charge to 4.2V), the SEI film gradually decays due to increased electrochemical energy and thermal energy, and is exposed. The side reaction where the negative electrode surface reacts with the surrounding electrolyte continuously occurs. In this case, the internal pressure of the battery increases due to the continuous gas generation. As a result, in the case of the square battery and the polymer lithium ion (PLI) battery, the thickness of the battery increases, which causes a problem in that the set mounting itself becomes difficult.
이와 같은 전지의 내압 상승을 억제하고자, 전해액에 첨가제를 넣어서 SEI형성 반응의 양상을 변화시키려는 연구가 진행되어 왔다. 예를 들면, 일본특허 제 95-176323호에서는 CO2를 전해액에 첨가하는 기술이 제시되었고, 일본특허 제 95-320779호에서는 전해액에 설파이드계 화합물을 첨가하여 전해액 분해를 억제하는 기술을 개시하고 있으며, 일본특허 제 97-73918호에서는 디페닐 피크릴히드라질(diphenyl picrylhydrazyl)을 첨가하여 전지의 고온 저장성을 향상시켰고, 일본특허 제 96-321313호에서는 전해액에 특정 화합물을 첨가하여 전지의 충방전 사이클 특성을 향상시켰다.In order to suppress such an increase in the internal pressure of the battery, studies have been conducted to change the aspect of the SEI formation reaction by adding an additive to the electrolyte. For example, Japanese Patent No. 95-176323 discloses a technique for adding CO 2 to an electrolyte, and Japanese Patent No. 95-320779 discloses a technique for suppressing decomposition of an electrolyte by adding a sulfide compound to the electrolyte. In Japanese Patent No. 97-73918, diphenyl picrylhydrazyl was added to improve the high temperature storage of the battery. In Japanese Patent No. 96-321313, a specific compound was added to the electrolyte to charge and discharge the battery. Improved properties.
그러나, 지금까지 알려진 바로는 전지 성능 향상을 위하여 특정 화합물을 전해액에 첨가할 경우, 일부 항목의 성능은 향상되는 반면, 다른 항목의 성능 감소를 수반하는 경우(예를 들면, 저온 성능은 향상되나 충방전 사이클은 성능은 오히려 감소하는 경우)가 많았다.However, it is known so far that when certain compounds are added to the electrolyte to improve battery performance, the performance of some items is improved, while the performance of other items is accompanied by a decrease in performance (eg, low temperature performance is improved, but Discharge cycles were often reduced).
따라서, 전지 내부에서 전해액의 분해 억제제 역할 및 흑연 음극 표면에서 일어나는 SEI 필름 형성 반응의 조절제 역할을 함으로써, 전지 내부의 기체 발생량을 감소시키고, 초기 비가역 용량, 고온에서의 용량 저장 특성 및 충방전 사이클 특성 등을 향상시킬 수 있는 적절한 리튬 전지의 비수 전해액용 첨가제의 개발이시급히 요구되고 있는 실정이다.Thus, by acting as an inhibitor of decomposition of the electrolyte in the cell and as a regulator of the SEI film formation reaction occurring on the surface of the graphite anode, gas generation in the cell is reduced, initial irreversible capacity, capacity storage characteristics at high temperatures, and charge and discharge cycle characteristics. There is an urgent need to develop an additive for a non-aqueous electrolyte of a lithium battery capable of improving the back and the like.
본 발명의 목적은 상기와 같은 종래기술의 문제점들을 해결하기 위한 것으로, 종래의 리튬 전지용 비수 전해액에 3,6-디메틸-1,4-디옥산-2,5-디온(3,6-dimethyl-1,4-dioxane-2,5-dione)을 첨가함으로써 전해액의 분해를 억제하여, 고온 방치시 전지의 두께 증가율이 현저히 감소되고 고온에서의 용량 저장 특성이 향상된 신규한 리튬 전지용 비수 전해액을 제공하는 것이다.An object of the present invention is to solve the problems of the prior art as described above, 3,6-dimethyl-1,4-dioxane-2,5-dione (3,6-dimethyl-) in the conventional non-aqueous electrolyte for lithium batteries The addition of 1,4-dioxane-2,5-dione) suppresses the decomposition of the electrolyte solution, thereby providing a novel nonaqueous electrolyte solution for lithium batteries, which significantly reduces the thickness increase rate of the battery at high temperatures and improves the storage capacity at high temperatures. will be.
즉, 본 발명은 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 3,6-디메틸-1,4-디옥산-2,5-디온을 0.1 내지 10.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액을 제공한다.That is, in the present invention, 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which a lithium salt is dissolved at 0.8 to 2.0 M is represented by 3,6-dimethyl-1, Non-aqueous electrolyte solution for lithium batteries prepared by adding 0.1 to 10.0 parts by weight of 4-dioxane-2,5-dione is provided.
[화학식 1][Formula 1]
이하, 본 발명의 리튬 전지용 비수 전해액의 구성 성분을 더욱 상세히 설명한다.Hereinafter, the component of the nonaqueous electrolyte solution for lithium batteries of this invention is demonstrated in detail.
본 발명의 리튬 전지용 비수 전해액 제조에 사용되는 유기용매로는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매를 혼합하여 사용하고, 바람직하게는 탄산에틸렌 및 탄산프로필렌으로 구성되는 환형 탄산염계 유기용매군으로부터 선택되는 하나 또는 그 이상, 및 탄산디메틸, 탄산디에틸, 탄산에틸메틸, 탄산메틸프로필 및 탄산에틸프로필로 구성되는 선형 탄산염계 유기용매군으로부터 선택되는 하나 또는 그 이상을 혼합하여 사용하고, 보다 바람직하게는 탄산에틸렌 및 탄산디메틸을 혼합하여 사용한다. 이외에도, 필요에 따라 아세트산프로필, 아세트산메틸, 아세트산에틸, 아세트산부틸, 프로피온산메틸 및 프로피온산에틸로 구성되는 군으로부터 선택되는 하나 또는 그 이상을 추가로 혼합하여 사용할 수도 있다. 각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한받는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제조시의 혼합비를 따른다.The organic solvent used in the preparation of the non-aqueous electrolyte lithium battery of the present invention is used by mixing a cyclic carbonate organic solvent and a linear carbonate organic solvent, preferably from a cyclic carbonate organic solvent group composed of ethylene carbonate and propylene carbonate. One or more selected, and one or more selected from the group of linear carbonate organic solvents consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate and ethyl propyl, are used in combination, more preferably Preferably, ethylene carbonate and dimethyl carbonate are mixed and used. In addition, one or more selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate may be further mixed and used as necessary. The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio in the production of a nonaqueous electrolyte solution for a lithium battery is followed.
한편, 본 발명의 비수 전해액에 포함된 리튬염으로는 LiPF6, LiClO4, LiAsF6및LiBF4로 구성되는 군으로부터 선택되는 하나 또는 그 이상을 사용하는 것이 바람직하며, 보다 바람직하게는 LiPF6를 사용한다.On the other hand, as the lithium salt contained in the nonaqueous electrolyte of the present invention, it is preferable to use one or more selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6, and LiBF 4 , and more preferably LiPF 6 . use.
본 발명의 비수 전해액은 리튬염이 용해된 상기 혼합 유기용매에 하기 화학식 (1)로 나타내어지는 3,6-디메틸-1,4-디옥산-2,5-디온을 0.1 내지 10.0 중량부, 바람직하게는 0.5 내지 5.0 중량부, 보다 바람직하게는 1.0 내지 5.0 중량부 첨가하여 제조된다.The non-aqueous electrolyte solution of the present invention is 0.1 to 10.0 parts by weight, preferably 3,6-dimethyl-1,4-dioxane-2,5-dione represented by the following formula (1) in the mixed organic solvent in which lithium salt is dissolved: It is prepared by adding 0.5 to 5.0 parts by weight, more preferably 1.0 to 5.0 parts by weight.
[화학식 1][Formula 1]
본 발명의 리튬 전지용 비수 전해액을 사용하여 통상의 방법에 따라 리튬 전지를 제조할 수 있으며, 이와 같이 제조된 리튬 전지는 고온(85℃) 방치시 전해액의 분해에 따른 전지 내부의 기체 발생이 억제되기 때문에, 전지의 두께가 팽창하는 부풀림 현상이 방지되고 고온에서의 용량 저장 특성 또한 우수하다.The lithium battery may be manufactured according to a conventional method using the nonaqueous electrolyte solution for lithium batteries of the present invention, and the lithium battery thus prepared may suppress gas generation inside the battery due to decomposition of the electrolyte when left at a high temperature (85 ° C.). Therefore, the swelling phenomenon in which the thickness of the battery is expanded is prevented and the capacity storage characteristic at high temperature is also excellent.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예 1Example 1
LiPF6가1.0M로 용해된 탄산에틸렌:탄산디메틸 = 1:1인 혼합 유기용매(이하, "기본 비수 전해액"이라 함) 100 중량부에 3,6-디메틸-1,4-디옥산-2,5-디온(3,6-dimethyl-1,4-dioxane-2,5-dione)을 0.5 중량부 첨가하여, 리튬 전지용 비수 전해액을 제조하였다. 이와 같이 제조된 비수 전해액을 사용하여, 통상의 방법에 따라 063048 각형 전지를 제조하였다. 즉, 양극 활물질인 LiCoO2,결착제인 폴리비닐리덴플루오라이드(이하, "PVDF"라 함), 및 도전제인 흑연을 92:4:4의 중량비로 혼합한 후, N-메틸-2-피롤리돈(N-methyl-2-pyrrolydone)을 사용하여 분산시켜 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20㎛의 알루미늄 호일에 코팅하고, 건조 및 압연하여 전지의 양극을 제조하였다. 한편, 음극 활물질인 결정성 인조 흑연과 결착제인 PVDF를 92:8의 중량비로 혼합한 후, N-메틸-2-피롤리돈을 사용하여 분산시켜 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께 15㎛의 구리 호일에 코팅하고, 건조 및 압연하여 전지의 음극을 제조하였다. 이와 같이 제조된 양, 음극과 두께 25㎛의 PE 재질의 분리판(seperator)을 권취, 압축하여 30㎜×48㎜×6㎜ 규격의 각형 캔에 삽입한 후, 상기 비수 전해액을 채워 063048 각형 전지를 완성하였다.3,6-dimethyl-1,4-dioxane-2 in 100 parts by weight of a mixed organic solvent (hereinafter referred to as "basic nonaqueous electrolyte") in which ethylene carbonate: dimethyl carbonate = 1: 1 dissolved in LiPF 6 is 1.0 M 0.5 parts by weight of, 5-dione (3,6-dimethyl-1,4-dioxane-2,5-dione) was added to prepare a nonaqueous electrolyte solution for a lithium battery. Using the nonaqueous electrolyte solution thus prepared, a 063048 square battery was manufactured according to a conventional method. That is, after mixing LiCoO 2 as a positive electrode active material, polyvinylidene fluoride as a binder (hereinafter referred to as “PVDF”), and graphite as a conductive agent in a weight ratio of 92: 4: 4, N-methyl-2-pyrroli A positive electrode slurry was prepared by dispersing with Mn-N-methyl-2-pyrrolydone. The positive electrode slurry was coated on an aluminum foil having a thickness of 20 μm, dried, and rolled to prepare a positive electrode of the battery. On the other hand, crystalline artificial graphite as a negative electrode active material and PVDF as a binder were mixed in a weight ratio of 92: 8, and then dispersed using N-methyl-2-pyrrolidone to prepare a negative electrode slurry. The negative electrode slurry was coated on a copper foil having a thickness of 15 μm, dried, and rolled to prepare a negative electrode of the battery. The positive and negative electrodes prepared as described above and a separator of 25 μm thick PE were wound and compressed and inserted into a rectangular can of 30 mm x 48 mm x 6 mm, and then filled with the nonaqueous electrolyte to fill a 063048 square cell. To complete.
실시예 2Example 2
3,6-디메틸-1,4-디옥산-2,5-디온을 1.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 063048 각형 전지를 제조하였다.A non-aqueous electrolyte solution for lithium batteries was prepared in the same manner as in Example 1, except that 1.0 part by weight of 3,6-dimethyl-1,4-dioxane-2,5-dione was added, and a 063048 square battery was used thereto. Was prepared.
실시예 3Example 3
3,6-디메틸-1,4-디옥산-2,5-디온을 2.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 063048 각형 전지를 제조하였다.A nonaqueous electrolyte solution for a lithium battery was prepared in the same manner as in Example 1, except that 2.0 parts by weight of 3,6-dimethyl-1,4-dioxane-2,5-dione was added thereto, and a 063048 square battery was used thereto. Was prepared.
실시예 4Example 4
3,6-디메틸-1,4-디옥산-2,5-디온을 5.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 063048 각형 전지를 제조하였다.A non-aqueous electrolyte solution for lithium batteries was prepared in the same manner as in Example 1, except that 5.0 parts by weight of 3,6-dimethyl-1,4-dioxane-2,5-dione was added, and a 063048 square battery was used thereto. Was prepared.
비교예 1Comparative Example 1
3,6-디메틸-1,4-디옥산-2,5-디온이 첨가되지 않은 기본 비수 전해액을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 063048 각형 전지를 제조하였다.A 063048 square battery was prepared in the same manner as in Example 1, except that a basic nonaqueous electrolyte solution without using 3,6-dimethyl-1,4-dioxane-2,5-dione was used.
상기 실시예 1 내지 4 및 비교예 1로부터 수득한 063048 각형 전지 각각을 160mA의 전류로 4.2V까지 정전류-정전압 조건으로 충전한 다음, 1시간 동안 방치 후 160mA의 전류로 2.5V까지 방전하고 다시 1시간 동안 방치하였다. 이러한 과정을 3회 반복한 후, 600mA의 전류로 2시간 30분 동안 4.2V까지 충전하였다. 충전이 완료된 직후의 전지의 두께 및 충전 후 전지를 85℃의 고온 챔버(chamber)에서 4일 동안 방치하면서 4시간 또는 24시간 마다 측정한 두께를 서로 비교하여, 각 전지의 두께 증가율을 계산하고 그 결과를 하기 표 1에 요약하여 나타내었다.Each of the 063048 square cells obtained from Examples 1 to 4 and Comparative Example 1 was charged under constant current-constant voltage conditions up to 4.2V at a current of 160mA, and then discharged to 2.5V with a current of 160mA after being left for 1 hour. It was left for hours. After repeating this process three times, it was charged to 4.2V for 2 hours and 30 minutes with a current of 600mA. The thickness increase rate of each cell was calculated by comparing the thicknesses of the cells immediately after the completion of charge and the thicknesses measured every 4 hours or 24 hours while the battery was left in a high temperature chamber at 85 ° C. for 4 days after charging was completed. The results are summarized in Table 1 below.
상기 표 1로부터 알 수 있듯이, 본 발명의 비수 전해액을 사용한 경우 4.2V까지 만충전 후 고온 방치시 전지의 두께 증가율이 종래의 기본 비수 전해액을 사용한 경우에 비하여 최대 66% 수준으로까지 현저히 감소하였다.As can be seen from Table 1, when the non-aqueous electrolyte of the present invention is used, the thickness increase rate of the battery when left at a high temperature after charging to 4.2V is significantly reduced to a maximum of 66% level compared with the case of using the conventional basic non-aqueous electrolyte.
한편, 고온 챔버에서 4일이 경과한 후, 각 전지들의 방전 용량을 통상의 방법에 따라 측정하였으며, 그 결과를 하기 표 2에 요약하여 나타내었다.On the other hand, after 4 days in the high temperature chamber, the discharge capacity of each battery was measured according to a conventional method, the results are summarized in Table 2 below.
상기 표 2로부터 알 수 있듯이, 본 발명의 비수 전해액을 사용한 경우 종래의 기본 비수 전해액을 사용한 경우에 비하여 고온에서의 용량 저장 특성이 다소 향상되었다.As can be seen from Table 2, when the nonaqueous electrolyte of the present invention is used, the capacity storage characteristic at a high temperature is somewhat improved compared with the case of using the conventional basic nonaqueous electrolyte.
이상에서 상세히 설명한 바와 같이, 본 발명의 리튬 전지용 비수 전해액을 사용하면 리튬 전지의 고온 방치시 전해액 분해에 따른 기체 발생이 감소되어 전지의 부풀림 현상이 억제되므로 리튬 전지 제조시 셋트 장착율을 크게 향상시킬 수 있으며, 고온에서의 전지의 용량 저장 특성 또한 향상된다.As described above in detail, the use of the nonaqueous electrolyte for lithium batteries of the present invention reduces gas generation due to decomposition of the electrolyte when the lithium battery is left at a high temperature, thereby suppressing the swelling of the battery, thereby greatly improving the set mounting rate of the lithium battery. In addition, the capacity storage characteristics of the battery at high temperatures are also improved.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0071316A KR100370384B1 (en) | 2000-11-28 | 2000-11-28 | Non-aqueous electrolyte solution for lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0071316A KR100370384B1 (en) | 2000-11-28 | 2000-11-28 | Non-aqueous electrolyte solution for lithium battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020041645A true KR20020041645A (en) | 2002-06-03 |
KR100370384B1 KR100370384B1 (en) | 2003-01-30 |
Family
ID=19701998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0071316A KR100370384B1 (en) | 2000-11-28 | 2000-11-28 | Non-aqueous electrolyte solution for lithium battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100370384B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1562251A2 (en) | 2004-02-04 | 2005-08-10 | Samsung SDI Co., Ltd. | Organic electrolytic solution and lithium battery using the same |
CN105826606A (en) * | 2016-05-16 | 2016-08-03 | 宁德时代新能源科技股份有限公司 | Electrolyte and lithium ion battery containing same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2973730T3 (en) * | 2018-04-11 | 2024-06-24 | Lg Energy Solution Ltd | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
KR102294866B1 (en) | 2018-04-11 | 2021-08-30 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte solution and lithium secondary battery comprising the same |
-
2000
- 2000-11-28 KR KR10-2000-0071316A patent/KR100370384B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1562251A2 (en) | 2004-02-04 | 2005-08-10 | Samsung SDI Co., Ltd. | Organic electrolytic solution and lithium battery using the same |
US7514182B2 (en) * | 2004-02-04 | 2009-04-07 | Samsung Sdi Co., Ltd. | Organic electrolytic solution and lithium battery using the same |
CN105826606A (en) * | 2016-05-16 | 2016-08-03 | 宁德时代新能源科技股份有限公司 | Electrolyte and lithium ion battery containing same |
Also Published As
Publication number | Publication date |
---|---|
KR100370384B1 (en) | 2003-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2206189B1 (en) | Non-aqueous electrolyte lithium secondary battery | |
US20040229128A1 (en) | Non-aqueous electrolyte and a lithium secondary battery comprising the same | |
KR100984134B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
KR100515331B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
KR100789718B1 (en) | Nonaqueous electrolyte for secondary battery | |
KR100370384B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR20040058634A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
KR100370387B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100370385B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100328153B1 (en) | Nonaqueous Battery Electrolyte | |
KR100328152B1 (en) | Nonaqueous Battery Electrolyte | |
KR100412527B1 (en) | A non-aqueous electrolyte and a lithium secondary battery comprising the same | |
KR100534011B1 (en) | Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte | |
KR100521868B1 (en) | Nonaqueous Electrolyte For Secondary Battery | |
KR100611462B1 (en) | Nonaqueous Electrolyte for Battery | |
KR101004399B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
KR100370386B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100370383B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100370388B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100370389B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
US20090226820A1 (en) | Nonaqueous Electrolyte for Battery | |
KR100511519B1 (en) | Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte | |
KR20020085969A (en) | A non-aqueous electrolyte and a lithium secondary battery comprising the same | |
KR100534010B1 (en) | Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte | |
KR100510863B1 (en) | Nonaqueous Electrolyte for Use in Lithium Battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121221 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20131220 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20141211 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20151218 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20161223 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20171219 Year of fee payment: 16 |
|
FPAY | Annual fee payment |
Payment date: 20181220 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20200103 Year of fee payment: 18 |