KR100370389B1 - Non-aqueous electrolyte solution for lithium battery - Google Patents

Non-aqueous electrolyte solution for lithium battery Download PDF

Info

Publication number
KR100370389B1
KR100370389B1 KR10-2000-0072031A KR20000072031A KR100370389B1 KR 100370389 B1 KR100370389 B1 KR 100370389B1 KR 20000072031 A KR20000072031 A KR 20000072031A KR 100370389 B1 KR100370389 B1 KR 100370389B1
Authority
KR
South Korea
Prior art keywords
carbonate
lithium
organic solvent
electrolyte solution
group
Prior art date
Application number
KR10-2000-0072031A
Other languages
Korean (ko)
Other versions
KR20020042226A (en
Inventor
김종섭
김학수
김영규
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR10-2000-0072031A priority Critical patent/KR100370389B1/en
Publication of KR20020042226A publication Critical patent/KR20020042226A/en
Application granted granted Critical
Publication of KR100370389B1 publication Critical patent/KR100370389B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 전지용 비수 전해액에 관한 것으로, 보다 상세하게는 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 알루미녹산 화합물을 0.1 내지 5.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액에 관한 것이며, 본 발명의 리튬 전지용 비수 전해액을 사용하면 충방전 사이클 수명 특성이 우수한 리튬 전지를 용이하게 제조할 수 있다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which lithium salt is dissolved at 0.8 to 2.0 M. The present invention relates to a nonaqueous electrolyte solution for lithium batteries prepared by adding 0.1 to 5.0 parts by weight of the aluminoxane compound shown. The use of the nonaqueous electrolyte solution for lithium batteries of the present invention can easily produce a lithium battery having excellent charge and discharge cycle life characteristics.

상기에서, R은 메틸기, 에틸기, n-프로필기 또는 이소 프로필기이고, n은 5 내지 30이다.In the above, R is a methyl group, ethyl group, n-propyl group or isopropyl group, n is 5 to 30.

Description

리튬 전지용 비수 전해액{Non-aqueous electrolyte solution for lithium battery}Non-aqueous electrolyte solution for lithium battery

본 발명은 리튬 전지용 비수 전해액에 관한 것으로, 보다 상세하게는 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 알루미녹산 화합물을 0.1 내지 5.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium batteries, and more particularly, to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which lithium salt is dissolved at 0.8 to 2.0 M. The present invention relates to a nonaqueous electrolyte solution for lithium batteries prepared by adding 0.1 to 5.0 parts by weight of the aluminoxane compound.

[화학식 1][Formula 1]

상기에서, R은 메틸기, 에틸기, n-프로필기 또는 이소 프로필기이고, n은 5 내지 30이다.In the above, R is a methyl group, ethyl group, n-propyl group or isopropyl group, n is 5 to 30.

노트북 컴퓨터, 켐코더, 휴대폰 등에 사용되는 소형화 및 슬림화된 리튬 2차전지는 리튬이온의 탈리 및 삽입(intercalation)이 가능한 리튬 금속 혼합 산화물로 된 양극 활물질, 탄소 재료 또는 금속 리튬 등으로 된 음극, 및 혼합 유기용매에 리튬염이 적당량 용해된 전해액으로 구성되어 있다. 이러한 리튬 전지의 형태로는 코인형, 18650 원통형, 및 063048 각형 등이 일반적으로 사용되고 있다.The miniaturized and slimmed lithium secondary battery used in notebook computers, camcorders, mobile phones, etc. is a positive electrode active material made of lithium metal mixed oxide capable of detaching and intercalating lithium ions, a negative electrode made of carbon material or metal lithium, and a mixed organic material. It consists of electrolyte solution in which lithium salt was melt | dissolved in the solvent in appropriate quantity. Coins, 18650 cylinders, 063048 squares, and the like are generally used as the lithium battery.

리튬 전지의 3.6 내지 3.7V 정도의 평균 방전전압은 다른 알칼리 전지나 Ni-MH 또는 Ni-Cd 전지에 비하여 높은 전력을 얻을 수 있는 가장 큰 장점 중의 하나이다. 이러한 높은 구동전압을 내기 위해서는 충방전 전압영역인 0 내지 4.2V에서 전기 화학적으로 안정한 전해액 조성이 필요하다. 따라서 탄산에틸렌(ethylene carbonate, 이하 "EC"라 함), 탄산디메틸(dimethylcarbonate, 이하 "DMC"라 함), 탄산디에틸(diethylcarbonate, 이하 "DEC"라 함) 등의 탄산염계 유기용매를 적절히 혼합하여 전해액의 용매로 사용한다. 전해액의 용질로는 통상 LiPF6, LiBF4, LiClO4등의 리튬염을 사용하며, 이들은 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 전지의 기본적인 작동을 가능하게 한다. 그러나 이와 같이 제조된 비수(比水) 전해액은 Ni-MH 또는 Ni-Cd 전지에 사용되는 수계(水系) 전해액에 비하여 이온 전도도가 현저히 낮기 때문에 고율 충방전 등에서는 불리한 점으로 작용하기도 한다.The average discharge voltage of about 3.6 to 3.7 V of the lithium battery is one of the biggest advantages of obtaining high power compared to other alkaline batteries or Ni-MH or Ni-Cd batteries. In order to achieve such a high driving voltage, an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2V. Therefore, carbonate organic solvents such as ethylene carbonate (hereinafter referred to as "EC"), dimethyl carbonate (hereinafter referred to as "DMC") and diethyl carbonate (hereinafter referred to as "DEC") are appropriately mixed. It is used as a solvent of electrolyte solution. As the solute of the electrolyte, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 are usually used, and these act as a source of lithium ions in the battery to enable basic operation of the lithium battery. However, the non-aqueous electrolyte prepared in this way may have disadvantages in high rate charge and discharge because the conductivity of the nonaqueous electrolyte is significantly lower than that of the aqueous electrolyte used in Ni-MH or Ni-Cd batteries.

전해액의 이온 전도도는 전지의 충방전 성능과 급속 방전 성능에 큰 영향을 미치는 중요한 요인이다. 전해액이 높은 이온 전도도를 가지기 위해서는 우선 자유이온의 수가 많아야 하기 때문에 유전율이 높아야 하고, 자유이온의 이동 용이성을 고려할 때 점도가 낮아야 한다. 또한, 저온에서 전해액이 응고되면 자유이온의 이동이 제한되어 전지의 충방전이 불가능해지므로 가능한 낮은 응고점을 가져야 한다(참조: Makoto Ue, Solution Chemistry of Organic Electrolytes,Progress in Battery Materials(1997) Vol.16).The ion conductivity of the electrolyte is an important factor that greatly affects the charge / discharge performance and the rapid discharge performance of the battery. In order for the electrolyte to have high ionic conductivity, the number of free ions must first be high, so the dielectric constant must be high and the viscosity must be low in consideration of the mobility of the free ions. In addition, when the electrolyte is solidified at low temperature, the free ions are restricted and thus the charge and discharge of the battery is impossible. Therefore, the electrolyte should have a low freezing point (see Makoto Ue, Solution Chemistry of Organic Electrolytes, Progress in Battery Materials (1997) Vol. 16).

리튬 전지용 전해액의 이온 전도도를 높이기 위해서 고유전율 용매와 저점도의 용매를 혼합하여 리튬 전지의 전기화학적인 특성을 개선시키고, 어는점이 낮은 용매를 혼합하여 리튬 전지의 저온 성능을 개선시키려는 다양한 기술이 제시되어 왔다(참조: 미국특허 제 5639575호, 미국특허 제 5525443호). 하지만, 이러한 용매의 조성 변화만으로는 저온, 특히 -20℃ 정도에서의 리튬 이온의 전도도를 향상시키지 못하기 때문에, 고율(1C)로 방전하는 경우 급격한 내부 저항의 증가로 인하여 방전 특성이 급격히 저하된다.In order to improve the ionic conductivity of the electrolyte for lithium batteries, various techniques are proposed to improve the electrochemical characteristics of lithium batteries by mixing high dielectric constant solvents and low viscosity solvents, and to improve low temperature performance of lithium batteries by mixing solvents with low freezing points. (US Pat. No. 5639575, US Pat. No. 55,25443). However, the change in the composition of the solvent alone does not improve the conductivity of lithium ions at low temperatures, particularly at about −20 ° C., and therefore, when discharging at a high rate (1 C), the discharge characteristic is rapidly decreased due to a sharp increase in internal resistance.

한편, 리튬 전지의 초기 충전시 양극으로 사용되는 리튬 금속 산화물로부터 나온 리튬 이온은 음극으로 사용되는 흑연(결정질 또는 비결정질) 전극으로 이동하여, 흑연 전극의 층간에 삽입된다. 이때 리튬은 반응성이 강하므로 흑연 음극 표면에서 전해액과 음극을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 흑연 음극의 표면에 일종의 부동태 피막(passivation layer)을 형성하게 되는데, 이러한 피막을 SEI(solid electrolyte interface) 필름이라고 한다. 상기 SEI 필름은 일단 형성되면 이온 터널의 역할을 수행하여 리튬 이온만을 통과시키게 된다.On the other hand, lithium ions from the lithium metal oxide used as the positive electrode during the initial charging of the lithium battery move to the graphite (crystalline or amorphous) electrode used as the negative electrode, and are inserted between the layers of the graphite electrode. At this time, since lithium has a high reactivity, the electrolyte and the carbon constituting the cathode react on the surface of the graphite anode to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a kind of passivation layer on the surface of the graphite cathode, which is called a solid electrolyte interface (SEI) film. Once formed, the SEI film functions as an ion tunnel to pass only lithium ions.

SEI 필름은 이러한 이온 터널의 효과로 리튬 이온을 용매화(solvation)시켜,전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기용매 분자, 예를 들면 EC, DMC 또는 DEC 등이 흑연 음극에 함께 삽입(cointercalation)되어 흑연 음극의 구조를 붕괴시키는 것을 막아준다. 일단 SEI 필름이 형성되고 나면, 리튬 이온은 다시는 흑연 음극 또는 다른 물질과 부반응을 하지 않게 되고, 상기 SEI 필름 형성에 소모된 전하량은 비가역 용량으로 방전시 가역적으로 반응하지 않는 특성을 갖는다. 따라서, 더 이상의 전해액의 분해가 발생하지 않고 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다(참조:J. Power Sources(1994) 51:79~104).SEI film solvates lithium ions by the effect of this ion tunnel, and organic solvent molecules having a large molecular weight, such as EC, DMC, or DEC, which move together with lithium ions in the electrolyte are inserted together in the graphite cathode ( cointercalation) prevents the structure of graphite cathodes from collapsing. Once the SEI film is formed, lithium ions again do not react sideways with the graphite cathode or other material, and the amount of charge consumed to form the SEI film has a property of not reversibly reacting upon discharge with an irreversible capacity. Accordingly, no further decomposition of the electrolyte occurs and the amount of lithium ions in the electrolyte is reversibly maintained to maintain stable charge and discharge (see J. Power Sources (1994) 51:79 to 104).

상기 SEI 필름의 성질은 전해액에 포함된 용매의 종류나 첨가제 등의 특성에 따라 달라지며, 이온 및 전하 이동에 영향을 미쳐 전지의 성능 변화를 초래하는 주요 인자 중의 하나로 알려져 있다(참조: Shoichiro Mori, Chemical properties of various organic electrolytes for lithium rechargeable batteries,J.Power Source(1997) Vol. 68). 따라서, 리튬이온 전지의 저온에서 고율 방전 특성을 향상 시키기 위해서는 저온에서도 높은 이온 전도도를 가질 수 있는 전해액 조성 외에, 전지의 내부 저항을 줄일 수 있도록 리튬 이온이 잘 이동할 수 있는 SEI 필름의 형성이 필요하다.The properties of the SEI film depend on the type of solvent or additives contained in the electrolyte, and are known as one of the main factors that affect the performance of the battery by affecting ion and charge transfer (see Shoichiro Mori, Chemical properties of various organic electrolytes for lithium rechargeable batteries, J. Power Source (1997) Vol. 68). Therefore, in order to improve the high-rate discharge characteristics at low temperatures of the lithium ion battery, in addition to the composition of an electrolyte which may have high ionic conductivity even at low temperatures, it is necessary to form an SEI film to which lithium ions can move to reduce the internal resistance of the battery. .

본 발명의 목적은 이와 같은 종래 기술의 문제점을 해결하기 위하여, 종래의 리튬 전지용 비수 전해액에 알루미녹산 화합물을 첨가하여 안정한 SEI 필름의 형성을 실현함으로써, 리튬 이온의 흑연 음극 층간으로의 삽입(intercalation) 및 탈리(deintercalation)를 용이하게 하여 전지의 내부 저항을 감소시키는 신규한 리튬 전지용 비수 전해액을 제공하는 것이다.An object of the present invention is to solve the problems of the prior art, by adding an aluminoxane compound to a conventional nonaqueous electrolyte for lithium batteries to realize the formation of a stable SEI film, intercalation of lithium ions into the graphite cathode interlayer. And a novel nonaqueous electrolyte solution for lithium batteries that facilitates deintercalation to reduce internal resistance of the battery.

즉, 본 발명은 리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 알루미녹산 화합물을 0.1 내지 5.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액을 제공한다.That is, the present invention is 0.1 to 5.0 weight of the aluminoxane compound represented by the following formula (1) to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which lithium salt is dissolved at 0.8 to 2.0 M. It provides a nonaqueous electrolyte solution for lithium batteries prepared by addition.

[화학식 1][Formula 1]

상기에서, R은 메틸기, 에틸기, n-프로필기 또는 이소 프로필기이고, n은 5 내지 30이다.In the above, R is a methyl group, ethyl group, n-propyl group or isopropyl group, n is 5 to 30.

이하, 본 발명의 리튬 전지용 비수 전해액의 구성 성분을 더욱 상세히 설명한다.Hereinafter, the component of the nonaqueous electrolyte solution for lithium batteries of this invention is demonstrated in detail.

본 발명의 리튬 전지용 비수 전해액 제조에 사용되는 유기용매로는 환형 탄산염계 유기용매와 선형 탄산염계 유기용매를 혼합하여 사용하고, 바람직하게는 탄산에틸렌 및 탄산프로필렌으로 구성되는 군으로부터 선택되는 1종 이상의 환형 탄산염계 유기용매, 및 탄산디메틸, 탄산디에틸, 탄산에틸메틸, 탄산메틸프로필 및 탄산에틸프로필로 구성되는 군으로부터 선택되는 2종 이상의 선형 탄산염계 유기용매을 혼합하여 사용하고, 보다 바람직하게는 탄산에틸렌, 탄산디메틸 및 탄산디에틸을 혼합하여 사용한다. 이외에도, 필요에 따라 아세트산프로필, 아세트산메틸, 아세트산에틸, 아세트산부틸, 프로피온산메틸 및 프로피온산에틸로 구성되는 군으로부터 선택되는 1종 이상을 추가로 혼합하여 사용할 수도 있다. 각 군으로부터 선택된 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한받는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제조시의 혼합비를 따른다.The organic solvent used in the preparation of the nonaqueous electrolyte solution for lithium batteries of the present invention is used by mixing a cyclic carbonate organic solvent and a linear carbonate organic solvent, preferably at least one selected from the group consisting of ethylene carbonate and propylene carbonate. A cyclic carbonate organic solvent and two or more linear carbonate organic solvents selected from the group consisting of dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl and ethyl propyl are mixed and used, more preferably carbonic acid. Ethylene, dimethyl carbonate and diethyl carbonate are mixed and used. In addition, one or more types selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate may be further mixed and used as necessary. The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio in the production of a nonaqueous electrolyte solution for a lithium battery is followed.

한편, 본 발명의 비수 전해액에 포함된 리튬염으로는 LiPF6, LiClO4, LiAsF6및LiBF4로 구성되는 군으로부터 선택되는 1종 이상을 사용하는 것이 바람직하며, 보다 바람직하게는 LiPF6를 사용한다.On the other hand, as the lithium salt contained in the nonaqueous electrolyte of the present invention, it is preferable to use at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6, and LiBF 4 , and more preferably LiPF 6 . do.

본 발명의 비수 전해액은 리튬염이 용해된 상기 혼합 유기용매에 하기 화학식 (1)로 나타내어지는 알루미녹산 화합물을 0.1 내지 5.0 중량부, 바람직하게는 0.5 내지 3.0 중량부 첨가하여 제조된다.The nonaqueous electrolyte of the present invention is prepared by adding 0.1 to 5.0 parts by weight, preferably 0.5 to 3.0 parts by weight of the aluminoxane compound represented by the following formula (1) to the mixed organic solvent in which lithium salt is dissolved.

[화학식 1][Formula 1]

상기에서, R은 메틸기, 에틸기, n-프로필기 또는 이소 프로필기이고, 바람직하게는 메틸기이며, n은 5 내지 30이다.In the above, R is a methyl group, ethyl group, n-propyl group or isopropyl group, preferably methyl group, n is 5 to 30.

상기 알루미녹산 화합물은 리튬 전지 충전시 부반응 결과 음극 표면에 생성되는 -OH기를 가지는 부산물, 예를 들면 LiOH에 대하여 매우 큰 반응성을 가지며, 전해액의 다른 성분보다 먼저 음극 활물질과 반응하여 Al이 포함된 안정한 도전성 피막, 즉 SEI 필름을 형성한다. 이와 같이 형성된 SEI 필름은 리튬 이온이 흑연 음극으로 용이하게 삽입(intercalation) 및 탈리(deintercalation)될 수 있도록 하여, 전지의 내부 저항을 감소시키는 역할을 한다.The aluminoxane compound has a very high reactivity with a by-product having a -OH group, for example, LiOH, generated on the surface of the negative electrode as a result of side reactions when charging a lithium battery, and reacts with the negative electrode active material before other components of the electrolyte solution to provide stable Al containing. An electroconductive film, ie, an SEI film, is formed. The SEI film formed as described above allows lithium ions to be easily intercalated and deintercalated into the graphite cathode, thereby reducing the internal resistance of the battery.

본 발명의 리튬 전지용 비수 전해액을 사용하여 통상의 방법에 따라 리튬 전지를 제조할 수 있다. 이와 같이 제조된 리튬 전지는 내부저항이 작고, 충방전 사이클 수명이 우수하다.The lithium battery can be manufactured according to a conventional method using the nonaqueous electrolyte solution for lithium batteries of the present invention. The lithium battery thus produced has a low internal resistance and an excellent charge / discharge cycle life.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.

실시예 1Example 1

LiPF6가1.0M로 용해된 탄산에틸렌:탄산디메틸:탄산디에틸 = 1:1:1인 혼합 유기용매(이하, "기본 비수 전해액"이라 함) 100 중량부에 5.9%(w/v) 메틸알루미녹산 톨루엔 용액을 메틸 알루미녹산이 상기 기본 비수 전해액 대비 0.5 중량부가 되도록 첨가하여, 리튬 전지용 비수 전해액을 제조하였다. 이와 같이 제조된 비수 전해액을 사용하여, 통상의 방법에 따라 18650 원통형 전지를 제조하였다. 전지 제조시, 음극 활물질과 양극 활물질로는 각각 흑연과 LiCoO2를 사용하고, 결착제로는 폴리비닐리덴플루오라이드를 사용하였으며, 도전제로는 아세틸렌블랙을 사용하였다.5.9% (w / v) methyl in 100 parts by weight of a mixed organic solvent (hereinafter referred to as "basic nonaqueous electrolyte") in which ethylene carbonate: dimethyl carbonate: diethyl carbonate = 1: 1: 1 dissolved in LiPF 6 was 1.0 M The aluminoxane toluene solution was added so that methyl aluminoxane was 0.5 parts by weight relative to the basic nonaqueous electrolyte, thereby preparing a nonaqueous electrolyte solution for a lithium battery. Using the nonaqueous electrolyte solution thus prepared, an 18650 cylindrical battery was prepared according to a conventional method. In manufacturing the battery, graphite and LiCoO 2 were used as the negative electrode active material and the positive electrode active material, polyvinylidene fluoride was used as the binder, and acetylene black was used as the conductive agent.

실시예 2Example 2

메틸 알루미녹산을 1.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 18650 원통형 전지를 제조하였다.A nonaqueous electrolyte solution for a lithium battery was prepared in the same manner as in Example 1, except that 1.0 part by weight of methyl aluminoxane was added, thereby preparing an 18650 cylindrical battery.

실시예 3Example 3

메틸 알루미녹산을 2.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 18650 원통형 전지를 제조하였다.A non-aqueous electrolyte solution for lithium batteries was prepared in the same manner as in Example 1, except that 2.0 parts by weight of methyl aluminoxane was added, thereby preparing an 18650 cylindrical battery.

실시예 4Example 4

메틸 알루미녹산을 3.0 중량부 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 전지용 비수 전해액을 제조하고, 이를 사용하여 18650 원통형 전지를 제조하였다.A non-aqueous electrolyte solution for lithium batteries was prepared in the same manner as in Example 1, except that 3.0 parts by weight of methyl aluminoxane was added, thereby preparing an 18650 cylindrical battery.

비교예 1Comparative Example 1

메틸 알루미녹산이 첨가되지 않은 기본 비수 전해액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 18650 원통형 전지를 제조하였다.An 18650 cylindrical battery was prepared in the same manner as in Example 1, except that a basic nonaqueous electrolyte solution without adding methyl aluminoxane was used.

상기 실시예 1 내지 4 및 비교예 1로부터 수득한 18650 원통형 전지 각각을 25℃의 항온 조건하에서 0.2C에서 4.2V까지 만충전한 후, 0.2C에서 2.75V까지 방전시키면서, 이때 발생하는 기체의 부피, 내부저항 및 초기 비가역 용량을 측정하고, 그 결과를 하기 표 1에 요약하여 나타내었다. 기체 발생량은 비교예 1의 발생량을 기준으로 하여 상대값으로 나타내었다.Each of the 18650 cylindrical batteries obtained from Examples 1 to 4 and Comparative Example 1 was fully charged from 0.2C to 4.2V under a constant temperature of 25 ° C., and then discharged from 0.2C to 2.75V, wherein the volume of gas generated at this time, Internal resistance and initial irreversible capacity were measured and the results are summarized in Table 1 below. The amount of gas generated is shown as a relative value based on the amount of generated in Comparative Example 1.

기체 발생량Gas generation amount 내부저항(mΩ)Internal resistance (mΩ) 초기 비가역 용량(%)Initial irreversible capacity (%) 실시예 1Example 1 0.810.81 5454 9.389.38 실시예 2Example 2 0.780.78 3737 6.676.67 실시예 3Example 3 1.031.03 4444 7.567.56 실시예 4Example 4 1.191.19 5353 8.478.47 비교예 1Comparative Example 1 1One 6262 8.658.65

상기 표 1로부터 알 수 있듯이, 본 발명의 비수 전해액을 사용한 전지의 경우 기체 발생량 및 초기 비가역 용량은 종래의 기본 비수 전해액을 사용한 전지와 거의 동등한 수준으로 측정되나, 내부저항은 현저히 감소되는 우수한 특성을 보인다.As can be seen from Table 1, in the case of the battery using the non-aqueous electrolyte of the present invention, the gas generation amount and the initial irreversible capacity are measured at about the same level as the battery using the conventional basic non-aqueous electrolyte, but the internal resistance is significantly reduced. see.

한편, 상기 실시예 1 내지 4 및 비교예 1로부터 수득한 18650 원통형 전지 각각의 사이클 수명 특성을 평가하기 위하여, 각각의 전지를 정전류-정전압 조건(0.5C, 4.2V)으로 충전하고 0.2C에서 2.75V까지 방전하는 과정을 300회 반복한 후 방전용량을 측정하였다. 측정 결과를 비교예 1의 방전용량을 기준으로 한 상대값으로 하기 표 2에 나타내었다.On the other hand, in order to evaluate the cycle life characteristics of each of the 18650 cylindrical cells obtained from Examples 1 to 4 and Comparative Example 1, each cell was charged under constant current-constant voltage conditions (0.5C, 4.2V) and 2.75 at 0.2C After discharging up to 300 times, the discharge capacity was measured. The measurement results are shown in Table 2 below as relative values based on the discharge capacity of Comparative Example 1.

방전 용량Discharge capacity 실시예 1Example 1 1.061.06 실시예 2Example 2 1.221.22 실시예 3Example 3 1.171.17 실시예 4Example 4 1.091.09 비교예 1Comparative Example 1 1One

하기 표 2의 결과로부터 본 발명의 비수 전해액을 사용한 전지의 경우 종래의 기본 비수 전해액을 사용한 전지에 비하여 충방전 사이클 수명이 향상됨을 알 수 있다.From the results in Table 2, it can be seen that the battery using the nonaqueous electrolyte of the present invention has improved charge / discharge cycle life as compared to a battery using a conventional basic nonaqueous electrolyte.

이상에서 상세히 설명한 바와 같이, 본 발명의 리튬 전지용 비수 전해액을 사용하면 전지의 내부저항이 감소되어 충방전 사이클 수명 특성이 우수한 리튬 전지를 용이하게 제조할 수 있다.As described above in detail, when the nonaqueous electrolyte solution for lithium batteries of the present invention is used, the internal resistance of the battery is reduced, and thus a lithium battery having excellent charge / discharge cycle life characteristics can be easily manufactured.

Claims (4)

리튬염이 0.8 내지 2.0M로 용해된 환형 탄산염계 유기용매와 선형 탄산염계 유기용매의 혼합 유기용매 100 중량부에 하기 화학식(1)로 나타내어지는 알루미녹산 화합물을 0.1 내지 5.0 중량부 첨가하여 제조된 리튬 전지용 비수 전해액.It was prepared by adding 0.1 to 5.0 parts by weight of an aluminoxane compound represented by the following formula (1) to 100 parts by weight of a mixed organic solvent of a cyclic carbonate organic solvent and a linear carbonate organic solvent in which a lithium salt was dissolved at 0.8 to 2.0 M. Non-aqueous electrolyte solution for lithium batteries. [화학식 1][Formula 1] 상기에서, R은 메틸기, 에틸기, n-프로필기 또는 이소 프로필기이고, n은 5 내지 30이다.In the above, R is a methyl group, ethyl group, n-propyl group or isopropyl group, n is 5 to 30. 제 1항에 있어서,The method of claim 1, 상기 환형 탄산염계 유기용매는 탄산에틸렌, 탄산프로필렌, 또는 그들의 혼합물이고, 상기 선형 탄산염계 유기용매는 탄산디메틸, 탄산디에틸, 탄산에틸메틸, 탄산메틸프로필, 탄산에틸프로필, 또는 그들의 혼합물인 것을 특징으로 하는 리튬 전지용 비수 전해액.The cyclic carbonate organic solvent is ethylene carbonate, propylene carbonate, or a mixture thereof, and the linear carbonate organic solvent is dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, or a mixture thereof. A nonaqueous electrolyte solution for lithium batteries. 제 1항에 있어서,The method of claim 1, 상기 혼합 유기용매가 아세트산프로필, 아세트산메틸, 아세트산에틸, 아세트산부틸, 프로피온산메틸 및 프로피온산에틸로 구성되는 군으로부터 선택되는 1종 이상을 추가로 포함하는 것을 특징으로 하는 리튬 전지용 비수 전해액.The non-aqueous electrolyte solution for lithium batteries, characterized in that the mixed organic solvent further comprises one or more selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate. 제 1항에 있어서,The method of claim 1, 상기 리튬염이 LiPF6, LiClO4, LiAsF6및 LiBF4로 구성되는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 전지용 비수 전해액.The lithium salt is at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6, and LiBF 4 , wherein the nonaqueous electrolyte solution for a lithium battery is used.
KR10-2000-0072031A 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery KR100370389B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0072031A KR100370389B1 (en) 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0072031A KR100370389B1 (en) 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery

Publications (2)

Publication Number Publication Date
KR20020042226A KR20020042226A (en) 2002-06-05
KR100370389B1 true KR100370389B1 (en) 2003-01-30

Family

ID=27678722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0072031A KR100370389B1 (en) 2000-11-30 2000-11-30 Non-aqueous electrolyte solution for lithium battery

Country Status (1)

Country Link
KR (1) KR100370389B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117664B1 (en) 2019-07-22 2020-06-01 민경동 Function weed remover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255837A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Lithium secondary battery
KR19980083412A (en) * 1997-05-15 1998-12-05 유현식 Vinyl Acetate Solid Polymer Electrolyte
JPH117977A (en) * 1997-06-19 1999-01-12 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
KR19990000190A (en) * 1997-06-03 1999-01-15 손욱 Solid polymer electrolyte composition
JP2000294277A (en) * 1999-04-02 2000-10-20 Mitsui Chemicals Inc Nonaqueous electrolyte and secondary battery using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255837A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Lithium secondary battery
KR19980083412A (en) * 1997-05-15 1998-12-05 유현식 Vinyl Acetate Solid Polymer Electrolyte
KR19990000190A (en) * 1997-06-03 1999-01-15 손욱 Solid polymer electrolyte composition
JPH117977A (en) * 1997-06-19 1999-01-12 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JP2000294277A (en) * 1999-04-02 2000-10-20 Mitsui Chemicals Inc Nonaqueous electrolyte and secondary battery using it

Also Published As

Publication number Publication date
KR20020042226A (en) 2002-06-05

Similar Documents

Publication Publication Date Title
US7255966B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7709154B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20190054973A (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
KR100984134B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20010082428A (en) Electrolyte for Lithium Rechargeable Batteries
KR100515331B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100412522B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100335222B1 (en) Nonaqueous Electrolyte
KR100450199B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370389B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100642435B1 (en) Nonaqueous Electrolyte for Battery
KR100534011B1 (en) Nonaqueous Electrolyte for Battery and Secondary Battery comprising the Electrolyte
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20050029971A (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100860441B1 (en) Nonaqueous battery electrolyte
KR101294763B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100521868B1 (en) Nonaqueous Electrolyte For Secondary Battery
KR100370388B1 (en) Non-aqueous electrolyte solution for lithium battery
KR20050066166A (en) Non-aqueous electrolyte for lithium battery
KR100534010B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121120

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131205

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151127

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee